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ABSTRACT

Online platforms rely heavily on user feedback for ranking systems, such as
restaurant ratings and e-commerce listings. However, these systems face chal-
lenges from unfair feedback, including merchant-induced and malicious feedback.
Thus, platforms have adopted human verification to increase the reliability of the
rankings. It can certainly identify genuine feedback, but introduces high latency
into real-time updates, leading to non-static queuing dynamics and creating chal-
lenges for online learning. We model this as a continuous-time online learning
problem, establish the lower bound on regret, and propose two algorithms: Hi-
erarchical Elimination (HE) and Deficit Hierarchical Elimination (DHE), dealing
with the case of single and multiple verifiers, respectively. We further prove up-
per regret bounds for both algorithms and demonstrate their effectiveness through
numerical experiments.

1 INTRODUCTION

The pervasive influence of online ranking systems has made them crucial components of modern
digital platforms, serving as essential tools for content discovery and decision-making across vari-
ous domains including e-commerce, content sharing, and service platforms (Golrezaei et al.| 2023
Negahban et al.l [2017). These systems typically rely heavily on user feedback to determine rank-
ings, operating under the assumption that such feedback accurately reflects item quality. However,
this assumption has been increasingly challenged by the prevalence of unfair feedback - reviews or
ratings that deliberately misrepresent item quality due to various motivations including competitive
manipulation, personal bias, or financial incentives.

Recent developments in major online platforms have introduced verification mechanisms to address
this challenge. For instance, some platforms such as Meituan have implemented jury-like review
panels that verify the authenticity and fairness of user feedback (see Appendix [D). These panels
examine suspicious reviews through various means including on-site verification, photographic ev-
idence, and cross-referencing with transaction records. While such mechanisms show promise in
maintaining ranking integrity, they introduce new theoretical challenges that existing frameworks
are ill-equipped to address, such as how verification rate and policy impact the online ranking accu-
racy, or if it is possible to extract information from unverified feedback in overloaded systems.

The primary challenge lies in the inherent tension between verification thoroughness and system
responsiveness. Verification mechanisms, while crucial for maintaining ranking accuracy, introduce
delays in feedback processing. These delays create complex queuing dynamics that interact with the
learning process in non-trivial ways. Moreover, the system must operate continuously, making real-
time ranking decisions while simultaneously learning from both verified and unverified feedback.
This creates a complex online learning problem where the learning process is intimately coupled
with the underlying queuing dynamics.

Our main contribution is the development of a comprehensive framework for dynamic ranking sys-
tems with unfair feedback and verification mechanisms. We propose the Hierarchical Elimination
(HE) algorithm that achieves logarithmic regret bounds by effectively utilizing both verified and un-
verified feedback, and extend it to the Deficit Hierarchical Elimination (DHE) scheduling policy for
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systems with multiple heterogeneous verifiers. Through rigorous theoretical analysis, we establish
bounds on system regret, demonstrating the effectiveness of our proposed algorithms.

The rest of the paper is organized as follows. Section 2 reviews related work across multiple do-
mains. Section 3 presents our model and formally defines the optimization objective. Section 4
introduces our main algorithms and provides theoretical guarantees. Section 5 extends the analysis
to multiple heterogeneous verifiers. Section 6 presents experimental results validating our theoreti-
cal findings, and Section 7 concludes with discussions of future directions.

2 RELATED WORK

The field of bandit algorithms has developed a rich theoretical foundation, built upon seminal algo-
rithms such as UCB (Auer, 2002;|Lai & Robbins,|1985)), LinUCB (Abbasi-Yadkori et al.,2011)), and
SE (Successive Elimination) (Even-Dar et al.,[2006). This framework has been extended to accom-
modate complex user behavior through customer choice models, as exemplified by the bandit-MNL
approach (Agrawal et al.,[2018)) and choice bandits (Agarwal et al., 2020). While these advances are
significant, they primarily address subset selection problems, leaving the challenges of item ranking
relatively unexplored.

The specific problem of online learning to rank has evolved along a parallel trajectory, with notable
contributions from (Zoghi et al.l [2017; |Li et al., 2019; [Lattimore et al., 2018]), establishing funda-
mental frameworks, and subsequent works incorporating click models such as PBM (Lagrée et al.,
2016) and cascade models (Kveton et al,, 2015). However, these approaches predominantly opti-
mize for click-through rates rather than comprehensive user utility metrics. A particularly relevant
recent advancement (Zuo et al.l [2023) addresses the critical issue of adversarial feedback attack,
though their reliance on stylized attack models and stationarity assumptions potentially limits real-
world applicability. The work (Golrezaei et al.,2022) focuses on traditional learning-to-rank aiming
for maximizing click-through rates, while our work is concerned with maximizing the consumer’s
true experience—a setting more aligned with multi-armed bandits. In addition, their robust algorithm
deals with fake clicks under the assumption that the operator cannot verify the authenticity of the
feedback. In contrast, our work is motivated by real-world scenarios (e.g., Meituan) and investigates
how a verification system can be designed to integrate verification strategies with online learning.

The introduction of verification mechanisms, while crucial for feedback validation, introduces an
inherent delay component to the learning process. This intersects with delayed feedback literature
that have been extensively studied (Joulani et al., 2013;Dudik et al.| 2011} |Gael et al., 2020; |(Gyorgy
& Joulani, 2020} |[Lancewicki et al) 2021). The comprehensive study (Lancewicki et al., 2021)
yields important insights of the superiority of successive elimination over UCB in delayed feedback
scenarios. The concept of “soft delays” in (Esposito et al.l [2023)), where intermediate observations
during delay periods containing valuable information provides a paradigm that naturally extends to
our setting where even potentially unfair feedback carries information. However, the delay between
intermediate observation and final feedback is not predetermined; specifically, it is governed by the
verification policy, which necessitates consideration of queuing dynamics.

However, the studies of online learning in queuing systems primarily focus on system stability rather
than user utility. Moreover, static system dynamics is commonly assumed. For example, the work
(Huang et al.| |2023) examines the impact of learning on system steady-state behavior, and the work
(Krishnasamy et al., 2016) provides queue-length regret bounds, while this work (Krishnasamy
et al., [2019) addresses the challenges of service rate learning. Whereas ranking systems present
unique challenges due to position-dependent arrival rates, which fundamentally alters the system
dynamics and demands novel theoretical frameworks and solutions.

