

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONLINE RANKING WITH UNFAIR FEEDBACK AND HUMAN VERIFICATION: HIERARCHICAL ELIMINATION AND REGRET BOUNDS

Anonymous authors

Paper under double-blind review

ABSTRACT

Online platforms rely heavily on user feedback for ranking systems, such as restaurant ratings and e-commerce listings. However, these systems face challenges from unfair feedback, including merchant-induced and malicious feedback. Thus, platforms have adopted human verification to increase the reliability of the rankings. It can certainly identify genuine feedback, but introduces high latency into real-time updates, leading to non-static queuing dynamics and creating challenges for online learning. We model this as a continuous-time online learning problem, establish the lower bound on regret, and propose two algorithms: Hierarchical Elimination (HE) and Deficit Hierarchical Elimination (DHE), dealing with the case of single and multiple verifiers, respectively. We further prove upper regret bounds for both algorithms and demonstrate their effectiveness through numerical experiments.

1 INTRODUCTION

The pervasive influence of online ranking systems has made them crucial components of modern digital platforms, serving as essential tools for content discovery and decision-making across various domains including e-commerce, content sharing, and service platforms (Golrezaei et al., 2023; Negahban et al., 2017). These systems typically rely heavily on user feedback to determine rankings, operating under the assumption that such feedback accurately reflects item quality. However, this assumption has been increasingly challenged by the prevalence of unfair feedback - reviews or ratings that deliberately misrepresent item quality due to various motivations including competitive manipulation, personal bias, or financial incentives.

Recent developments in major online platforms have introduced verification mechanisms to address this challenge. For instance, some platforms such as Meituan have implemented jury-like review panels that verify the authenticity and fairness of user feedback (see Appendix C). These panels examine suspicious reviews through various means including on-site verification, photographic evidence, and cross-referencing with transaction records. While such mechanisms show promise in maintaining ranking integrity, they introduce new theoretical challenges that existing frameworks are ill-equipped to address, such as how verification rate and policy impact the online ranking accuracy, or if it is possible to extract information from unverified feedback in overloaded systems.

The primary challenge lies in the inherent tension between verification thoroughness and system responsiveness. Verification mechanisms, while crucial for maintaining ranking accuracy, introduce delays in feedback processing. These delays create complex queuing dynamics that interact with the learning process in non-trivial ways. Moreover, the system must operate continuously, making real-time ranking decisions while simultaneously learning from both verified and unverified feedback. This creates a complex online learning problem where the learning process is intimately coupled with the underlying queuing dynamics.

Our main contribution is the development of a comprehensive framework for dynamic ranking systems with unfair feedback and verification mechanisms. We propose the Hierarchical Elimination (HE) algorithm that achieves logarithmic regret bounds by effectively utilizing both verified and unverified feedback, and extend it to the Deficit Hierarchical Elimination (DHE) scheduling policy for

systems with multiple heterogeneous verifiers. Through rigorous theoretical analysis, we establish bounds on system regret, demonstrating the effectiveness of our proposed algorithms.

The rest of the paper is organized as follows. Section 2 reviews related work across multiple domains. Section 3 presents our model and formally defines the optimization objective. Section 4 introduces our main algorithms and provides theoretical guarantees. Section 5 extends the analysis to multiple heterogeneous verifiers. Section 6 presents experimental results validating our theoretical findings, and Section 7 concludes with discussions of future directions.

2 RELATED WORK

The field of bandit algorithms has developed a rich theoretical foundation, built upon seminal algorithms such as UCB (Auer, 2002; Lai & Robbins, 1985), LinUCB (Abbasi-Yadkori et al., 2011)), and SE (Successive Elimination) (Even-Dar et al., 2006). This framework has been extended to accommodate complex user behavior through customer choice models, as exemplified by the bandit-MNL approach (Agrawal et al., 2018) and choice bandits (Agarwal et al., 2020). While these advances are significant, they primarily address subset selection problems, leaving the challenges of item ranking relatively unexplored.

The specific problem of online learning to rank has evolved along a parallel trajectory, with notable contributions from (Zoghi et al., 2017; Li et al., 2019; Lattimore et al., 2018), establishing fundamental frameworks, and subsequent works incorporating click models such as PBM (Lagréé et al., 2016) and cascade models (Kveton et al., 2015). However, these approaches predominantly optimize for click-through rates rather than comprehensive user utility metrics. A particularly relevant recent advancement (Zuo et al., 2023) addresses the critical issue of adversarial feedback attack, though their reliance on stylized attack models and stationarity assumptions potentially limits real-world applicability. The work (Golrezaei et al., 2022) focuses on traditional learning-to-rank aiming for maximizing click-through rates, while our work is concerned with maximizing the consumer’s true experience—a setting more aligned with multi-armed bandits. In addition, their robust algorithm deals with fake clicks under the assumption that the operator cannot verify the authenticity of the feedback. In contrast, our work is motivated by real-world scenarios (e.g., Meituan) and investigates how a verification system can be designed to integrate verification strategies with online learning.

The introduction of verification mechanisms, while crucial for feedback validation, introduces an inherent delay component to the learning process. This intersects with delayed feedback literature that have been extensively studied (Joulani et al., 2013; Dudik et al., 2011; Gael et al., 2020; György & Joulani, 2020; Lancewicki et al., 2021). The comprehensive study (Lancewicki et al., 2021) yields important insights of the superiority of successive elimination over UCB in delayed feedback scenarios. The concept of “soft delays” in (Esposito et al., 2023), where intermediate observations during delay periods containing valuable information provides a paradigm that naturally extends to our setting where even potentially unfair feedback carries information. However, the delay between intermediate observation and final feedback is not predetermined; specifically, it is governed by the verification policy, which necessitates consideration of queuing dynamics.

However, the studies of online learning in queuing systems primarily focus on system stability rather than user utility. Moreover, static system dynamics is commonly assumed. For example, the work (Huang et al., 2023) examines the impact of learning on system steady-state behavior, and the work (Krishnasamy et al., 2016) provides queue-length regret bounds, while this work (Krishnasamy et al., 2019) addresses the challenges of service rate learning. Whereas ranking systems present unique challenges due to position-dependent arrival rates, which fundamentally alters the system dynamics and demands novel theoretical frameworks and solutions.

3 MODEL AND OBJECTIVE

This section presents our model framework in two parts. First, we define the three key components of our dynamic ranking system: the ranking system, customer behavior patterns, and the verification process. Subsequently, we formalize the optimization objective and characterize the system dynamics that govern the learning process.

108 3.1 PROBLEM FORMULATION
109

110 The ranking system with unfair feedback and human verification comprises three key components:

111 **Ranking System.** We consider a system with a total of K items, denoted by $\mathcal{I} = \{I_1, I_2, \dots, I_K\}$,
112 which are to be ranked from 1 to K . Each item has an inherent quality parameter $\beta =$
113 $\{\beta_1, \beta_2, \dots, \beta_K\}$. At any time t , the operator can dynamically change the ranking of any item.
114 We denote $\beta(t)$ as the vector of quality parameters ordered according to the current ranking at time
115 t . It is a vector of dimension K and each permutation of elements in this vector represents a pos-
116 sible ranking. Without loss of generality, we assume that the items are initially ordered such that
117 $\beta_1 > \beta_2 > \dots > \beta_K$. For simplicity, we display all items, though our algorithm can easily extend
118 with the same order of regret when only a subset is displayed.119 **Customer Behavior.** Customer arrivals follow a Poisson process with a rate normalized to 1. Usu-
120 ally, customers do not have prior knowledge about classes of highly similar products (e.g., standard-
121 ized products like coffee rankings, electronic items like USB cables, or homogeneous services such
122 as weather apps or flashlight apps from an app store). Hence, they rely on the platform’s intelligent
123 ranking system to make their choices. We assume that upon arrival, a customer selects an item from
124 the ranked list purely based on its current position. Specifically, the probability that a customer
125 selects the item ranked at the i -th position is α_i , and we assume $\alpha_1 > \alpha_2 > \dots > \alpha_K$.126 After selecting item I_k , the customer provides immediate binary feedback on the selected item.
127 Specifically, there is a probability β_k of receiving good feedback and $1 - \beta_k$ of receiving bad feed-
128 back. However, with probability ϕ_k , the feedback from the customer is manipulated, and we refer
129 to such feedback as unfair feedback. We further assume that the distribution of an unfair feedback
130 is Bernoulli with unknown mean $q_k(t)$ for item k , indicating that the manipulation behavior is non-
131 stationary and lacks analytical properties. Note that the dependency on t creates flexibility for the
132 “attack” behavior and especially useful when constructing lower bounds.133 **Human Verification.** Since it is indistinguishable between unfair and fair feedback without verifica-
134 tion, human verification is introduced to verify if the feedback is fair and its true value. Specifically,
135 all feedback from item I_k is sent to its corresponding queue FCFS (first-come first-serve) Q_k awaiting
136 verification. While there is one verifier that can verify feedback from any queue with identical
137 verification rate μ . In other words, the verification time is exponentially distributed with mean $\frac{1}{\mu}$.
138 After each verification, the operator of the system will know the true value of that feedback. It
139 is worth mentioning that naively verify all feedback according to its arrival time will lead to high
140 inefficiency, and thus, the scheduling policy should be carefully designed.141 3.2 POLICIES AND OBJECTIVE
142143 In the dynamic ranking system, we will consider an online learning problem which learns the true
144 parameters β to minimize the total decision error made through a finite continuous time horizon T .
145146 **Ranking Policy** We define ranking policy π_r to be a function that map histories to $[0, 1]^K$. Equiv-
147 alently, we use $\beta^{\pi_r}(t)$ to denote the quality parameters after permutation based on the ranked list.
148 For example, when $K = 2$ and $\beta = \{0.5, 0.4\}$, and item I_1 is ranked on the second place while item
149 I_2 is ranked at the first place at time t , we have $\beta^{\pi_r}(t) = [0.4, 0.5]$, which is a vector of dimension
150 K .151 **Scheduling Policy** We define ranking policy π_s that maps the current state of the system to the index
152 set $[K]$. The policy decides which feedback to be verified at time t , denoted by $S^{\pi_s}(t)$, while within
153 each type, we follows first come first served to avoid selection bias.154 Given any pair of the policies $\pi = (\pi_r, \pi_s)$, we aimed to minimize the expected regret. By the
155 assumption of decreasing α_i , the optimal decision is always ranked the items according to their β_k s
156 in descending order. Therefore, we define the regret by time T as:

157
$$Reg(T) := \mathbb{E}^{\pi} \left[\int_0^T (\beta - \beta^{\pi_r}(t))^T \alpha dt \right], \quad (1)$$

158

159 where the expectation is taken with respect to the dynamic of the customer arrival and choice, which
160 is dependent on the policy. The continuous form of regret has barely no difference compared to
161 discrete ones in expectation since the arrival rate is normalized to be one.

162 **System Dynamics** Before presenting the algorithm design, we need to first characterize the system
 163 dynamic for any policy π and understand the complex interdependency between system state and
 164 the arrival process.

165 We introduce the following notations: For item I_k , let $Q_k^\pi(t)$ denote the number of feedback waiting
 166 to be verified, $A_k^\pi(t)$ be the cumulative arrivals with $\lambda_k^\pi(t)$ be the corresponding arrival rate, $S_k^\pi(t)$
 167 be the number of feedback under verification, and $D_k^\pi(t)$ be the number of cumulative departures.
 168 The system follows:

$$Q_k^\pi(t) = A_k^\pi(t) - D_k^\pi(t) - S_k^\pi(t), \quad (2)$$

$$\lambda_k^\pi(t) = f(\text{rank}(I_k)), \quad (3)$$

172 where $f(\cdot)$ is the function that map the current rank to the corresponding arrival rate, which essen-
 173 tially depends on the system state. Such level of complexity implies that it is impossible to solve the
 174 queuing system analytically. For convenience, we use the tuple

$$(\mathcal{A}(t), m(t), n(t), m^p(t), n^p(t), LCB(t), UCB(t))$$

175 to denote the system state, representing the order sets, the numbers of verified feedback, the numbers
 176 of total feedback, the numbers of verified positive feedback, the numbers of total positive feedback,
 177 and the confident intervals, of all items. We will provide more detailed explanations of them in the
 178 following sections.

