
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2021 1

SplitAVG: A heterogeneity-aware federated deep learning method for
medical imaging

Miao Zhang, Liangqiong Qu, Praveer Singh, Jayashree Kalpathy-Cramer, Daniel L. Rubin

Abstract— Federated learning is an emerging research
paradigm for enabling collaboratively training deep learning
models without sharing patient data. However, the data
from different institutions are usually heterogeneous across
institutions, which may reduce the performance of models
trained using federated learning. In this study, we propose a
novel heterogeneity-aware federated learning method, SplitAVG,
to overcome the performance drops from data heterogeneity
in federated learning. Unlike previous federated methods that
require complex heuristic training or hyper parameter tuning,
our SplitAVG leverages the simple network split and feature
map concatenation strategies to encourage the federated model
training an unbiased estimator of the target data distribution. We
compare SplitAVG with seven state-of-the-art federated learning
methods, using centrally hosted training data as the baseline
on a suite of both synthetic and real-world federated datasets.
We find that the performance of models trained using all the
comparison federated learning methods degraded significantly
with the increasing degrees of data heterogeneity. In contrast,
SplitAVG method achieves comparable results to the baseline
method under all heterogeneous settings, that it achieves 96.2%
of the accuracy and 110.4% of the mean absolute error obtained
by the baseline in a diabetic retinopathy binary classification
dataset and a bone age prediction dataset, respectively, on
highly heterogeneous data partitions. We conclude that SplitAVG
method can effectively overcome the performance drops from
variability in data distributions across institutions. Experimental
results also show that SplitAVG can be adapted to different base
convolutional neural networks (CNNs) and generalized to various
types of medical imaging tasks. The code is publicly available at
https://github.com/zm17943/SplitAVG.

Index Terms— Biomedical imaging, Data heterogeneity,
Federated learning

I. INTRODUCTION

Deep learning techniques and advances in computer hardware
offer the promise of great advances in various medical applications,
e.g., diagnosing ocular diseases [1], detecting glaucoma from optical
coherence tomography images [2], identifying serious illnesses with
natural language processing [3], and providing appropriate treatment
recommendation [4]. However, training a robust deep learning model
that generalizes across centers often requires a tremendous amount
of training cases. The amount of patient data at individual medical
institutions, or even in public data repositories such as The Cancer
Imaging Archive, is often limited, especially for rarer diseases
[5], [6]. Aggregating patient data from multiple centers is often
complicated owing to patient privacy, legal regulatory barriers to
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data sharing, and inefficiency of moving large amounts of data. As
such, federated learning (also termed as “collaborative learning” or
“distributed learning”), where the training of a global deep learning
model is performed locally at each institution without sharing raw
data, has become a promising alternative for accessing large scale
data to train robust deep learning models [7]–[14].

Existing federated learning methods can be grouped into
aggregation-based federated learning methods [9] and transfer-based
methods [15], [16]. Aggregation-based federated learning methods
repeatedly average weights or gradient updates of the models trained
at local institutions, such as Federated Averaging (FedAvg) and
Federated stochastic gradient descent (FedSGD) [9]. Transfer-based
methods train a model at each local institution for specific number
of iterations and then transfer full or part of the model weights to
next institution until model convergence, such as in Cyclical weight
transfer (CWT) [15] and SplitNN [16] respectively.

One of the key challenges to federated learning algorithms is
mitigating the effects of data heterogeneity among participating
institutions on performance of the final learned model [17]. The
distributed nature of federated learning means that there can be
substantial heterogeneity in the distributions of training data across
institutions. Aggregation-based methods like FedAvg can be robust
to certain non-IID (independent and identically distributed) settings
[9], but the accuracy of the synchronized averaged model reduces
significantly on highly skewed data partitions [18]. Transfer-based
methods may also lose model performance when heterogeneity exists
in the training data across institutions, since the model trained in
cyclic transferring way always suffers from catastrophic forgetting
on non-IID settings [19]. It has been demonstrated that training on
non-IID data partitions is a pervasive problem for federated learning
methods, and it always degrades the performance of deep learning
models [21].

Several recent efforts have been devoted to overcoming the de-
grading effects of heterogeneous data across institutions in federated
learning. The related studies include adding momentum to server
model weight updates to prevent client updates trained on non-IID
data partitions from diverging (FedAvgM) [22], applying the group
normalization (Group Norm) [23] layers as the alternative of batch
normalization to avoid the skew-induced accuracy loss of the batch
normalization layer for non-IID data (FedSGD+GD) [21], [24], and
sharing a subset of global data with local institutions to improve the
training of FedAvg by mitigating weight divergence due to non-IID
data (FedAVG+SD) [18]. Though these are promising approaches,
the current approaches only work well on partitions with mild data
distribution heterogeneity and still suffer performance drops on highly
heterogeneous cases (see the comparison results in Fig.5 for details).

