
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONLINE RANKING WITH UNFAIR FEEDBACK AND HU-
MAN VERIFICATION:
HIERARCHICAL ELIMINATION AND REGRET BOUNDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Online platforms rely heavily on user feedback for ranking systems, such as
restaurant ratings and e-commerce listings. However, these systems face chal-
lenges from unfair feedback, including merchant-induced and malicious feedback.
Thus, platforms have adopted human verification to increase the reliability of the
rankings. It can certainly identify genuine feedback, but introduces high latency
into real-time updates, leading to non-static queuing dynamics and creating chal-
lenges for online learning. We model this as a continuous-time online learning
problem, establish the lower bound on regret, and propose two algorithms: Hi-
erarchical Elimination (HE) and Deficit Hierarchical Elimination (DHE), dealing
with the case of single and multiple verifiers, respectively. We further prove up-
per regret bounds for both algorithms and demonstrate their effectiveness through
numerical experiments.

1 INTRODUCTION

The pervasive influence of online ranking systems has made them crucial components of modern
digital platforms, serving as essential tools for content discovery and decision-making across vari-
ous domains including e-commerce, content sharing, and service platforms (Golrezaei et al., 2023;
Negahban et al., 2017). These systems typically rely heavily on user feedback to determine rank-
ings, operating under the assumption that such feedback accurately reflects item quality. However,
this assumption has been increasingly challenged by the prevalence of unfair feedback - reviews or
ratings that deliberately misrepresent item quality due to various motivations including competitive
manipulation, personal bias, or financial incentives.

Recent developments in major online platforms have introduced verification mechanisms to address
this challenge. For instance, some platforms such as Meituan have implemented jury-like review
panels that verify the authenticity and fairness of user feedback (see Appendix C). These panels
examine suspicious reviews through various means including on-site verification, photographic ev-
idence, and cross-referencing with transaction records. While such mechanisms show promise in
maintaining ranking integrity, they introduce new theoretical challenges that existing frameworks
are ill-equipped to address, such as how verification rate and policy impact the online ranking accu-
racy, or if it is possible to extract information from unverified feedback in overloaded systems.

The primary challenge lies in the inherent tension between verification thoroughness and system
responsiveness. Verification mechanisms, while crucial for maintaining ranking accuracy, introduce
delays in feedback processing. These delays create complex queuing dynamics that interact with the
learning process in non-trivial ways. Moreover, the system must operate continuously, making real-
time ranking decisions while simultaneously learning from both verified and unverified feedback.
This creates a complex online learning problem where the learning process is intimately coupled
with the underlying queuing dynamics.

Our main contribution is the development of a comprehensive framework for dynamic ranking sys-
tems with unfair feedback and verification mechanisms. We propose the Hierarchical Elimination
(HE) algorithm that achieves logarithmic regret bounds by effectively utilizing both verified and un-
verified feedback, and extend it to the Deficit Hierarchical Elimination (DHE) scheduling policy for
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systems with multiple heterogeneous verifiers. Through rigorous theoretical analysis, we establish
bounds on system regret, demonstrating the effectiveness of our proposed algorithms.

The rest of the paper is organized as follows. Section 2 reviews related work across multiple do-
mains. Section 3 presents our model and formally defines the optimization objective. Section 4
introduces our main algorithms and provides theoretical guarantees. Section 5 extends the analysis
to multiple heterogeneous verifiers. Section 6 presents experimental results validating our theoreti-
cal findings, and Section 7 concludes with discussions of future directions.

2 RELATED WORK

The field of bandit algorithms has developed a rich theoretical foundation, built upon seminal algo-
rithms such as UCB (Auer, 2002; Lai & Robbins, 1985), LinUCB (Abbasi-Yadkori et al., 2011)), and
SE (Successive Elimination) (Even-Dar et al., 2006). This framework has been extended to accom-
modate complex user behavior through customer choice models, as exemplified by the bandit-MNL
approach (Agrawal et al., 2018) and choice bandits (Agarwal et al., 2020). While these advances are
significant, they primarily address subset selection problems, leaving the challenges of item ranking
relatively unexplored.

The specific problem of online learning to rank has evolved along a parallel trajectory, with notable
contributions from (Zoghi et al., 2017; Li et al., 2019; Lattimore et al., 2018), establishing funda-
mental frameworks, and subsequent works incorporating click models such as PBM (Lagrée et al.,
2016) and cascade models (Kveton et al., 2015). However, these approaches predominantly opti-
mize for click-through rates rather than comprehensive user utility metrics. A particularly relevant
recent advancement (Zuo et al., 2023) addresses the critical issue of adversarial feedback attack,
though their reliance on stylized attack models and stationarity assumptions potentially limits real-
world applicability. The work (Golrezaei et al., 2022) focuses on traditional learning-to-rank aiming
for maximizing click-through rates, while our work is concerned with maximizing the consumer’s
true experience–a setting more aligned with multi-armed bandits. In addition, their robust algorithm
deals with fake clicks under the assumption that the operator cannot verify the authenticity of the
feedback. In contrast, our work is motivated by real-world scenarios (e.g., Meituan) and investigates
how a verification system can be designed to integrate verification strategies with online learning.

The introduction of verification mechanisms, while crucial for feedback validation, introduces an
inherent delay component to the learning process. This intersects with delayed feedback literature
that have been extensively studied (Joulani et al., 2013; Dudik et al., 2011; Gael et al., 2020; György
& Joulani, 2020; Lancewicki et al., 2021). The comprehensive study (Lancewicki et al., 2021)
yields important insights of the superiority of successive elimination over UCB in delayed feedback
scenarios. The concept of “soft delays” in (Esposito et al., 2023), where intermediate observations
during delay periods containing valuable information provides a paradigm that naturally extends to
our setting where even potentially unfair feedback carries information. However, the delay between
intermediate observation and final feedback is not predetermined; specifically, it is governed by the
verification policy, which necessitates consideration of queuing dynamics.

However, the studies of online learning in queuing systems primarily focus on system stability rather
than user utility. Moreover, static system dynamics is commonly assumed. For example, the work
(Huang et al., 2023) examines the impact of learning on system steady-state behavior, and the work
(Krishnasamy et al., 2016) provides queue-length regret bounds, while this work (Krishnasamy
et al., 2019) addresses the challenges of service rate learning. Whereas ranking systems present
unique challenges due to position-dependent arrival rates, which fundamentally alters the system
dynamics and demands novel theoretical frameworks and solutions.

3 MODEL AND OBJECTIVE

This section presents our model framework in two parts. First, we define the three key components
of our dynamic ranking system: the ranking system, customer behavior patterns, and the verifica-
tion process. Subsequently, we formalize the optimization objective and characterize the system
dynamics that govern the learning process.
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3.1 PROBLEM FORMULATION

The ranking system with unfair feedback and human verification comprises three key components:

Ranking System. We consider a system with a total of K items, denoted by I = {I1, I2, . . . , IK},
which are to be ranked from 1 to K. Each item has an inherent quality parameter β =
{β1, β2, . . . , βK}. At any time t, the operator can dynamically change the ranking of any item.
We denote β(t) as the vector of quality parameters ordered according to the current ranking at time
t. It is a vector of dimension K and each permutation of elements in this vector represents a pos-
sible ranking. Without loss of generality, we assume that the items are initially ordered such that
β1 > β2 > · · · > βK . For simplicity, we display all items, though our algorithm can easily extend
with the same order of regret when only a subset is displayed.

