21
22
23
24
25
26
27
28
29

39
40
41
42
43
44

46
47
48

49

Fairness Evaluation with Item Response Theory

Anonymous Author(s)

Abstract

Item Response Theory (IRT) has been widely used in educational
psychometrics to assess student ability, as well as the difficulty
and discrimination of test questions. In this context, discrimination
specifically refers to how effectively a question distinguishes be-
tween students of different ability levels, and it does not carry any
connotation related to fairness. In recent years, IRT has been suc-
cessfully used to evaluate the predictive performance of Machine
Learning (ML) models, but this paper marks its first application
in fairness evaluation. In this paper, we propose a novel Fair-IRT
framework ! to evaluate a set of predictive models on a set of indi-
viduals, while simultaneously eliciting specific parameters, namely,
the ability to make fair predictions (a feature of predictive mod-
els), as well as the discrimination and difficulty of individuals that
affect the prediction results. Furthermore, we conduct a series of
experiments to comprehensively understand the implications of
these parameters for fairness evaluation. Detailed explanations
for item characteristic curves (ICCs) are provided for particular
individuals. We propose the flatness of ICCs to disentangle the
unfairness between individuals and predictive models. The experi-
ments demonstrate the effectiveness of this framework as a fairness
evaluation tool. Two real-world case studies illustrate its potential
application in evaluating fairness in both classification and regres-
sion tasks. Our paper aligns well with the Responsible Web track by
proposing a Fair-IRT framework to evaluate fairness in ML models,
which directly contributes to the development of a more inclusive,
equitable, and trustworthy AL
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Figure 1: The general scenario in fairness evaluation. The
dashed line denotes the two analysis directions: one for indi-
viduals and another for predictive models.

1 Introduction

Item Response Theory (IRT) is a framework that originated in
the mid-20th century and is primarily applied in psychometrics.
It aims to characterise both items and respondents through the
analysis of responses [11, 14, 17]. In recent years, IRT has been
proposed to evaluate predictive performance in machine learning
(ML) models. By considering ML tasks as items and predictive
models as respondents, we can reinterpret the ability of a predictive
model in terms of the difficulty and discrimination level of the tasks.

The most recent research can be categorised by how they treated
the “items”. Martinez-Plumed et al. [26] use IRT to evaluate the
predictive performance of ML models on a single classification
dataset, treating each instance as an item. They train and test a
range of predictive models (i.e., classifiers) on a single dataset and
obtain item characteristic curves (ICCs) for each instance. However,
the limitation of this framework is its exclusive focus on binary
classification tasks and a single dataset. Chen et al. [7] propose a
modified IRT model for continuous responses and apply it to multi-
ple classification tasks. The obtained ICCs are not limited to logistic
curves, and differently shaped curves can be generated based on the
beta distribution, allowing more flexibility when fitting responses
for different items. Furthermore, Kandanaarachchi and Smith-Miles
[19] treat datasets as respondents, thereby characterising the dis-
crimination and difficulty of the predictive model. They then treat
the predictive models as items in an inverted IRT model, to generate
the ability trait of datasets, i.e., dataset difficulty.

All of the above IRT models are used to evaluate the predic-
tive performance of ML models, where the response represents
the probability of a correct response for the item based on the
respondents’ ability, whether the items are instances or datasets.
However, fairness issues have become increasingly important in
real-world applications involving people-related decisions. For ex-
ample, COMPAS, a decision support model that estimates the risk
of a defendant becoming a recidivist, is found to predict a higher
risk for black people and a lower risk for white people [5]. Similarly,
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Facebook users receive a recommendation prompt when watching
a video featuring black people, asking them if they would like to
continue watching videos about primates [25]. Another example is
Mate Al an image generator that cannot depict an Asian man and a
white woman together [28]. These incidents indicate that datasets
or predictive models may become sources of unfairness, leading
to serious social problems. We urgently need a fairness evaluation
tool to evaluate both datasets and predictive models. Most research
typically reports pairwise comparisons between predictive models
using various fairness metrics. However, these studies often fail to
reveal where and how predictive models falter or to identify the
unique strengths and weaknesses of each predictive model. In this
paper, we apply IRT to evaluate fairness performance of predictive
models and gain meaningful insights into predictive models as well
as individuals.

We consider a general scenario for fairness evaluation as shown
in Figure 1. A variety of web companies can provide a set of predic-
tive models from AutoML platform for the same task (i.e., classifica-
tion or regression). The agency has a set of individual observations
that are used to evaluate the predictive models. The proposed Fair-
IRT framework can be used by the agency to evaluate the fairness
performance of the predictive models given by web companies,
where the fairness performance is based on a given fairness metric.
Note that the Fair-IRT framework is applicable to various fairness
metrics and we provide a generality analysis in Appendix A.3.4. In
summary, this paper makes the following contributions:

e We propose Fair-IRT, a novel framework to evaluate the fairness
performance of individuals as well as predictive models. The
parameters learned by Fair-IRT can be used to interpret the
ability of predictive models and identify individuals who are
treated unfairly. This is the first paper to apply the IRT model
in fairness evaluation.

e We propose two ways to disentangle unfairness between in-
dividual characteristics and predictive models. The flatness of
item characteristic curves (ICCs) is effective for interpretation
in the original Fair-IRT setting. Additionally, we introduce a
quantitative measure of unfairness by using a Rasch beta IRT
model as the backbone of Fair-IRT framework.

o We evaluate the effectiveness of the Fair-IRT framework on two
real-world datasets. The experiments demonstrate that Fair-IRT
provides comprehensive explanations for fairness evaluation
and fosters the development of a more inclusive, equitable, and
trustworthy AL

2 Preliminaries

In this section, we present some background of the IRT model and
fairness evaluation. We use upper case letters to represent attributes
and bold-faced upper case letters to denote the set of attributes. We
use bold-faced lower case letters to represent the values of the set
of attributes. The values of attributes are represented using lower
case letters.

2.1 Item Response Theory

In the original context of IRT, respondents refer to individuals an-
swering test questions, such as students taking an exam, while
items refer to the questions or tasks presented to the respondents,

Anon.

such as specific math problems. We first introduce the logistic IRT
model [3] and then briefly discuss the beta IRT model [20], which
is the model that we rely on.

We assume a binary response p;; of the i-th respondent to the
Jj-th item. In the logistic IRT model, the probability of a correct re-
sponse, i.e., p;j = 1,is defined by a logistic function with parameters
1) j and a -

The responses are modelled by the Bernoulli distribution with
parameter x;; as follows,

pij ~ Bernoulli(x;;). (1)
The logistic IRT framework gives a logistic item characteristic
curve (ICC) modelling ability 6; to the expected response as follows:

1
@)

E[pijl6i, 8j,a;] = xij = m~

Generally, §; denotes “difficulty”, which is the location param-
eter of the logistic function and can be seen as a measure of item
difficulty. a; indicates “discrimination”, which is the steepness of
the logistic function at the location point. The above two param-
eters are relative to items. In contrast, 6; is the parameter for the
respondent, which is described as the “ability” of the respondent.
This parameter is not measured in terms of the number of correct
responses but is estimated based on the respondent’s responses to
discriminating items with different levels of difficulty. Respondents
who tend to correctly respond to the most difficult items will be
assigned high values of ability.