In this study, we propose a novel federated learning technique,
Split Averaging (SplitAVG), to overcome the deleterious effects
of heterogenous data distributions across institutions1 in federated
learning. At the heart of SplitAVG is a network splitting operation
and an intermediate feature map concatenation strategy. Specifically,
our SplitAVG splits the network into an institutional sub-network

1The data heterogeneity in our study indicates heterogeneity from cross-
institution data, also written as non-IID or data skew.

https://github.com/zm17943/SplitAVG


2 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2021

Fig. 1. Architecture of Split Averaging (SplitAVG): A deep learning network is split into two sub-networks at a pre-defined cut layer. An institutional
sub-network resides at each local institution, and a server-based sub-network resides on a central server.

(residing at the local institutions) and a server-based sub-network
(residing on a central server) at a predefined layer of the network (see
Fig. 1). As the training examples in each local institution are sampled
from institution-specific data distribution, which is a biased-estimator
of the actual distribution of the whole population on non-IID data
partitions, we further apply a concatenation operation on the central
server to concatenate all the intermediate feature maps collecting
from the institutional sub-networks. This concatenation operation
allows SplitAVG to learn from the union of institution-specific data
distribution rather than directly learning a biased-estimator of the
actual distribution of the whole population, thus working well on both
IID and non-IID data partitions. Our experimental results demonstrate
the capability of the proposed method in handling unbalanced and
non-IID data partitions.

The remainder of this paper is organized as follows: 1) present
our SplitAVG algorithm, detail its forward propagation and back
propagation training stage, 2) detail the binary classification dataset
and regression datasets used to evaluate our method, 3) compare
SplitAVG with seven state-of-the-art federated learning methods and
the baseline centrally-hosted method, 4) present the experimental
setup, and 5) provide an experimental evaluation of SplitAVG and
its comparison methods on both IID data partitions and various non-
IID data partitions.

II. MATERIALS AND METHODS
A. SplitAVG

In this section, we outline our proposed federated learning plat-
form, SplitAVG (see Fig. 1), and provide a prospective to understand
the advantage of the proposed method.

Define the deep learning network involved in SplitAVG as a
function F , which consists of a list of N sequential layers, i.e.,
F = {l1, l2, . . . , lc, . . . , lN}. In SplitAVG, we split F into two sub-
networks at a specific layer (also known as cut layer) lc and rewrite
F = {FI, FS}, where FI = {l1, l2, . . . , lc} is the institutional
sub-network that resides at the local institutions, and FS = {l(c +
1), l(c + 2), . . . , lN} is the server-based sub-network that resides
on a central server. In each round of federated training, each local
institution trains the institutional sub-network FI in parallel with
its local data, sends the output feature maps to the central server
for concatenating with those from other institutions, then the server
completes the rest of the training with the aggregated feature maps on

the server-based sub-network. Specifically, as depicted in Algorithm
1, SplitAVG follows a two-stage training phase: 1) data forward prop-
agation procedure from institutional sub-network to the server-based
sub-network with the transfer of the intermediate feature maps and
their corresponding labels, 2) aggregated gradient back propagation
procedure from server-based sub-network to the institutional sub-
network. This two-stage training process is continued until model
convergence on a separate validation set or the maximum number of
training epochs is reached. Once the training is finished, the server
will send the weights of server-based sub-network FS back to each
local institution. Then each institution can perform validation and
testing with the complete network F = {FI, FS}.

1) Forward Propagation: Let’s assume there are total K local
institutions involved in federated learning, indexed by k, and denote
the training data of institution k as {xk,yk}. In SplitAVG, we
select a subset of St ≪ K local institutions following the client-
selecting methods in FedAvg [9], and then start the following forward
propagation steps: 1) apply standard forward propagation on institu-
tional sub-network FI with sampled min-batch {xk, yk} in each
selected local institution, getting intermediate feature maps FI(xk);
2) send the intermediate feature maps and their corresponding labels
{FI(xk), yk} to the central server; 3) concatenate the received
feature maps Xlc

S = {FI1(x1)⊕FI2(x2)...⊕FISt(xSt)} and their
corresponding labels YS = {y1 ⊕ y2...⊕ ySt} at the central server;
and finally 4) forward propagate the combined feature maps into the
server-based sub-network FS(Xlc

S ). This will complete a round of
forward propagation without sharing the raw data. Unlike traditional
federated learning methods, such as FedAvg [9], that directly average
the model weights learned from institutional specific data distribution,
where the synchronized averaged central model will lose accuracy or
even completely diverge when high heterogeneity exists in the data
partitions [18], our concatenation of feature maps on the central server
guarantees that server-based sub-network is trained on the union of
all the institutional data and not from biased institution-data, thus it
works well on both IID and non-IID data partitions.