4 ALGORITHMS AND REGRET BOUNDS

183 We present our algorithmic solutions and theoretical analysis in four parts. First, we introduce the
 184 Hierarchical Elimination (HE) algorithm for ranking and scheduling. Second, we establish logarith-
 185 mic regret bounds for this algorithm. Third, we demonstrate how unverified feedback can be effec-
 186 tively utilized when bounded unfairness is known. Finally, we derive fundamental lower bounds on
 187 achievable regret.

4.1 HE ALGORITHM

190 We describe our algorithm in two components: the HE ranking policy that maintains and updates
 191 hierarchical sets of items, and the HE scheduling policy that prioritizes items for verification. In
 192 our algorithm, we need statistical estimations on the quality parameters. Specifically, we denote
 193 $\hat{\beta}_k(t) = m_k^p(t)/m_k(t)$ to be the empirical mean (fraction of positive feedback in verified feedback)
 194 of the quality parameters of item I_k at time t . We further construct a confidence interval centered at
 195 its empirical mean using a radius of $\sqrt{\frac{\gamma \log(T)}{m_k(t)}}$, and the interval is denoted by $[LCB_k(t), UCB_k(t)]$
 196 of item I_k at time t . The full algorithmic version is in Appendix ??.

197 **HE Ranking Policy** It starts with K order sets, \mathcal{A}^1 to \mathcal{A}^K . Initially, we have $\mathcal{A}^1 = \{I_1, \dots, I_K\}$
 198 and $\mathcal{A}^q = \emptyset$ for $q > 1$. The algorithm is triggered only by the change of the system state such as
 199 arrivals or departures, and the time t^+ denotes the updated time. When triggered, once there exist
 200 $UCB_i < LCB_j$ for some $i, j \in \mathcal{A}^q$, we will send item I_i to \mathcal{A}^{q+1} , where such event is called an
 201 elimination. We will use the set \mathcal{B} to denote the union of non-singleton order sets, while \mathcal{B}^c is those
 202 items in singleton sets. We will always rank \mathcal{B} before \mathcal{B}^c . Within \mathcal{B} , we rank in ascending order of
 203 the total arrivals for each item, while within \mathcal{B}^c , we rank according to their corresponding order set
 204 index in ascending order.

205 For example, when $\mathcal{A}^1 = \{I_1\}$, $\mathcal{A}^2 = \{I_2, I_3\}$, $\mathcal{A}^3 = \{I_4\}$, $\mathcal{A}^4 = \emptyset$ and $n(t) = [10, 9, 8, 7]$, the
 206 ranking is $\{I_3, I_2, I_1, I_4\}$. Since both I_1 and I_4 are in singleton sets, and I_1 has smaller index (the
 207 index of \mathcal{A}^1 is 1), they ranked the third and the fourth. Also, since I_3 has smaller total feedback
 208 quantity, it ranked the top.

209 **HE Scheduling Policy** Priority is given to the item in \mathcal{B} and contains the smallest number of verified
 210 samples, breaking tie arbitrarily.

4.2 REGRET ANALYSIS

211 Recall the definition of the regret, we need to bound the expected time where the rank is finalized,
 212 i.e., all sets all singleton, while prove that the probability that the final rank is incorrect is negligible.

216 **Theorem 1.** *Under the HE algorithm, the regret of the system*

$$218 \quad 219 \quad 220 \quad \text{Reg}(T) \leq O\left(\sum_{k=1}^K \frac{\log(T) \Delta}{\min\{\Delta_{k-1,k}, \Delta_{k,k+1}\}^2 \mu} + \frac{\Delta}{\alpha_1}\right), \quad (4)$$

221 where $\Delta_{k-1,k} := \beta_{k-1} - \beta_k$ is the gap between two consecutive items, and $\Delta = \sup_{\beta'} (\beta - \beta')^T \alpha$
 222 is the largest possible regret rate. For handling the edge case, we define $\Delta_{K,K+1} = \Delta_{0,1} = 1$.

224 The regret upper bound is composed of two parts: The first part arises due to the quality gap between
 225 items, which in a ranking system is quantified as the minimum gap between item k and its adjacent
 226 item. The second part is due to the delay introduced by the queueing system, which is inversely
 227 proportional to the verification efficiency (μ) and includes an initial queue delay of $\frac{1}{\alpha_1}$.

228 The proof of the theorem can be decomposed into the following steps: First, we claim that with high
 229 probability, the mean estimator for each item will lie on its confidence interval. Second, condition
 230 on this event, we bound the expected numbers of total samples for each arm before his rank is
 231 finalized. Next, due to the interdependency of the arrival rate and system state, it is intractable to
 232 find solve the departure processes for our system. Thus, we construct an less efficient system and
 233 show that the expected time before finalizing the rank is bounded by a logarithmic function with
 234 respect to T for this system. Lastly, we show the expected time for finalizing the rank of the system
 235 operated using HE algorithm is less than the less efficient system.

236 4.3 UTILIZING THE UNVERIFIED FEEDBACK

238 The previous algorithms utilize only verified feedback for ranking and scheduling decisions. This
 239 conservative approach stems from a fundamental statistical limitation: while we can construct mean
 240 estimators using both verified and unverified feedback, the confidence bounds for these estimators
 241 still depend critically on $m_k(t)$, the number of verified samples. This dependency arises because the
 242 uncertainty in the unfair feedback probability ϕ_k cannot be reduced without verification. Despite in-
 243 corporating additional data points, current concentration inequalities do not yield faster convergence
 244 rates for confidence intervals constructed using unverified feedback.

245 However, when we have the information of an uniform upper bound on the unfair probability ϕ_k ,
 246 denoted by $\bar{\phi}$, we are able to construct three confident intervals for each item. For each item I_k , we
 247 define two additional quantities:

$$249 \quad 250 \quad 251 \quad L\tilde{C}B_k(t) = \hat{\beta}_k(t) - \sqrt{\frac{\gamma \log(T)}{n_k(t)}}, \quad U\tilde{C}B_k(t) = \hat{\beta}_k(t) + \sqrt{\frac{\gamma \log(T)}{n_k(t)}}.$$

252 where the mean estimators $\hat{\beta}_k(t)$ and $\tilde{\beta}_k(t)$ are defined as:

$$253 \quad 254 \quad 255 \quad \hat{\beta}_k(t) = \frac{n_k^p(t) + n_k(t)\bar{\phi}}{n_k(t)}, \quad \tilde{\beta}_k(t) = \frac{n_k^p(t) - n_k(t)\bar{\phi}}{n_k(t)}.$$

256 The $n_k^p(t)$ is the total number of positive feedback among all feedback no matter fair or unfair.

257 We refer $\hat{\beta}_k$ to be the super-optimistic estimation on item I_k , while $\tilde{\beta}_k$ be the super-pessimistic
 258 estimation. As their name indicates, the super-optimistic estimation is an upper bound for the UCB
 259 constructed if we assume all feedback are verified, while super-pessimistic estimation serves as the
 260 lower bound.

261 Given the above quantities, we modify our elimination rule by adopting a bi-criteria rule where item
 262 I_i is eliminated by I_j when $UCB_i < LCB_j$ or $U\tilde{C}B_i < L\tilde{C}B_j$. By such changes, the expected
 263 elimination time will be reduced for those items with their mean much smaller than the others.
 264 Specifically, we define the identifiable set

$$266 \quad 267 \quad 268 \quad \Psi := \{I_k : (2\bar{\phi} + \phi_k + (1 - \phi_k)\beta_k < (1 - \phi_{k-1})\beta_{k-1}) \\ \cup (2\bar{\phi} + \phi_{k+1} + (1 - \phi_{k+1})\beta_{k+1} < (1 - \phi_k)\beta_k)\}, \quad (5)$$

269 where henceforth, we define $\phi_0 = \phi_{k+1} = -\infty$ to handle edge cases. And for convenience, we
 270 further define $\delta_k = \min\{\delta_{k-1,k}, \delta_{k,k+1}\}$, and $\Delta_k = \min\{\Delta_{k-1,k}, \Delta_{k,k+1}\}$.

270 **Theorem 2.** *Under the existence of a known upper bound for unfair probability $\bar{\phi}$, such that $\phi_k < \bar{\phi}$ for all k . Under the HE algorithm with bi-criteria, the regret of the system*

$$273 \quad \text{Reg}(T) \leq O \left(\sum_{k \in \Psi} \Delta \min \left\{ \frac{\log(T)}{\Delta_k^2 \mu}, \frac{\log(T)}{\delta_k^2 \alpha_K} \right\} \right. \\ 274 \quad \left. + \sum_{k \notin \Psi} \frac{\Delta \log(T)}{\Delta_k^2 \mu} + \frac{\Delta}{\alpha_1} \right), \quad (6)$$

275 where $\delta_{k-1,k} := (1 - \phi_{k-1})\beta_{k-1} - (2\bar{\phi} + \phi_k + (1 - \phi_k)\beta_k)$.

276 Theorem 2 states that for items with larger gaps, the expected time for finalizing their rank is shorter. 277 The proof is similar to the previous theorem, while in the last step, instead of constructing an single 278 inefficient system, we decompose the original system into two less efficient systems and show that 279 if both systems operate simultaneously, the expected time for finalizing the rank can upper bounded, 280 and therefore, the expected time for the original system is also upper bounded.

281 4.4 LOWER BOUND

282 In this subsection, we will establish the lower bound by Theorem 3. The main challenges for de- 283 riving the lower bound are the followings. First, the complex interdependency between policies and 284 stochastic queuing dynamics prevent the direct analysis. Second, it is challenging to quantify the 285 information carried by unverified data.

286 **Theorem 3.** *Under any consistent algorithm satisfying Definition 1, the asymptotic regret of the 287 system is lower bounded by*

$$288 \quad \liminf_{T \rightarrow \infty} \frac{\text{Reg}(T)}{\log(T)} \geq \Omega \left(\Delta_{\min} \sum_{\xi=1}^4 \sum_{k=1}^K \mathbf{1}\{I_k \in \Gamma_\xi\} C_k^\xi(\mu) \right), \quad (7)$$

289 where

$$290 \quad \Gamma_1 = \{I_j : \phi_j \geq \frac{\Delta_{j,j+1}}{\Delta_{j,j+1+1}}, \phi_j \geq \frac{\Delta_{j-1,j}}{\Delta_{j-1,j+1}}\}, \quad (8)$$

$$291 \quad \Gamma_2 = \{I_j : \phi_j < \frac{\Delta_{j,j+1}}{\Delta_{j,j+1+1}}, \phi_j < \frac{\Delta_{j-1,j}}{\Delta_{j-1,j+1}}\}, \quad (9)$$

$$292 \quad \Gamma_3 = \{I_j : \phi_j \geq \frac{\Delta_{j,j+1}}{\Delta_{j,j+1+1}}, \phi_j < \frac{\Delta_{j-1,j}}{\Delta_{j-1,j+1}}\}, \quad (10)$$

$$293 \quad \Gamma_4 = \{I_j : \phi_j < \frac{\Delta_{j,j+1}}{\Delta_{j,j+1+1}}, \phi_j \geq \frac{\Delta_{j-1,j}}{\Delta_{j-1,j+1}}\}. \quad (11)$$

294 and analytical form of $C_k^\xi(\mu)$ is presented in the appendix.

295 The contributions of each item in the regret lower bound are grouped based on their likelihood 296 of receiving unfair feedback and the quality gaps between them and their adjacent items. Each 297 group has different information absorption capacity from unverified feedback. Specifically, for items 298 that with small unfair probability and larger gaps between its adjacent items, the information of 299 unverified feedback is potentially larger, vice versa. However, there is a minor gap between the 300 lower bound and the upper bound in system parameters such as α_i due to the way we construct the 301 coupling systems.

315 5 MULTIPLE VERIFIERS WITH HETEROGENEOUS RATES

316 In this section, we consider a more general setting where we have N verifiers, where each verifier 317 is denoted by V_i , and for verifier V_i , the verification rate for verifying item I_j is μ_{ij} . Given that 318 heterogeneousness of verifiers, if we naively adopt the previous algorithm, the regret will be related 319 to the minimum verification rate among all pairs, leading to inefficiency.