Then, we introduce the beta IRT model [20], which has been
proven to cover more different ICC shapes than the logistic IRT
model [7]. It is worth noting that our proposed framework is based
on beta IRT model.

In beta IRT, p;; is the observed response of i-th respondent to
Jj-th item, which is drawn from the Beta distribution,

pij ~ Beta(aij, Bij),
0:\Y
aij = fa(0i, 8j,aj) = (5—) ,
J
1-6; )aj
1-6; ’
where the parameters a;; and f;; are computed by 6;, §; , and a;.

The beta distribution allows us to generate non-logistic ICCs.
The ICC is defined as follows,

Elpijl6:. 8;.a;] = W : :
aij + Pij 1+( 5% )af( 0,;9 )_af (4)
1-5; -6;

®)

Bij = fp(6i, 8j,a;) = (

The ICC describes how an item’s performance varies across
different levels of a respondent’s ability. A typical ICC is an S-
shaped curve, indicating the item’s difficulty and discrimination.
Analysing ICCs helps in assessing the quality of test items and
diagnosing the ability characteristics of respondents. Please refer
to [7] for further discussion on the advantages of the beta IRT model
and its applications.

2.2 Fairness Evaluation

We assume a fully supervised learning setting, where the objec-
tive is to evaluate fairness for both learned predictive models and
individuals. The predictive models are learned over the available
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dataset, D = {A, X, Y}, where X represents the set of relevant at-
tributes. If we look at the model’s prediction § = Y (A, X), we can
assess the fairness of the model’s predictions using fairness metrics.
These metrics help evaluate whether the model’s predictions are
influenced by the sensitive attributes or if the predictive model
makes fair and unbiased predictions regardless of these attributes.

There are two kinds of fairness metrics, group level and individ-
ual level. At the group level, several metrics have been defined such
as demographic parity [13], equalised odds [18] and predictive rate
parity [41]. However, these group level fairness metrics focus on the
population level and do not necessarily mean individual fairness.
The fairness metric at the individual level is proposed by Dwork
et al. [13] and Louizos et al. [24], but it requires domain knowledge
to design a distance function for calculating the similarity between
two individuals. For further discussion on the literature regarding
fairness evaluation, please refer to Section 6.

3 The Proposed Fair-IRT Framework

In this section, we introduce the proposed Fair-IRT framework. We
begin by introducing the problem setting including the selected fair-
ness metric. Subsequently, we provide the workflow of the proposed
framework.

3.1 Problem Setting: Fairness Evaluation using
Fair-IRT

We begin by introducing the situational test scores as the fairness
metric used in the main text. Please note that the proposed Fair-IRT
framework is applicable to other fairness metrics. Further details
are provided in Appendix A.2.

Situation tests have been widely employed in the United States
as a methodological approach to identify unfairness in recruit-
ment processes [2]. This approach involves controlled experiments
designed to analyse employers’ hiring decisions based on job ap-
plicants’ characteristics. Typically, two research assistants with
identical qualifications and job-related experience apply for the
same position. The key difference between them lies in their sen-
sitive attributes, such as gender, with one applicant being male
and the other female. The detection of unfair practices is based on
observing discrepancies in favourable decisions between groups
differentiated by these sensitive attributes. If the outcomes demon-
strate unequal treatment favouring one individual over another, it
indicates the presence of unfairness in the hiring process. Addition-
ally, situation tests have been widely recognised as fairness metrics
in many research papers [1, 34, 39, 45].

In this paper, the situation test score varies depending on the
type of prediction task. The formal definition is as follows:

DEFINITION 1 (SITUATION TEST ScORE (STS)). Given a predictive
model YC (+) for classification task, the STS is given by:

STSC=1-|P¥%lA=aX=x)-P(¥¢|1A=a X=x), (5

where P(-) denotes the probability estimates for the Y€() and
a denotes the flipped version of the value of the binary sensitive
attribute A.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Given a predictive model YR (-) for regression task, the STS is given
by:
[(YRA=a, X =x]-E[YRlA=a X =x]

sTSR=1- 2|2 .
E[YRIA=a X = x]

. (6)

where E[-] represents the expected value of the prediction results Y&,
A is the scaling factor that ensures STSK falls within the range [0, 1].

In the following, we ignore the superscript for classification or
regression tasks. For a given Y (+), STS > ¢ indicates that the individ-
ual is treated fairly, whereas STS < ¢ indicates the opposite. Here,
¢ represents the fairness threshold, which is typically determined
by domain knowledge. However, in our paper, we set ¢ = 0.5 as the
fairness threshold for simplicity.

As discussed in previous sections, IRT has been applied to eval-
uate predictive performance in the ML domain. To accommodate
different types of tasks, the responses have been redesigned accord-
ingly. For instance, in the context of multi-class classification tasks,
the responses represent the probabilities that classifiers assign to
the correct class for each instance. In other words, these responses
are transformations of accuracy metrics. In our framework, we
consider predictive models as respondents, individuals as items, and
the response is the result of the selected fairness metric.

More concretely, the predictive models (i.e., Y(+)) are built us-
ing the dataset D = {A, X, Y}, which include a binary sensitive
attribute A, a target attribute Y, and a set of relevant attributes X.
Since the performance of the IRT model depends on the quality of
the data [11, 14], we make the following assumption

ASSUMPTION 1. Given a set of predictive models Y (), these mod-
els should exhibit a diversity of fairness performance. Specifically,
different predictive models should return different values for the set of
individuals when using the same fairness metrics, and these values
should be sufficiently sparse.

In this context, “sparse” refers to the fairness performance should
vary significantly across predictive models, where some predictive
models demonstrate stronger fairness while others exhibit weaker
fairness, ensuring a broad range of fairness outcomes.

It is worth noting that this assumption is both practical and
important. We believe that this assumption is easily satisfied in real-
world applications. The reason is that different predictive models
associate sensitive attributes and target attributes in a black-box
manner. The strength of this association cannot be measured under
some complex predictive models. Therefore, varying strengths of
this association will lead to different fairness performances across
different models. The proposed Fair-IRT framework cannot func-
tion effectively if all the predictive models achieve the same fairness
performance. Evaluating a set of predictive models for fairness is
meaningless if all predictive models perform similarly. This under-
scores the importance of not cherry-picking a set of fair predictive
models before implementing Fair-IRT.