2) Back Propagation: After a round of forward propagation,
SplitAVG back propagates the gradients from the last layer of the
server-based sub-network to the first layer of the institutional sub-
network FI . Given the loss function L, the detailed back propagation
of SplitAVG is shown as the following: 1) calculate the gradients
glN = ▽L(YS , FS(Xlc

S )) of the server-based sub-network FS; 2)
back propagate gradients glN at the central server from the last layer
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Algorithm 1: SplitAVG. The K institutions are indexed by k; E is the number of training epochs; {xk, yk} is the data at institution
k; F = {l1, l2, . . . , lc, ..., lN} is the network function, and l is a layer in F . lc is the cut layer. η is the learning rate.
Initialize:
F = {FI, FS} ▷ Institutions and the server split F into institutional sub-network FI and server-based sub-network FS
FI = {l1, l2, . . . , lc}
FS = {l(c+ 1), l(c+ 2), . . . , lN} ▷ lc as the cut layer
Server initializes weight W for FI and sends W to K institutions
Server initializes weight WS for FS

for each epoch i from 1 to E do:
Server samples a subset of St institutions
for each institution k ∈ St in parallel do:

For each local batch xk, yk in xk,yk do:
Forward Propagation:
xlck ← FIk(xk) ▷ Institution k forward propagates xk to cut layer lc
Server ← xlck , yk ▷ Institution k sends intermediate feature maps at lc and labels to server
Xlc

S ← xlc1 ⊕ xlc2 . . . ⊕ xlcSt ▷ Server concatenates feature maps from all institutions
YS ← y1 ⊕ y2. . . ⊕ ySt ▷ Server concatenates labels from all institutions
ŶS ← FS(Xlc

S ) ▷ Server forward propagates concatenated feature maps Xlc
S till the final layer

Back propagation:
glN = ▽L(ŶS , YS) ▷ Server generates gradients at output layer
gl ←W l+1

S

T
gl+1, for l = l(N − 1), l(N − 2), . . . , l(c+ 1) ▷ Server back propagates gradients to l(c+ 1)

Institution k ∈ St← gl(c+1) ▷ Server sends gradients at l(c+ 1) to each local institution
gl ←W l+1

k

T
gl+1, for l = lc, l(c− 1), . . . , l1 ▷ Institution k back propagates gradients

W l
k ←W l

k − ηgl, for l = lc, l(c− 1), . . . , l1 ▷ Institution k updates FI
W l

S ←W l
S − ηgl, for l = lN, l(N − 1), . . . , l(c+ 1) ▷ Server updates FS

Weight Transfer
Institution k ∈ 1, . . . ,K ←WS ▷ Server sends FS to complete institution models

of server-based sub-network FS to its first layer, and denote the
gradient at the first layer of server-based sub-network as gl(c+1) ;
3) transfer the gradients gl(c+1) back to each local institution and
complete the rest of the back-propagation operation through each
institutional sub-network FI; 4) update the model weights of both
the server-based sub-network FS and the institutional sub-network
FI . Our back propagation procedure strictly follows the chain rule
in differentiation, and it will achieve exactly the same results as the
normal deep learning training procedure.

As opposed to traditional federated learning methods (such as
FedAvg and FedSGD) [9] that require frequent transfers of model
weights or model gradients of the entire network, in SplitAVG, only
the intermediate feature maps Xlc

S and gradients gl(c+1) at the cut
layer are communicated between local institutions and the central
server, which greatly reduces the computation and communication
costs. In addition, the direct feature map concatenation step in the
central server provides convergence guarantees for the model training
and allows us to train a robust model on both IID and non-IID data
partitions.