Customer Behavior. Customer arrivals follow a Poisson process with a rate normalized to 1. Usu-
ally, customers do not have prior knowledge about classes of highly similar products (e.g., standard-
ized products like coffee rankings, electronic items like USB cables, or homogeneous services such
as weather apps or flashlight apps from an app store). Hence, they rely on the platform’s intelligent
ranking system to make their choices. We assume that upon arrival, a customer selects an item from
the ranked list purely based on its current position. Specifically, the probability that a customer
selects the item ranked at the i-th position is αi, and we assume α1 > α2 > · · · > αK .

After selecting item Ik, the customer provides immediate binary feedback on the selected item.
Specifically, there is a probability βk of receiving good feedback and 1− βk of receiving bad feed-
back. However, with probability ϕk, the feedback from the customer is manipulated, and we refer
to such feedback as unfair feedback. We further assume that the distribution of an unfair feedback
is Bernoulli with unknown mean qk(t) for item k, indicating that the manipulation behavior is non-
stationary and lacks analytical properties. Note that the dependency on t creates flexibility for the
“attack” behavior and especially useful when constructing lower bounds.

Human Verification. Since it is indistinguishable between unfair and fair feedback without verifica-
tion, human verification is introduced to verify if the feedback is fair and its true value. Specifically,
all feedback from item Ik is sent to its corresponding queue FCFS (first-come first-serve) Qk await-
ing verification. While there is one verifier that can verify feedback from any queue with identical
verification rate µ. In other words, the verification time is exponentially distributed with mean 1

µ .
After each verification, the operator of the system will know the true value of that feedback. It
is worth mentioning that naively verify all feedback according to its arrival time will lead to high
inefficiency, and thus, the scheduling policy should be carefully designed.

3.2 POLICIES AND OBJECTIVE

In the dynamic ranking system, we will consider an online learning problem which learns the true
parameters β to minimize the total decision error made through a finite continuous time horizon T .

Ranking Policy We define ranking policy πr to be a function that map histories to [0, 1]K . Equiv-
alently, we use βπr (t) to denote the quality parameters after permutation based on the ranked list.
For example, whenK = 2 and β = {0.5, 0.4}, and item I1 is ranked on the second place while item
I2 is ranked at the first place at time t, we have βπr (t) = [0.4, 0.5], which is a vector of dimension
K.

Scheduling Policy We define ranking policy πs that maps the current state of the system to the index
set [K]. The policy decides which feedback to be verified at time t, denoted by Sπs(t), while within
each type, we follows first come first served to avoid selection bias.

Given any pair of the policies π = (πr, πs), we aimed to minimize the expected regret. By the
assumption of decreasing αi, the optimal decision is always ranked the items according to their βks
in descending order. Therefore, we define the regret by time T as:

Reg(T ) := Eπ

[∫ T

0

(β − βπr (t))Tαdt

]
, (1)

where the expectation is taken with respect to the dynamic of the customer arrival and choice, which
is dependent on the policy. The continuous form of regret has barely no difference compared to
discrete ones in expectation since the arrival rate is normalized to be one.
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System Dynamics Before presenting the algorithm design, we need to first characterize the system
dynamic for any policy π and understand the complex interdependency between system state and
the arrival process.

We introduce the following notations: For item Ik, letQπ
k (t) denote the number of feedback waiting

to be verified, Aπ
k (t) be the cumulative arrivals with λπk (t) be the corresponding arrival rate, Sπ

k (t)
be the number of feedback under verification, and Dπ

k (t) be the number of cumulative departures.
The system follows:

Qπ
k (t) = Aπ

k (t)−Dπ
k (t)− Sπ

k (t), (2)
λπk (t) = f(rank(Ik)), (3)

where f(·) is the function that map the current rank to the corresponding arrival rate, which essen-
tially depends on the system state. Such level of complexity implies that it is impossible to solve the
queuing system analytically. For convenience, we use the tuple

(A(t),m(t), n(t),mp(t), np(t), LCB(t), UCB(t))

to denote the system state, representing the order sets, the numbers of verified feedback, the numbers
of total feedback, the numbers of verified positive feedback, the numbers of total positive feedback,
and the confident intervals, of all items. We will provide more detailed explanations of them in the
following sections.

4 ALGORITHMS AND REGRET BOUNDS

We present our algorithmic solutions and theoretical analysis in four parts. First, we introduce the
Hierarchical Elimination (HE) algorithm for ranking and scheduling. Second, we establish logarith-
mic regret bounds for this algorithm. Third, we demonstrate how unverified feedback can be effec-
tively utilized when bounded unfairness is known. Finally, we derive fundamental lower bounds on
achievable regret.

4.1 HE ALGORITHM

We describe our algorithm in two components: the HE ranking policy that maintains and updates
hierarchical sets of items, and the HE scheduling policy that prioritizes items for verification. In
our algorithm, we need statistical estimations on the quality parameters. Specifically, we denote
β̂k(t) = mp

k(t)/mk(t) to be the empirical mean (fraction of positive feedback in verified feedback)
of the quality parameters of item Ik at time t. We further construct a confidence interval centered at

its empirical mean using a radius of
√

γ log(T )
mk(t)

, and the interval is denoted by [LCBk(t), UCBk(t)]

of item Ik at time t. The full algorithmic version is in Appendix ??.

HE Ranking Policy It starts with K order sets, A1 to AK . Initially, we have A1 = {I1, . . . , IK}
and Aq = ∅ for q > 1. The algorithm is triggered only by the change of the system state such as
arrivals or departures, and the time t+ denotes the updated time. When triggered, once there exist
UCBi < LCBj for some i, j ∈ Aq , we will send item Ii to Aq+1, where such event is called an
elimination. We will use the set B to denote the union of non-singleton order sets, while Bc is those
items in singleton sets. We will always rank B before Bc. Within B, we rank in ascending order of
the total arrivals for each item, while within Bc, we rank according to their corresponding order set
index in ascending order.

For example, when A1 = {I1},A2 = {I2, I3},A3 = {I4},A4 = ∅ and n(t) = [10, 9, 8, 7], the
ranking is {I3, I2, I1, I4}. Since both I1 and I4 are in singleton sets, and I1 has smaller index (the
index of A1 is 1), they ranked the third and the fourth. Also, since I3 has smaller total feedback
quantity, it ranked the top.

HE Scheduling Policy Priority is given to the item in B and contains the smallest number of verified
samples, breaking tie arbitrarily.

4.2 REGRET ANALYSIS

Recall the definition of the regret, we need to bound the expected time where the rank is finalized,
i.e., all sets all singleton, while prove that the probability that the final rank is incorrect is negligible.

4
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Theorem 1. Under the HE algorithm, the regret of the system

Reg(T ) ≤ O

(
K∑

k=1

log(T )∆

min{∆k−1,k,∆k,k+1}2 µ
+

∆

α1

)
, (4)

where ∆k−1,k := βk−1 − βk is the gap between two consecutive items, and ∆ = supβ′(β − β′)Tα
is the largest possible regret rate. For handling the edge case, we define ∆K,K+1 = ∆0,1 = 1.

The regret upper bound is composed of two parts: The first part arises due to the quality gap between
items, which in a ranking system is quantified as the minimum gap between item k and its adjacent
item. The second part is due to the delay introduced by the queueing system, which is inversely
proportional to the verification efficiency (µ) and includes an initial queue delay of 1

α1
.