320 Furthermore, the assumption of preemption will be relaxed in this section. The reason behind it 321 is that when there is only a single verifier, preemption or not will not affect the time for finalizing 322 the rank. However, in multi-verifiers case, if we have μ_{ij} extremely small for some i and j , then

324 verifying item I_j using verifier V_i will almost leads to a permanent deduction of verifier number by
 325 1, for which it requires us to smartly idle the server when necessary.
 326

327 **Example 5.1.** Consider the following instance, where $K = 4$, $N = 2$ and the system state are given
 328 by $\mathcal{A}^1 = \{I_1, I_2\}$, $\mathcal{A}^2 = \{I_3, I_4\}$, $\mathcal{A}^3 = \mathcal{A}^4 = \emptyset$ and $m(t) = [10, 8, 12, 16]$, $n(t) = [12, 9, 17, 20]$.
 329 The verification rate $\mu_1 = [0.01, 1, 1, 1]$, $\mu_2 = [1, 1, 0.01, 0.01]$. If both verifiers are idle now,
 330 verifier V_2 should verify the feedback of item I_2 given that $m_2(t)$ is the smallest, and V_2 is suitable
 331 for verifying I_2 . However, for verifier V_1 , there are several possible actions sounds reasonable.
 332 First, it can verify the feedback of item I_1 since there are no more feedback of item I_2 waiting in the
 333 queue, and $m_1(t)$ is the second smallest one. However, the verifier V_1 is not suitable for I_1 , it may
 334 be a better decision to verify item I_3 or keep it idle to wait the next arrival of I_2 . Furthermore, we
 335 not only need to decide the scheduling, but decide their ranking which is directly dependent on the
 336 arrival rates.
 337

338 5.1 DEFICITS-BASED SCHEDULING POLICY

339 We aim to develop a scheduling policy that best aligns with the idea of elimination, and we define
 340 asymptotic optimality by maximizing the asymptotic minimum departure rate for feedback in the
 341 set \mathcal{B} . To formalize the scheduling policy, we introduce the decision variable $x_{ij}(t)$ representing
 342 whether verifier i verifies feedback from item I_j .
 343

344 **Assumption 1.** We assume the system is overloaded such that $\sum_{i=1}^N \mu_{ij} < \frac{\alpha_1}{K}$ for any j .
 345

346 The assumption 1 states that the system is overloaded, where the total verification rate for any type
 347 of feedback is smaller than the top-item arrival rate. An immediate result from this assumption under
 348 our ranking policy is that there are always feedback waiting to be verified for any item, and therefore,
 349 we define the asymptotic max-min departure rate by the following relaxed linear programming:
 350

$$351 \max_{x_{ij}} \min_j \sum_{i=1}^N x_{ij} \mu_{ij} \quad (12)$$

$$352 \text{s.t. } \sum_{j \in \mathcal{B}} x_{ij} \leq 1, \quad \forall i, \quad (13)$$

$$353 \quad x_{ij} \geq 0, \quad \forall i, j. \quad (14)$$

354 In the above LP, we allow partial allocation for each feedback, and by the overloaded assumption, it
 355 serves as an upper bound for asymptotic max-min departure rate. The solution of the LP is denoted
 356 by $x_{ij}^*(\mathcal{B})$ and the optimal value by $z^*(\mathcal{B})$, given the union of non-singleton sets, \mathcal{B} .
 357

358 **DHE Scheduling Policy** Inspired by Deficit Round-Robin (Shreedhar & Varghese, 1996) algorithm
 359 in fair queuing systems, we proposed an scheduling policy based on deficits of the verification time,
 360 where we first solve the LP and get $x_{ij}^*(\mathcal{B})$ given the set \mathcal{B} , and we calculate the deficit θ_{ij} for each
 361 (i, j) pair by the following definition
 362

$$\theta_{ij}(t) = x_{ij}^*(\mathcal{B}) t_j - S_{ij}(t), \quad (15)$$

363 where $S_{ij}(t)$ is the total time that item I_j has been verified by verifier V_i , and t_j is the total verifi-
 364 cation time for verifier V_j . Once the server V_i is empty, it will serve the item with the largest $\theta_{ij}(t)$,
 365 and has $x_{ij}^* > 0$. If there are any modifications on set \mathcal{B} (elimination happens), we resolve the LP,
 366 and reset all deficits to 0. It is noticeable that the deficits accumulate only when the verifier is busy.
 367

368 **Lemma 1.** Under HE Ranking policy and DHE Scheduling policy and for a given set \mathcal{B} , the average
 369 deficit for any pair (i, j) will converge to 0 if no elimination occurs.
 370

$$\limsup_{t \rightarrow \infty} \frac{\theta_{ij}(t)}{t} = 0 \quad (16)$$

371 and for any finite t ,
 372

$$373 \mathbb{E} \left[\frac{\theta_{ij}(t)}{t} \right] \leq \frac{\rho + \ln(\mu_{\max}(\mathcal{B})t) + \text{Ei}(-\mu_{\max}(\mathcal{B})t)}{\mu_{\min}(\mathcal{B})t} \\ 374 \quad := c(\mathcal{B}, t), \quad (17)$$

375 where $\mu_{\min}(\mathcal{B})$, $\mu_{\max}(\mathcal{B})$ are the smallest (largest) verification rate for all pairs (i, j) with $j \in \mathcal{B}$, ρ
 376 is the Euler–Mascheroni constant, and $\text{Ei}(-x) = -\int_x^\infty \frac{e^{-t}}{t} dt$.
 377

378 The intuition behind this lemma is that for each verifier, the total deficits keep unchanged when the
 379 verifier is working, while each time a verification is completed, the maximum deficit for this verifier
 380 will generally decrease due to the control policy. Therefore, we are able to relate the deficits to the
 381 verification times, which are exponentially distributed.
 382

383 **5.2 REGRET UPPER BOUND**
 384

385 In the above lemma, we demonstrate the fair departure rate for any finite time without elimination.
 386 However, it is trivial to extend it to the case with elimination. The reason behind it is that after
 387 elimination, the minimum verification rate in the set \mathcal{B} will no decrease, and we can still use expo-
 388 nential random variables to find its stochastic upper bound. Therefore, as an immediate result, we
 389 can derive the below upper bound of the regret for a finite time T under our algorithm.

390 **Theorem 4.** *Under the existence of a known upper bound for unfair probability $\bar{\phi}$, such that $\phi_k < \bar{\phi}$
 391 for all k . Under the HE algorithm with bi-criteria and DHE scheduling policy, the regret of the
 392 system is upper bounded by*

$$393 \quad \text{Reg}(T) \leq O \left(\sum_{k \in \Psi} \Delta \min \left\{ \frac{\log(T)}{\Delta_k^2(z^*(\mathcal{I}) - c(\mathcal{I}, T))}, \frac{\log(T)}{\delta_k^2 \alpha_K} \right\} \right. \\ 394 \quad \left. + \sum_{k \notin \Psi} \frac{\Delta \log(T)}{\Delta_k^2(z^*(\mathcal{I}) - c(\mathcal{I}, T))} \right). \quad (18)$$

$$395$$

$$396$$

$$397$$

$$398$$

$$399$$

400 Theorem 4 implies that the regret depends on the optimal fair queue departure speed in our system,
 401 which matches the intuition that when the more system can operate efficiently, the less the regret
 402 would be. It is also noticeable that $c(\mathcal{I}, T)$ is of order $\frac{\log(T)}{T}$, which is negligible for some large T .
 403

404 **6 NUMERICAL EXPERIMENTS**
 405

406 In this section, we perform experiments (on a single Nvidia i7-10700 CPU) of single verifier and
 407 multi verifiers to demonstrate the effectiveness of our algorithm in a simulated environment, and we
 408 also include some additional experiments such as the verification rate for each items in multi-verifier
 409 systems and the convergence of the deficits in Appendix B.
 410

411 **6.1 SINGLE VERIFIER**
 412

413 We begin with experiments in a single-server environment to illustrate the benefits of our bi-criteria
 414 elimination approach. Specifically, we perform two experiments: one utilizing the standard elimi-
 415 nation criteria and another employing the bi-criteria method.

416 We consider a system with three items ($K = 3$) characterized by several key parameters. The
 417 quality parameters are set as $\beta = [0.9, 0.5, 0.1]$, with corresponding selection probabilities $\alpha =$
 418 $[0.7, 0.2, 0.1]$. We set uniform unfair feedback probabilities $\phi = [0.1, 0.1, 0.1]$ and positive feedback
 419 rates given unfair feedback as $q(t) = [0.7, 0.7, 0.7]$. The verification rate is fixed at $\mu = 0.4$. The
 420 system is simulated over a time horizon of $T = 2000$.

421 **Standard Elimination Criteria.** Figure 1(a) depicts the regret over time when using elimination
 422 based solely on confidence bounds constructed from verified samples. As expected from elimina-
 423 tion algorithms, the regret grows linearly within each elimination phase. Initially, all three items
 424 are treated symmetrically, leading to an equal distribution of rankings and a corresponding average
 425 regret slope. Upon eliminating item I_3 , the system proceeds with the remaining two items, result-
 426 ing in a reduced slope corresponding to the regret rates of the rankings $[I_1, I_2, I_3]$ and $[I_2, I_1, I_3]$.
 427 Finally, after eliminating item I_2 , only I_1 remains in a singleton set and is ranked last, causing an
 428 increase in the regret slope. The increase of the slope is unavoidable due to the queuing dynamics,
 429 if we rank item I_1 the top in the third phase, the effective arrival rate for identifying item I_2 and I_3
 430 will be $1 - \alpha_1$, making them indistinguishable and leads to a long lasting linear regret accumula-
 431 tion.

Bi-Criteria Elimination. In contrast, Figure 1(b) demonstrates the advantage of the bi-criteria
 432 elimination approach. By leveraging both verified and unverified feedback and adopting a more

Figure 1: Regret plots for single-server experiments.

conservative estimation strategy, the system achieves faster elimination of suboptimal items. This results in a lower cumulative regret, particularly noticeable when the verification rate is low and quality gaps are substantial.

6.2 MULTIPLE VERIFIERS WITH HETEROGENEOUS RATES

We consider a system with three items ($K = 3$) and two verifiers ($N = 2$) with the following configurations. The quality parameters are set as $\beta = [0.9, 0.5, 0.1]$, with selection probabilities $\alpha = [0.5, 0.3, 0.2]$. We maintain uniform unfair feedback probabilities $\phi = [0.1, 0.1, 0.1]$ and positive feedback rates given unfair feedback as $q(t) = [0.7, 0.7, 0.7]$. The verification rates vary by verifier, with verifier V_1 having rates $\mu_1 = [0.4, 0.15, 0.1]$ and verifier V_2 having rates $\mu_2 = [0.1, 0.15, 0.4]$. The simulation runs for $T = 1000$.

Figure 2: Regret comparison in multi-server experiments: HE scheduling vs. DHE scheduling.

Regret Comparison. Figure 2 compares the regret between the Hierarchical Elimination (HE) scheduling policy and our proposed Deficit Hierarchical Elimination (DHE) scheduling policy. The HE scheduling policy, which naively prioritizes items with the fewest verified feedback, exhibits inefficiency in this multi-verifier context. In contrast, the DHE scheduling policy effectively leverages the heterogeneous verification rates, resulting in lower cumulative regret.

7 CONCLUSION

We addressed ranking integrity challenges in online platforms affected by manipulated feedback by developing the Hierarchical Elimination (HE) algorithm for single-verifier systems and the Deficit Hierarchical Elimination (DHE) policy for multi-verifier environments. These algorithms effectively balance verified and unverified feedback, achieving logarithmic regret bounds. Future research directions conquering our limitations by developing algorithms with improved verification rate dependency, achieving item-specific regret rates, designing policies with minimal linear regret for better finite-time performance, and extending to contexts with unknown verification rates or contextual settings. Also, the study of G/G/c queue can also increase our applicability.

486 REFERENCES
487

488 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
489 bandits. *Advances in Neural Information Processing Systems*, 24, 2011.

490 Arpit Agarwal, Nicholas Johnson, and Shivani Agarwal. Choice bandits. *Advances in neural infor-*
491 *mation processing systems*, 33:18399–18410, 2020.

492

493 Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi. Mnl-bandit: A dynamic
494 learning approach to assortment selection, 2018.

495

496 Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine*
497 *Learning Research*, 3(Nov):397–422, 2002.