B. Theory analysis for SplitAVG
Assuming there are K local institutions. Let TK define the kth

institution’s task domain where the raw data distribution is Dk, the
local model learnt on this domain is hk, and the empirical risk of the
model on Tk is L̂Tk

(hk). Let T denote the global domain where the
data distribution D including m samples is assumed to be unbiased.
h denotes a global model achieved from federated learning which
aims to minimize the risk of task from all K local site, written as
LT (h). According to the generalization bounds theory for federated

learning in [25], LT (h) has an upper bound that with probability
larger than 1− δ:

LT (h) ≡ LT ( 1
K

∑
k hk)

≤ 1
K

∑
k L̂Tk

(hk) +
1
K

∑
k(d(D̃k, D̃) + λk)

+
√

4
m (dlog 2em

d + log 4K
δ ),

where d denotes the divergence measured between two domains,
and D̃k and D̃ are intermediate feature representations reduced from
raw images in Dk and D by a same feature extraction structure.
The implication was derived that data heterogeneity of local sites
to the global distribution leads to a high representation divergence
d(D̃k, D̃). The divergence increases the risk bound of the aggregated
model h on the global domain thus diminishing model quality.
SplitAVG was motivated to reduce feature representation divergence,
by proposing a concatenation operation on representations from
selected local client: D̃k ← {D̃1 ⊕ D̃2...⊕ D̃St} at the server sub-
network to reduce the distance between the collection to the global
feature distribution D̃. With this approach, SplitAVG lowers the upper
bound of aggregated model risk LT (h) without touching raw data
space Dk. According to the bound, cut layer selection in SplitAVG
does not affect the generalization performance of the final model if
d(D̃k, D̃) is determined, instead, it affects model’s learning ability
of the server-based sub-network in extracting knowledge from D̃
and drawing hypothesis. This influence might differ across medical
imaging tasks but follow the same empirical conclusion that the
earlier cut layer is, the more parameters the server sub-network
contains to facilitate learning.
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Fig. 2. SplitAVG-v2: A variant of SplitAVG architecture which does not require local institutions sharing data labels to the central server.

C. SplitAVG-v2

The proposed SplitAVG algorithm includes the process of local
institutions sending data labels to the central server, which brings in
risks of privacy leaking, especially in tasks with high-dimensional
labels. To this end, we introduce SplitAVG-v2, an improved version
of SplitAVG by keeping the labels in local institutions to solve the
privacy leakage concern raised from label sharing. As the architecture
shown in Figure 2, we further introduce a split point in the later part
of the server network, where output predictions are split into chunks
that each chunk of predictions is derived from an institution’s data.
Prediction chucks are sent back to corresponding institutions and a
scalar loss is computed with local data labels. The server collects
institutional losses and generates the final loss and gradients.

SplitAVG-v2 does not require institutions to share raw data or raw
labels, while retaining SplitAVG’s essence in generating unbiased
gradients from collected loss. To illustrate, we take cross entropy
loss as example. The traditional cross entropy in central server of
SplitAVG is defined as:

LCE = −
N∑
i=1

[

C∑
c=1

ticlog(pic)], (1)

where N is the number of data points, C is is the number of
classes, tic is the true label and pic is the SoftMax probability of
class c at data point i.

In SplitAVG-v2, we defined an institutional cross-entropy:

LCEk
= −

Nk∑
i=1

C∑
c=1

ticlog(pic), (2)

where Nk is the number of data points at the kth client. LCEk
is

independently computed at each local client thus preserves the privacy
of label tic. The server in SplitAVG-v2 then collects the institutional
cross-entropy from all local institutions, resulting in the overall loss
LCEK as:

LCEK =

K∑
k=1

LCEk
= −[

K∑
k=1

Nk∑
i=1

][

C∑
c=1

ticlog(pic)] = LCE . (3)

Even though a split point is introduced in SplitAVG-v2, the overall
loss of SplitAVG-v2 is the same to the SplitAVG. Thus SplitAVG-
v2 and SplitAVG will have the same experimental results if a same

experimental setting is used for both models. We further tested
SplitAVG-v2 on split 4 of Retina dataset, and obtained the identical
results, mean accuracy of 76.5%, with the SplitAVG result.