The proof of the theorem can be decomposed into the following steps: First, we claim that with high
probability, the mean estimator for each item will lies on its confidence interval. Second, condition
on this event, we bound the expected numbers of total samples for each arm before his rank is
finalized. Next, due to the interdependency of the arrival rate and system state, it is intractable to
find solve the departure processes for our system. Thus, we construct an less efficient system and
show that the expected time before finalizing the rank is bounded by a logarithmic function with
respect to T for this system. Lastly, we show the expected time for finalizing the rank of the system
operated using HE algorithm is less than the less efficient system.

4.3 UTILIZING THE UNVERIFIED FEEDBACK

The previous algorithms utilize only verified feedback for ranking and scheduling decisions. This
conservative approach stems from a fundamental statistical limitation: while we can construct mean
estimators using both verified and unverified feedback, the confidence bounds for these estimators
still depend critically onmk(t), the number of verified samples. This dependency arises because the
uncertainty in the unfair feedback probability ϕk cannot be reduced without verification. Despite in-
corporating additional data points, current concentration inequalities do not yield faster convergence
rates for confidence intervals constructed using unverified feedback.

However, when we have the information of an uniform upper bound on the unfair probability ϕk,
denoted by ϕ̄, we are able to construct three confident intervals for each item. For each item Ik, we
define two additional quantities:

˜LCBk(t) =
ˆ̃
βk(t)−

√
γ log(T )

nk(t)
, ¯UCBk(t) =

ˆ̄βk(t) +

√
γ log(T )

nk(t)
.

where the mean estimators ˆ̄βk(t) and ˆ̃
βk(t) are defined as:

ˆ̄βk(t) =
npk(t) + nk(t)ϕ̄

nk(t)
,

ˆ̃
βk(t) =

npk(t)− nk(t)ϕ̄

nk(t)
.

The np
k(t) is the total number of positive feedback among all feedback no matter fair or unfair.

We refer ˆ̄βk to be the super-optimistic estimation on item Ik, while ˆ̃
βk be the super-pessimistic

estimation. As their name indicates, the super-optimistic estimation is an upper bound for the UCB
constructed if we assume all feedback are verified, while super-pessimistic estimation serves as the
lower bound.

Given the above quantities, we modify our elimination rule by adopting a bi-criteria rule where item
Ii is eliminated by Ij when UCBi < LCBj or ¯UCBi < ˜LCBj . By such changes, the expected
elimination time will be reduced for those items with their mean much smaller than the others.
Specifically, we define the identifiable set

Ψ := {Ik : (2ϕ̄+ ϕk + (1− ϕk)βk < (1− ϕk−1)βk−1)

∪ (2ϕ̄+ ϕk+1 + (1− ϕk+1)βk+1 < (1− ϕk)βk)},
(5)

where henceforth, we define ϕ0 = ϕk+1 = −∞ to handle edge cases. And for convenience, we
further define δk = min{δk−1,k, δk,k+1}, and ∆k = min{∆k−1,k,∆k,k+1}.
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Theorem 2. Under the existence of a known upper bound for unfair probability ϕ̄, such that ϕk < ϕ̄
for all k. Under the HE algorithm with bi-criteria, the regret of the system

Reg(T ) ≤ O

(∑
k∈Ψ

∆min
{ log(T )

∆2
kµ

,
log(T )

δ2kαK

}
+
∑
k/∈Ψ

∆ log(T )

∆2
kµ

+
∆

α1

)
,

(6)

where δk−1,k := (1− ϕk−1)βk−1 − (2ϕ̄+ ϕk + (1− ϕk)βk).

Theorem 2 states that for items with larger gaps, the expected time for finalizing their rank is shorter.
The proof is similar to the previous theorem, while in the last step, instead of constructing an single
inefficient system, we decompose the original system into two less efficient systems and show that
if both systems operate simultaneously, the expected time for finalizing the rank can upper bounded,
and therefore, the expected time for the original system is also upper bounded.

4.4 LOWER BOUND

In this subsection, we will establish the lower bound by Theorem 3. The main challenges for de-
riving the lower bound are the followings. First, the complex interdependency between policies and
stochastic queuing dynamics prevent the direct analysis. Second, it is challenging to quantify the
information carried by unverified data.
Theorem 3. Under any consistent algorithm satisfying Definition 1, the asymptotic regret of the
system is lower bounded by

lim inf
T→∞

Reg(T )

log(T )
≥ Ω

∆min

4∑
ξ=1

K∑
k=1

1{Ik ∈ Γξ}Cξ
k(µ)

 , (7)

where

Γ1 = {Ij : ϕj ≥ ∆j,j+1

∆j,j+1+1 , ϕj ≥
∆j−1,j

∆j−1,j+1}, (8)

Γ2 = {Ij : ϕj < ∆j,j+1

∆j,j+1+1 , ϕj <
∆j−1,j

∆j−1,j+1}, (9)

Γ3 = {Ij : ϕj ≥ ∆j,j+1

∆j,j+1+1 , ϕj <
∆j−1,j

∆j−1,j+1}, (10)

Γ4 = {Ij : ϕj < ∆j,j+1

∆j,j+1+1 , ϕj ≥
∆j−1,j

∆j−1,j+1}. (11)

and analytical form of Cξ
k(µ) is presented in the appendix.

The contributions of each item in the regret lower bound are grouped based on their likelihood
of receiving unfair feedback and the quality gaps between them and their adjacent items. Each
group has different information absorption capacity from unverified feedback. Specifically, for items
that with small unfair probability and larger gaps between its adjacent items, the information of
unverified feedback is potentially larger, vice versa. However, there is a minor gap between the
lower bound and the upper bound in system parameters such as αi due to the way we construct the
coupling systems.

5 MULTIPLE VERIFIERS WITH HETEROGENEOUS RATES

In this section, we consider a more general setting where we have N verifiers, where each verifier
is denoted by Vi, and for verifier Vi, the verification rate for verifying item Ij is µij . Given that
heterogeneousness of verifiers, if we naively adopt the previous algorithm, the regret will be related
to the minimum verification rate among all pairs, leading to inefficiency.

Furthermore, the assumption of preemption will be relaxed in this section. The reason behind it
is that when there is only a single verifier, preemption or not will not affect the time for finalizing
the rank. However, in multi-verifiers case, if we have µij extremely small for some i and j, then

6
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verifying item Ij using verifier Vi will almost leads to a permanent deduction of verifier number by
1, for which it requires us to smartly idle the server when necessary.

Example 5.1. Consider the following instance, where K = 4, N = 2 and the system state are given
by A1 = {I1, I2},A2 = {I3, I4},A3 = A4 = ∅ and m(t) = [10, 8, 12, 16], n(t) = [12, 9, 17, 20].
The verification rate µ1 = [0.01, 1, 1, 1], µ2 = [1, 1, 0.01, 0.01]. If both verifiers are idle now,
verifier V2 should verify the feedback of item I2 given that m2(t) is the smallest, and V2 is suitable
for verifying I2. However, for verifier V1, there are several possible actions sounds reasonable.
First, it can verify the feedback of item I1 since there are no more feedback of item I2 waiting in the
queue, and m1(t) is the second smallest one. However, the verifier V1 is not suitable for I1, it may
be a better decision to verify item I3 or keep it idle to wait the next arrival of I2. Furthermore, we
not only need to decide the scheduling, but decide their ranking which is directly dependent on the
arrival rates.