498

499 Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, and
500 Tong Zhang. Efficient optimal learning for contextual bandits. In *Proceedings of the Twenty-*
501 *Seventh Conference on Uncertainty in Artificial Intelligence*, pp. 169–178, 2011.

502

503 Emmanuel Esposito, Saeed Masoudian, Hao Qiu, Dirk van der Hoeven, Nicolò Cesa-Bianchi, and
504 Yevgeny Seldin. Delayed bandits: When do intermediate observations help?, 2023.

505

506 Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping conditions
507 for the multi-armed bandit and reinforcement learning problems. *Journal of Machine Learning*
508 *Research*, 7(Jun):1079–1105, 2006.

509

510 Mael Gael, Claire Vernade, Alexandra Carpentier, and Michal Valko. Stochastic bandits with arm-
511 dependent delays. In *International Conference on Machine Learning*, pp. 3348–3356. PMLR,
512 2020.

513

514 N. Golrezaei, V. Manshadi, J. Schneider, and S. Sekar. Learning product rankings robust to fake
515 users. *Operations Research*, 71:1171–1196, 2023. doi: 10.1287/opre.2022.2380.

516

517 Negin Golrezaei, Vahideh Manshadi, Jon Schneider, and Shreyas Sekar. Learning product rankings
518 robust to fake users. *Operations Research*, 71(4):1171–1196, July-August 2022. doi: 10.1287/
519 opre.2022.2380.

520

521 András György and Pooria Joulani. Adapting to delays and data in adversarial multi-armed bandits.
522 *arXiv preprint arXiv:2010.06022*, 2020.

523

524 Jiatai Huang, Leana Golubchik, and Longbo Huang. Queue scheduling with adversarial bandit
525 learning, 2023.

526

527 Pooria Joulani, András György, and Csaba Szepesvári. Online learning under delayed feedback. In
528 *International Conference on Machine Learning*, pp. 1453–1461, 2013.

529

530 Subhashini Krishnasamy, Rajat Sen, Ramesh Johari, and Sanjay Shakkottai. Regret of queueing
531 bandits. In *Advances in Neural Information Processing Systems*, volume 29, 2016.

532

533 Subhashini Krishnasamy, Rajat Sen, Ramesh Johari, and Sanjay Shakkottai. Learning unknown
534 service rates in queues: A multi-armed bandit approach, 2019.

535

536 Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. Cascading bandits: Learning
537 to rank in the cascade model. In *International Conference on Machine Learning*, pp. 767–776,
538 2015.

539

540 Paul Lagrée, Claire Vernade, and Olivier Cappé. Multiple-play bandits in the position-based model.
541 *Advances in Neural Information Processing Systems*, 29, 2016.

542

543 Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. *Advances*
544 *in Applied Mathematics*, 6(1):4–22, 1985. doi: 10.1016/0196-8858(85)90002-8.

545

546 Tal Lancewicki, Shahar Segal, Tomer Koren, and Yishay Mansour. Stochastic multi-armed bandits
547 with unrestricted delay distributions, 2021.

540 Tor Lattimore, Branislav Kveton, Shuai Li, and Csaba Szepesvari. Toprank: A practical algorithm
 541 for online stochastic ranking. *Advances in Neural Information Processing Systems*, 31, 2018.
 542

543 Shuai Li, Tor Lattimore, and Csaba Szepesvári. Online learning to rank with features. In *International
 544 Conference on Machine Learning*, pp. 3856–3865, 2019.

545 S. Negahban, S. Oh, and D. Shah. Rank centrality: ranking from pairwise comparisons. *Operations
 546 Research*, 65:266–287, 2017. doi: 10.1287/opre.2016.1534.

547 M. Shreedhar and George Varghese. Efficient fair queueing using deficit round robin. *IEEE/ACM
 548 Transactions on Networking*, 4(3):375–385, 1996. doi: 10.1109/90.502236.

550 Masrour Zoghi, Tomas Tunys, Mohammad Ghavamzadeh, Branislav Kveton, Csaba Szepesvari, and
 551 Zheng Wen. Online learning to rank in stochastic click models. In *International Conference on
 552 Machine Learning*, pp. 4199–4208, 2017.

553 Jinhang Zuo, Zhiyao Zhang, Zhiyong Wang, Shuai Li, Mohammad Hajiesmaili, and Adam Wier-
 554 man. Adversarial attacks on online learning to rank with click feedback, 2023.

555

556 A PROOFS

557 A.1 PROOF OF THEOREM 1

558 **Lemma 2.** *The conditional probability that the final rank is correct given the number of total veri-
 559 fications, M_T , is at least $1 - M_T T^{-2\gamma}$*

560 *Proof.* Define event E to be the event that all true mean values are in the confidence interval for any
 561 time t .

$$562 E := \bigcap_{j=1}^K \{ |\hat{\beta}_j(t) - \beta_j| \leq \sqrt{\frac{\gamma \log(T)}{m_j(t)}} \}, \text{ for all } t \quad (19)$$

563 By Hoeffding's inequality, we have

$$564 \mathbb{P} \left(|\hat{\beta}_j(t) - \beta_j| \leq \sqrt{\frac{\gamma \log(T)}{m_j(t)}} \right) \leq 2 \exp \left(-2m_j(t) \frac{\gamma \log(T)}{m_j(t)} \right) \quad (20)$$

$$565 \leq \frac{1}{T^{2\gamma}} \quad (21)$$

566 By union bound,

$$567 \mathbb{P}(E^c) \leq M_T T^{-2\gamma} \quad (22)$$

568 Since under HE algorithm, as long as event E happens, the final rank is correct, which finishes the
 569 proof. \square

570 Now, the following analysis will be condition on event E . First, we use H^1 to denote the original
 571 system that operates under HE algorithm. Next, we construct a coupled system H^2 , under which the
 572 operator only verifies the feedback of item I_j that has smallest number of verified samples (break tie
 573 arbitrarily), which means the system H^2 will stay idle even there are other feedback to be verified if
 574 the feedback queue for I_j is empty. Also, under H^2 , the operator only eliminate items if all items in
 575 set B have identical number of verified samples.

576 **Lemma 3.** *A sufficient condition for system H^2 to finalize the rank is that the system verifies
 577 $\sum_{j=1}^K \frac{\lceil 16\gamma \log(T) \rceil}{\min\{\Delta_{j-1,j}, \Delta_{j,j+1}\}}$*

578 *Proof.* For convenience, we use M_j to denote the quantity $\frac{\lceil 16\gamma \log(T) \rceil}{\min\{\Delta_{j-1,j}, \Delta_{j,j+1}\}}$. We know that under
 579 event E , when

$$580 \hat{\beta}_j(t) + \sqrt{\frac{\gamma \log(T)}{m_j(t)}} \leq \hat{\beta}_{j-1}(t) - \sqrt{\frac{\gamma \log(T)}{m_{j-1}(t)}} \quad (23)$$

594 or equivalently,

$$596 \quad 2\sqrt{\frac{\gamma \log(T)}{m_j(t)}} \leq \hat{\beta}_{j-1}(t) - \hat{\beta}_j(t) \quad (24)$$

599 The system H^2 can finalize the relative rank between I_j and I_i for all $i < j$. The equivalence for the
600 second equation is because under H^2 , elimination only occurs when all items in set B have identical
601 number of verified samples. Furthermore, under event E , a sufficient condition for elimination is

$$602 \quad 4\sqrt{\frac{\gamma \log(T)}{m_j(t)}} \leq \beta_{j-1} - \beta_j \quad (25)$$

605 This is because even under worst case where,

$$607 \quad \beta_j = \hat{\beta}_j(t) + \sqrt{\frac{\gamma \log(T)}{m_j(t)}} \quad (26)$$

$$610 \quad \beta_{j-1} = \hat{\beta}_{j-1}(t) - \sqrt{\frac{\gamma \log(T)}{m_{j-1}(t)}} \quad (27)$$

613 it suffices to distinguish both items. Similar arguments holds for pair (I_j, I_{j+1}) , thus, in order to
614 finalize the rank for item I_j , it suffices to have M_j samples for all j .

615 Thus, it remains to show that the system will never verify items with $m_j(t) \geq M_j$. If $m_j(t) \geq M_j$,
616 the set I_j lies in the HE algorithm is a singleton set, and we will never verify the feedback of I_j .
617 Therefore, the system finalized the rank before it verifies $\sum_{j=1}^K M_j$ feedback. \square

619 By the previous lemma, we only need to upper bound the expected time for system H^2 , by our
620 design, the system only verify samples with least number of verified samples. Thus, the expected
621 time that system H^2 verifies desired number of feedback is upper bounded by a $M/M/1$ queuing
622 system with arrival rate α_1 and service rate μ .

623 **Lemma 4** (Pathwise comparison of elimination completion times of H^1 and H^2). *Fix an arbitrary
624 realization ω of all primitive randomness in the system (arrival times, choices, feedback values, and
625 service times).¹ Let H^1 be the original system that runs the HE policy, and let H^2 be the auxiliary
626 system defined as follows:*

- 628 • H^2 observes exactly the same verified feedback samples as H^1 on the path ω . In particular,
629 for each item k and time t we have the same number of verified samples $m_k(t)$ and the same
630 empirical mean $\hat{\beta}_k(t)$ as in H^1 .
- 632 • H^2 therefore uses the same confidence bounds

$$633 \quad LCB_k(t) = \hat{\beta}_k(t) - \sqrt{\frac{\gamma \log T}{m_k(t)}}, \quad UCB_k(t) = \hat{\beta}_k(t) + \sqrt{\frac{\gamma \log T}{m_k(t)}}.$$

- 636 • The only difference between H^1 and H^2 is the timing of the eliminations: H^1 applies the
637 hierarchical elimination rule as soon as it is satisfied, whereas H^2 is more conservative
638 and is allowed to update the order sets only at certain “synchronization” times (e.g., when
639 all items in $B(t)$ have the same number of verified samples). Thus H^2 may delay an elimination
640 that H^1 would already perform, but it never uses more information (samples) than
641 H^1 at any time.

642 Let $\tau^{(1)}(\omega)$ and $\tau^{(2)}(\omega)$ denote the (random) times at which all eliminations are completed (i.e., all
643 order sets A^q are singletons) in H^1 and H^2 , respectively, on the sample path ω . Then

$$645 \quad \tau^{(1)}(\omega) \leq \tau^{(2)}(\omega) \quad \text{for every realization } \omega.$$

647 ¹That is, ω fixes the entire sequence of feedback observations that would be obtained whenever a particular
648 feedback is selected for verification.

648 *Proof.* Fix an arbitrary realization ω of the primitive randomness throughout the proof.
 649

650 For each item k , the empirical mean $\hat{\beta}_k(t)$ is computed from the $m_k(t)$ verified samples observed
 651 up to time t :

$$652 \quad 653 \quad \hat{\beta}_k(t) = \frac{m_k^p(t)}{m_k(t)},$$

654 and the confidence bounds in both H^1 and H^2 are
 655

$$656 \quad 657 \quad LCB_k(t) = \hat{\beta}_k(t) - \sqrt{\frac{\gamma \log T}{m_k(t)}}, \quad UCB_k(t) = \hat{\beta}_k(t) + \sqrt{\frac{\gamma \log T}{m_k(t)}}.$$

659 Along the fixed path ω , the count $m_k(t)$ is nondecreasing in t . Hence $UCB_k(t)$ is nonincreasing
 660 and $LCB_k(t)$ is nondecreasing in t .

661 Therefore, for any two times $t_1 \leq t_2$ and any items i, j ,

$$663 \quad UCB_i(t_2) \leq UCB_i(t_1), \quad LCB_j(t_2) \geq LCB_j(t_1). \quad (28)$$

664 In particular, if at some time t_1 we have $UCB_i(t_1) < LCB_j(t_1)$, then for all $t_2 \geq t_1$ we also have
 665 $UCB_i(t_2) < LCB_j(t_2)$.

667 Fix an item $k \in \{1, \dots, K\}$ which is eventually assigned a final position by the hierarchical elimi-
 668 nation rule (this happens for all items on the path ω).