3.2 The Workflow of Fair-IRT

The backbone of Fair-IRT framework is based on the beta IRT model.
It focuses on assessing the fairness performance of a set of predictive
models for a set of individuals. In this setting, Fair-IRT can evaluate
the ability of predictive models to make fair predictions. Given the
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Figure 2: (a) The scatter plot shows the discrimination parameter a; and difficulty parameter §; for each individual. The purple
points indicate individuals with negative discrimination values (special individuals), while the green points indicate individuals
with positive discrimination values (normal individuals). The size of the points increases as §; approaches 0.5 and gradually
decreases as §; approaches 0 or 1; (b,c,d) Examples of ICCs generated by Fair-IRT for different values of discrimination and
fixed range of difficulty (i.e., 0.4 < §; < 0.6). Higher discriminations lead to steeper ICCs; (e) Examples of selected ICCs for
different values of difficulty and fixed range of discrimination (i.e., 1.7 < a; < 2).

dataset D = {A, X, Y} and M, where M represents the number of
individuals used by the agency to evaluate the predictive models,
the workflow is as follows:

i Companies build N predictive models from the dataset D =
{A, X, Y}. Y;(-) is used to represent the i-th predictive model.
The set of predictive models ¥ (-) needs to satisfy Assumption 1.

ii The agency evaluates the predictive models provided by web
companies using M individuals, as shown in Figure 1. For each
predictive model Y;(-), the agency obtains the prediction results
for each individual, denoted as y;;, where y;; represents the
result of the i-th predictive model on the j-th individual.

iii Depending on the prediction tasks, apply Equation 5 for the
classification task and Equation 6 for the regression task. This
results in an N X M matrix containing all STS responses, denoted
as STS ij-

iv Apply the beta IRT to this matrix and learn the optimal parame-
ters (i.e., ; and a; for each individual and 6; for each predictive
model) that provide the best fit. The learning process is outlined
in Algorithm 1 in Appendix A.1.

v Using 8;, aj and 0; to generate ICCs and provide further insights,
including identifying the special individuals that need more
attention by the agency (see Figure 2(a)), ranking the predictive
models by ability (see Figure 3(a)) and disentangle unfairness
between predictive model and individual (see Section 4.3).

4 Interpreting Parameters with Simulated
Dataset

We use a simulation scenario to analyse and better illustrate our
Fair-IRT framework since the ground truth of all parameters is
accessible. We have a set of predictive models (i.e., assume 20 pre-
dictive models (N=20)) that satisfy Assumption 1. In real-world
cases, these predictive models are provided by different web com-
panies but are designed for the same tasks. Due to privacy and
commercial interests, web companies may not disclose the train-
ing and test datasets they used for their predictive models. As an
agency, we evaluate the predictive models provided by these web

companies. We can access a set of individuals used for evaluation
(i.e., assume 50 individuals (M=50)).

4.1 Individual Parameters: Discrimination and
Difficulty

The Fair-IRT framework comprises two parameters per individual:
discrimination and difficulty. In this case, 50 individual ICCs are
derived (one per individual), and 20 values of ability for the set of
predictive models are estimated. Figure 2(a) shows the discrimina-
tion and difficulty values for each individual.

4.1.1 Discrimination. The discrimination parameter measures an
individual’s capability to differentiate between predictive models.
Therefore, when applying Fair-IRT, the discrimination parameter
of an individual can indicate if the individual is a special case. Of
the 50 individuals, 43 had positive discrimination values (i.e., the
green points in Figure 2(a)), and the selected ICCs are shown in
Figure 2(c) and Figure 2(d). These cases are normal, as an increase
in the fair ability of predictive models corresponds to an increase
in their STS.

However, negative discrimination values are observed in 7 indi-
viduals (i.e., the purple points in Figure 2(a)). We plot the selected
ICCs in Figure 2(b). Since the discrimination is negative, it indi-
cates that these individuals are most frequently treated fairly by
the most unfair predictive models and unfairly by fair predictive
models. Such cases are typically referred to as special individuals
and should be identified by the agency for further analysis.

In summary, Figures 2(b), 2(c) and 2(d) show examples of Item
Characteristic Curves (ICCs) generated by Fair-IRT framework for
different values of the discrimination parameter a;:

¢ a;j < 0: the ICC shows a decreasing trend.

e 0 < a;j < 1: the ICC demonstrates an anti-sigmoidal behaviour,
indicating a slower increase followed by a rapid increase.

e a;j > 1: the ICC exhibits an "S"-shaped (sigmoid) curve,

Notably, Fair-IRT framework allows for negative discrimination
values, indicating individuals who are special and require further
analysis.
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Figure 3: (a) The scatter plot shows the STS and ability param-
eter 0; for each predictive model; (b) Examples of selected
individuals with flat ICCs. The shaded area indicates the abil-
ity range of the 20 selected predictive models.

4.1.2  Difficulty. The parameter difficulty (§;) provides a straight-
forward yet powerful measure of the likelihood that an individual
will be treated fairly or unfairly by predictive models. The range of
difficulty values is from 0 to 1, where:

¢ Individuals with &; close to 1: These individuals are unfairly
treated by almost all predictive models, indicating a high diffi-
culty in achieving fair prediction.

e Individuals with §; close to 0: These individuals are consistently
fairly treated by all predictive models, indicating a low difficulty
in achieving fair prediction.

In Figure 2(e), individual “1” is more likely to be unfairly treated
by almost all predictive models, as evidenced by a difficulty value
close to 1. We assert that the unfairness experienced by this indi-
vidual arises from their inherent characteristics, resulting in con-
sistently lower STS regardless of the fairness ability of the predic-
tive models. This suggests that the difficulty parameter effectively
captures intrinsic factors contributing to the likelihood of fair pre-
diction.

The difficulty parameter helps identify individuals who are per-
sistently vulnerable to unfair prediction. By flagging these indi-
viduals, further investigation can be conducted to understand and
address the specific factors contributing to their unfair prediction.
Recognising individuals with high difficulty values can inform tar-
geted interventions. For example, if certain individuals consistently
exhibit high difficulty values, it may indicate underlying systemic
biases that need to be addressed through policy changes or tailored
fairness initiatives.

4.2 Predictive Model Parameter: Ability

As we mentioned, Fair-IRT framework offers dual analysis direc-
tions, providing valuable information about both individuals and
predictive models. The Fair-IRT framework estimates an ability
value for each predictive model, denoted as 6;. The results for abil-
ity and STS; are shown in Figure 3(a). STS; denotes the estimated
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STS for each predictive model, calculated using the following for-
mula:

1 N
STS; = ;STSU. @)

The scatter plot in Figure 3(a) indicates a positive correlation
between the ability parameter 0; and the estimated STS;. This sug-
gests that predictive models with higher ability are generally more
fair in their predictions across individuals. The scatter plot also
allows for the identification of outliers. The predictive models that
significantly deviate from the general trend can be flagged for fur-
ther investigation. For instance, a predictive model with high ability
but low STS, or vice versa, may indicate potential areas of bias or
performance issues. While this situation does not occur in our
examples, it remains a possibility in other scenarios.

4.3 Disentangle Unfairness between Predictive
Model and Individual

We first attempt to disentangle the unfairness between the predic-
tive model and the individual under the backbone of the beta IRT
model. We find this approach limited, as it introduces an interaction
component involving the combination of the predictive model and
the individual. However, by using ICCs for each individual, we can
identify certain patterns. An ICC with a flat curve within a certain
ability range can be recognised as indicating unfairness originating
from individuals. For example, individual “1” from Figure 2(e) and
individual “15” from Figure 2(c) both show a flat curve within the
ability range of (0.4, 0.6). The underlying reasons for these flat
curves differ: individual “1” has a discrimination parameter close to
0, while individual “15” has a difficulty parameter close to 1. Thus,
we should consider parameters for individuals simultaneously.