3 MODEL AND OBJECTIVE

This section presents our model framework in two parts. First, we define the three key components
of our dynamic ranking system: the ranking system, customer behavior patterns, and the verifica-
tion process. Subsequently, we formalize the optimization objective and characterize the system
dynamics that govern the learning process.
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3.1 PROBLEM FORMULATION

The ranking system with unfair feedback and human verification comprises three key components:

Ranking System. We consider a system with a total of K items, denoted by Z = {I1,I>,..., Ik},
which are to be ranked from 1 to K. Each item has an inherent quality parameter 5 =
{B1,B2,...,BK}. At any time ¢, the operator can dynamically change the ranking of any item.
We denote 3(t) as the vector of quality parameters ordered according to the current ranking at time
t. It is a vector of dimension K and each permutation of elements in this vector represents a pos-
sible ranking. Without loss of generality, we assume that the items are initially ordered such that
B1 > B2 > --- > Bk. For simplicity, we display all items, though our algorithm can easily extend
with the same order of regret when only a subset is displayed.

Customer Behavior. Customer arrivals follow a Poisson process with a rate normalized to 1. Usu-
ally, customers do not have prior knowledge about classes of highly similar products (e.g., standard-
ized products like coffee rankings, electronic items like USB cables, or homogeneous services such
as weather apps or flashlight apps from an app store). Hence, they rely on the platform’s intelligent
ranking system to make their choices. We assume that upon arrival, a customer selects an item from
the ranked list purely based on its current position. Specifically, the probability that a customer
selects the item ranked at the ¢-th position is «;, and we assume a; > ag > -+ > ak.

After selecting item [j, the customer provides immediate binary feedback on the selected item.
Specifically, there is a probability ;. of receiving good feedback and 1 — 3}, of receiving bad feed-
back. However, with probability ¢y, the feedback from the customer is manipulated, and we refer
to such feedback as unfair feedback. We further assume that the distribution of an unfair feedback
is Bernoulli with unknown mean gy, (¢) for item k, indicating that the manipulation behavior is non-
stationary and lacks analytical properties. Note that the dependency on ¢ creates flexibility for the
“attack” behavior and especially useful when constructing lower bounds.

Human Verification. Since it is indistinguishable between unfair and fair feedback without verifica-
tion, human verification is introduced to verify if the feedback is fair and its true value. Specifically,
all feedback from item I}, is sent to its corresponding queue FCFES (first-come first-serve) @y, await-
ing verification. While there is one verifier that can verify feedback from any queue with identical
verification rate y. In other words, the verification time is exponentially distributed with mean *.
After each verification, the operator of the system will know the true value of that feedback. It
is worth mentioning that naively verify all feedback according to its arrival time will lead to high
inefficiency, and thus, the scheduling policy should be carefully designed.

3.2 POLICIES AND OBJECTIVE

In the dynamic ranking system, we will consider an online learning problem which learns the true
parameters [ to minimize the total decision error made through a finite continuous time horizon 7.

Ranking Policy We define ranking policy 7, to be a function that map histories to [0, 1]%. Equiv-
alently, we use 8™ (¢) to denote the quality parameters after permutation based on the ranked list.
For example, when K = 2 and 8 = {0.5, 0.4}, and item I; is ranked on the second place while item
I, is ranked at the first place at time ¢, we have 5™ (t) = [0.4,0.5], which is a vector of dimension
K.

Scheduling Policy We define ranking policy 7, that maps the current state of the system to the index
set [K]. The policy decides which feedback to be verified at time t, denoted by S™=(¢), while within
each type, we follows first come first served to avoid selection bias.

Given any pair of the policies 7 = (7, 75), we aimed to minimize the expected regret. By the
assumption of decreasing «;, the optimal decision is always ranked the items according to their s
in descending order. Therefore, we define the regret by time 7 as:

Reg(T) := E” [ / 8- B (t))Tadt] , (1)

where the expectation is taken with respect to the dynamic of the customer arrival and choice, which
is dependent on the policy. The continuous form of regret has barely no difference compared to
discrete ones in expectation since the arrival rate is normalized to be one.
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System Dynamics Before presenting the algorithm design, we need to first characterize the system
dynamic for any policy 7 and understand the complex interdependency between system state and
the arrival process.

We introduce the following notations: For item Iy, let Q7 (¢) denote the number of feedback waiting
to be verified, A7 (¢) be the cumulative arrivals with A7 (¢) be the corresponding arrival rate, ST (t)
be the number of feedback under verification, and D7 (¢) be the number of cumulative departures.
The system follows:

Qr(t) = AR (t) — DE(t) — SE(1), 2
Az (t) = f(rank(I)), (3)
where f(-) is the function that map the current rank to the corresponding arrival rate, which essen-

tially depends on the system state. Such level of complexity implies that it is impossible to solve the
queuing system analytically. For convenience, we use the tuple

(A(t), m(t),n(t), mP(t),nP(t), LCB(t),UCB(t))
to denote the system state, representing the order sets, the numbers of verified feedback, the numbers
of total feedback, the numbers of verified positive feedback, the numbers of total positive feedback,

and the confident intervals, of all items. We will provide more detailed explanations of them in the
following sections.

4 ALGORITHMS AND REGRET BOUNDS

We present our algorithmic solutions and theoretical analysis in four parts. First, we introduce the
Hierarchical Elimination (HE) algorithm for ranking and scheduling. Second, we establish logarith-
mic regret bounds for this algorithm. Third, we demonstrate how unverified feedback can be effec-
tively utilized when bounded unfairness is known. Finally, we derive fundamental lower bounds on
achievable regret.

4.1 HE ALGORITHM

We describe our algorithm in two components: the HE ranking policy that maintains and updates
hierarchical sets of items, and the HE scheduling policy that prioritizes items for verification. In
our algorithm, we need statistical estimations on the quality parameters. Specifically, we denote
Bi(t) = m% (t)/my(t) to be the empirical mean (fraction of positive feedback in verified feedback)
of the quality parameters of item [}, at time ¢. We further construct a confidence interval centered at

its empirical mean using a radius of 4/ 771,?5((3;) , and the interval is denoted by [LC By (t), UC By (t)]
of item I}, at time ¢. The full algorithmic version is in Appendix [C]

HE Ranking Policy It starts with K order sets, A! to AKX Initially, we have A* = {I1,..., Ik}
and A7 = () for ¢ > 1. The algorithm is triggered only by the change of the system state such as
arrivals or departures, and the time ¢ denotes the updated time. When triggered, once there exist
UCB; < LCB; for some i,j € A9, we will send item I; to A9t where such event is called an
elimination. We will use the set B to denote the union of non-singleton order sets, while B¢ is those
items in singleton sets. We will always rank B before B¢. Within B, we rank in ascending order of
the total arrivals for each item, while within 3¢, we rank according to their corresponding order set
index in ascending order.