669 *Definition of $t_k^*(\omega)$.* Consider the process H^1 on the path ω . For item k , define

$$671 \quad 672 \quad t_k^*(\omega) := \inf \left\{ t \geq 0 : \exists j, q \text{ such that } I_k, I_j \in \mathcal{A}^q(t), UCB_k(t) < LCB_j(t) \right\}.$$

673 Thus $t_k^*(\omega)$ is the *earliest* time at which there exists some item j in the same order set \mathcal{A}^q as k such
 674 that $UCB_k < LCB_j$, i.e., the earliest time at which k becomes *eliminable* according to the HE rule.

675 By construction of H^1 , the algorithm eliminates I_k as soon as the elimination condition is satisfied.
 676 Therefore, on the path ω we have

$$677 \quad 678 \quad \tau_k^{(1)}(\omega) \leq t_k^*(\omega), \quad (29)$$

679 where $\tau_k^{(1)}(\omega)$ is the (random) time at which I_k is moved out of \mathcal{A}^q into a lower level (or becomes
 680 a singleton) in H^1 .

682 *Behavior of H^2 .* In H^2 we use the *same* empirical means and confidence bounds as in H^1 , because
 683 H^2 is defined on top of the same verification trajectory: for each t and each item k ,

$$684 \quad 685 \quad \hat{\beta}_k^{(2)}(t) = \hat{\beta}_k^{(1)}(t), \quad LCB_k^{(2)}(t) = LCB_k^{(1)}(t), \quad UCB_k^{(2)}(t) = UCB_k^{(1)}(t).$$

686 The only difference is that H^2 is allowed to update the order sets (which include moving I_k to lower
 687 levels) only at a subsequence of times $\{t_r\}_{r \geq 1}$ (the “synchronization times”) which are nondecreas-
 688 ing and satisfy $t_r \rightarrow \infty$ as $r \rightarrow \infty$. For concreteness, one may think of t_r as the first time at which
 689 every item in $\mathcal{B}(t)$ has received at least r verified samples, but the argument below only uses the fact
 690 that

$$691 \quad t_1 \leq t_2 \leq \dots, \quad t_r \uparrow \infty.$$

692 Let $\tau_k^{(2)}(\omega)$ be the time at which I_k is eliminated in H^2 . By definition of the algorithm H^2 , there
 693 must exist an index r_k such that

$$694 \quad 695 \quad \tau_k^{(2)}(\omega) = t_{r_k},$$

696 and at time t_{r_k} we have

$$697 \quad \exists j, q \text{ with } I_k, I_j \in \mathcal{A}^q(t_{r_k}) \quad \text{and} \quad UCB_k(t_{r_k}) < LCB_j(t_{r_k}),$$

698 otherwise H^2 would not eliminate I_k at time t_{r_k} .

699 Since $t_k^*(\omega)$ is the *earliest* time when such a pair (k, j) exists, we must have

$$700 \quad 701 \quad t_k^*(\omega) \leq t_{r_k} = \tau_k^{(2)}(\omega). \quad (30)$$

Indeed, the condition “there exists j with $UCB_k < LCB_j$ in the same order set as k ” is already satisfied at time $t_k^*(\omega)$ by definition of t_k^* , and by the monotonicity in equation 28 it continues to hold for all $t \geq t_k^*(\omega)$, including t_{r_k} .

Combining equation 29 and equation 30, we obtain

$$\tau_k^{(1)}(\omega) \leq t_k^*(\omega) \leq \tau_k^{(2)}(\omega), \quad \forall k \in \{1, \dots, K\}.$$

The elimination completion time in system H^i ($i = 1, 2$) on the path ω is the first time at which every item has been assigned its final level, i.e.,

$$\tau^{(i)}(\omega) = \max_{k=1, \dots, K} \tau_k^{(i)}(\omega).$$

Using the item-wise inequality derived above, we conclude

$$\tau^{(1)}(\omega) = \max_k \tau_k^{(1)}(\omega) \leq \max_k \tau_k^{(2)}(\omega) = \tau^{(2)}(\omega).$$

Since ω was arbitrary, this holds for every realization of the primitive randomness, which completes the proof. \square

Lemma 5. *For a $M/M/1$ queue, the expected number of departures by time t with arrival rate α_1 and service rate μ , for $\alpha_1 > \mu$:*

$$\mathbb{E}[D(t)] \geq \mu t - \frac{1}{\alpha_1} - o(1) \quad (31)$$

We require

$$t \geq \frac{1}{\alpha_1} + \frac{\sum_{j=1}^K M_j}{\mu} + o(1) \quad (32)$$

Therefore, since $M_T = O(T)$, if $\gamma > 0.5$, the regret is upper bounded by

$$Reg(T) \leq O\left(\sum_{k=1}^K \frac{\log(T)\Delta}{\min\{\Delta_{k-1,k}, \Delta_{k-1,k}\}^2 \mu} + \frac{\Delta}{\alpha_1}\right) \quad (33)$$

A.2 PROOF OF THEOREM 3

In bi-criteria setting, we need to bound the expected time that either one of the criteria is met, and by the convexity of minimum function, it suffices to analyze the second criteria in order to derive an upper bound.

Lemma 6. *With high probability, if $I_j \in \Psi$, the true mean β_j is in $[L\tilde{C}B_j(t), U\bar{C}B_j(t)]$ for any t .*

Proof. Define $\bar{q}_j(t)$ to be the average q_j of all arrivals up to time t . We have

$$\mathbb{P}\left(\beta_j < L\tilde{C}B_j(t)\right) = \mathbb{P}\left(\beta_j < \frac{n_j^p(t) - n_j(t)\bar{\phi}}{n_j(t)} - \sqrt{\frac{\gamma \log(T)}{m_j(t)}}\right) \quad (34)$$

$$= \mathbb{P}\left(\frac{n_j^p(t)}{n_j(t)} - \bar{\phi} - \beta_j > \sqrt{\frac{\gamma \log(T)}{m_j(t)}}\right) \quad (35)$$

$$= \mathbb{P}\left(\frac{n_j^p(t)}{n_j(t)} - (\phi_j \bar{q}_j(t) + (1 - \phi_j)\beta_j) + \underbrace{(\phi_j \bar{q}_j(t) + (1 - \phi_j)\beta_j) - \bar{\phi} - \beta_j}_{\leq 0} > \sqrt{\frac{\gamma \log(T)}{m_j(t)}}\right) \quad (36)$$

$$\leq \mathbb{P}\left(\frac{n_j^p(t)}{n_j(t)} - (\phi_j \bar{q}_j(t) + (1 - \phi_j)\beta_j) > \sqrt{\frac{\gamma \log(T)}{m_j(t)}}\right) \quad (37)$$

$$\leq \exp(-2\gamma \log(T)) \quad (38)$$

$$= T^{-2\gamma} \quad (39)$$

756 and

$$758 \quad \mathbb{P}(\beta_j > U\bar{C}B_j(t)) = \mathbb{P}\left(\beta_j < \frac{n_j^p(t) - n_j(t)\bar{\phi}}{n_j(t)} + \sqrt{\frac{\gamma \log(T)}{m_j(t)}}\right) \quad (40)$$

$$761 \quad = \mathbb{P}\left(-\frac{n_j^p(t)}{n_j(t)} - \bar{\phi} + \beta_j > \sqrt{\frac{\gamma \log(T)}{m_j(t)}}\right) \quad (41)$$

$$764 \quad = \mathbb{P}\left(-\frac{n_j^p(t)}{n_j(t)} + (\phi_j\bar{q}_j(t) + (1 - \phi_j)\beta_j) - \underbrace{(\phi_j\bar{q}_j(t) + (1 - \phi_j)\beta_j) - \bar{\phi} + \beta_j}_{\leq 0} > \sqrt{\frac{\gamma \log(T)}{m_j(t)}}\right) \quad (42)$$

$$768 \quad \leq \mathbb{P}\left(\left|\frac{n_j^p(t)}{n_j(t)} - (\phi_j\bar{q}_j(t) + (1 - \phi_j)\beta_j)\right| > \sqrt{\frac{\gamma \log(T)}{m_j(t)}}\right) \quad (43)$$

$$771 \quad \leq 2 \exp(-2\gamma \log(T)) \quad (44)$$

$$772 \quad = 2T^{-2\gamma} \quad (45)$$

773 \square

776 Similarly, by union bound, we have

$$777 \quad \mathbb{P}(\beta_j \in [L\tilde{C}B_j(t), U\bar{C}B_j(t)], \text{ for any } t) \geq 1 - O(T^{1-2\gamma}) \quad (46)$$

779 Thus, we will condition on the above event for the following analysis. First, in order to finalized the
780 rank, by similar arguments, it suffices to have $n_j(t) \geq N_j$, where

$$781 \quad N_j := \frac{\lceil 16\gamma \log(T) \rceil}{\min\{\delta_{j-1,j}, \delta_{j,j+1}\}} \quad (47)$$

784 Finally, for items in Ψ , the expected marginal time contribution to the system is bounded by

$$785 \quad \mathbb{E}\left[\inf_t \{n_j(t) \geq N_j \cup m_j(t) \geq M_j\}\right] \quad (48)$$

$$787 \quad \leq \min\{\mathbb{E}[\inf_t \{n_j(t) \geq N_j\}], \mathbb{E}[\inf_t \{m_j(t) \geq M_j\}]\} \quad (49)$$

788 plug in the previous results, we finishes the proof of the following regret upper bound

$$791 \quad \text{Reg}(T) \leq O\left(\sum_{k \in \Psi} \Delta \min\left\{\frac{\log(T)}{\min\{\Delta_{k-1,k}, \Delta_{k-1,k}\}^2 \mu}, \frac{\log(T)}{\min\{\delta_{k-1,k}^2, \delta_{k,k+1}^2\} \alpha_K}\right\} + \sum_{k \notin \Psi} \frac{\Delta \log(T)}{\min\{\Delta_{k-1,k}, \Delta_{k-1,k}\}^2 \mu} + \frac{\Delta}{\alpha_1}\right) \quad (50)$$

795 A.3 PROOF OF THEOREM 2

797 For any arrival and service sequence with fixed customer choice, we can define the embedded sample
798 space by:

$$800 \quad \Omega := ([K]^{K+1} \times \{0, 1\})^{N_T + M_T}, \quad (51)$$

801 where M_T and N_T are the total number of verifications and that of arrivals. The sample space is
802 defined condition on an event sequence, where there are two types of events, arrival and verification
803 completion. For arrival event, we use the triplet $(R_{t_i}, C_{t_i}, Y_{t_i})$ to denote the rank at time t_i , the
804 customer choice at time t_i , and the realized feedback for this choice. Note that Y_{t_i} is the superficial
805 feedback of this arrival. For verification completion event, we use another triplet $(R_{t_i}, I_{t_i}, X_{t_i})$
806 to denote the rank at time t_i , the item whose feedback just being verified, and the value of true
807 feedback.

808 Next, we define the history:

$$809 \quad \mathcal{H}_{t_n} = ((R_{t_0}, C_{t_0}, Y_{t_0}), \dots, (R_{t_n}, C_{t_n}/I_{t_n}, Y_{t_n}/X_{t_n})), \quad (52)$$

810 where the “/” means “or” accounting for the uncertainty of event type at time t_n . For a ranking
 811 policy π^r and scheduling policy π^s , we have:

$$812 \quad R_{t_n} = \pi_{t_n}^r(\mathcal{H}_{t_{n-1}}), I_{t_n} = \pi_{t_n}^s(\mathcal{H}_{t_{n-1}}) \quad (53)$$

814 Next, we define the probability measure \mathbb{P}_ν of the interconnection of policy and a fixed event se-
 815 quence of the original instance ν . Formally, for $\omega \in \Omega$, we have:

$$816 \quad \mathbb{P}_\nu(\omega) = \prod_{i \in \mathcal{N}} \sum_{C_{t_i}=1}^K \mathbb{P}_{C_{t_i}}(Y_{t_i}) \mathbf{1}\{C_{t_i} = c(R_{t_i})\} \\ 817 \quad \prod_{i \in \mathcal{M}} \sum_{I_{t_i}=1}^K \mathbb{P}_{I_{t_i}}(Y_{t_i}) \mathbf{1}\{I_{t_i} = \pi_{t_i}^s(\mathcal{H}_{t_{i-1}})\}, \quad (54)$$

822 where $\mathbb{P}_{C_{t_i}}$ is Bernoulli distribution with mean $\phi_{C_{t_i}} q_{C_{t_i}}(t_i) + (1 - \phi_{C_{t_i}}) \beta_{C_{t_i}}$, and $\mathbb{P}_{I_{t_i}}$ is Bernoulli
 823 distribution with mean $\beta_{I_{t_i}}$. The set \mathcal{M} and \mathcal{N} represent the index set for verification completion
 824 event and arrival event respectively.