D. Dataset and data partitions

We evaluate our method on a set of both synthetic and real-world
federated datasets, including the simulated federated datasets by
artificially introducing data heterogeneity on a Diabetic Retinopathy
(Retina) binary classification dataset [26] and a Bone Age (BoneAge)
prediction dataset [27], and the real-world federated Brain Tumor
Segmentation (BraTS 2017) segmentation dataset [28]–[30]:

The Retina dataset consists of 44 351 pairs of left and right eye
color digital retinal fundus images obtained from the Kaggle Diabetic
Retinopathy competition [26]. Each image is labeled on a scale
of 0-4 based on the disease severity of diabetic retinopathy (DR),
where 0 indicates no DR, and 1-4 represent mild, moderate, severe,
and proliferative DR, respectively. We binarize the image labels to
Healthy (scale 0) and Diseased (scale 2, 3 or 4) to simplify model
training, and the mild DR (scale 1) images were excluded [15].
Furthermore, we only utilize left eye images to avoid the possible
confusion from inconsistent correlation between disease presence in
left/right eyes. The dataset is randomly sampled to create a training
set of 6000 images, a validation set of 3000 images, and a testing
set of 3000 images. The images are pre-processed following Ben
Graham’s methods [31]: rescaled to a radius of 300, subtracting the
local average color, image clipping for boundary removal, and resized
to 256 x 256 resolution. Random cropping (to 224 x 224), random
rotations (0, 90, 180, or 270 degrees) and horizontal flips were applied
for data augmentation.

The BoneAge dataset consists of 14 236 pediatric hand radiographs
obtained from the Kaggle Radiological Society of North America
(RSNA) Bone Age competition [27]. Each image is labeled with the
skeletal age provided by expert reviewers. The dataset is randomly
sampled to create a training set of 4572 images, a validation set of
1000 images, and a testing set of 1000 images.

We simulate four “institutions” and create four kinds of data
partitions for both the Retina and BoneAge datasets: one homogenous
data partition, and three heterogeneous data partitions with label dis-
tribution skew. The degree of label distribution skew is controlled by
the fraction of non-IID data and is scaled by the mean Kolmogorov-
Smirnov (K-S) statistic between every two institutions. Specifically,
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the K-S value being 0 indicates homogeneity and 1 indicates entirely
different distributions. Fig. 3 depicts the detailed data partitions.

The BraTS dataset consists of magnetic resonance imaging (MRI)
brain scans of gliomas collected from multiple institutions [28]–
[30]. Each scan is manually labeled with segmentation annotations
of tumor regions [28]–[30]. In our experiments, we focus on the
segmentation for whole tumor region, and we only use high-grade
glioblastoma (HGG) scans in T2 Fluid Attenuated Inversion Recovery
(FLAIR) modality. We randomly select scans from 45 subjects as
the testing set and the rest scans (120 subjects) as the training set.
As a real-world federated dataset, BraTS includes common types
of data heterogeneity, i.e., imaging acquisition skew (the scans are
collected from ten institutions with different imaging equipment and
protocols), label distribution skew and sample size distribution skew
(one institution contributes 69 subjects while some institutions only
contribute 4 or 5 subjects).

E. Comparison methods

We compare our SplitAVG method with seven state-of-the-art fed-
erated learning methods including four traditional methods: FedAvg
[9], FedSGD [9], CWT [15], and SplitNN [16], and three optimized
methods proposed for non-IID data: Federated stochastic gradient
descent with group normalization (FedSGD+GN) [21], Federated
averaging with server momentum (FedAvgM) [22], and Federated
averaging with globally shared data (FedAvg+SD) [18]. We use the
performance of a model trained with centrally hosted data as the
baseline approach, termed as “centrally hosted”. This represents the
ideal situation for training deep learning models since all data are
centralized.

FedAvg is an aggregation-based method. For each epoch, local in-
stitutions conduct Qk

B training iterations, then transfer model weights
to a central server, which averages the weights and transfers the
updated weights back to individual institutions [9]. Qk is the quantity
of training samples at institution k, and B is the local mini-batch size.

FedSGD is a full-communication version of FedAvg. For each
training iteration, local institutions transfer model gradients to central
server, which generates weights updated from aggregated gradients
and transfers updated weights back to individual institutions [9].

CWT is a transfer-based method. For each epoch, local institutions
conduct Q

B×K training iterations, where Q is the quantity of training
samples of the centrally hosted data, and cyclically transfers model
weights to the next training institution until model convergence [15].

SplitNN is a transfer-based method. For each epoch, local insti-
tutions conduct Q

B×K training iterations with weights and gradients
transferred between institutions and the server. Specifically, for each
iteration: (1) a local institution forward propagates training data
until the cut layer and transfers the outputs at the cut layer to
a central server, (2) the server completes the rest of the training
with the received output, (3) the server generates gradients, back
propagates through the cut layer to the institution, and updates the
model weights, and (4) the institution transfers model weights to the
next training institution [16]. Similar to SplitAVG, SplitNN also splits
the whole network architecture into two parts, and involves frequent
transfer of intermediate feature maps and gradients between the
central server and local institutions. However, unlike SplitAVG that
trains institutional sub-networks in parallel and uses an aggregation
operation to concatenate the intermediate feature maps in the server,
SplitNN directly uses a serial and cyclical transfer training mode
in each local institution, which always suffers from catastrophic
forgetting when data heterogeneity exists across institutions.