For example, when A = {1}, A% = {3, I3}, A® = {4}, A* = 0 and n(t) = [10,9,8, 7], the
ranking is {113, I, I, I}. Since both I and I, are in singleton sets, and I; has smaller index (the
index of A" is 1), they ranked the third and the fourth. Also, since I3 has smaller total feedback
quantity, it ranked the top.

HE Scheduling Policy Priority is given to the item in 3 and contains the smallest number of verified
samples, breaking tie arbitrarily.

4.2 REGRET ANALYSIS

Recall the definition of the regret, we need to bound the expected time where the rank is finalized,
i.e., all sets all singleton, while prove that the probability that the final rank is incorrect is negligible.
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Theorem 1. Under the HE algorithm, the regret of the system

K

Reg(T) <O <Z log(T) A L2 > : &)

— min{Ag_1 g, Mg g1 120 @

where Ay_1 == Br—1 — B is the gap between two consecutive items, and A = supg (8 — )T«
is the largest possible regret rate. For handling the edge case, we define A k11 = Ao = 1.

The regret upper bound is composed of two parts: The first part arises due to the quality gap between
items, which in a ranking system is quantified as the minimum gap between item & and its adjacent
item. The second part is due to the delay introduced by the queueing system, which is inversely
proportional to the verification efficiency (1) and includes an initial queue delay of 0%1

The proof of the theorem can be decomposed into the following steps: First, we claim that with high
probability, the mean estimator for each item will lies on its confidence interval. Second, condition
on this event, we bound the expected numbers of total samples for each arm before his rank is
finalized. Next, due to the interdependency of the arrival rate and system state, it is intractable to
find solve the departure processes for our system. Thus, we construct an less efficient system and
show that the expected time before finalizing the rank is bounded by a logarithmic function with
respect to 7" for this system. Lastly, we show the expected time for finalizing the rank of the system
operated using HE algorithm is less than the less efficient system.

4.3 UTILIZING THE UNVERIFIED FEEDBACK

The previous algorithms utilize only verified feedback for ranking and scheduling decisions. This
conservative approach stems from a fundamental statistical limitation: while we can construct mean
estimators using both verified and unverified feedback, the confidence bounds for these estimators
still depend critically on my(t), the number of verified samples. This dependency arises because the
uncertainty in the unfair feedback probability ¢ cannot be reduced without verification. Despite in-
corporating additional data points, current concentration inequalities do not yield faster convergence
rates for confidence intervals constructed using unverified feedback.

However, when we have the information of an uniform upper bound on the unfair probability ¢y,
denoted by ¢, we are able to construct three confident intervals for each item. For each item I, we
define two additional quantities:

LCBue) = i) - | D e = fuln + LD

where the mean estimators 5k (t) and By (t) are defined as:

5y = RO+ s np() —me(t)é
0= AT

The nf(t) is the total number of positive feedback among all feedback no matter fair or unfair.

We refer 5i to be the super-optimistic estimation on item [y, while 5; be the super-pessimistic
estimation. As their name indicates, the super-optimistic estimation is an upper bound for the UCB
constructed if we assume all feedback are verified, while super-pessimistic estimation serves as the
lower bound.

Given the above quantities, we modify our elimination rule by adopting a bi-criteria rule where item
I; is eliminated by I; when UCB; < LCB; or UCB; < LCB;. By such changes, the expected
elimination time will be reduced for those items with their mean much smaller than the others.
Specifically, we define the identifiable set

U= {lr: 20+ ¢ + (1 — ¢)Br < (1 — d—1)Br—1)
U200 + drs1 + (1 — dot1)Brr1 < (1 — 1) Be) }

where henceforth, we define ¢p9 = ¢x4+1 = —oo to handle edge cases. And for convenience, we
further define & = min{dk_l,k, 5k,k+1}a and Ay = min{Ak_Lk., Ak,k—&-l}

®)
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Theorem 2. Under the existence of a known upper bound for unfair probability ¢, such that ¢, < ¢
for all k. Under the HE algorithm with bi-criteria, the regret of the system

Reg(T <O<ZA {1og T) 1((5)2gc(i;)}

kew

(6)

Alog(T) n A
A%,u (e%] ’

kgw
where 61 = (1 — ¢r—1)Br—1 — (26 + éx + (1 — 1) Br.).

Theorem[2]states that for items with larger gaps, the expected time for finalizing their rank is shorter.
The proof is similar to the previous theorem, while in the last step, instead of constructing an single
inefficient system, we decompose the original system into two less efficient systems and show that
if both systems operate simultaneously, the expected time for finalizing the rank can upper bounded,
and therefore, the expected time for the original system is also upper bounded.

4.4 LOWER BOUND

In this subsection, we will establish the lower bound by Theorem [3] The main challenges for de-
riving the lower bound are the followings. First, the complex interdependency between policies and
stochastic queuing dynamics prevent the direct analysis. Second, it is challenging to quantify the
information carried by unverified data.

Theorem 3. Under any consistent algorithm satisfying |I| the asymptotic regret of the system is
lower bounded by

fiminf 290 S [ A ii 1{I; € T¢}CS () %
T 500 log(T) min == A B
where
Ty ={l;:¢; > A7jﬂi17 ¢j > A]ﬁiil}» ()
Ty ={I;: ¢; < 5,228, 6 < 54 ) ©)
Py ={l;: 6; 2 5725, ¢ < 524 (10)
Py={l:0; < A,jﬁip ¢ = A7J117-Ji-1} (1D

and analytical form of C’,E () is presented in the appendix.

The contributions of each item in the regret lower bound are grouped based on their likelihood
of receiving unfair feedback and the quality gaps between them and their adjacent items. Each
group has different information absorption capacity from unverified feedback. Specifically, for items
that with small unfair probability and larger gaps between its adjacent items, the information of
unverified feedback is potentially larger, vice versa. However, there is a minor gap between the
lower bound and the upper bound in system parameters such as «; due to the way we construct the
coupling systems.

5 MULTIPLE VERIFIERS WITH HETEROGENEOUS RATES

In this section, we consider a more general setting where we have IV verifiers, where each verifier
is denoted by V;, and for verifier V;, the verification rate for verifying item I; is p;;. Given that
heterogeneousness of verifiers, if we naively adopt the previous algorithm, the regret will be related
to the minimum verification rate among all pairs, leading to inefficiency.

Furthermore, the assumption of preemption will be relaxed in this section. The reason behind it
is that when there is only a single verifier, preemption or not will not affect the time for finalizing
the rank. However, in multi-verifiers case, if we have y;; extremely small for some ¢ and j, then
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verifying item I; using verifier V; will almost leads to a permanent deduction of verifier number by
1, for which it requires us to smartly idle the server when necessary.