825 We construct alternative instance ν^1 , where we enlarge the quality parameter for item I_j to

$$826 \quad \beta_j^1 = \beta_{j-1} + \epsilon, \text{ for } \epsilon > 0 \quad (55)$$

829 One key setting is that $q_j(t)$ is unknown can be arbitrary selected for any time t as long as $q_j(t) \in$
 830 $[0, 1]$. Thus, in general, the larger the ϕ_j is, the less information contained in the arrival event.
 831 Specifically, we will discuss case by case:

832 **Case 1:** consider when $\phi_j \geq \frac{\Delta_{j-1,j}}{\Delta_{j-1,j} + 1}$, it is possible that set

$$833 \quad q_j(t) - q_j^1(t) = \frac{1 - \phi_j}{\phi_j} (\Delta_{j-1,j} + \epsilon) \quad (56)$$

836 Consequently,

$$837 \quad KL(\mathbb{P}_\nu || \mathbb{P}_{\nu^1}) = \mathbb{E}_\nu[m_j(T)]KL(Ber(\beta_j) || Ber(\beta_{j-1} + \epsilon)), \quad (57)$$

838 where

$$839 \quad m_j(T) = \mathbb{E}_\nu \left[\sum_{i \in \mathcal{M}} \mathbf{1}\{I_{t_i} = I_j\} \right] \quad (58)$$

843 We define event

$$844 \quad A = \{\text{At least on half of the events, the policy rank } I_j \text{ before } I_{j-1}\} \quad (59)$$

845 Further, since the inter-event time is stochastically lower bounded by a exponential random variable
 846 with mean $\frac{1}{1+\mu}$, as a result,

$$847 \quad Reg(T) \geq \frac{M_T + N_T}{2(\mu + 1)} \Delta_{j-1,j} \mathbb{P}_\nu(A) \quad (60)$$

$$848 \quad Reg(T)^1 \geq \frac{M_T + N_T}{2(\mu + 1)} \epsilon \mathbb{P}_{\nu^1}(A^c) \quad (61)$$

852 Thus,

$$853 \quad Reg(T) + Reg(T)^1 \geq \frac{M_T + N_T}{2(\mu + 1)} \min\{\epsilon, \Delta_{j-1,j}\} [\mathbb{P}_\nu(A) + \mathbb{P}_{\nu^1}(A^c)] \quad (62)$$

$$854 \quad \geq \frac{M_T + N_T}{4(\mu + 1)} \min\{\epsilon, \Delta_{j-1,j}\} e^{-KL(\mathbb{P}_\nu || \mathbb{P}_{\nu^1})} \quad (63)$$

$$855 \quad = \frac{M_T + N_T}{4(\mu + 1)} \min\{\epsilon, \Delta_{j-1,j}\} e^{-\mathbb{E}_\nu[m_j(T)]KL(Ber(\beta_j) || Ber(\beta_{j-1} + \epsilon))} \quad (64)$$

860 Equivalently,

$$861 \quad \frac{\mathbb{E}_\nu[m_j(T)]}{\log(T)} \geq \frac{1}{KL(Ber(\beta_j) || Ber(\beta_{j-1} + \epsilon))} \left[\frac{\log(M_T + N_T)}{\log(T)} + \frac{\log(\min\{\epsilon, \Delta_{j-1,j}\})}{4(\mu + 1) \log(T)} - \frac{\log(Reg(T) + Reg(T)^1)}{\log(T)} \right] \quad (65)$$

864 **Definition 1.** For a consistent policy π , we require
 865

$$866 \quad \text{Reg}(T) + \text{Reg}(T)^1 \leq C_\xi T^\xi, \text{ for any } \xi > 0 \quad (66)$$

867 Thus,
 868

$$869 \quad \limsup_{T \rightarrow \infty} \frac{\log(\text{Reg}(T) + \text{Reg}(T)^1)}{\log(T)} \leq \limsup_{T \rightarrow \infty} \frac{\xi \log(T) + \log(C_\xi)}{\log(T)} \quad (67)$$

870 take limit $\xi \rightarrow 0$:
 871

$$873 \quad \limsup_{T \rightarrow \infty} \frac{\log(\text{Reg}(T) + \text{Reg}(T)^1)}{\log(T)} = 0 \quad (68)$$

874 Consequently,
 875

$$877 \quad \liminf_{T \rightarrow \infty} \frac{\mathbb{E}_\nu[m_j(T)]}{\log(T)} \geq \liminf_{T \rightarrow \infty} \frac{1}{KL(\text{Ber}(\beta_j) \parallel \text{Ber}(\beta_{j-1} + \epsilon))} \frac{\log(M_T + N_T)}{\log(T)} \quad (69)$$

$$880 \quad \geq \liminf_{T \rightarrow \infty} \frac{1}{KL(\text{Ber}(\beta_j) \parallel \text{Ber}(\beta_{j-1} + \epsilon))} \frac{\log(N_T)}{\log(T)} \quad (70)$$

882 We also know that N_T is the total number of arrivals by time T , and by law of large numbers, we
 883 know

$$884 \quad \liminf_{T \rightarrow \infty} \frac{\mathbb{E}_\nu[m_j(T)]}{\log(T)} \geq \frac{1}{KL(\text{Ber}(\beta_j) \parallel \text{Ber}(\beta_{j-1} + \epsilon))} \quad (71)$$

885 Finally, we take the limit for $\epsilon \rightarrow 0$,
 886

$$888 \quad \liminf_{T \rightarrow \infty} \frac{\mathbb{E}_\nu[m_j(T)]}{\log(T)} \geq \frac{1}{KL(\text{Ber}(\beta_j) \parallel \text{Ber}(\beta_{j-1}))} \quad (72)$$

889 As a result, the expected time for system to fulfill the above condition is
 890

$$892 \quad \Omega\left(\frac{\log(T)}{KL(\text{Ber}(\beta_j) \parallel \text{Ber}(\beta_{j-1}))}\right) \quad (73)$$

895 **Case 2:** consider when $\phi_j < \frac{\Delta_{j-1,j}}{\Delta_{j-1,j} + 1}$, it is impossible to have $q_j(t)$ and $q_j^1(t)$ by the above
 896 equation, which leads to the information gain for the arrival event. However, the it can still be:
 897

$$898 \quad (q_j(t), q_j^1(t)) = \arg \min \{KL(\text{Ber}(\phi_j q_j(t) + (1 - \phi_j) \beta_j) \parallel (\text{Ber}(\phi_j q_j^1(t) + (1 - \phi_j) (\beta_{j-1} + \epsilon)))\} \quad (74)$$

900 For convenience, we denote
 901

$$902 \quad d_{j,j^1} := \inf_{q_j(t), q_j^1(t)} \{KL(\text{Ber}(\phi_j q_j(t) + (1 - \phi_j) \beta_j) \parallel (\text{Ber}(\phi_j q_j^1(t) + (1 - \phi_j) (\beta_{j-1} + \epsilon)))\} \quad (75)$$

903 Thus,
 904

$$906 \quad KL(\mathbb{P}_\nu \parallel \mathbb{P}_{\nu^1}) = \mathbb{E}_\nu[m_j(T)]KL(\text{Ber}(\beta_j) \parallel \text{Ber}(\beta_{j-1} + \epsilon)) + \mathbb{E}_\nu[n_j(T)]d_{j,j^1} \quad (76)$$

907 By similar arguments, we have
 908

$$909 \quad \liminf_{T \rightarrow \infty} \frac{\mathbb{E}_\nu[m_j(T) + n_j(T)]}{\log(T)} \geq \frac{1}{\max\{d_{j,j-1}, KL(\text{Ber}(\beta_j) \parallel \text{Ber}(\beta_{j-1}))\}} \quad (77)$$

911 And there for the expected time the system should spend is
 912

$$913 \quad \Omega\left(\frac{\log(T)}{(\mu + 1) \max\{d_{j,j-1}, KL(\text{Ber}(\beta_j) \parallel \text{Ber}(\beta_{j-1}))\}}\right) \quad (78)$$

916 Next, we construct instance ν^2 , where we set
 917

$$\beta_j^2 = \beta_{j+1} - \epsilon, \text{ for } \epsilon > 0 \quad (79)$$

918 Follow similar arguments, we have:
 919

920 **Case 1:** $\phi_j \geq \frac{\Delta_{j,j+1}}{\Delta_{j,j+1} + 1}$, the expected time system should spend before the condition is met is
 921

$$922 \Omega\left(\frac{\log(T)}{KL(Ber(\beta_j)||Ber(\beta_{j+1}))}\right) \quad (80)$$

923 **Case 2:** $\phi_j < \frac{\Delta_{j,j+1}}{\Delta_{j,j+1} + 1}$, the expected time system should spend before the condition is met is
 925

$$926 \Omega\left(\frac{\log(T)}{(\mu + 1) \max\{d_{j,j^2}, KL(Ber(\beta_j)||Ber(\beta_{j+1}))\}}\right) \quad (81)$$

928 Define the sets:
 929

$$930 \Gamma_1 = \{I_j : \phi_j \geq \frac{\Delta_{j,j+1}}{\Delta_{j,j+1} + 1}, \phi_j \geq \frac{\Delta_{j-1,j}}{\Delta_{j-1,j} + 1}\}, \quad (82)$$

$$932 \Gamma_2 = \{I_j : \phi_j < \frac{\Delta_{j,j+1}}{\Delta_{j,j+1} + 1}, \phi_j < \frac{\Delta_{j-1,j}}{\Delta_{j-1,j} + 1}\}, \quad (83)$$

$$934 \Gamma_3 = \{I_j : \phi_j \geq \frac{\Delta_{j,j+1}}{\Delta_{j,j+1} + 1}, \phi_j < \frac{\Delta_{j-1,j}}{\Delta_{j-1,j} + 1}\}, \quad (84)$$

$$936 \Gamma_4 = \{I_j : \phi_j < \frac{\Delta_{j,j+1}}{\Delta_{j,j+1} + 1}, \phi_j < \frac{\Delta_{j-1,j}}{\Delta_{j-1,j} + 1}\}. \quad (85)$$

938 For $I_j \in \Gamma_1$, the expected time system spend is
 939

$$940 \Omega\left(\frac{\log(T)}{\mu \min\{KL(Ber(\beta_j)||Ber(\beta_{j-1})), KL(Ber(\beta_j)||Ber(\beta_{j+1}))\}}\right) \quad (86)$$

942 For $I_j \in \Gamma_2$, the expected time system spend is
 943

$$944 \Omega\left(\frac{\log(T)}{(\mu + 1) \min\{\max\{d_{j,j^2}, KL(Ber(\beta_j)||Ber(\beta_{j+1}))\}, \max\{d_{j,j^1}, KL(Ber(\beta_j)||Ber(\beta_{j-1}))\}\}}\right) \quad (87)$$

947 For $I_j \in \Gamma_3$, the expected time system spend is
 948

$$949 \Omega\left(\max\left\{\frac{\log(T)}{(\mu + 1) \max\{d_{j,j^1}, KL(Ber(\beta_j)||Ber(\beta_{j-1}))\}}, \frac{\log(T)}{KL(Ber(\beta_j)||Ber(\beta_{j+1}))}\right\}\right) \quad (88)$$

951 For $I_j \in \Gamma_4$, the expected time system spend is
 952

$$953 \Omega\left(\max\left\{\frac{\log(T)}{(\mu + 1) \max\{d_{j,j^2}, KL(Ber(\beta_j)||Ber(\beta_{j+1}))\}}, \frac{\log(T)}{KL(Ber(\beta_j)||Ber(\beta_{j-1}))}\right\}\right) \quad (89)$$