We now formally define flatness in ICCs mathematically. The
STs ; can be considered a function of @ for a given j-th individual
and is given as follows:

1

1+(L)“f( o; ) ®)

1-5; -6

STS; = £(6:) =

To find the derivative of f(6;), follow these steps:
Step 1. Define the intermediate function h(6;):

5j aj 0, \*Y
h(6;) =1 —— .
@ +(1—5j) (1—9i)
Step 2. Compute the derivative of h(60;):

d( 6 \_ (1-6)-6i(-1) 1
d9(1—0i)_ (1-6;)2 - (1-6;)2"

. aj
Letu = 1%,, then h(6;) = 1+ (%) " 4=% . The derivative of
i J
u~% with respect to 0 is:

_
T(1-6)%

uY) = —qju” !

46
Thus,

’ _ 6] v . 0; ma _1
h(oi)—(l_aj) (_af(l—(),-) '(1—91‘)2)'
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Step 3. Finally, compute the derivative of f(6;):
h'(6:)

SO =~ Ghone

Substitute h(6;) and h’(6;):

(25)" [ (%)™ )

(1 (25)" (2a) ™)

Simplify to get the final derivative of f(6;):

f1(6;) =-

o ) )
f“”)‘(”(lis_gj)w(%)aj)z a-op

Given an individual j, the Flatness Indicator (FI) for ICC is defined
as follows,

M
m=ZW@» (10)

To demonstrate the effectiveness of the FI, we select a range of
predictive models and plot the ICCs for individuals with the five
smallest FL It is important to note that the number of selections may
vary depending on the evaluation set and task. Figure 3(b) illustrates
the ICCs for the selected individuals and predictive models. The
selected individuals exhibit very low FI; values, which indicates
a flat ICC. In this scenario, for these individuals, the unfairness
stems from the individuals themselves, as the ability to increase
STS remains at a very similar level.

Furthermore, we apply a specialised way where the backbone
of Fair-IRT framework is based on the Rasch beta IRT model. This
way focuses on quantitatively disentangling the unfairness between
individuals and predictive models. We keep all other steps the same
as in the general setting but set the parameter a; = 1 as a constant.
The ICCs are given as follows,

1
S; 1—9i ’ (11)
1+ (25 ) (57
Now, we do some transformations on the above formula,
S 1-0; 1
== 1+ ( J ) ( l) = —
1-6;)\ 6 STS;;

( 5 )(1_9i) 1-STs;;
f— = —
1-6;)\ 6 STS;;

STs;; =

i

6]' 1-6 N N
= log 5, + log o |- log(1 — STS;j) — log STS;;.
J

1

_ 5 o _ 1-6;
LetAj = =8 and ©; = 2 then we have,

logAj +1log©; = log(1 - STS;;) — log STS;;. (12)

Here, Aj is the quantity of unfairness from the individual and
©; is the quantity of unfairness from the predictive model.
The Equation 12 can be rewritten as follows,

g(STS;j) =log Aj +1og ©;, (13)

where g(STSij) =log(1 - STSU) —log STSU-.

Anon.

To conduct a straightforward analysis, we define predictions
with STS; j < 0.5 as unfair, such that g(STSi 7) > 0. We maintain
the same simulation process and focus on individual “1” with the
same predictive models as shown in Figure 3(b). We observe that
g(STS) = 2.83 for individual “1” on predictive model 5. indicating
an unfair prediction. The values log A = 3.07 and log® = —0.24
represent the quantity of unfairness from the individual and the
predictive model, respectively. This indicates that the unfairness
primarily originates from the individual characteristics, consistent
with our previous discussion.

In summary, both ways can provide insights into disentangling
unfairness between individual and predictive model. However, the
quantitative way is more suitable for less complex situations, since
the Rasch beta IRT is weaker in fitting power than the original
beta IRT. We suggest using the quantitative way to supplement the
explanation.

5 Experiments with two Real-world Datasets

In this section, we apply the Fair-IRT framework to two real-world
datasets and focus on different types of tasks. We simulate the gen-
eration of a set of non-fairness-aware predictive models. To achieve
this, we emulate the web company’s mechanism for generating
non-fairness-aware predictive models by using the AutoML plat-
form, which produces a set of highly accurate predictive models
across different types. All predictive models are implemented using
the H20 package [22], which includes various categories such as
the generalised linear model (DLM), deep learning model (DP), tree-
based model (XRT or DRT), gradient boosting model (GBM), and
stacked ensemble model (SE). We distinguish the predictive models
by their shorthand model names and numbers. The source code
for the predictive models is available via the link provided in the
abstract. We employ 10-fold cross-validation to train and evaluate
these predictive models.

We note that the proposed Fair-IRT framework is not restricted
by the choice of sensitive attributes or fairness metrics. Due to
space limitations, we provide additional experiments for different
sensitive attributes and fairness metrics in Appendix A.3.3 and
Appendix A.3.4, respectively. These aim to demonstrate the gener-
alisation ability of the proposed Fair-IRT framework.

5.1 Adult

The Adult dataset comes from the UCI repository [12] and contains
14 attributes including race, age, education information, marital
information as well as capital gain and loss for 48,842 individuals.
We pre-process the dataset by deleting missing information and en-
coding discrete attributes. The downstream tasks’ goal is to predict
whether the individual’s income is above $50,000, which belongs
to the classification task. We set sex as sensitive attribute and all
the other attributes as non-sensitive attributes. We randomly select
1,000 individuals as the evaluation set.

We simulate 24 predictive models for the Adult dataset. The
predictive performance is measured by the area under the curve
(AUC) and the results are shown in Table 1. We use Equation 5 as
fairness metrics since it is a classification task. We set STS > 0.5
as the threshold for considering the individual is treated fairly by
the predictive model. We plot the ICCs for five individuals with
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Table 1: The predictive performance (AUC), ability parameter
0;, and estimated S'i‘Si for 24 predictive models on the Adult
dataset are presented. Note that STS; represents the estimated
STS for each predictive model, computed using Equation 7.