5.1 DEFICITS-BASED SCHEDULING POLICY

We aim to develop a scheduling policy that best aligns with the idea of elimination, and we define
asymptotic optimality by maximizing the asymptotic minimum departure rate for feedback in the
set B. To formalize the scheduling policy, we introduce the decision variable xij(t) representing
whether verifier i verifies feedback from item Ij .

Assumption 1. We assume the system is overloaded such that
∑N

i=1 µij <
α1

K for any j.

The assumption 1 states that the system is overloaded, where the total verification rate for any type
of feedback is smaller than the top-item arrival rate. An immediate result from this assumption under
our ranking policy is that there are always feedback waiting to be verified for any item, and therefore,
we define the asymptotic max-min departure rate by the following relaxed linear programming:

max
xij

min
j

N∑
i=1

xijµij (12)

s.t.
∑
j∈B

xij ≤ 1, ∀i, (13)

xij ≥ 0, ∀i, j. (14)
In the above LP, we allow partial allocation for each feedback, and by the overloaded assumption, it
serves as an upper bound for asymptotic max-min departure rate. The solution of the LP is denoted
by x∗ij(B) and the optimal value by z∗(B), given the union of non-singleton sets, B.

DHE Scheduling Policy Inspired by Deficit Round-Robin (Shreedhar & Varghese, 1996) algorithm
in fair queuing systems, we proposed an scheduling policy based on deficits of the verification time,
where we first solve the LP and get x∗ij(B) given the set B, and we calculate the deficit θij for each
(i, j) pair by the following definition

θij(t) = x∗ij(B) tj − Sij(t), (15)

where Sij(t) is the total time that item Ij has been verified by verifier Vi, and tj is the total verifi-
cation time for verifier Vj . Once the server Vi is empty, it will serve the item with the largest θij(t),
and has x∗ij > 0. If there are any modifications on set B (elimination happens), we resolve the LP,
and reset all deficits to 0. It is noticeable that the deficits accumulate only when the verifier is busy.
Lemma 1. Under HE Ranking policy and DHE Scheduling policy and for a given set B, the average
deficit for any pair (i, j) will converge to 0 if no elimination occurs.

lim sup
t→∞

θij(t)

t
= 0 (16)

and for any finite t,

E
[
θij(t)

t

]
≤ ρ+ ln(µmax(B)t) + Ei(−µmax(B)t)

µmin(B)t
:= c(B, t),

(17)

where µmin(B), µmax(B) are the smallest (largest) verification rate for all pairs (i, j) with j ∈ B, ρ
is the Euler–Mascheroni constant, and Ei(−x) = −

∫∞
x

e−t

t dt.

7
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The intuition behind this lemma is that for each verifier, the total deficits keep unchanged when the
verifier is working, while each time a verification is completed, the maximum deficit for this verifier
will generally decrease due to the control policy. Therefore, we are able to relate the deficits to the
verification times, which are exponentially distributed.

5.2 REGRET UPPER BOUND

In the above lemma, we demonstrate the fair departure rate for any finite time without elimination.
However, it is trivial to extend it to the case with elimination. The reason behind it is that after
elimination, the minimum verification rate in the set B will no decrease, and we can still use expo-
nential random variables to find its stochastic upper bound. Therefore, as an immediate result, we
can derive the below upper bound of the regret for a finite time T under our algorithm.
Theorem 4. Under the existence of a known upper bound for unfair probability ϕ̄, such that ϕk < ϕ̄
for all k. Under the HE algorithm with bi-criteria and DHE scheduling policy, the regret of the
system is upper bounded by

Reg(T ) ≤ O

(∑
k∈Ψ

∆min
{ log(T )

∆2
k

(
z∗(I)− c(I, T )

) , log(T )
δ2kαK

}
+
∑
k/∈Ψ

∆ log(T )

∆2
k

(
z∗(I)− c(I, T )

)) . (18)

Theorem 4 implies that the regret depends on the optimal fair queue departure speed in our system,
which matches the intuition that when the more system can operate efficiently, the less the regret
would be. It is also noticeable that c(I, T ) is of order log(T )

T , which is negligible for some large T .

6 NUMERICAL EXPERIMENTS

In this section, we perform experiments (on a single Nvidia i7-10700 CPU) of single verifier and
multi verifiers to demonstrate the effectiveness of our algorithm in a simulated environment, and we
also include some additional experiments such as the verification rate for each items in multi-verifier
systems and the convergence of the deficits in Appendix B.

6.1 SINGLE VERIFIER

We begin with experiments in a single-server environment to illustrate the benefits of our bi-criteria
elimination approach. Specifically, we perform two experiments: one utilizing the standard elimi-
nation criteria and another employing the bi-criteria method.

We consider a system with three items (K = 3) characterized by several key parameters. The
quality parameters are set as β = [0.9, 0.5, 0.1], with corresponding selection probabilities α =
[0.7, 0.2, 0.1]. We set uniform unfair feedback probabilities ϕ = [0.1, 0.1, 0.1] and positive feedback
rates given unfair feedback as q(t) = [0.7, 0.7, 0.7]. The verification rate is fixed at µ = 0.4. The
system is simulated over a time horizon of T = 2000.

Standard Elimination Criteria. Figure 1(a) depicts the regret over time when using elimination
based solely on confidence bounds constructed from verified samples. As expected from elimina-
tion algorithms, the regret grows linearly within each elimination phase. Initially, all three items
are treated symmetrically, leading to an equal distribution of rankings and a corresponding average
regret slope. Upon eliminating item I3, the system proceeds with the remaining two items, result-
ing in a reduced slope corresponding to the regret rates of the rankings [I1, I2, I3] and [I2, I1, I3].
Finally, after eliminating item I2, only I1 remains in a singleton set and is ranked last, causing an
increase in the regret slope. The increase of the slope is unavoidable due to the queuing dynamics,
if we rank item I1 the top in the third phase, the effective arrival rate for identifying item I2 and I3
will be 1−α1, making them indistinguishable and leads to a long lasting linear regret accumulation.

Bi-Criteria Elimination. In contrast, Figure 1(b) demonstrates the advantage of the bi-criteria
elimination approach. By leveraging both verified and unverified feedback and adopting a more

8
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(a) Standard Elimination Criteria (b) Bi-Criteria Elimination

Figure 1: Regret plots for single-server experiments.

conservative estimation strategy, the system achieves faster elimination of suboptimal items. This
results in a lower cumulative regret, particularly noticeable when the verification rate is low and
quality gaps are substantial.

6.2 MULTIPLE VERIFIERS WITH HETEROGENEOUS RATES

We consider a system with three items (K = 3) and two verifiers (N = 2) with the following
configurations. The quality parameters are set as β = [0.9, 0.5, 0.1], with selection probabilities
α = [0.5, 0.3, 0.2]. We maintain uniform unfair feedback probabilities ϕ = [0.1, 0.1, 0.1] and
positive feedback rates given unfair feedback as q(t) = [0.7, 0.7, 0.7]. The verification rates vary
by verifier, with verifier V1 having rates µ1 = [0.4, 0.15, 0.1] and verifier V2 having rates µ2 =
[0.1, 0.15, 0.4]. The simulation runs for T = 1000.

Figure 2: Regret comparison in multi-server experiments: HE scheduling vs. DHE scheduling.