Example 5.1. Consider the following instance, where K = 4, N = 2 and the system state are given
by A = {I1, I}, A? = {I3, 14}, A% = A* = () and m(¢) = [10,8,12,16], n(t) = [12,9, 17, 20].
The verification rate 4 = [0.01,1,1,1], u2 = [1,1,0.01,0.01]. If both verifiers are idle now,
verifier V5 should verify the feedback of item I given that mq(¢) is the smallest, and V5 is suitable
for verifying I,. However, for verifier V;, there are several possible actions sounds reasonable.
First, it can verify the feedback of item I; since there are no more feedback of item /5 waiting in the
queue, and m (¢) is the second smallest one. However, the verifier V; is not suitable for I3, it may
be a better decision to verify item I3 or keep it idle to wait the next arrival of I5. Furthermore, we
not only need to decide the scheduling, but decide their ranking which is directly dependent on the
arrival rates.

5.1 DEFICITS-BASED SCHEDULING POLICY

We aim to develop a scheduling policy that best aligns with the idea of elimination, and we define
asymptotic optimality by maximizing the asymptotic minimum departure rate for feedback in the
set B. To formalize the scheduling policy, we introduce the decision variable x;;(t) representing
whether verifier 7 verifies feedback from item I;.

Assumption 1. We assume the system is overloaded such that Zf\il pij < 7 forany j.

The assumption [I] states that the system is overloaded, where the total verification rate for any type
of feedback is smaller than the top-item arrival rate. An immediate result from this assumption under
our ranking policy is that there are always feedback waiting to be verified for any item, and therefore,
we define the asymptotic max-min departure rate by the following relaxed linear programming:

N

max min Tiilbii 12

o ; jHij (12)

st Y @i <1, Vi, (13)
jeB

2i; >0, Vi,j. (14)

In the above LP, we allow partial allocation for each feedback, and by the overloaded assumption, it
serves as an upper bound for asymptotic max-min departure rate. The solution of the LP is denoted
by x7; (1) and the optimal value by z*(B), given the union of non-singleton sets, 5.

DHE Scheduling Policy Inspired by Deficit Round-Robin (Shreedhar & Varghese, |1996) algorithm
in fair queuing systems, we proposed an scheduling policy based on deficits of the verification time,
where we first solve the LP and get z7;(B) given the set B, and we calculate the deficit 0;; for each
(i, j) pair by the following definition

0i(t) = 235(B) t; — Si; (1), (15)

where .5;;(t) is the total time that item I; has been verified by verifier V;, and ¢; is the total verifi-
cation time for verifier V;. Once the server V; is empty, it will serve the item with the largest 0;;(¢),
and has z; > 0. If there are any modifications on set 3 (elimination happens), we resolve the LP,
and reset all deficits to 0. It is noticeable that the deficits accumulate only when the verifier is busy.

Lemma 1. Under HE Ranking policy and DHE Scheduling policy and for a given set BB, the average
deficit for any pair (i, j) will converge to 0 if no elimination occurs.

0;:(t
1imsup7‘7< ) =0 (16)
t—o0 t
and for any finite t,
E |:92J (t):| < p+ ln(/f“max(B)t) + El(_:umax(B)t)
to1 Hmin (B)t (17)
= c(B,1),

where funin(B), ttmax (B) are the smallest (largest) verification rate for all pairs (i,7) with j € B, p
is the Euler-Mascheroni constant, and Ei(—z) = — [ e—: dt.
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The intuition behind this lemma is that for each verifier, the total deficits keep unchanged when the
verifier is working, while each time a verification is completed, the maximum deficit for this verifier
will generally decrease due to the control policy. Therefore, we are able to relate the deficits to the
verification times, which are exponentially distributed.

5.2 REGRET UPPER BOUND

In the above lemma, we demonstrate the fair departure rate for any finite time without elimination.
However, it is trivial to extend it to the case with elimination. The reason behind it is that after
elimination, the minimum verification rate in the set B will no decrease, and we can still use expo-
nential random variables to find its stochastic upper bound. Therefore, as an immediate result, we
can derive the below upper bound of the regret for a finite time 7" under our algorithm.

Theorem 4. Under the existence of a known upper bound for unfair probability ¢, such that ¢y, < ¢
for all k. Under the HE algorithm with bi-criteria and DHE scheduling policy, the regret of the
system is upper bounded by

) log(T) log(T')
e Amin
feal) =0 (Z M@ — @) don )

(18)

Alog(T)
2 A2(*(T) — o(T, T))) ‘

kgT

Theorem |4 implies that the regret depends on the optimal fair queue departure speed in our system,
which matches the intuition that when the more system can operate efficiently, the less the regret

would be. It is also noticeable that ¢(Z, T') is of order %, which is negligible for some large 7T'.

6 NUMERICAL EXPERIMENTS

In this section, we perform experiments (on a single Nvidia i7-10700 CPU) of single verifier and
multi verifiers to demonstrate the effectiveness of our algorithm in a simulated environment, and we
also include some additional experiments such as the verification rate for each items in multi-verifier
systems and the convergence of the deficits in Appendix [B]

6.1 SINGLE VERIFIER

We begin with experiments in a single-server environment to illustrate the benefits of our bi-criteria
elimination approach. Specifically, we perform two experiments: one utilizing the standard elimi-
nation criteria and another employing the bi-criteria method.

We consider a system with three items (K = 3) characterized by several key parameters. The
quality parameters are set as 5 = [0.9,0.5,0.1], with corresponding selection probabilities @ =
[0.7,0.2,0.1]. We set uniform unfair feedback probabilities ¢ = [0.1,0.1, 0.1] and positive feedback
rates given unfair feedback as ¢(t) = [0.7,0.7,0.7]. The verification rate is fixed at y = 0.4. The
system is simulated over a time horizon of T' = 2000.

Standard Elimination Criteria. Figure depicts the regret over time when using elimination
based solely on confidence bounds constructed from verified samples. As expected from elimina-
tion algorithms, the regret grows linearly within each elimination phase. Initially, all three items
are treated symmetrically, leading to an equal distribution of rankings and a corresponding average
regret slope. Upon eliminating item I3, the system proceeds with the remaining two items, result-
ing in a reduced slope corresponding to the regret rates of the rankings [I1, 2, I3] and [I2, I1, I5].
Finally, after eliminating item I, only I; remains in a singleton set and is ranked last, causing an
increase in the regret slope. The increase of the slope is unavoidable due to the queuing dynamics,
if we rank item /; the top in the third phase, the effective arrival rate for identifying item I» and I3
will be 1 — o1, making them indistinguishable and leads to a long lasting linear regret accumulation.