FedSGD+GD is an optimization method for FedSGD, which
applies GroupNorm layers to avoid the skew-induced accuracy loss

of batch normalization layer for non-IID data [21]. We set the number
of groups in GroupNorm layers to 32.

FedAvgM is an optimization method for FedAvg, which applies a
momentum optimizer on server to improve its robustness on non-IID
data partitions [9], [22]. We set the momentum parameter to 0.9.

FedAvg+SD is an optimization method for FedAvg, which applies
a data-sharing strategy to improve the training of FedAvg on non-
IID data partitions [9], [18]. Specifically, 5% of the global data was
distributed and globally shared between all local institutions.

F. Experimental setup

We choose 34-layer residual network (ResNet34) pre-trained on
ImageNet as the base network for all methods on Retina and BoneAge
dataset [32], [33]. All methods are implemented in Pytorch and
optimized using SGD [34]. The objective function for Retina clas-
sification task and BoneAge regression task is binary cross-entropy
and L1-norm, respectively. We set the mini-batch size B to 32, the
learning rate to 0.001 (scaled 0.1 every 40 epochs), the momentum
coefficient to 0.9. Final models are evaluated by calculating the
accuracy of testing data for the Retina classification task, and the
mean absolute error (MAE) between true age values and predicting
age values of testing data for the BoneAge regression task.

For BraTS segmentation task, we use U-Net as the base model and
Dice Loss as the objective function [35], [36]. The final models are
evaluated by Dice Similarity Coefficient (DSC) between the true and
predicted boundaries [36].

The numbers of selected institutions involved in each round of
federated learning for all the comparing methods are set to 4 (St = 4,
K = 4) for the synthetic datasets (Retina and BoneAge). To ensure
that the communication and storage costs of SplitAVG does not
increase with more institutions, we also set (St = 4, K = 10) for
BraTS dataset.

III. RESULTS

A. Cut layer selection for SplitAVG

According to our theory analysis, the selection of the affiliated
cut layer for the institutional sub-network and server-based sub-
network in SplitAVG affects the final model performance and needs
to be carefully selected. We investigate the optimal cut layer for
the base model ResNet34 and ResNet50 on BoneAge dataset with
1 homogeneous data partition and 1 heterogeneous data partition
among 4 participating institutions. ResNet34 and ResNet50 consist of
the following sequential layers: “conv1”, “bn1”, “relu”, “maxpool”,
“layer1”, “layer2”, “layer3”, “layer4”, “avgpool”, and “fc”, which are
tested as cut layers respectively [34]. The selection of cut layer affects
the final model performance. However, the optimal cut layer selection
is irrelevant to data partition or base network types, that earlier cut
layers tend to result in better performance (Fig. 4). This observation
is consistent with what we inferred in theory analysis that SplitAVG
method can learn more abundant unbiased information when the
feature maps from local institutions are concatenated at earlier layers.
Also, the results showed that deeper cut layers do not significantly
compromise the model performance, especially as the base model
complexity increases, comparing ResNet50 to ResNet34 results. The
models fail only when setting last layer as cut layer, when the
server network does not have sufficient model learnable parameters to
interpret concatenated feature maps. Experimental results show that
the ResNet models trained with “conv1” as the cut layer obtained a
good performance in all settings. Therefore, we set “conv1” as the
cut layer of ResNet34 for SplitAVG in all remaining experiments.
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Fig. 3. Simulated data partitions on Retina and BoneAge datasets to simulate heterogeneity in data among 4 simulated institutions. Data partitions
on Retina dataset with (A) K-S=0, (B) K-S=0.40, (C) K-S=0.56 and (D) K-S=0.67. Data partitions on BoneAge dataset with (E) K-S=0.29, (F)
K-S=0.59, (G) K-S=0.73, (H) K-S=0.97.

Fig. 4. For SplitAVG, when trained with different cut layers of ResNet34
(A) and ResNet50 (B) on a homogeneous split and a heterogeneous
split of BoneAge dataset, the model performance on validation dataset
is shown by the test mean absolute error (MAE).