Regret Comparison. Figure 2 compares the regret between the Hierarchical Elimination (HE)
scheduling policy and our proposed Deficit Hierarchical Elimination (DHE) scheduling policy. The
HE scheduling policy, which naively prioritizes items with the fewest verified feedback, exhibits in-
efficiency in this multi-verifier context. In contrast, the DHE scheduling policy effectively leverages
the heterogeneous verification rates, resulting in lower cumulative regret.

7 CONCLUSION

We addressed ranking integrity challenges in online platforms affected by manipulated feedback by
developing the Hierarchical Elimination (HE) algorithm for single-verifier systems and the Deficit
Hierarchical Elimination (DHE) policy for multi-verifier environments. These algorithms effectively
balance verified and unverified feedback, achieving logarithmic regret bounds. Future research di-
rections conquering our limitations by developing algorithms with improved verification rate depen-
dency, achieving item-specific regret rates, designing policies with minimal linear regret for better
finite-time performance, and extending to contexts with unknown verification rates or contextual
settings. Also, the study of G/G/c queue can also increase our applicability.

9
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bandits. Advances in Neural Information Processing Systems, 24, 2011.

Arpit Agarwal, Nicholas Johnson, and Shivani Agarwal. Choice bandits. Advances in neural infor-
mation processing systems, 33:18399–18410, 2020.

Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi. Mnl-bandit: A dynamic
learning approach to assortment selection, 2018.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, and
Tong Zhang. Efficient optimal learning for contextual bandits. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence, pp. 169–178, 2011.

Emmanuel Esposito, Saeed Masoudian, Hao Qiu, Dirk van der Hoeven, Nicolò Cesa-Bianchi, and
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Paul Lagrée, Claire Vernade, and Olivier Cappé. Multiple-play bandits in the position-based model.
Advances in Neural Information Processing Systems, 29, 2016.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics, 6(1):4–22, 1985. doi: 10.1016/0196-8858(85)90002-8.

Tal Lancewicki, Shahar Segal, Tomer Koren, and Yishay Mansour. Stochastic multi-armed bandits
with unrestricted delay distributions, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tor Lattimore, Branislav Kveton, Shuai Li, and Csaba Szepesvari. Toprank: A practical algorithm
for online stochastic ranking. Advances in Neural Information Processing Systems, 31, 2018.
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A PROOFS

A.1 PROOF OF THEOREM 1

Lemma 2. The conditional probability that the final rank is correct given the number of total veri-
fications, MT , is at least 1−MTT

−2γ

Proof. Define event E to be the event that all true mean values are in the confidence interval for any
time t.

E :=

K⋂
j=1

{|β̂j(t)− βj | ≤

√
γ log(T )

mj(t)
}, for all t (19)

By Hoeffding’s inequality, we have

P

(
|β̂j(t)− βj | ≤

√
γ log(T )

mj(t)

)
≤ 2 exp(−2mj(t)

γ log(T )

mj(t)
) (20)

≤ 1

T 2γ
(21)

By union bound,

P(Ec) ≤MTT
−2γ (22)

Since under HE algorithm, as long as event E happens, the final rank is correct, which finishes the
proof.

Now, the following analysis will be condition on event E. First, we use H1 to denote the original
system that operates under HE algorithm. Next, we construct a coupled systemH2, under which the
operator only verifies the feedback of item Ij that has smallest number of verified samples (break tie
arbitrarily), which means the system H2 will stay idle even there are other feedback to be verified if
the feedback queue for Ij is empty. Also, under H2, the operator only eliminate items if all items in
set B have identical number of verified samples.
Lemma 3. A sufficient condition for system H2 to finalize the rank is that the system verifies∑K

j=1
⌈16γ log(T )⌉

min{∆j−1,j ,∆j,j+1}

Proof. For convenience, we use Mj to denote the quantity ⌈16γ log(T )⌉
min{∆j−1,j ,∆j,j+1} . We know that under

event E, when

β̂j(t) +

√
γ log(T )

mj(t)
≤ β̂j−1(t)−

√
γ log(T )

mj−1(t)
(23)

11
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or equivalently,

2

√
γ log(T )

mj(t)
≤ β̂j−1(t)− β̂j(t) (24)

The systemH2 can finalize the relative rank between Ij and Ii for all i < j. The equivalence for the
second equation is because underH2, elimination only occurs when all items in setB have identical
number of verified samples. Furthermore, under event E, a sufficient condition for elimination is

4

√
γ log(T )

mj(t)
≤ βj−1 − βj (25)

This is because even under worst case where,

βj = β̂j(t) +

√
γ log(T )

mj(t)
(26)

βj−1 = β̂j−1(t)−

√
γ log(T )

mj−1(t)
(27)

it suffices to distinguish both items. Similar arguments holds for pair (Ij , Ij+1), thus, in order to
finalize the rank for item Ij , it suffices to have Mj samples for all j.

Thus, it remains to show that the system will never verify items with mj(t) ≥Mj . If mj(t) ≥Mj ,
the set Ij lies in the HE algorithm is a singleton set, and we will never verify the feedback of Ij .
Therefore, the system finalized the rank before it verifies

∑K
j=1Mj feedback.

By the previous lemma, we only need to upper bound the expected time for system H2, by our
design, the system only verify samples with least number of verified samples. Thus, the expected
time that system H2 verifies desired number of feedback is upper bounded by a M/M/1 queuing
system with arrival rate α1 and service rate µ.
Lemma 4 (Pathwise comparison of elimination completion times of H1 and H2). Fix an arbitrary
realization ω of all primitive randomness in the system (arrival times, choices, feedback values, and
service times).1 Let H1 be the original system that runs the HE policy, and let H2 be the auxiliary
system defined as follows:

• H2 observes exactly the same verified feedback samples asH1 on the path ω. In particular,
for each item k and time t we have the same number of verified samplesmk(t) and the same
empirical mean β̂k(t) as in H1.

• H2 therefore uses the same confidence bounds

LCBk(t) = β̂k(t)−

√
γ log T

mk(t)
, UCBk(t) = β̂k(t) +

√
γ log T

mk(t)
.

• The only difference between H1 and H2 is the timing of the eliminations: H1 applies the
hierarchical elimination rule as soon as it is satisfied, whereas H2 is more conservative
and is allowed to update the order sets only at certain “synchronization” times (e.g., when
all items in B(t) have the same number of verified samples). Thus H2 may delay an elim-
ination that H1 would already perform, but it never uses more information (samples) than
H1 at any time.

Let τ (1)(ω) and τ (2)(ω) denote the (random) times at which all eliminations are completed (i.e., all
order sets Aq are singletons) in H1 and H2, respectively, on the sample path ω. Then

τ (1)(ω) ≤ τ (2)(ω) for every realization ω.
1That is, ω fixes the entire sequence of feedback observations that would be obtained whenever a particular

feedback is selected for verification.
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Proof. Fix an arbitrary realization ω of the primitive randomness throughout the proof.

For each item k, the empirical mean β̂k(t) is computed from the mk(t) verified samples observed
up to time t:

β̂k(t) =
mp

k(t)

mk(t)
,

and the confidence bounds in both H1 and H2 are

LCBk(t) = β̂k(t)−

√
γ log T

mk(t)
, UCBk(t) = β̂k(t) +

√
γ log T

mk(t)
.

Along the fixed path ω, the count mk(t) is nondecreasing in t. Hence UCBk(t) is nonincreasing
and LCBk(t) is nondecreasing in t.