Bi-Criteria Elimination. In contrast, Figure [1(b)| demonstrates the advantage of the bi-criteria
elimination approach. By leveraging both verified and unverified feedback and adopting a more
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Figure 1: Regret plots for single-server experiments.

conservative estimation strategy, the system achieves faster elimination of suboptimal items. This
results in a lower cumulative regret, particularly noticeable when the verification rate is low and
quality gaps are substantial.

6.2 MULTIPLE VERIFIERS WITH HETEROGENEOUS RATES

We consider a system with three items (KX = 3) and two verifiers (N = 2) with the following
configurations. The quality parameters are set as 5 = [0.9,0.5,0.1], with selection probabilities
a = [0.5,0.3,0.2]. We maintain uniform unfair feedback probabilities ¢ = [0.1,0.1,0.1] and
positive feedback rates given unfair feedback as ¢(t) = [0.7,0.7,0.7]. The verification rates vary
by verifier, with verifier V; having rates 1 = [0.4,0.15,0.1] and verifier Vo having rates pg =
[0.1,0.15,0.4]. The simulation runs for 7" = 1000.

o —— HE Scheduling
= 501 —— DHE Scheduling

0 200 400 600 800 1000
Time

Figure 2: Regret comparison in multi-server experiments: HE scheduling vs. DHE scheduling.

Regret Comparison. Figure [2| compares the regret between the Hierarchical Elimination (HE)
scheduling policy and our proposed Deficit Hierarchical Elimination (DHE) scheduling policy. The
HE scheduling policy, which naively prioritizes items with the fewest verified feedback, exhibits in-
efficiency in this multi-verifier context. In contrast, the DHE scheduling policy effectively leverages
the heterogeneous verification rates, resulting in lower cumulative regret.

7 CONCLUSION

We addressed ranking integrity challenges in online platforms affected by manipulated feedback by
developing the Hierarchical Elimination (HE) algorithm for single-verifier systems and the Deficit
Hierarchical Elimination (DHE) policy for multi-verifier environments. These algorithms effectively
balance verified and unverified feedback, achieving logarithmic regret bounds. Future research di-
rections conquering our limitations by developing algorithms with improved verification rate depen-
dency, achieving item-specific regret rates, designing policies with minimal linear regret for better
finite-time performance, and extending to contexts with unknown verification rates or contextual
settings. Also, the study of G/G/c queue can also increase our applicability.
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A PROOFS

A.1 PROOF OF THEOREMIII

Lemma 2. The conditional probability that the final rank is correct given the number of total veri-
fications, My, is at least 1 — MpT—27

Proof. Define event E to be the event that all true mean values are in the confidence interval for any
time ¢.

7 log(T)

s (1) }, forall ¢ (19)

K A~
E = ({I8;(t) - 8] <

j=1
By Hoeffding’s inequality, we have

5 7 1og(T) 7 log(T)
P i(t)— 0| <y ————1] <2 —2m;(t)—————= 20
<|BJ( ) = Bil < m; (1) < 2exp(—2m;(t) m; (t) ) (20)
1
< 1)
By union bound,
P(E®) < MpT ™7 (22)
Since under HE algorithm, as long as event E happens, the final rank is correct, which finishes the
proof. O

Now, the following analysis will be condition on event E. First, we use H' to denote the original
system that operates under HE algorithm. Next, we construct a coupled system H?2, under which the
operator only verifies the feedback of item I; that has smallest number of verified samples (break tie
arbitrarily), which means the system H? will stay idle even there are other feedback to be verified if
the feedback queue for I; is empty. Also, under H?, the operator only eliminate items if all items in
set B have identical number of verified samples.

Lemma 3. A sufficient condition for system H? to finalize the rank is that the system verifies
ZK [1671og(T)]

J=1 min{A;_1 ;,A;j+1}

Proof. For convenience, we use M; to denote the quantity —— &6_7 llog_(?_lrl} . We know that under
J—L,02=7,7
event I/, when

5 vlog(T) _ 5
B (t) + T, () < Bj-a(t) —

7 log(T')

23
my 1 (1) )

11
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or equivalently,

2 [T < i) - Byt @49

The system H? can finalize the relative rank between I; and I; for all i < j. The equivalence for the

second equation is because under H 2, elimination only occurs when all items in set B have identical
number of verified samples. Furthermore, under event F, a sufficient condition for elimination is

" V;jfj)) Bio1— B; (25)

This is because even under worst case where,

ylog (T)

B iy e
1
Bi—1 = Bj_1(t) — Znig (1;) 27)

it suffices to distinguish both items. Similar arguments holds for pair (I;, I;;1), thus, in order to
finalize the rank for item I, it suffices to have M; samples for all j.

Thus, it remains to show that the system will never verify items with m;(¢) > M;. If m;(t) > M;,
the set I; lies in the HE algorithm is a singleton set, and we will never verify the feedback of I;.

Therefore, the system finalized the rank before it verifies Zj{zl M feedback. 0

By the previous lemma, we only need to upper bound the expected time for system H?2, by our
design, the system only verify samples with least number of verified samples. Thus, the expected
time that system H? verifies desired number of feedback is upper bounded by a M /M /1 queuing
system with arrival rate o; and service rate .

Lemma 4. For a M/M/1 queue, the expected number of departures by time t with arrival rate o
and service rate i, for oy > e

1
E[D(0)] > pt = = o(1) (28)
We require
K
- M.
t2i+@+0(1) (29)

Qg H

Therefore, since My = O(T), if v > 0.5, the regret is upper bounded by

K
log(T)A A
< A
Reg(T) < 00 s s A+ ) G0

A.2 PROOF OF THEOREM[3]

In bi-criteria setting, we need to bound the expected time that either one of the criteria is met, and
by the convexity of minimum function, it suffices to analyze the second criteria in order to derive an
upper bound.

Lemma 5. With high probability, if I; € U, the true mean f3; is in [LC B, (t), UCB;(t)] for any t.