B. Model performance on synthetic federated datasets

We evaluate the performance of SplitAVG on the Retina and
BoneAge datasets with both homogeneous and heterogeneous data
partitions (Splits 1-4 shown in Fig. 3) and compare it to seven
state-of-the-art federated learning methods (FedAvg [9], FedSGD

[9], CWT [15], SplitNN [16], FedSGD+GN [21], FedAvgM [22],
FedAvg+SD [18]). Fig. 5 shows that all the compared federated
methods perform well on the homogeneous data partition (Split 1)
but lose significant accuracy on splits with label distribution skew
(Splits 2-4) (Fig. 5). For example, CWT, SplitNN, FedAvg, and
FedSGD lose 35.0%, 35.7%, 33.2%, and 35.07% prediction accuracy
on Split 4 of the Retina dataset, respectively (Fig. 5(A)). The three
optimized methods, FedSGD+GN, FedAvgM, and FedAvg+SD may
help mitigate the performance loss for data partitions with mildly
skewed label distributions, but still diverge severely on splits with
highly skewed label distributions. For example, even when 5% of
centrally hosted data are globally shared among each institution,
the prediction accuracy of FedAvg+SD is 8.6% lower on Split
4 (K-S=0.67) than that on homogenous Split 1 of Retina dataset
(Fig. 5(A)). For SplitAVG, there is only 1.89% drop in accuracy on
Split 4 of Retina data (Fig. 5(A)), and 0.733% MAE rise on Split 4
of BoneAge data (Fig. 5(B)), than that on homogenous Split 1. In
each training iteration, FedSGD method transfers 2.13×107 data (as
float32) from local institutional model to the server, while SplitAVG
only requires 8.03× 105 data transfer.

C. Model robustness for a different deep learning architecture
We replace the base model ResNet34 with MobileNet-v2 for all

algorithms [37]. The architecture of MobileNet-v2 consists of a
“Feature” structure including 16 “InvertedResidual” blocks, and a
“Classifier” layer [38]. Following the cut layer empirical results in
ResNet34, we set the first “InvertedResidual” block in MobileNet-V2
as the cut layer. The predicted MAE is used to evaluate SplitAVG,
CWT, and FedAvg+SD on the BoneAge dataset when MobileNet-
v2 is used as the base model. SplitAVG again demonstrates the
best performance among all the compared methods. On the most
skewed data partition (Split 4), SplitAVG achieves 104.7% of the
MAE obtained by the baseline (Fig. 6).

D. SplitAVG on a real-world federated dataset
We use the BraTS segmentation dataset to test SplitAVG’s ro-

bustness to the real-world data heterogeneity settings [28]–[30]. The
BraTs dataset contains multi-modal magnetic resonance imaging
(MRI) scans of 285 subjects with brain tumors. It is collected from
10 institutions with varying equipment and imaging protocols, thus
resulting in heterogeneous data distributions among different clients,
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Fig. 5. (A) The test accuracy on Retina splits and (B) the test mean absolute error (MAE) on BoneAge splits of all comparison methods.

Fig. 6. The test mean absolute error (MAE) of CWT, FedAvg+SD, and
SplitAVG on BoneAge dataset splits when MobileNet-v2 is applied as
the base model.

see Fig. 9 for four examples of images obtained from different
institutions. Following [39], we test the performance of SplitAVG
on the whole tumor volume segmentation task and adopt the FLAIR
modality as the input, comparing with the centrally hosted baseline,
CWT, and FedAvg+SD methods. We performed three trials with each
method and take the mean of segmentation results across the 10
participating institutions. The model trained with data centrally hosted
obtained the mean DSC result of 85.67%, and the model trained with
CWT, FedAvg+SD, and SplitAVG obtained the mean DSC results of
79.72%, 83.16%, and 84.6%, as shown in Fig. 8.

E. Analyzing SplitAVG from interpretation perspective
We further visualize the latent space embedding of the features (the

first “fc” layer of ResNet34) from the models trained with SplitAVG,
three federated learning optimization methods, and the baseline
centrally hosted training, to aid our understanding of different model’s
robustness on heterogeneous data splits from interpretation perspec-

tive. We use Retina test dataset and draw features computed over
samples of healthy label and diseased label with two different colors
with UMAPs [39]. As shown in Fig. 7, the baseline UMAP presents
the best clustering for same classes. Among UMAPs of comparing
federated learning methods, SplitAVG shows the clearest separation
for different classes, while the features of healthy and diseased shown
from FedAvgM, FedAvg+SD, and FedSVG+GN are highly entangled.
This experiment again demonstrates the superiority of SplitAVG on
heterogenous data.