Model AUC Ability STS; Model AUC Ability STS;

SE_1 0929 0883 0.793 SE_3 0.851 0810 0.694
GBM_1 0.928 0.865 0.764 GBM_3 0.839 0.845 0.732
XRT_1 0920 0.935 0.864 DL_3 0837 0.541 0.451
DRF_1 0919 0831 0.694 XRT_3 0.831 0.838 0.715

DL_1 0914 0.777 0.675 DRF_3 0.822 0.613  0.492
GLM_1 0913 0473 0415 GLM_3 0.822 0436 0.381

SE_2 0902 0851 0.753 SE_ 4 0819 0851 0.719
GBM_2 0.902 0.810 0.701 GBM_4 0.816 0912 0.771
XRT_ 2 0.900 0.945 0.864 XRT 4 0.816 0.821  0.690
DRF_2 0873 0.791 0.654 DRF_ 4 0.811 0546 0.443

DL 2 03855 0.715 0.625 DL 4 0.765 0.618 0.551
GLM_2 0851 0.482 0.437 GLM_4 0.745 0435 0.416

1.0
1.0 —<}
0.8 0.8
206 0.6
804 0.4
L= a00 (F1=3.5) - 210 (FI=387) _f
0.2 0.2 == 343(FI-3.58)  =-= 135(FI=4.04)
— - 541 (FI-3.68) Model Range
0.0 i 3 i
0.0 ‘ ‘ :
-2 0 2 4 000 025 050 075 1.00
Discrimination Ability
(a) (b)

Figure 4: The plots for the Adult dataset: (a) The scatter plot
shows the discrimination parameter a; and the difficulty
parameter §; for each individual; (b) Examples of selected
individuals with flat ICCs. The shaded area indicates the
ability range of the 24 selected predictive models.

the smallest flatness indicators. After using Fair-IRT, we have the
following observations,

o Table 1 shows the predictive performance (AUC), ability parame-
ter 0;, and estimated STS; for 24 predictive models on the Adult
dataset. We note that XRT_2 and XRT _1 achieve the highest
fairness performance. However, these two predictive models are
not the best model in predictive performance.

o Figure 4(a) is the scatter plot of the discrimination parameter a;
and difficulty parameter §; for each individual in evaluation set.
The purple dot denotes an individual identified as a special case,
where the value of the discrimination parameter is negative. The
agency should flag this individual for further analysis, as they
are treated more fairly by a lower-ability predictive model.

o Figure 4(b) presents the ICCs for individuals with the five small-
est FI. Table 2 shows the results of quantitatively disentangling
individual “343". Under the predictive model “GLM_1", we find
that the individual component contributes significantly more

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Table 2: The quantitative way of disentangling Individual
“343" from the Adult dataset. v/ indicates that the individual

is treated fairly under the selected predictive model, while X
indicates the opposite.

Individual 343 (log A ; = 1.236)

Model log®; ¢(STS;;) Model log®; ¢(STS;;)
SE_1 -2.163 -0.928 v SE_3 -1.541 -0.305 "4
GBM_1 -1.977 -0.742 v GBM_3 -1.769 -0.534 v
XRT_1 -2.863 -1.627 v DL_3 -0.273 0.962 X
DRF_1 -1.599 -0.364 v XRT_3 -1.705 -0.469 v
DL_1 -1.398 -0.162 v DRF_3 -0.467 0.768 X
GLM_1 -0.049 1.187 X GLM_3 0.200 1.435 X
SE_2 -1.863 -0.628 v SE_4 -1.776 -0.540 "4
GBM_2 -1.549 -0.314 v GBM_4 -2.286 -1.050 v
XRT_2 -2.922 -1.687 v XRT_4 -1.545 -0.310 v
DRF_2 -1.327 -0.091 v DRF_4 -0.236 1.000 X
DL 2 -1.131 0.105 X DL_4 -0.748 0.488 X
GLM_2 -0.173 1.063 X GLM_4 -0.020 1.216 X
10 1.0 At
0.8 08 /’
\ A! —— 539 (FI=0.44)
206 0.6 L e 219 (105
g 2 \" - 920 (FI=0.53)
& 0 “ee 356 (FI=0.54)
204 04 , == 572 (FI=0.61)
i Model Range
02 02 ;'! \k\\
0.0 0.0 !
- -25 00 25 5.0 7.5 0.00 025 050 075 1.00
Discrimination Ability
(@) (b)

Figure 5: The plots for the Law School dataset: (a) The scatter
plot shows the discrimination parameter a; and the difficulty
parameter §; for each individual; (b) Examples of selected
individuals with flat ICCs. The shaded area indicates the
ability range of the 15 selected predictive models.

than the predictive model component, whereas under the predic-
tive model “DL_2", the predictive model component contributes
more. The agency should take further action on these individu-
als with unfair predictions, which may include but is not limited
to, adjusting the predictive model. The results for additional
selected individuals are provided in Appendix A.3.1.

5.2 Law School

The law school dataset comes from a survey [35] of admissions
information from 163 law schools in the United States. It contains
information of 21,790 law students, including their entrance exam
scores (LSAT), their grade point average (GPA) collected prior to
law school, and their first-year average grade (FYA). The school
expects to predict if the applicants will have a high FYA. Gender is
the sensitive attribute in this dataset, and the school also wants to
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ensure that predictions are not affected by the sensitive attribute.
We randomly select 1, 000 individuals as the evaluation set.

We simulate 15 predictive models for the law school dataset,
measuring predictive performance using root mean square error
(RMSE). The results are presented in Table 4 in Appendix A.3.2.
Since this is a regression task, we use Equation 6 as the fairness
metric, setting STS > 0.5 as the threshold for considering an indi-
vidual to be treated fairly by the predictive model. Using Fair-IRT,
we identify some special individuals with negative discrimination,
as shown in Figure 5(a). Figure 5(b) highlights ICCs for five indi-
viduals with the smallest FI. Individual “572" exhibits a different
pattern. Individual “572" has a flat ICC with a high value of STS, as
shown in Figure 5(b). Table 5 in Appendix A.3.2 presents the results
of the quantitative analysis for disentangling individual “572". This
suggests that this individual is consistently privileged and treated
fairly, regardless of the predictive model’s ability.

6 Related Works

Item Response Theory and its Application. Item Response The-
ory (IRT) describes a group of models that explore how latent traits
(e.g., intelligence) influence observed responses (e.g. assessment
score) [11, 14, 17]. Specifically, IRT models the variables that cannot
be directly observed, such as language skills, attitudes towards dif-
ferent races, or susceptibility to stress, which are considered latent
traits. These latent traits can be used to explain why people respond
the way when they do questionnaires or surveys. By linking items
(i.e., questionnaires or surveys) to respondents’ latent traits, IRT
effectively provides a way to compare them. This theory has been
widely applied in psychometrics [9] and educational testing [40].
There are a variety of models developed in IRT for different types
of responses. For example, the logistic IRT model is designed for
binary responses, in which the responses are either correct or incor-
rect; [32] propose the multi-response ordinal models for polytomous
data; the Continuous Response Model (CRM) as an extension of
polytomous IRT is designed for continuous response [33].

In recent decades, decision-making models have been applied
in many fields. People realise that some tasks are more difficult
than others, and some predictive models are more capable than
others. Is it a monotonic one, i.e., better techniques usually get
better results on more difficult problems and usually solve the easier
ones? Interestingly, all of these issues have been addressed in the
past by IRT, yet in very different contexts. Martinez-Plumed et al.
[26] use IRT to evaluate the predictive performance of predictive
models on a signal classification dataset; Chen et al. [7] propose a
modified IRT model for continuous responses and use it to evaluate
multiple classification tasks; Kandanaarachchi and Smith-Miles
[19] generate an inverted version of IRT model and evaluate a set
of models across a repository of datasets. It is worth noting that
all the above IRT frameworks are used to evaluate the predictive
performance of the predictive models.