12
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Proof. Define g;(t) to be the average ¢; of all arrivals up to time ¢t. We have

P (ﬁj < LéBj(t)) =P <Bj < (t)n_(;j(t)q; 1 Vj,j_g((t?) 31)

ni(t) 7 1og(T)
=P| L=< -06-5> (32)
(nj © "7
| D 40+ (1- 698 + @)+ (1= )8 — - 5, > | LB
= n;(t) 7495 3 )Pj 395 3 )Pj J m; (1)
<0
(33)
n(t) : ~log(T)
J _ L — b6, =) Sl
<P (nM (650, + (1= 6:)8) > [ 05 (34)
< exp(—2vlog(T)) (35)
=T (36)
and
~ i (t) —n;(t)¢  [log(T)
. _ — , J
P(8; > UCB;(t)) =P (ﬂj < 0 m (8) 37)
ni(t) 7 1og(T)
=P| L=< -0+8> 38
( R N o
n®(t) - T
=B | - @50+ (- 6)8) ) + (1= 0)8) — 6+ ;> || LD
J > J
(39)
n (t) _ ~vlog(T)
J _ 7 Y- = S
< 2exp(—2vlog(T)) (41)
=27 (42)
O
Similarly, by union bound, we have
P (@- e [LOB;(t),UCB; (1)), for any t) >1-O(T'"2) 43)
Thus, we will condition on the above event for the following analysis. First, in order to finalized the
rank, by similar arguments, it suffices to have n;(t) > N;, where
[167 log(T)]
N; = 44
T min{d1, 05,41} @
Finally, for items in W, the expected marginal time contribution to the system is bounded by
E [inf{n; (1) = N; Um;(t) > My} (45)
<min{Efinf{n;(t) > N;}], Elinf (m;(1) > M;}]} (46)
plug in the previous results, we finishes the proof of the following regret upper bound
Reg(T) < O(Z A min{ log(T) log(T) Z Alog(T) A )

min{Ag_1k, Ag_1,5}2p’ min{éi_ljk, 5137]@4.1}@[( min{Ay 15, A1k} o

kew k¢

(47)
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A.3 PROOF OF THEOREM[2]

For any arrival and service sequence with fixed customer choice, we can define the embedded sample
space by:

Q= ([K]*H! x {0, 1})NrtMr, (48)

where M and N are the total number of verifications and that of arrivals. The sample space is
defined condition on an event sequence, where there are two types of events, arrival and verification
completion. For arrival event, we use the triplet (Ry,, Ct,,Y:,) to denote the rank at time ¢;, the
customer choice at time ¢;, and the realized feedback for this choice. Note that Y3, is the superficial
feedback of this arrival. For verification completion event, we use another triplet (Ry,, I;,, Xt,)
to denote the rank at time ¢;, the item whose feedback just being verified, and the value of true
feedback.

Next, we define the history:
th = ((Rtovctoa}/to)v Ty (Rtn7c’tn/ltn7§/tn/th))7 (49)

where the ”/” means “or” accounting for the uncertainty of event type at time ¢,. For a ranking
policy 7" and scheduling policy 7°, we have:

Ry, =7 (He, o), I, = 7 (He, ) (50)

Next, we define the probability measure P, of the interconnection of policy and a fixed event se-
quence of the original instance v. Formally, for w € €2, we have:

K
P,(w) =[] Y Po, (¥i)1{Ci = c(Rs,)}
1EN Cp, =1 51)

K
H Z ]P)Iti (th)]‘{lﬂ = Wfi(Hti—l)}7

PEM I, =1

where P¢, is Bernoulli distribution with mean ¢¢, qc,. (i) + (1 —¢c, )Bc,. . and Py, is Bernoulli
distribution with mean f,,. The set M and N represent the index set for verification completion
event and arrival event respectively.

We construct alternative instance v, where we enlarge the quality parameter for item /; to
,6’]1» =fBj_1+¢€ fore >0 (52)

One key setting is that there are some adversary that can arbitrarily set ¢;(¢) for any time ¢ as long
as ¢;(t) € [0,1]. Thus, in general, the larger the ¢, is, the less information contained in the arrival
event. Specifically, we will discuss case by case:

Case 1: consider when ¢; > %, the adversary can always set
'y
q;(t) — gj(t) = S(Ajo1y+e) (53)
b;
Consequently,
KL(P,|[P,1) = E,[m;(T)| K L(Ber(B;)||Ber(Bj-1 + ¢€)), (54)
where
m;(T) =B, | Y 1{I;, = Ij}] (55)
iEM

‘We define event

A = {Atleast on half of the events, the policy rank I, before I;_;} (56)

14
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Further, since the inter-event time is stochastically lower bounded by a exponential random variable

with mean ﬁ, as a result,
Mt + Nt
Reg(T) > —LT"TA. | P, (A 57
69()_2(M+1) j—1,5 (4) (57
Mr + Nt
Reg(T)! > —————¢P,1 (A 58
o) > G B (4) )
Thus,
My + Np
Reg(T) + Reg(T)* > ﬁmm{e,A]’_Lj} [P, (A) + P, (A°)] (59)
Mp+ Np . _
Z Jor ) e Ai-ugte KLEAIRA) (60)
MT + NT 3 — m 4 er 4 er §— €
= mmln{e’A]‘—Lj}e EV[ J(T)]KL(B (BJ)HB (51 1+ )) (61)
Equivalently,
E,[m;(T)] 1 log(Mr + Nt) | log(min{e,A;_y1;}) log(Reg(T) + Reg(T)")
log(T) = KL(Ber(B;)||Ber(Bj-1+¢)) log(T) 4(p + 1) log(T) log(T)
(62)
Definition 1. For a consistent policy m, we require
Reg(T) + Reg(T)' < C¢T¢, forany € > 0 (63)
Thus,
log(Reg(T) + Reg(T)* log(T) + log(C
lim sup og(Reg(T) + Reg(T)) _ lim sup & og(T) +log(C%) 64)
T—oo log(T") T—oo log(T')
take limit & — O:
1
Jim sup 28es(D) + Reg(T)") _ 65)
T— o0 10g(T)
Consequently,
lim inf w > liminf L log(Mr + Nr) (66)
T—oo  log(T) T—oo KL(Ber(B;)||Ber(B8j—1 +¢€)) log(T)
> lim nf ! log(Nr) (67)

T—oco KL(Ber(B;)||Ber(8j—1+¢)) log(T)

We also know that N is the total number of arrivals by time 7', and by law of large numbers, we
know

o By fmy (T)] 1
lim inf J > (68)
T—oo  log(T) K L(Ber(B;)||Ber(Bj—1 +¢))
Finally, we take the limit for e — 0,
e Bu[my (T))] 1
lim inf J > (69)
T—oo  log(T) = KL(Ber(f;)||Ber(8j-1))
As a result, the expected time for system to fulfill the above condition is
log(T

KL(Ber(B;)||Ber(Bj-1))

Case 2: consider when ¢; < AA_j —-t-, the adversary can no longer set ¢; () and qjl- (t) by the above
J—1,7 -

equation, which leads to the information gain for the arrival event. However, the adversary can still
set

(4;(t), 4 (1)) = argmin{ K L(Ber(;¢;(t) + (1 — ¢;)8;)[|(Ber(¢;4; () + (1 — ¢;)(Bj-1 + €)))}
(1)
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For convenience, we denote
djjr = qj(ti)r}qf}(t){KL(Ber(ﬂﬁij(t) + (1= ¢5)B8)I|(Ber(¢jqj(t) + (1 — ¢;)(Bj-1 +€)))}
(72)
Thus,
KL(Py|[Py1) = By [m;(T) K L(Ber (5)||Ber(Bj-1 + €)) + B [n; (T)]d;, ;1 (73)