IV. DISCUSSION

Federated learning has emerged as an attractive paradigm for en-
abling collaboratively training deep learning models without sharing
patient data. Although numerous federated learning approaches have
been proposed, a critical aspect of existing federated learning methods
is that they either assume the data are IID across institutions or only
consider mild skewed non-IID data distribution. The performance of
models trained using these federated learning methods degrades with
increasing degrees of data heterogeneity. In this study, we develop a
heterogeneity-aware optimization platform, SplitAVG, to address the
challenge of data heterogeneity in federated learning methods.

We first evaluate our SplitAVG method on the simulated distributed
data by artificially introducing various degrees of label distribution
skew on the Retina binary classification dataset [26] and bone age
prediction dataset [27] and compare it with seven state-of-the-art
federated learning methods. We found that all the compared federated
learning methods are vulnerable to label distribution skew. For Retina
test dataset, the accuracy of models trained using FedAvg, FedSGD,
CWT, and SplitNN, decreases from 74.3%, 77.8%, 78.3%, and 78.4%
on data partitions with mild degree of label distribution skewness (K-
S=0.40) to 51.5%, 50.5%, 50.9%, and 50.4% on data partitions with
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Fig. 7. Feature embedding visualization of (A) baseline centrally hosted, (B) SplitAVG, (C) FedAvgM, (D) FedAvg+SD, (E) FedSGD + GN on highly
heterogeneous data splits (K-S=0.67) of Retina dataset using UMAPs. Here, ResNet34 is applied as the base network.

Fig. 8. The dice similarity coefficient (DSC) of centrally hosted baseline,
CWT, FedAvg+SD, and SplitAVG on BraTs dataset when U-Net is
applied as the base model.

Fig. 9. Examples of images (with varying intensity, image contrast, and
etc) obtained from different institutions of BraTs dataset.

high degree of label distribution skewness (K-S=0.67), respectively.
Even with complex heuristic parameters tuning (e.g., FedSGD+GN
requires the extra pre-training on the model with GN layers [21],
and FedAvgM includes the tuning for momentum parameters [22])
or with the risk of sharing partial raw data (FedAvg+SD) [18], the
compared methods still suffer from severe performance drops on
highly heterogeneous data partition. With the help of simple network
splitting strategy and the concatenation operation of intermediate
feature maps, SplitAVG, however, successfully mitigates model per-

formance loss caused by the label distribution skew even in the
extreme heterogeneous cases.

We then investigate whether SplitAVG method can handle other
kinds of data heterogeneity besides label distribution skew and if
it performs well in other kinds of deep learning tasks besides
image classification and regression. Experimental results on a real-
world BraTS segmentation dataset show that, even when tested with
a mixture of various types of data heterogeneity (quantity skew,
imaging acquisition skew, label distribution skew, etc), SplitAVG still
achieves comparable performance to the baseline centrally hosted
case. In contrast to previous methods that different optimizations
are required for each type of data heterogeneity, for example cyclic
weighted loss for tackling label heterogeneity and proportional local
training for handling sample size heterogeneity [40], our SplitAVG
is more scalable and that can more broadly address the challenge of
data heterogeneity across centers in federated learning.

One limitation is that we only study federated learning method
performances with statistical data heterogeneity. There are other
sources of heterogeneity, such as device heterogeneity (e.g., computer
hardware and communication speed variation) and behavior hetero-
geneity (e.g., institutions may join in or drop out training at any
time), which is an important area for future work. One data privacy
concern for the proposed SplitAVG is the risk of reconstructing raw
images from shared feature maps of the cut layer, which can be
prevented by integrating privacy protecting techniques such as secure
multi-party computation (MPC) [41] and differential privacy [42],
and future work can develop adjusted configurations combining these
techniques.

V. CONCLUSION

In this paper, we have proposed SplitAVG, a heterogeneity-aware
optimization platform that tackles fundamental and pervasive data
heterogeneity problems inherent in federated learning. SplitAVG
can be consumed as an off-the-shelf federated learning platform
and provides immediate improvements, without any complex hyper-
parameter tuning, training heuristic, or additional training/fine-tuning.
SplitAVG is also model agnostic and can be generalized to various
types of medical imaging tasks. Experimental evaluation of SplitAVG
on a suite of both simulated and real-world federated datasets with
various degrees of non-IID data partitions, and its comparisons with
seven state-of-the-art federated learning methods and a baseline of
centrally hosted data demonstrate the effectiveness of SplitAVG
method in handling common types of heterogeneous data across
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institutions. The findings in this work provide a promising solution
to overcoming the challenge of heterogeneous data in real-world
federated learning settings.
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