Fairness Evaluation. The machine learning literature has increas-
ingly focused on evaluating how models can protect marginalised
populations from unfair treatment. An important direction is how
to quantify fairness, i.e., the fairness metrics. By using these fairness
metrics, we can rank models according to their overall results or
even do pairwise comparisons and show that method A is more fair

Anon.

than B. In the statistical framework, Demographic parity is defined
by Zemel et al. [42], which is used to measure group-level fairness.
Other similar metrics include equalised odds [18], predictive rate
parity [41]. Dwork et al. [13] propose a measurement to quantify
individual-level fairness, i.e., similar individuals should have sim-
ilar treatments, and they use distance functions to measure how
similar between individuals. Apart from the statistical framework,
some metrics are developed under the causal framework, which
focuses on causal relationships rather than associate relationships.
The (conditional) average causal effect is used to quantify fairness
between groups [23]; Natural direct and natural indirect effects are
used to quantify specific fairness [29, 36, 37, 43, 46]; When unfair
causal paths are identified by domain knowledge, Chiappa [8] used
the path-specific causal effects to quantify fairness on approved
paths; Kusner et al. [21] introduce the definition of counterfactual
fairness which can be used to answer what-if questions in fairness
machine learning [16] and develop counterfactual fair predictive
models [38]. For more related works, please refer to the literature
review [6, 10, 15, 27, 31, 44]. However, the above literature con-
tributes to developing more specific rulers for evaluating fairness.
We still do not know how the overall fairness performance for a
collection of benchmark predictive models or specific individuals
is distributed.

Our paper is a novel lens of fairness evaluation by bringing the
IRT model. We can evaluate the fairness performance of a set of
predictive models on different individuals and obtain the latent
fairness ability of the predictive models. Through the flatness of
ICCs, we can also disentangle the unfairness between individuals
and predictive models. To the best of our knowledge, this is the
first paper to use the IRT model to evaluate fairness performance
for both predictive models and individuals.

7 Conclusion

Summary of Contributions. In this paper, we introduce Fair-
IRT, a novel framework based on beta IRT, to evaluate the fairness
performance of both predictive models and individuals. This is
the first paper to apply the IRT model in fairness evaluation. The
parameters learned by Fair-IRT can be used to interpret the abil-
ity of predictive models and identify individuals who are treated
unfairly. Furthermore, we propose two ways to disentangle unfair-
ness between individuals and predictive models. The flatness of
item characteristic curves is proposed for the original setting of
Fair-IRT and is effective for interpretation. A quantitative way to
measure the composition of unfairness is proposed by replacing the
backbone with the Rasch beta IRT. Our experimental evaluation of
real-world datasets demonstrates the effectiveness of the Fair-IRT
framework. The results show that the proposed Fair-IRT provides
comprehensive explanations for fairness evaluation and promotes
the development of more inclusive, equitable, and trustworthy AL
Limitations & Future Works. The proposed Fair-IRT framework
currently operates on a single fairness metric and sensitive at-
tribute. In the future, we plan to explore a high-dimensional IRT
framework capable of addressing both utility and fairness metrics
simultaneously. We also intend to apply the Fair-IRT framework to
fairness-aware predictive models to compare their fairness at the
application level.
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A Appendix

This is the Appendix for “Fairness Evaluation with Item Response
Theory".

A.1 Learning Algorithm for Fair-IRT

The learning process is outlined in Algorithm 1.

Algorithm 1

Inputs:

The matrix STS;;, including situation test score of the j-th individual
on the i-th predictive model.

epochs: Number of training epochs
Outputs:

0: Estimated abilities of predictive models

&: Estimated difficulties of individuals

a: Estimated discriminations of individuals
Initialise parameters: 6, § and a
for epochs = 1 to epochs do

STSU « 3-parameter beta IRT(0, 8, a)

current_loss « loss(STS;j, STSij)

gradients «— gradient(current_loss, [0, 8, a])
end for

Extract parameters:
6 «— sigmoid(0), 6 « sigmoid(6) and a «— a
Return (6, 8, a)

A.2 Supplementary Fairness Metrics

We first introduce additional fairness metrics and explain why they
are not selected in the main text. Additionally, we adapt certain
group level fairness metrics to make them suitable for use within
our framework.

DEFINITION 2 (INDIVIDUAL FAIRNESS (IF) [13, 24]). A predictive
model is fair if it gives similar predictions to similar individuals.
Formally, given a distance function d(-, ), if individuals j and k are
similar under this distance function (i.e., d(j, k) is small) then their
predictions should be similar:

Y(Aj. X)) ~ V(Ag. Xp). (14)

We note that the distance function d(-, -) must be carefully cho-
sen, requiring an in depth understanding of the domain knowledge.

Another individual level fairness metric is counterfactual fair-
ness, which belongs to the causal framework and is defined as
follows:

DEFINITION 3 (COUNTERFACTUAL FAIRNESS [21]). Prediction model
Y(-) is counterfactually fair if under any context X = x and A = a,

PYpqU)=y|X=xA=q)=

- (15)
P(Yaa(U) =y | X =x,A = a),

for ally and any value a attainable by A. U is a set of the background
attributes, which are the factors not caused by any attributes in the
set {A, X}.

The counterfactual is modelled as the solution for Y for a given

U = u, where the equations for A are replaced with A = a. We

denote it by Y4 4(U). However, the calculation process for coun-

terfactual fairness is difficult to satisfy in real-world applications. It
10

Anon.

requires complex steps [30] and strong assumptions, i.e., the prior
knowledge of the structural equation model [4].

It is important to note that the fairness metrics suitable for the
proposed Fair-IRT framework should link the prediction results
with the sensitive attribute, rather than focusing solely on the target
variable. Details of the selected group fairness metrics are provided
as follows,

o dp (Demographic Parity or Statistical Parity) [13]. A predictive
model satisfies demographic parity if the prediction ¢ is indepen-
dent of the sensitive attribute A, i.e, P(Y|A = 0) = P(Y|A = 1).
eopp (Equality of Opportunity) [18]. A predictive model satisfies
equalised opportunity if the prediction 7 is independent of the
sensitive attribute A when the label Y =1, i.e., P(f/|A =0,Y =
1)=P(Y]A=0,Y =1).

eodd (Equalised Odds) [18]. A predictive model satisfies equalised
odds if the prediction 7 is independent of the sensitive attribute
A conditioned on the label Y, ie, P(Y|[A=0,Y =y) = P(Y|A =
1,Y =y), where y € {0, 1}.

The above fairness metrics can be extended to the individual
level by adding conditions on the set of attributes associated with
individual. The details are provided as follow,

e dp: P(Y|[A=0,X=x)=P(Y|[A=1X =x).

e eopp: P(Y|[A=0,Y=1,X=x)=P(Y|A=0,Y =1, X = x).

e eodd: P(YJA=0Y =y X=x)=P(Y|[A=1Y =y, X = x),

where y € {0, 1}.

We note that demographic parity (dp) is a restricted version of
the situation test score (the fairness metric used in the main text).
This is because dp requires the probability to remain equal when
the sensitive attribute is flipped. In contrast, the situation test score
allows for a difference (i.e., a threshold ¢) that can be adjusted by
the end user.