955 And, we define:
 956

$$957 C_j^1(\mu) = \frac{1}{\mu \min\{KL(Ber(\beta_j)||Ber(\beta_{j-1})), KL(Ber(\beta_j)||Ber(\beta_{j+1}))\}}, \quad (90)$$

$$958 C_j^2(\mu) = \frac{1}{(\mu + 1) \min\{\max\{d_{j,j^2}, KL(Ber(\beta_j)||Ber(\beta_{j+1}))\}, \max\{d_{j,j^1}, KL(Ber(\beta_j)||Ber(\beta_{j-1}))\}\}}, \quad (91)$$

$$961 C_j^3(\mu) = \max\left\{\frac{1}{(\mu + 1) \max\{d_{j,j^1}, KL(Ber(\beta_j)||Ber(\beta_{j-1}))\}}, \frac{1}{KL(Ber(\beta_j)||Ber(\beta_{j+1}))}\right\}, \quad (92)$$

$$965 C_j^4(\mu) = \max\left\{\frac{1}{(\mu + 1) \max\{d_{j,j^2}, KL(Ber(\beta_j)||Ber(\beta_{j+1}))\}}, \frac{1}{KL(Ber(\beta_j)||Ber(\beta_{j-1}))}\right\}. \quad (93)$$

968 Lastly, before the conditions for all items are met, the system will incur a polynomial regret with
 969 rate at least Δ_{min} , therefore, we have

$$970 \liminf_{T \rightarrow \infty} \frac{Reg(T)}{\log(T)} \geq \Omega(\Delta_{min} \sum_{\xi=1}^4 \sum_{k=1}^K \mathbf{1}\{I_k \in \Gamma_\xi\} C_k^\xi(\mu)), \quad (94)$$

972 A.4 PROOF OF THEOREM 4
973974 We first prove the lemma 1.
975976 *Proof.* For any verifier V_i , we know that if no elimination occurs, the minimum deficit is upper
977 bounded by the maximum of $M_{i,T}$ exponential random variables with mean $\frac{1}{\mu_{min}}$, where $M_{i,T}$ is
978 the total number of verifications completed by verifier V_i . This is because the total deficits for any
979 verifier V_i is always zero, and thus the maximum deficit within the verifier is at most the absolute
980 value of the minimum deficit. While the minimum deficit are driven by the maximum service time.
981 Thus,

982
$$\limsup_{t \rightarrow \infty} \mathbb{P} \left(\frac{\theta_{ij}(t)}{t} > \epsilon \right) \leq \limsup_{t \rightarrow \infty} \mathbb{P} \left(\max\{Z_1, \dots, Z_{M_{j,t}}\} > \epsilon \right) \quad (95)$$

983

984
$$\leq \limsup_{t \rightarrow \infty} 1 - (1 - e^{-\mu_{min}\epsilon t})^{M_{j,t}} \quad (96)$$

985

986
$$\leq \limsup_{t \rightarrow \infty} 1 - (1 - e^{-\mu_{min}\epsilon t})^{O(t)} \quad (97)$$

987

988
$$= 0 \quad (98)$$

989

990 holds for any $\epsilon > 0$, which finishes the proof of asymptotic results. For finite time analysis, we only
991 need to find the upper bound of $\mathbb{E} \left[\frac{\theta_{ij}(t)}{t} \right]$, we derive the results as follows:
992

993
$$\mathbb{E} \left[\frac{\theta_{ij}(t)}{t} \right] \leq \sum_{m=1}^{\infty} \mathbb{P}(M_t = m) \int_0^{\infty} \mathbb{P} \left(\frac{\theta_{ij}(t)}{t} > \epsilon \right) d\epsilon \quad (99)$$

994

995
$$\leq \sum_{m=1}^{\infty} \mathbb{P}(M_t = m) \int_0^{\infty} \mathbb{P} \left(\max\{Z_1, \dots, Z_m\} > \epsilon \right) d\epsilon \quad (100)$$

996

997
$$= \sum_{m=1}^{\infty} \mathbb{P}(M_t = m) \int_0^{\infty} 1 - (1 - e^{-\mu_{min}\epsilon t})^m d\epsilon \quad (101)$$

998

1000 We aim to evaluate the integral:
1001

1002
$$I = \int_0^{\infty} [1 - (1 - e^{-\mu_{min}\epsilon t})^m] d\epsilon$$

1003

1004 Let us perform a substitution to non-dimensionalize the integral:
1005

1006
$$x = \mu_{min}t\epsilon \quad \Rightarrow \quad \epsilon = \frac{x}{\mu_{min}t}, \quad d\epsilon = \frac{dx}{\mu_{min}t}$$

1007

1008 Substituting these into the integral I :
1009

1010
$$I = \int_0^{\infty} [1 - (1 - e^{-x})^m] \frac{dx}{\mu_{min}t} = \frac{1}{\mu_{min}t} \int_0^{\infty} [1 - (1 - e^{-x})^m] dx$$

1011

1012 Let us denote the dimensionless integral as J :
1013

1014
$$J = \int_0^{\infty} [1 - (1 - e^{-x})^m] dx$$

1015

1016 Thus,
1017

1018
$$I = \frac{J}{\mu_{min}t}$$

1019

1020 We can expand the term $(1 - e^{-x})^m$ using the binomial theorem:
1021

1026

$$(1 - e^{-x})^m = \sum_{k=0}^m \binom{m}{k} (-1)^k e^{-kx}$$

1029

1030

Therefore, the integrand becomes:

1031

1032

$$1 - (1 - e^{-x})^m = 1 - \sum_{k=0}^m \binom{m}{k} (-1)^k e^{-kx} = \sum_{k=1}^m \binom{m}{k} (-1)^{k+1} e^{-kx}$$

1035

1036

Substituting the expanded form into J :

1037

1038

1039

1040

1041

Assuming uniform convergence (which holds here due to absolute convergence for each x), we can interchange the summation and integration:

1042

1043

1044

1045

1046

1047

$$J = \int_0^\infty \sum_{k=1}^m \binom{m}{k} (-1)^{k+1} e^{-kx} dx$$

1048

1049

The integral of the exponential function is straightforward:

1049

1050

1051

1052

$$\int_0^\infty e^{-kx} dx = \left[-\frac{1}{k} e^{-kx} \right]_0^\infty = \frac{1}{k}$$

1053

1054

Thus, J simplifies to:

1055

1056

1057

1058

$$J = \sum_{k=1}^m \binom{m}{k} (-1)^{k+1} \frac{1}{k}$$

1059

1060

The summation:

1061

1062

1063

1064

$$\sum_{k=1}^m \binom{m}{k} \frac{(-1)^{k+1}}{k}$$

1065

1066

is known to equal the m -th **harmonic number**, denoted H_m , where:

1066

1067

1068

1069

$$H_m = \sum_{k=1}^m \frac{1}{k}$$

1070

1071

This can be verified for small values of m :

1072

1073

- For $m = 1$:

1074

1075

1076

$$\sum_{k=1}^1 \binom{1}{1} \frac{(-1)^{1+1}}{1} = 1 \cdot \frac{1}{1} = 1 = H_1$$

1077

1078

1079

- For $m = 2$:

$$\sum_{k=1}^2 \binom{2}{k} \frac{(-1)^{k+1}}{k} = 2 \cdot \frac{1}{1} - 1 \cdot \frac{1}{2} = \frac{3}{2} = H_2$$

1080

- For $m = 3$:

1081

$$\sum_{k=1}^3 \binom{3}{k} \frac{(-1)^{k+1}}{k} = 3 \cdot \frac{1}{1} - 3 \cdot \frac{1}{2} + 1 \cdot \frac{1}{3} = \frac{11}{6} = H_3$$

1082

1083

1084

1085

Thus, in general:

1086

1087

$$J = H_m$$

1088

1089

Substituting back into the expression for I :

1090

1091

1092

1093

1094

Therefore, the integral evaluates to the m -th harmonic number divided by $\mu_{\min}t$:

1095

1096

1097

$$\int_0^\infty [1 - (1 - e^{-\mu_{\min}t})^m] d\epsilon = \frac{H_m}{\mu_{\min}t}$$

1098

1099

where the harmonic number H_m is defined as:

1100

1101

1102

1103

As a result,

1104

1105

1106

1107

$$\mathbb{E} \left[\frac{\theta_{ij}(t)}{t} \right] \leq \sum_{m=1}^{\infty} \mathbb{P}(M_t = m) \frac{H_m}{\mu_{\min}t} \quad (102)$$

1108

1109

1110

$$\leq \sum_{m=1}^{\infty} \frac{e^{-\mu_{\max}t} (\mu_{\max}t)^m}{m!} \frac{H_m}{\mu_{\min}t} \quad (103)$$

1111

We aim to evaluate the sum:

1112

1113

1114

1115

$$S = \sum_{m=1}^{\infty} \frac{e^{-\mu_{\max}t} (\mu_{\max}t)^m}{m!} \cdot \frac{H_m}{\mu_{\min}t}$$

1116

where H_m is the m -th harmonic number defined by:

1117

1118

1119

1120

$$H_m = \sum_{k=1}^m \frac{1}{k} = \rho + \psi(m+1)$$

1121

1122

with ρ representing the Euler-Mascheroni constant and ψ the digamma function.

1123

Factor out the constants from the summation:

1124

1125

1126

1127

$$S = \frac{e^{-\mu_{\max}t}}{\mu_{\min}t} \sum_{m=1}^{\infty} \frac{(\mu_{\max}t)^m}{m!} H_m$$

1128

1129

Let $x = \mu_{\max}t$, then:

1130

1131

1132

1133

$$S = \frac{e^{-x}}{\mu_{\min}t} \sum_{m=1}^{\infty} \frac{x^m}{m!} H_m$$

The series to evaluate is:

1134

1135

1136

1137

1138

1139

$$\sum_{m=1}^{\infty} \frac{x^m}{m!} H_m$$

Using the definition $H_m = \rho + \psi(m + 1)$, we have:

1140

1141

1142

1143

1144

1145

1146

$$\sum_{m=1}^{\infty} \frac{x^m}{m!} H_m = \rho \sum_{m=1}^{\infty} \frac{x^m}{m!} + \sum_{m=1}^{\infty} \frac{x^m}{m!} \psi(m + 1)$$

$$\rho \sum_{m=1}^{\infty} \frac{x^m}{m!} = \rho (e^x - 1)$$

Express $\psi(m + 1)$ using its integral representation:

1147

1148

1149

1150

1151

$$\psi(m + 1) = -\rho + \int_0^1 \frac{1 - t^m}{1 - t} dt$$

Substituting into the sum:

1152

1153

1154

1155

1156

1157

$$\sum_{m=1}^{\infty} \frac{x^m}{m!} \psi(m + 1) = \sum_{m=1}^{\infty} \frac{x^m}{m!} \left(-\rho + \int_0^1 \frac{1 - t^m}{1 - t} dt \right)$$

Simplifying:

1158

1159

1160

1161

1162

$$= -\rho \sum_{m=1}^{\infty} \frac{x^m}{m!} + \int_0^1 \frac{1}{1 - t} \sum_{m=1}^{\infty} \frac{(x(1 - t))^m}{m!} dt$$

Recognize the exponential series:

1163

1164

1165

1166

1167

$$\sum_{m=1}^{\infty} \frac{(x(1 - t))^m}{m!} = e^{x(1 - t)} - 1$$

Thus:

1168

1169

1170

1171

1172

1173

$$\sum_{m=1}^{\infty} \frac{x^m}{m!} \psi(m + 1) = -\rho(e^x - 1) + \int_0^1 \frac{e^{x(1-t)} - 1}{1 - t} dt$$

Make a substitution $s = 1 - t$ ($ds = -dt$):

1174

1175

1176

1177

1178

$$= -\rho(e^x - 1) + \int_0^1 \frac{e^{xs} - 1}{s} ds$$

The integral is related to the exponential integral function $\text{Ei}(-x)$:

1179

1180

1181

1182

1183

$$\int_0^1 \frac{e^{xs} - 1}{s} ds = \rho + \ln x + \text{Ei}(-x)$$

Therefore:

1184

1185

1186

1187

$$\sum_{m=1}^{\infty} \frac{x^m}{m!} H_m = \rho(e^x - 1) + (\rho + \ln x + \text{Ei}(-x)) e^x - \rho e^x = e^x (\rho + \ln x + \text{Ei}(-x))$$

1188 Substituting back into the expression for S :

$$1190 \\ 1191 \quad S = \frac{e^{-x}}{\mu_{\min} t} \cdot e^x (\rho + \ln x + \text{Ei}(-x)) = \frac{\rho + \ln x + \text{Ei}(-x)}{\mu_{\min} t} \\ 1192$$

1193 Recalling that $x = \mu_{\max} t$, we substitute:

$$1195 \\ 1196 \quad S = \frac{\rho + \ln(\mu_{\max} t) + \text{Ei}(-\mu_{\max} t)}{\mu_{\min} t} \\ 1197$$

1198 Thus, the sum evaluates to:

$$1200 \\ 1201 \quad \sum_{m=1}^{\infty} \frac{e^{-\mu_{\max} t} (\mu_{\max} t)^m}{m!} \cdot \frac{H_m}{\mu_{\min} t} = \frac{\rho + \ln(\mu_{\max} t) + \text{Ei}(-\mu_{\max} t)}{\mu_{\min} t} \\ 1202 \\ 1203$$

1204 where Euler-Mascheroni Constant (ρ) is Approximately 0.5772, it is defined as the limiting dif-
1205 ference between the harmonic series and the natural logarithm, and exponential Integral Function
1206 ($\text{Ei}(-x)$) defined for $x > 0$ is by:

$$1207 \\ 1208 \quad \text{Ei}(-x) = - \int_x^{\infty} \frac{e^{-t}}{t} dt \\ 1209$$

1210 This finishes the proof □

1212 Now, for the regret upper bound, by 1, we know that the idle time for the system is $O(1)$. Also, we
1213 know that the sum of total deficits for each $B(t)$ are stochastically bounded by the maximum of M_T
1214 exponential random variables, whose mean are at most μ_{\min} . Finally, using the same arguments for
1215 system H^2 , the upper bound holds.