By similar arguments, we have

B, my(T) + (D) 1
lim inf =+ J > 74)
P T e max(dy, o KLBer (B[ Ber(B 0
And there for the expected time the system should spend is
log(T)
Q (75)
G+ Dmax{d,, 1. KL(Ber(3,)[Ber(,))}
Next, we construct instance v2, where we set
B3 =Bj41—¢, fore>0 (76)
Follow similar arguments, we have:
Case1: ¢; > A?ji jjrl , the expected time system should spend before the condition is met is
log(T
( e(l) )
KL(Ber(f;)||Ber(Bj+1))
Case 2: ¢; < A?j i 17, the expected time system should spend before the condition is met is
log(T)
0 (78)
G D max(d; =, KL(Ber(,)[[Ber (B, 1))}
Define the sets:
A s Ao
Ty ={l;: ¢y > 25— g, > =0} 79
1=tk ¢J_Aj,j+1+1¢J_Aj—1,j+1} e
N A g
Ty ={l;:¢; < —2IH o ~ ZI=0J 80
2=l 9 Ajjr1+1 & Ajfl.frl} ®
Ajiyg Ajq
Dy ={I:¢; > —2IFL 4 o =9=1J 81
3 { J qu - Aj7j+1 +1 ¢J Aj—Lj + 1} @1
A A1 s
Dy={l:¢; > 2 ¢ < 7L 4 82
=15 ¢J_Aj,j+1+1 & Ajfl,ﬂrl} ®
For I; € T'y, the expected time system spend is
log(T
Q(— oell) ) (83)
pnin{K L(Ber(3,)[|Ber (B,1)), K L(Ber (8))| [ Ber(B;:1))}
For I; € I'y, the expected time system spend is
(1 + 1) min{max{d; j2, KL(Ber(B;)||Ber(Bj+1))}, max{d; j11, KL(Ber(B;)||Ber(8j-1))}}
(84)
For I; € I's, the expected time system spend is
log(T log(T

(1 + 1) max{d; ji, KL(Ber(B;)||Ber(8;-1))} " KL(Ber(B;)||Ber(Bj+1))
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For I; € T'y, the expected time system spend is

log(T) log(T')
(4 + 1) max{d; =, KL(Ber (3,) [ Ber (3,21} KL(Ber(3,)|[Ber (B 1))

And, we define:

Q(max{

1 (86)

1 _ 1
) = (R L(Ber(3,)| Ber(By—)). KL(Ber (3,1 Ber(B,m))} ®7)
9 - 1
O W) = T D min{max(d, o KL Ber G Ber By sl 1 KL Ber G Ber By
C3 (1) = max{ 1 1 )
3 1) = A (g1, KL(Ber(B)) | Ber (3, 1))} KL(Ber(B,)|[Ber(B11)) o
C4( ) = max{ 1 1 }
s (1) = e ey (e, KL(Ber(B))|Ber (1))}’ KL(Ber(8))||Ber (3,1)) o

Lastly, before the conditions for all items are met, the system will incur a polynomial regret with
rate at least A,,,;,,, therefore, we have

Reg(T) -
liminf 75" 2 QAmin YD H{Ik € THCEW), o1

T—oo log( ==

A.4 PROOF OF THEOREM 4

We first prove the lemmalT]

Proof. For any veriﬁer Vi, we know that if no elimination occurs, the minimum deficit is upper
1

the total number of verifications completed by verifier V;. This is because the total deficits for any
verifier V; is always zero, and thus the maximum deficit within the verifier is at most the absolute
value of the minimum deficit. While the minimum deficit are driven by the maximum service time.
Thus,

0;:(t
limsup P (J() > e) < limsupP (max{Zl, YIRS e) (92)
t—o00 t t—o00 ’

<limsupl— (1 — e_”m”'d)Mf=" 93)

t—o0
<limsupl—(1-— ef“’m’"d)o(t) (94)

t—o00
=0 (95)

holds for any € > 0, which finishes the proof of asymptotic results. For finite time analysis, we only
need to find the upper bound of E [gjf(t)} , we derive the results as follows:

E [W] P(M, = m) /OOOP (92@ > e) de (96)

t
P(M; =m) / P(max{Z1,...,Zm} > €)de 97)
0

IN

M2 E )¢

IN

1

3
Il

M

P(M; = m) / 1— (1 — e Hmintymge (98)
1 0

3
Il

We aim to evaluate the integral:

17



Under review as a conference paper at ICLR 2026

oo
— . m
1:/ [ (1 e met)™] de
0
Let us perform a substitution to non-dimensionalize the integral:

T dx
T = Umnte = €e=—— de=
Mmint Mmint

Substituting these into the integral I:

1:/000[1_(1_6—36)*”]‘“— ! /000[1_(1_6—36)"16;:5

,Ufmint N Nmint

Let us denote the dimensionless integral as J:

J:/ 1 (1— )] do
0
Thus,

_J
/J'mint

We can expand the term (1 — e~®)"" using the binomial theorem:

m

(1= =30 (1) et

k=0

Therefore, the integrand becomes:

- (1—e )" =1- f: (Z) (et =30 (z)(_l)me—m

Substituting the expanded form into J:

J= /jé (’}’:) (—1)FHe Ry

Assuming uniform convergence (which holds here due to absolute convergence for each x), we can
interchange the summation and integration:

_ (M k1 [0k
J—Z(k)(—l) /o e "dx
k=1
The integral of the exponential function is straightforward:

i 1 1
—kx —kx

e dx = |——e ==

/o [ k L k

Thus, J simplifies to:

£

k=1
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The summation:

> (1)

k=1

is known to equal the m-th harmonic number, denoted H,,, where:

| =

k=1

This can be verified for small values of m:

e Form = 1:
e Form = 2:

e Form = 3:

Thus, in general:

J=H,
Substituting back into the expression for I:
I= I = Hn
,Ufmint Nmint

Therefore, the integral evaluates to the m-th harmonic number divided by fimint:

|- ey e < L
0

where the harmonic number H,,, is defined as:

1

H,, = —

m k

k=1
As aresult,
0(t) Nt H

E | < E P(M; = = 99
|: t :|_m_1 ( ' m)ﬂmint ©9)

< i eiumxt(,umaxt)m H,,

e o (100)
M min

We aim to evaluate the sum:
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5 Z e~ Hmaxt umdx) . H,,

int
m=1 Mmm

where H,, is the m-th harmonic number defined by:

=p+¢Y(m+1)

w\)—‘

with p representing the Euler-Mascheroni constant and v the digamma function
Factor out the constants from the summation:

e Mmaxt

> maxt m
g (Hmaxt)

. |
Hmint oo m:

Let x = pimaxt, then:

The series to evaluate is:

Using the definition H,, = p + 1)(m + 1), we have:

m

S =) Y )

m! m!
m=1

Express ¢ (m + 1) using its integral representation:

L —ym
1/)(m+1)=—p—|—/ dt
0

Substituting into the sum:

Simplifying:

Recognize the exponential series:

20
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> T = et

—

Thus:

x  m 1 z(1-t) _ 1
x €
— 1) -1 —dt

Make a substitution s = 1 — ¢t (ds = —dt):

1
zs _ 1
:_p(ef—1)+/ < ds
0

S

The integral is related to the exponential integral function Ei(—x):

1
s _ 1
/ ¢ ds = p+Inz + Ei(—z)
0

5
Therefore:
Z x—' ple® = 1)+ (p+Inz + Ei(—x)) e® — pe® =" (p+ Inz + Ei(—x))
m!
m=1

Substituting back into the expression for S:

- 1 Ei(—

S:

Recalling that x = pmaxt, we substitute:

p + In(pimaxt) + Bi(—pimaxt)
Mmint

S =

Thus, the sum evaluates to:

,Ufmax )m ) H,, _ p+ ln(lffmaxt) +Ei(_ﬂmaxt)
Hmint Mmin

where Euler-Mascheroni Constant (p) is Approximately 0.5772, it is defined as the limiting dif-
ference between the harmonic series and the natural logarithm, and exponential Integral Function
(Ei(—x)) defined for x > 0 is by:

This finishes the proof O

Now, for the regret upper bound, by |1} we know that the idle time for the system is O(1). Also, we
know that the sum of total deficits for each B(t) are stochastically bounded by the maximum of M
exponential random variables, whose mean are at most iy, Finally, using the same arguments for
system H?2, the upper bound holds.
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B ADDITIONAL EXPERIMENTS

Verifier Departure Rates. Figures () and ff(b)] illustrate the departure rates for verifiers V; and
V5, respectively. Verifier V1 predominantly verifies item /7 due to its higher verification rate for this
item, with a smaller proportion allocated to verifying I> and none for I5. Conversely, verifier V;
focuses on verifying item I3, followed by I, and does not verify I; given its low verification rate
for this item.

Convergence of Deficits. To validate the convergence properties of our scheduling policy, we con-
duct additional experiments. Figure[3(a)] shows that the deficits converge rapidly, stabilizing around
t =~ 70 for a two-item, two-verifier system. Figure demonstrates that deficits continue to con-
verge efficiently even in larger systems with fifty items and ten verifiers.

Robustness Experiments. We performed additional experiments to show the robustness of our
algorithm (adding noise for actual rates) if those assumptions are violated (with mean results re-
ported).

It is noticeable that the misspecification of arrival rate affects little of the regret since we did not
use it as an input. However, the misspecification of verification rate will affect the regret since we
get suboptimal solution of equation (12). But the misspecification of distribution will not affect too
much of the regret even for uniform one.

Table 1: Robustness Analysis: Extra Regret Accumulated Under Different Misspecifications
Misspec. of Misspec. of Misspec. of Misspec. of Misspec. of arrival Misspec. of arrival
Extra Regret Accumulated arrival rate arrival rate arrival rate arrival rate process (Truncated process (Uniform,
(x0%) (#20%) (£50%) (£100%) G ian, same mean) same mean)
Misspecification of
verification rate (+0%) 0.00% 0.15% -0.66% 0.89% 0.13% 1.02%
Misspecification of
verification rate (+20%) 15.32% 16.37% 14.95% 15.03% N/A N/A
Misspecification of )
verification rate (+50%) 25.32% 23.38% 24.57% 29.01% N/A N/A
Misspecification of verification
process (Truncated Gaussian, 1.89% N/A N/A N/A 2.03% 6.20%
same mean)
Misspecification of verification
process (Uniform, 11.96% N/A N/A N/A 15.11% 28.92%
same mean)
1.00 — 8. 11(t)t 0.00
¥ o015 Z_lz:t;/t =
— T 21(tt —_
x = = —0.25
% 050 — 0_22(tit =
[en) [a=]
2 025 = —0.50
o =
Y4 N
(7] o] v _,
a 0.00 a 075
—0.25 -1.00
o] 20 40 60 80 100 o] 200 400 600 800 1000
Time Time
(a) Convergence on a 2-Item, 2-Verifier Instance (b) Convergence on a 50-Item, 10-Verifier Instance

Figure 3: Convergence of Deficits

C ALGORITHMS

D REAL WORLD EXAMPLE

Meituan Platform. We provide an example from Meituan, a major Chinese food delivery and local
services platform, to illustrate real-world human verification systems. Platforms like Meituan have
implemented large-scale human verification to handle questionable feedback, which aligns with our
theoretical framework.

Meituan’s verification system addresses issues such as businesses disputing negative reviews and
competitors alleging artificial review manipulation. Their ”Xiaomei Review Panel” involves com-
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Figure 4: Multi-Server Experiments

Algorithm 1 Hierarchical Elimination
Input: sets .A49(¢) for ¢ € [K], current time ¢, termination time T, verified sample size my(¢),

total sample size ny(t)
for k =1to K do

LCB(t) = Br(t) — | L5
UCBy(t) = Br(t) + |/ St
end for

for g =1to K do
for (i,7) € A do
if UCB;(t) < LCB;(t)
A9(t7) = A1(1) \ {1,
AQ-H (t-‘r) _Aq-i- (t
end if
end for
end for
HERank({A9(t*)} X))

~—
/‘—/—’

munity members who vote on review disputes, creating a natural queueing system where verification
requests exceed processing capacity.

The platform maintains neutrality by using independent reviewers selected based on activity level,
registration duration, and demographic factors. Reviewers must maintain objectivity and follow
strict confidentiality rules. The review process involves evidence submission, task assignment,
anonymous voting, and majority-rule decisions.

This real-world implementation demonstrates the practical relevance of our theoretical model, where
the relationship between regret bounds and verification efficiency p becomes crucial for system
performance.
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Algorithm 2 HERank

Il
=

Input: sets A?(t) for g € [K], B
forg=1to K do
if [.A?| > 1 then
B=BU.A?
end if
end for
for (p, q) in [K]? do
if | AP| < 1and |A%| < 1 then
if p < ¢ then
Rank AP before A4
else
Rank A? before AP
end if
end if
end for
for I, in B do
Rank in ascending order according to ny(t), use smaller n(t) — my(t) for tie breaking
end for
Rank B before other items
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