Therefore, for any two times t1 ≤ t2 and any items i, j,

UCBi(t2) ≤ UCBi(t1), LCBj(t2) ≥ LCBj(t1). (28)

In particular, if at some time t1 we have UCBi(t1) < LCBj(t1), then for all t2 ≥ t1 we also have
UCBi(t2) < LCBj(t2).

Fix an item k ∈ {1, . . . ,K} which is eventually assigned a final position by the hierarchical elimi-
nation rule (this happens for all items on the path ω).

Definition of t∗k(ω). Consider the process H1 on the path ω. For item k, define

t∗k(ω) := inf
{
t ≥ 0 : ∃ j, q such that Ik, Ij ∈ Aq(t), UCBk(t) < LCBj(t)

}
.

Thus t∗k(ω) is the earliest time at which there exists some item j in the same order set Aq as k such
that UCBk < LCBj , i.e., the earliest time at which k becomes eliminable according to the HE rule.

By construction of H1, the algorithm eliminates Ik as soon as the elimination condition is satisfied.
Therefore, on the path ω we have

τ
(1)
k (ω) ≤ t∗k(ω), (29)

where τ (1)k (ω) is the (random) time at which Ik is moved out of Aq into a lower level (or becomes
a singleton) in H1.

Behavior of H2. In H2 we use the same empirical means and confidence bounds as in H1, because
H2 is defined on top of the same verification trajectory: for each t and each item k,

β̂
(2)
k (t) = β̂

(1)
k (t), LCB

(2)
k (t) = LCB

(1)
k (t), UCB

(2)
k (t) = UCB

(1)
k (t).

The only difference is that H2 is allowed to update the order sets (which include moving Ik to lower
levels) only at a subsequence of times {tr}r≥1 (the “synchronization times”) which are nondecreas-
ing and satisfy tr →∞ as r →∞. For concreteness, one may think of tr as the first time at which
every item in B(t) has received at least r verified samples, but the argument below only uses the fact
that

t1 ≤ t2 ≤ . . . , tr ↑ ∞.

Let τ (2)k (ω) be the time at which Ik is eliminated in H2. By definition of the algorithm H2, there
must exist an index rk such that

τ
(2)
k (ω) = trk ,

and at time trk we have

∃ j, q with Ik, Ij ∈ Aq(trk) and UCBk(trk) < LCBj(trk),

otherwise H2 would not eliminate Ik at time trk .

Since t∗k(ω) is the earliest time when such a pair (k, j) exists, we must have

t∗k(ω) ≤ trk = τ
(2)
k (ω). (30)
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Indeed, the condition “there exists j with UCBk < LCBj in the same order set as k” is already
satisfied at time t∗k(ω) by definition of t∗k, and by the monotonicity in equation 28 it continues to
hold for all t ≥ t∗k(ω), including trk .

Combining equation 29 and equation 30, we obtain

τ
(1)
k (ω) ≤ t∗k(ω) ≤ τ

(2)
k (ω), ∀k ∈ {1, . . . ,K}.

The elimination completion time in system Hi (i = 1, 2) on the path ω is the first time at which
every item has been assigned its final level, i.e.,

τ (i)(ω) = max
k=1,...,K

τ
(i)
k (ω).

Using the item-wise inequality derived above, we conclude

τ (1)(ω) = max
k

τ
(1)
k (ω) ≤ max

k
τ
(2)
k (ω) = τ (2)(ω).

Since ω was arbitrary, this holds for every realization of the primitive randomness, which completes
the proof.

Lemma 5. For a M/M/1 queue, the expected number of departures by time t with arrival rate α1

and service rate µ, for α1 > µ:

E[D(t)] ≥ µt− 1

α1
− o(1) (31)

We require

t ≥ 1

α1
+

∑K
j=1Mj

µ
+ o(1) (32)

Therefore, since MT = O(T ), if γ > 0.5, the regret is upper bounded by

Reg(T ) ≤ O(

K∑
k=1

log(T )∆

min{∆k−1,k,∆k−1,k}2µ
+

∆

α1
) (33)

A.2 PROOF OF THEOREM 3

In bi-criteria setting, we need to bound the expected time that either one of the criteria is met, and
by the convexity of minimum function, it suffices to analyze the second criteria in order to derive an
upper bound.
Lemma 6. With high probability, if Ij ∈ Ψ, the true mean βj is in [ ˜LCBj(t), ¯UCBj(t)] for any t.

Proof. Define q̄j(t) to be the average qj of all arrivals up to time t. We have

P
(
βj < ˜LCBj(t)

)
= P

(
βj <

npj (t)− nj(t)ϕ̄

nj(t)
−

√
γ log(T )

mj(t)

)
(34)

= P

(
npj (t)

nj(t)
− ϕ̄− βj >

√
γ log(T )

mj(t)

)
(35)

= P

npj (t)
nj(t)

− (ϕj q̄j(t) + (1− ϕj)βj) + (ϕj q̄j(t) + (1− ϕj)βj)− ϕ̄− βj︸ ︷︷ ︸
≤0

>

√
γ log(T )

mj(t)


(36)

≤ P

(
npj (t)

nj(t)
− (ϕj q̄j(t) + (1− ϕj)βj) >

√
γ log(T )

mj(t)

)
(37)

≤ exp(−2γ log(T )) (38)

= T−2γ (39)
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and

P
(
βj > ¯UCBj(t)

)
= P

(
βj <

npj (t)− nj(t)ϕ̄

nj(t)
+

√
γ log(T )

mj(t)

)
(40)

= P

(
−
npj (t)

nj(t)
− ϕ̄+ βj >

√
γ log(T )

mj(t)

)
(41)

= P

−npj (t)
nj(t)

+ (ϕj q̄j(t) + (1− ϕj)βj)− (ϕj q̄j(t) + (1− ϕj)βj)− ϕ̄+ βj︸ ︷︷ ︸
≤0

>

√
γ log(T )

mj(t)


(42)

≤ P

(∣∣∣∣∣n
p
j (t)

nj(t)
− (ϕj q̄j(t) + (1− ϕj)βj)

∣∣∣∣∣ >
√
γ log(T )

mj(t)

)
(43)

≤ 2 exp(−2γ log(T )) (44)

= 2T−2γ (45)

Similarly, by union bound, we have

P
(
βj ∈ [ ˜LCBj(t), ¯UCBj(t)], for any t

)
≥ 1−O(T 1−2γ) (46)

Thus, we will condition on the above event for the following analysis. First, in order to finalized the
rank, by similar arguments, it suffices to have nj(t) ≥ Nj , where

Nj :=
⌈16γ log(T )⌉

min{δj−1,j , δj,j+1}
(47)

Finally, for items in Ψ, the expected marginal time contribution to the system is bounded by

E
[
inf
t
{nj(t) ≥ Nj ∪mj(t) ≥Mj}

]
(48)

≤min{E[inf
t
{nj(t) ≥ Nj}],E[inf

t
{mj(t) ≥Mj}]} (49)

plug in the previous results, we finishes the proof of the following regret upper bound

Reg(T ) ≤ O(
∑
k∈Ψ

∆min{ log(T )

min{∆k−1,k,∆k−1,k}2µ
,

log(T )

min{δ2k−1,k, δ
2
k,k+1}αK

}+
∑
k/∈Ψ

∆ log(T )

min{∆k−1,k,∆k−1,k}2µ
+

∆

α1
)

(50)

A.3 PROOF OF THEOREM 2

For any arrival and service sequence with fixed customer choice, we can define the embedded sample
space by:

Ω := ([K]K+1 × {0, 1})NT+MT , (51)

where MT and NT are the total number of verifications and that of arrivals. The sample space is
defined condition on an event sequence, where there are two types of events, arrival and verification
completion. For arrival event, we use the triplet (Rti , Cti , Yti) to denote the rank at time ti, the
customer choice at time ti, and the realized feedback for this choice. Note that Yti is the superficial
feedback of this arrival. For verification completion event, we use another triplet (Rti , Iti , Xti)
to denote the rank at time ti, the item whose feedback just being verified, and the value of true
feedback.