We can define the equalised score using the aforementioned
eopp and eodd metrics for the proposed Fair-IRT framework. The
formal definition is as follows:

DEFINITION 4 (EQUALISED ScORE (ES)). Given a predictive model
YC(-) for classification task, the ES is given by:
ESC=1-1P(¥ClA=a Y=y X=x)-PYC|A=a Y=y X=x)|
where P(-) denotes the probability estimates for the Y€(-), a denotes

the flipped version of the value of the binary sensitive attribute A.
Given a predictive model YR (-) for regression task, the ES is given

by:
[YRA=a Y=y X=x]-E[{RlA=a Y=y X=x]

E
ESR=1-1 :
E[YRIA=q Y=y, X =x]

>

where E[-] represents the expected value of the prediction results YR,
A is the scaling factor that ensures ESR falls within the range [0, 1].

A.3 Supplementary Experimental Results

A.3.1 Experimental results for additional selected individuals on
the Adult Dataset. In this section, we provide detailed results for
selected individuals from the Adult dataset in Table 3. The selected
individuals are those with the five smallest flatness indicators. Our
aim is to quantitatively disentangle unfairness between individuals
and predictive models.
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Table 3: The quantitative way of disentangling selected indi-
viduals from the Adult dataset. v/ indicates that the individual
is treated fairly under the selected predictive model, while X
indicates the opposite.
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Table 5: The quantitative way of disentangling selected indi-
viduals from the Law School dataset. v/ indicates that the in-
dividual is treated fairly under the selected predictive model,
while X indicates the opposite.

Individual 400 | Individual 343 | Individual 541 | Individual 210 | Individual 135 Individual 539 | Individual 219 | Individual 920 | Individual 356 | Individual 572
(log A j=-1.333)| (log A j=1.236) | (log A j=1.784) | (log A j=1.793) | (log A j=0.869) (log A j=4.438)|(log A j=4.258)| (log A j=3.872) | (log A j=4.738) | (log A j=-3.048)
‘ Model ‘logei‘g(STSij) ‘g(STSij) ‘g(S'i'Sij) ‘g(STSij) ‘g(STSij) ‘ ‘ Model ‘log@i‘g(STSij) ‘g(STSij) ‘g(STSij) ‘g(S'i'Sij) ‘g(S'i'Sij) ‘
SE_1 |-2.163 -3.496 4 -0.928 v -0.379 v -0.370 v -1.294 v GBM_1 | -1.737 2.701 X 2.521 X 2.135 X 3.001 X -4.786 4
GBM_1|-1977| -3310 v | 0742 v | 0193 v | 018 /| -1108 & GBM 2 |-1586| 2852 X | 2672 X | 2286 X | 3152 X | -4635 o/
XRT_1|-2863| 419 « | -1.627 v | -1079 v | -1070 v | 1993 v DP_1 [-1670| 2769 X | 2580 X | 2203 X | 3060 X | -4718
DRF 1[-1509| -2932 « | 0364 | 0185 X | 0194 X | -0730 GBM 3 |-1585| 2853 X | 2673 X | 2287 X | 3153 X | -4633 o
DL1|-1398| -2731 « | 0162 | 038 X | 0395 X | -0528 GBM 4 [-1409| 3030 X | 2849 X | 2463 X | 3320 X | -4457 o/
GLM 1|-0049| -1382 v | 1187 X | 1735 X | 1744 X | 0821 X GBM 5 |-2361| 2078 X | 1807 X | 1511 X | 2377 X | -5409 o
SE 2 |-1863| 319 ¢ | -0628 | -0079 /| -0070 /| -099% GBM 6 [-1106| 3333 X | 3153 X | 2767 X | 3633 X | -4154 o
GBM 2|-1549| -2882 ¢ | -0314 v | 0235 X | 0244 X | 0680 & GLM 7 |-1567| 2872 X | 2692 X | 2306 X | 3172 X | -4615 &
XRT 2|-2922| -4255 ¢ | -1687 v | -1138 < | -1120 v | 205 & GBM 8 |-1315| 3124 X | 2943 X | 2557 X | 3423 X | -4363 o
DRF 2|-1327 | -2660 « | 0091 v | 0457 X | 0466 K | -0458 GBM 9 |-1244| 3.194 X | 3014 X | 2628 X | 3494 X | -4203 o/
DL_2 | -1.131 -2.464 v 0.105 X 0.653 X 0.662 X -0.262 4 DP_2 |-1.524 2914 X 2.734 X 2.348 X 3.214 X -4.573 v
GLM_2| -0.173 -1.506 v 1.063 X 1.611 X 1.620 X 0.697 X GBM_10| -0.897 3.541 X 3.361 X 2.975 X 3.841 X -3.945 v
SE_3 | -1.541 -2.874 v -0.305 v 0.243 X 0.252 X -0.671 v GBM_11| 0.469 4.908 X 4.728 X 4.342 X 5.208 X -2.579 4
GBM_3| -1.769 -3.102 v -0.534 v 0.015 X 0.024 X -0.900 '4 DRF_1 | 0.298 4.736 X 4.556 X 4.170 X 5.036 X -2.751 '
DL_3 | -0.273 -1.607 v 0.962 X 1.510 X 1.520 X 0.596 X XRT_1 | -2.461 1.977 X 1.797 X 1.411 X 2.277 X -5.509 '
XRT_3 | -1.705 -3.038 v -0.469 v 0.079 X 0.088 X -0.836 4
DRF_3 | -0.467 -1.800 v 0.768 X 1.317 X 1.326 X 0.402 X
GLM_3]| 0.200 -1.133 4 1.435 X 1.984 X 1.993 X 1.069 X
SE 4 [-1776| 3109 /| -0540 v/ | 0008 X | 0017 X | -0906 v
GBM_4|-2286| -3619 v | -1050 v | 0502 v | 0493 /| -1416 &
XRT 4|-1545| 2879 « | 0310 v | 0238 X | 0247 X | 0676 &
DRF 4|-0236| -1560 « | 1000 X | 1548 X | 1557 X | 0633 X
DL 4 |-0748| -2081 v | 0488 X | 103 X | 1045 X | 0121 X
GLM 4|-0020| -1353 « | 1216 X | 1764 X | 1773 X | 080 X
10 0
A.3.2  Supplementary experimental results on the Law School Dataset. 08 . 08
Table 4 shows the predictive performance (RMSE), ability param- B
. . . 206 06 i
eter 6;, and estimated STS; for 15 predictive models on the Law E oo o i
. . . =) 0 i
School dataset. We note that GBM_5 achieves the highest fairness & o |2 04
performance. However, GBM_1 is the best model in predictive per-
. - . . L 0.2 0.2 t+ XJX(F]:Y) 19) LX) 766(”:043) o
formance. Table 5 provides detailed results for selected individuals : il byl |5 R
from the Law School dataset. The selected individuals are those 00 ‘ i 0.0 i i f
with the five smallest flatness indicators. 25 00 25 50 75 000 025 050 075 1.00
Discrimination Ability
Table 4: The predictive performance (RMSE), ability param- (@) (b)

eter 0i, and estimated STS; for 15 predictive models on the
Law School dataset are presented. Note that STS; represents
the estimated STS for each predictive model, computed using
Equation 7.