1216 B ADDITIONAL EXPERIMENTS

1219 **Verifier Departure Rates.** Figures 5(a) and 5(b) illustrate the departure rates for verifiers V_1 and
1220 V_2 , respectively. Verifier V_1 predominantly verifies item I_1 due to its higher verification rate for this
1221 item, with a smaller proportion allocated to verifying I_2 and none for I_3 . Conversely, verifier V_2
1222 focuses on verifying item I_3 , followed by I_2 , and does not verify I_1 given its low verification rate
1223 for this item.

1224 **Convergence of Deficits.** To validate the convergence properties of our scheduling policy, we con-
1225 duct additional experiments. Figure 3(a) shows that the deficits converge rapidly, stabilizing around
1226 $t \approx 70$ for a two-item, two-verifier system. Figure 3(b) demonstrates that deficits continue to con-
1227 verge efficiently even in larger systems with fifty items and ten verifiers.

1228 **Robustness Experiments.** We performed additional experiments to show the robustness of our
1229 algorithm (adding noise for actual rates) if those assumptions are violated (with mean results re-
1230 ported).

1232 It is noticeable that the misspecification of arrival rate affects little of the regret since we did not
1233 use it as an input. However, the misspecification of verification rate will affect the regret since we
1234 get suboptimal solution of equation (12). But the misspecification of distribution will not affect too
1235 much of the regret even for uniform one.

1236 C REAL WORLD EXAMPLE

1239 **Meituan Platform.** We provide an example from Meituan, a major Chinese food delivery and local
1240 services platform, to illustrate real-world human verification systems. Platforms like Meituan have
1241 implemented large-scale human verification to handle questionable feedback, which aligns with our
theoretical framework.

1242
1243

1244 Table 1: Robustness Analysis: Extra Regret Accumulated Under Different Misspecifications

1245 Extra Regret Accumulated	1246 Misspec. of arrival rate ($\pm 0\%$)	1247 Misspec. of arrival rate ($\pm 20\%$)	1248 Misspec. of arrival rate ($\pm 50\%$)	1249 Misspec. of arrival rate ($\pm 100\%$)	1250 Misspec. of arrival process (Truncated 1251 Gaussian, same mean)	1252 Misspec. of arrival process (Uniform, 1253 same mean)
1247 Misspecification of verification rate ($\pm 0\%$)	0.00%	0.15%	-0.66%	0.89%	0.13%	1.02%
1248 Misspecification of verification rate ($\pm 20\%$)	15.32%	16.37%	14.95%	15.03%	N/A	N/A
1249 Misspecification of verification rate ($\pm 50\%$)	25.32%	23.38%	24.57%	29.01%	N/A	N/A
1250 Misspecification of verification process (Truncated Gaussian, 1251 same mean)	1.89%	N/A	N/A	N/A	2.03%	6.20%
1252 Misspecification of verification process (Uniform, 1253 same mean)	11.96%	N/A	N/A	N/A	15.11%	28.92%

(a) Convergence on a 2-Item, 2-Verifier Instance

(b) Convergence on a 50-Item, 10-Verifier Instance

Figure 3: Convergence of Deficits

(a) Convergence on a 1000-Item, 200-Verifier Instance

(b) Convergence on a 30000-Item, 1000-Verifier Instance

Figure 4: Convergence of Deficits

(a) Average Departure Rate for V_1 (b) Average Departure Rate for V_2

Figure 5: Multi-Server Experiments

1296 Meituan’s verification system addresses issues such as businesses disputing negative reviews and
1297 competitors alleging artificial review manipulation. Their ”Xiaomei Review Panel” involves com-
1298 munity members who vote on review disputes, creating a natural queueing system where verification
1299 requests exceed processing capacity.

1300 The platform maintains neutrality by using independent reviewers selected based on activity level,
1301 registration duration, and demographic factors. Reviewers must maintain objectivity and follow
1302 strict confidentiality rules. The review process involves evidence submission, task assignment,
1303 anonymous voting, and majority-rule decisions.

1304 This real-world implementation demonstrates the practical relevance of our theoretical model, where
1305 the relationship between regret bounds and verification efficiency μ becomes crucial for system
1306 performance.

1308 D ALGORITHMS

1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351
1352
1353
1354

Algorithm 1 Hierarchical Elimination

1355
1356 **Input:** sets $\mathcal{A}^q(t)$ for $q \in [K]$, current time t , termination time T , verified sample size $m_k(t)$,
1357 total sample size $n_k(t)$
1358 **for** $k = 1$ **to** K **do**
1359 $LCB_k(t) = \hat{\beta}_k(t) - \sqrt{\frac{\gamma \log(T)}{m_k(t)}}$
1360 $UCB_k(t) = \hat{\beta}_k(t) + \sqrt{\frac{\gamma \log(T)}{m_k(t)}}$
1361 **end for**
1362 **for** $q = 1$ **to** K **do**
1363 **for** $(i, j) \in \mathcal{A}^q$ **do**
1364 **if** $UCB_i(t) < LCB_j(t)$ **then**
1365 $\mathcal{A}^q(t^+) = \mathcal{A}^q(t) \setminus \{I_i\}$
1366 $\mathcal{A}^{q+1}(t^+) = \mathcal{A}^{q+1}(t) \cup \{I_i\}$
1367 **end if**
1368 **end for**
1369 **end for**
1370 **end for**
1371 **HERank**($\{\mathcal{A}^q(t^+)\}_{q=1}^K$)
1372
1373
1374
1375
1376
1377
1378
1379
1380

Algorithm 2 HERank

1381
1382 **Input:** sets $\mathcal{A}^q(t)$ for $q \in [K]$, $\mathcal{B} = \emptyset$
1383 **for** $q = 1$ **to** K **do**
1384 **if** $|\mathcal{A}^q| > 1$ **then**
1385 $\mathcal{B} = \mathcal{B} \cup \mathcal{A}^q$
1386 **end if**
1387 **end for**
1388 **for** (p, q) in $[K]^2$ **do**
1389 **if** $|\mathcal{A}^p| \leq 1$ and $|\mathcal{A}^q| \leq 1$ **then**
1390 **if** $p < q$ **then**
1391 Rank \mathcal{A}^p before \mathcal{A}^q
1392 **else**
1393 Rank \mathcal{A}^q before \mathcal{A}^p
1394 **end if**
1395 **end if**
1396 **end for**
1397 **for** I_k in \mathcal{B} **do**
1398 Rank in ascending order according to $n_k(t)$, use smaller $n_k(t) - m_k(t)$ for tie breaking
1399 **end for**
1400 Rank \mathcal{B} before other items

1400
1401
1402
1403

1404
1405 **Algorithm 3** Deficit Hierarchical Elimination (DHE) Scheduling Policy

1406 **Input:**
1407 Item set $\mathcal{I} = \{I_1, \dots, I_K\}$
1408 Verifier set $\mathcal{V} = \{V_1, \dots, V_N\}$
1409 Verification rates μ_{ij} for verifier V_i and item I_j
1410 Time horizon T
1411 HE ranking policy that maintains order sets $\{\mathcal{A}^q\}_{q=1}^K$

1412 **State variables:**
1413 $\mathcal{B}(t)$: union of non-singleton order sets under HE ranking at time t
1414 $Q_j(t)$: queue length of feedback for item I_j
1415 $S_{ij}(t)$: total service time spent by verifier V_i on item I_j up to time t
1416 $\theta_{ij}(t)$: deficit of pair (i, j) at time t

1417 **Procedure Initialize_DHE(\mathcal{B}):**
1418 // Solve fair allocation LP for current ambiguous set \mathcal{B}
1419 Solve
1420 $\max_{x_{ij}} \min_{j \in \mathcal{B}} \sum_{i=1}^N x_{ij} \mu_{ij}$
1421 subject to $\sum_{j \in \mathcal{B}} x_{ij} \leq 1$ for all i , and $x_{ij} \geq 0$
1422 Obtain optimal solution $x_{ij}^*(\mathcal{B})$ and optimal value $z^*(\mathcal{B})$
1423 // Reset service times and deficits (local time origin for this \mathcal{B})
1424 **for** each verifier $i = 1, \dots, N$ **do**
1425 **for** each item $j = 1, \dots, K$ **do**
1426 $S_{ij} \leftarrow 0$
1427 $\theta_{ij} \leftarrow 0$
1428 **end for**
1429 **end for**
1430 Return $x_{ij}^*(\mathcal{B})$

1431 **Main loop (event-driven, t from 0 to T):**
1432 Initialize HE ranking; compute initial $\mathcal{B}(0)$
1433 $x_{ij}^* \leftarrow \text{Initialize_DHE}(\mathcal{B}(0))$
1434 Set $t \leftarrow 0$
1435 **while** $t \leq T$ **do**
1436 Advance t to next event time t^+ (arrival or verification completion)
1437 $t \leftarrow t^+$
1438 **if** HE ranking eliminates some items and changes $\{\mathcal{A}^q\}$ **then**
1439 Update $\mathcal{B}(t)$ as union of non-singleton sets \mathcal{A}^q
1440 $x_{ij}^* \leftarrow \text{Initialize_DHE}(\mathcal{B}(t))$
1441 **end if**
1442 **if** a verification by verifier V_i on item I_j completes at time t **then**
1443 Let Δt be the service time of this verification (exponential with rate μ_{ij})
1444 $S_{ij} \leftarrow S_{ij} + \Delta t$
1445 Remove this feedback from queue $Q_j(t)$ (FCFS within Q_j)
1446 **end if**
1447 **for** each verifier V_i that is **idle** at time t **do**
1448 // Total busy time of V_i since last initialization:
1449 $t_i \leftarrow \sum_{j=1}^K S_{ij}$
1450 // Update deficits for items in current ambiguous set $\mathcal{B}(t)$:
1451 **for** each item $j \in \mathcal{B}(t)$ **do**
1452 $\theta_{ij} \leftarrow x_{ij}^*(\mathcal{B}(t)) \cdot t_i - S_{ij}$
1453 **end for**
1454 // Candidate items that V_i is supposed to serve (and that have waiting feedback):
1455 $\mathcal{J}_i \leftarrow \{j \in \mathcal{B}(t) : x_{ij}^*(\mathcal{B}(t)) > 0 \text{ and } Q_j(t) > 0\}$
1456 **if** $\mathcal{J}_i \neq \emptyset$ **then**
1457 Select $j^* \in \mathcal{J}_i$ such that
1458 $\theta_{ij^*} = \max_{j \in \mathcal{J}_i} \theta_{ij}$
1459 Assign verifier V_i to verify the **oldest** feedback in queue Q_{j^*}
1460 **else**
1461 V_i remains idle (no eligible job in $\mathcal{B}(t)$)
1462 **end if**
1463 **end for**
1464 **end while**