Next, we define the history:

Htn = ((Rt0 , Ct0 , Yt0), . . . , (Rtn , Ctn/Itn , Ytn/Xtn)), (52)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where the ”/” means ”or” accounting for the uncertainty of event type at time tn. For a ranking
policy πr and scheduling policy πs, we have:

Rtn = πr
tn(Htn−1), Itn = πs

tn(Htn−1) (53)

Next, we define the probability measure Pν of the interconnection of policy and a fixed event se-
quence of the original instance ν. Formally, for ω ∈ Ω, we have:

Pν(ω) =
∏
i∈N

K∑
Cti

=1

PCti
(Yti)1{Cti = c(Rti)}

∏
i∈M

K∑
Iti=1

PIti
(Yti)1{Iti = πs

ti(Hti−1)},

(54)

where PCti
is Bernoulli distribution with mean ϕCti

qCti
(ti)+(1−ϕCti

)βCti
, and PIti

is Bernoulli
distribution with mean βItt . The setM and N represent the index set for verification completion
event and arrival event respectively.

We construct alternative instance ν1, where we enlarge the quality parameter for item Ij to

β1
j = βj−1 + ϵ, for ϵ > 0 (55)

One key setting is that qj(t) is unknown can be arbitrary selected for any time t as long as qj(t) ∈
[0, 1]. Thus, in general, the larger the ϕj is, the less information contained in the arrival event.
Specifically, we will discuss case by case:

Case 1: consider when ϕj ≥ ∆j−1,j

∆j−1,j+1 , it is possible that set

qj(t)− q1j (t) =
1− ϕj
ϕj

(∆j−1,j + ϵ) (56)

Consequently,

KL(Pν ||Pν1) = Eν [mj(T )]KL(Ber(βj)||Ber(βj−1 + ϵ)), (57)

where

mj(T ) = Eν

[∑
i∈M

1{Itt = Ij}

]
(58)

We define event

A = {At least on half of the events, the policy rank Ij before Ij−1} (59)

Further, since the inter-event time is stochastically lower bounded by a exponential random variable
with mean 1

1+µ , as a result,

Reg(T ) ≥ MT +NT

2(µ+ 1)
∆j−1,jPν(A) (60)

Reg(T )1 ≥ MT +NT

2(µ+ 1)
ϵPν1(Ac) (61)

Thus,

Reg(T ) +Reg(T )1 ≥ MT +NT

2(µ+ 1)
min{ϵ,∆j−1,j} [Pν(A) + Pν1(Ac)] (62)

≥ MT +NT

4(µ+ 1)
min{ϵ,∆j−1,j}e−KL(Pν ||Pν1 ) (63)

=
MT +NT

4(µ+ 1)
min{ϵ,∆j−1,j}e−Eν [mj(T )]KL(Ber(βj)||Ber(βj−1+ϵ)) (64)

Equivalently,

Eν [mj(T )]

log(T )
≥ 1

KL(Ber(βj)||Ber(βj−1 + ϵ))

[
log(MT +NT )

log(T )
+

log(min{ϵ,∆j−1,j})
4(µ+ 1) log(T )

− log(Reg(T ) +Reg(T )1)

log(T )

]
(65)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Definition 1. For a consistent policy π, we require

Reg(T ) +Reg(T )1 ≤ CξT
ξ, for any ξ > 0 (66)

Thus,

lim sup
T→∞

log(Reg(T ) +Reg(T )1)

log(T )
≤ lim sup

T→∞

ξ log(T ) + log(Cξ)

log(T )
(67)

take limit ξ → 0:

lim sup
T→∞

log(Reg(T ) +Reg(T )1)

log(T )
= 0 (68)

Consequently,

lim inf
T→∞

Eν [mj(T )]

log(T )
≥ lim inf

T→∞

1

KL(Ber(βj)||Ber(βj−1 + ϵ))

log(MT +NT )

log(T )
(69)

≥ lim inf
T→∞

1

KL(Ber(βj)||Ber(βj−1 + ϵ))

log(NT )

log(T )
(70)

We also know that NT is the total number of arrivals by time T , and by law of large numbers, we
know

lim inf
T→∞

Eν [mj(T )]

log(T )
≥ 1

KL(Ber(βj)||Ber(βj−1 + ϵ))
(71)

Finally, we take the limit for ϵ→ 0,

lim inf
T→∞

Eν [mj(T )]

log(T )
≥ 1

KL(Ber(βj)||Ber(βj−1))
(72)

As a result, the expected time for system to fulfill the above condition is

Ω(
log(T )

KL(Ber(βj)||Ber(βj−1))
) (73)

Case 2: consider when ϕj <
∆j−1,j

∆j−1,j+1 , it is impossible to have qj(t) and q1j (t) by the above
equation, which leads to the information gain for the arrival event. However, the it can still be:

(qj(t), q
1
j (t)) = argmin{KL(Ber(ϕjqj(t) + (1− ϕj)βj)||(Ber(ϕjq1j (t) + (1− ϕj)(βj−1 + ϵ)))}

(74)

For convenience, we denote

dj,j1 := inf
qj(t),q1j (t)

{KL(Ber(ϕjqj(t) + (1− ϕj)βj)||(Ber(ϕjq1j (t) + (1− ϕj)(βj−1 + ϵ)))}

(75)

Thus,

KL(Pν ||Pν1) = Eν [mj(T )]KL(Ber(βj)||Ber(βj−1 + ϵ)) + Eν [nj(T )]dj,j1 (76)

By similar arguments, we have

lim inf
T→∞

Eν [mj(T ) + nj(T )]

log(T )
≥ 1

max{dj,j−1,KL(Ber(βj)||Ber(βj−1))}
(77)

And there for the expected time the system should spend is

Ω(
log(T )

(µ+ 1)max{dj,j−1,KL(Ber(βj)||Ber(βj−1))}
) (78)

Next, we construct instance ν2, where we set

β2
j = βj+1 − ϵ, for ϵ > 0 (79)
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Follow similar arguments, we have:

Case 1: ϕj ≥ ∆j,j+1

∆j,j+1+1 , the expected time system should spend before the condition is met is

Ω(
log(T )

KL(Ber(βj)||Ber(βj+1))
) (80)

Case 2: ϕj <
∆j,j+1

∆j,j+1+1 , the expected time system should spend before the condition is met is

Ω(
log(T )

(µ+ 1)max{dj,j2 ,KL(Ber(βj)||Ber(βj+1))}
) (81)

Define the sets:

Γ1 = {Ij : ϕj ≥
∆j,j+1

∆j,j+1 + 1
, ϕj ≥

∆j−1,j

∆j−1,j + 1
}, (82)