Model RMSE Ability STS; Model RMSE Ability STS;
GBM_1 0.8632 0.9042 0.7014 GBM_8 0.8653 0.8810 0.6432
GBM_2 0.8635 0.8993 0.6686 GBM_9 0.8664 0.8622 0.6364
DP_1 0.8639 0.9102 0.6839 DP_2 0.8679 09111 0.6762
GBM_3 0.8648 0.8987 0.6812 GBM_10 0.8684 0.8346 0.5914
GBM_4 0.8648 0.8876 0.6496 GBM_11 0.8771 0.5644 0.3873
GBM_5 0.8650 0.9239 0.7571 DRF_1 0.8846 0.6119 0.4243
GBM_6 0.8651 0.8669 0.6183 XRT 1 0.8862 0.9340 0.7507
GLM_7 0.8652 0.9072 0.6611

A.3.3  Supplementary experimental results with different sensitivity
attributes on the Adult Dataset. In this section, we continue using
the Adult dataset but set race as the sensitive attribute. We simulate
14 predictive models for the Adult dataset. Figure 6(a) shows the
scatter plot of the discrimination parameter aj and the difficulty pa-
rameter & for each individual in the evaluation set. The purple dot

11

Figure 6: The plots for the Adult dataset with race the sensi-
tive attribute: (a) The scatter plot shows the discrimination
parameter a; and the difficulty parameter §; for each indi-
vidual; (b) Examples of selected individuals with flat ICCs.
The shaded area indicates the ability range of the 14 selected
predictive models.

denotes an individual identified as a special case, where the value
of the discrimination parameter is negative. Figure 6(b) presents
the ICCs for individuals with the five smallest flatness indicators.
Table 6 provide detailed results for selected individuals from the
Adult dataset with race as the sensitivity attribute. The selected in-
dividuals are those with the five smallest flatness indicators. These
results demonstrate that the proposed Fair-IRT framework is not
restricted to the sensitive attribute and has generalisation ability.
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Table 6: The quantitative way of disentangling selected indi-
viduals from the Adult dataset with race as the sensitivity at-
tribute. / indicates that the individual is treated fairly under
the selected predictive model, while X indicates the opposite.

Anon.

Table 7: The quantitative way of disentangling selected indi-
viduals from the Adult dataset with ES as the fairness metrics.
/ indicates that the individual is treated fairly under the se-
lected predictive model, while X indicates the opposite.

Individual 838 | Individual 798 | Individual 448 | Individual 766 | Individual 699 Individual 971 | Individual 798 |Individual 756 [Individual 448| Individual 766

(log A j=1.489)|(log A j=-3.097)|(log A j=-3.018)|(log A j=-3.093)| (log A j=-2.882) (log A j=-3.768)|(log A j=-3.557)|(log A j=1.577) -3.380 (log A j=-2.882)

| Model [log®;]g(sTs;;)  |g(sTsi;)  |g(STsiy)  |g(sTsij)  |g(sTsi) | | Model [log ©;]g(ES;;) |g(ESij) |g(ESij) lg(Esij)  |g(Esij) \
GBM_2|-1.823| -0334 | -4920 « | -4841 | 4916 « | -4705 GBM_3 |-1.681| -5449 / | -5238 ¢ | -0104 « | -5061 « | -5168 &
GBM_5 |-1.721| -0232 « | -4818 « | -4739 / | 4814 / | -4603 GBM 2 |-1.641| -5410 / | -5199 / | -0064 « | -5021  |-5129 /
GBM 3(-1.832| -0343 « | -4928 / | -4850 «/ | -4925 / | -4714 GBM 5|-1.562| -5331 /| -5120 / | 0015 X | -4942 « | -5050
GBM 4|-1.604| -0.115 « | -4701 «/ | -4622 / | -4697 / | -448 GBM_4 |-2.113| -5.881 «/ | -5670 ¢ | 0535 «/ | -5493 / | -5.600
GBM_g4|-1.443| 0046 X | -4539 «/ | -4461 / | 4536 / | -4325 / GBM_g4|-1.569 | -5.337 ¢ | -5126 «/ | 0.009 X | -4949 < | -5056 o/
GBM_g2|-1.621| -0132 | -4718 «/ | -4639 / | 4714 o/ | -4503 / GBM_g2|-1.048 | -4.817 «/ | -4606 « | 0529 X | -4428 o/ | 4536 /
GBM_g3|-1.574| -0.085 « | -4.671 «/ | -4592 /| -4.667 / | -4456 / GBM_1|-2.026| -5.795 «/ | -5584 / | 0449 / | -5406 « | -5514 /
GBM_1|-1.812| -0323 | -4908 «/ | -4830 «/ | 4905 / | -4694 GBM_g3|-1.396 | -5.164 ¢ | -4953 «/ | 0.181 X | -4776 / | 4883 /
GBM_g1|-1.363| 0.126 X | -4460 « | -4381 « | -4456 / | -4245 / GBM_g1|-1.375| -5.144 /| -4933 / | 0202 X | -4755 / | -4863 /
GBM_g5|-1.579| -0.090 « | -4.676 / | -4597 /| -4672 / | -4461 / GBM_g5|-2.946 | -6.714 ¢/ | -6503 / | -1369 / | 6326 | 6433 /
XRT_1 |-2.171| -0682 | -5267 «/ | -5188 « | -5263 « | -5052 / XRT_1 |-2.869| -6.637 «/ | -6426 ¢ |-1291 | -6249 / | -6356
DRF_1 [-1.076| 0413 X | -4173 /| 4094 ¢ | -4169 / | -3.958 DRF_1 [-0.937| -4.705 ¢ | -4494 ¢ | 0641 X | -4317 / | -4424
DL 1 |-1.135| 0354 X | -4232 / | -4153 4 | -4228 / | 4017 / DL_1 |-0.799| -4.568 v | -4357 «/ | 0778 X | -4179 V | 4287 /
GLM_1|0391| 1880 X | -2706 « | -2627 / | -2702 J/ | -2491 / GLM_1|1.225| -2543 v | -2332 / | 2803 X |-2155 | -2262 /

A.3.4 Supplementary experimental results with different fairness
metrics on the Adult Dataset. In this section, we continue using the
Adult dataset but set Equalised Score (ES) as the fairness metric.
We simulate 14 predictive models for the Adult dataset. Figure 7(a)
shows the scatter plot of the discrimination parameter a; and the
difficulty parameter §; for each individual in the evaluation set. The
purple dot denotes an individual identified as a special case, where
the value of the discrimination parameter is negative. Figure 7(b)
presents the ICCs for individuals with the five smallest flatness
indicators. Table 7 provide detailed results for selected individuals
from the Adult dataset. The selected individuals are those with the
five smallest flatness indicators. These results demonstrate that
the proposed Fair-IRT framework is suitable for different fairness
metrics.
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Figure 7: The plots for the Adult dataset with race the sensi-
tive attribute: (a) The scatter plot shows the discrimination
parameter a; and the difficulty parameter §; for each indi-
vidual; (b) Examples of selected individuals with flat ICCs.
The shaded area indicates the ability range of the 14 selected
predictive models.
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