Γ2 = {Ij : ϕj <
∆j,j+1

∆j,j+1 + 1
, ϕj <

∆j−1,j

∆j−1,j + 1
}, (83)

Γ3 = {Ij : ϕj ≥
∆j,j+1

∆j,j+1 + 1
, ϕj <

∆j−1,j

∆j−1,j + 1
}, (84)

Γ4 = {Ij : ϕj ≥
∆j,j+1

∆j,j+1 + 1
, ϕj <

∆j−1,j

∆j−1,j + 1
}. (85)

For Ij ∈ Γ1, the expected time system spend is

Ω(
log(T )

µmin{KL(Ber(βj)||Ber(βj−1)),KL(Ber(βj)||Ber(βj+1))}
) (86)

For Ij ∈ Γ2, the expected time system spend is

Ω(
log(T )

(µ+ 1)min{max{dj,j2 ,KL(Ber(βj)||Ber(βj+1))},max{dj,j11,KL(Ber(βj)||Ber(βj−1))}}
)

(87)

For Ij ∈ Γ3, the expected time system spend is

Ω(max{ log(T )

(µ+ 1)max{dj,j1 ,KL(Ber(βj)||Ber(βj−1))}
,

log(T )

KL(Ber(βj)||Ber(βj+1))
}) (88)

For Ij ∈ Γ4, the expected time system spend is

Ω(max{ log(T )

(µ+ 1)max{dj,j2 ,KL(Ber(βj)||Ber(βj+1))}
,

log(T )

KL(Ber(βj)||Ber(βj−1))
}) (89)

And, we define:

C1
j (µ) =

1

µmin{KL(Ber(βj)||Ber(βj−1)),KL(Ber(βj)||Ber(βj+1))}
, (90)

C2
j (µ) =

1

(µ+ 1)min{max{dj,j2 ,KL(Ber(βj)||Ber(βj+1))},max{dj,j11,KL(Ber(βj)||Ber(βj−1))}}
,

(91)

C3
j (µ) = max{ 1

(µ+ 1)max{dj,j1 ,KL(Ber(βj)||Ber(βj−1))}
,

1

KL(Ber(βj)||Ber(βj+1))
},

(92)

C4
j (µ) = max{ 1

(µ+ 1)max{dj,j2 ,KL(Ber(βj)||Ber(βj+1))}
,

1

KL(Ber(βj)||Ber(βj−1))
}.

(93)

Lastly, before the conditions for all items are met, the system will incur a polynomial regret with
rate at least ∆min, therefore, we have

lim inf
T→∞

Reg(T )

log(T )
≥ Ω(∆min

4∑
ξ=1

K∑
k=1

1{Ik ∈ Γξ}Cξ
k(µ)), (94)
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A.4 PROOF OF THEOREM 4

We first prove the lemma 1.

Proof. For any verifier Vi, we know that if no elimination occurs, the minimum deficit is upper
bounded by the maximum of Mi,T exponential random variables with mean 1

µmin
, where Mi,T is

the total number of verifications completed by verifier Vi. This is because the total deficits for any
verifier Vi is always zero, and thus the maximum deficit within the verifier is at most the absolute
value of the minimum deficit. While the minimum deficit are driven by the maximum service time.
Thus,

lim sup
t→∞

P
(
θij(t)

t
> ϵ

)
≤ lim sup

t→∞
P
(
max{Z1, . . . , ZMj,t} > ϵ

)
(95)

≤ lim sup
t→∞

1− (1− e−µminϵt)Mj,t (96)

≤ lim sup
t→∞

1− (1− e−µminϵt)O(t) (97)

= 0 (98)

holds for any ϵ > 0, which finishes the proof of asymptotic results. For finite time analysis, we only
need to find the upper bound of E

[
θij(t)

t

]
, we derive the results as follows:

E
[
θij(t)

t

]
≤

∞∑
m=1

P(Mt = m)

∫ ∞

0

P
(
θij(t)

t
> ϵ

)
dϵ (99)

≤
∞∑

m=1

P(Mt = m)

∫ ∞

0

P (max{Z1, . . . , Zm} > ϵ) dϵ (100)

=

∞∑
m=1

P(Mt = m)

∫ ∞

0

1− (1− e−µminϵt)mdϵ (101)

We aim to evaluate the integral:

I =

∫ ∞

0

[
1−

(
1− e−µminϵt

)m]
dϵ

Let us perform a substitution to non-dimensionalize the integral:

x = µmintϵ ⇒ ϵ =
x

µmint
, dϵ =

dx

µmint

Substituting these into the integral I:

I =

∫ ∞

0

[
1−

(
1− e−x

)m] dx

µmint
=

1

µmint

∫ ∞

0

[
1−

(
1− e−x

)m]
dx

Let us denote the dimensionless integral as J :

J =

∫ ∞

0

[
1−

(
1− e−x

)m]
dx

Thus,

I =
J

µmint

We can expand the term (1− e−x)
m using the binomial theorem:
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(
1− e−x

)m
=

m∑
k=0

(
m

k

)
(−1)ke−kx

Therefore, the integrand becomes:

1−
(
1− e−x

)m
= 1−

m∑
k=0

(
m

k

)
(−1)ke−kx =

m∑
k=1

(
m

k

)
(−1)k+1e−kx

Substituting the expanded form into J :

J =

∫ ∞

0

m∑
k=1

(
m

k

)
(−1)k+1e−kxdx

Assuming uniform convergence (which holds here due to absolute convergence for each x), we can
interchange the summation and integration:

J =

m∑
k=1

(
m

k

)
(−1)k+1

∫ ∞

0

e−kxdx

The integral of the exponential function is straightforward:

∫ ∞

0

e−kxdx =

[
−1

k
e−kx

]∞
0

=
1

k

Thus, J simplifies to:

J =

m∑
k=1

(
m

k

)
(−1)k+1 1

k

The summation:

m∑
k=1

(
m

k

)
(−1)k+1

k

is known to equal the m-th harmonic number, denoted Hm, where:

Hm =

m∑
k=1

1

k

This can be verified for small values of m:

• For m = 1:
1∑

k=1

(
1

1

)
(−1)1+1

1
= 1 · 1

1
= 1 = H1

• For m = 2:
2∑

k=1

(
2

k

)
(−1)k+1

k
= 2 · 1

1
− 1 · 1

2
=

3

2
= H2
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• For m = 3:
3∑

k=1

(
3

k

)
(−1)k+1

k
= 3 · 1

1
− 3 · 1

2
+ 1 · 1

3
=

11

6
= H3

Thus, in general:

J = Hm

Substituting back into the expression for I:

I =
J

µmint
=

Hm

µmint

Therefore, the integral evaluates to the m-th harmonic number divided by µmint:∫ ∞

0

[
1−

(
1− e−µminϵt

)m]
dϵ =

Hm

µmint

where the harmonic number Hm is defined as:

Hm =

m∑
k=1

1

k

As a result,

E
[
θij(t)

t

]
≤

∞∑
m=1

P(Mt = m)
Hm

µmint
(102)

≤
∞∑

m=1

e−µmaxt(µmaxt)
m

m!

Hm

µmint
(103)

We aim to evaluate the sum:

S =

∞∑
m=1

e−µmaxt(µmaxt)
m

m!
· Hm

µmint

where Hm is the m-th harmonic number defined by:

Hm =

m∑
k=1

1

k
= ρ+ ψ(m+ 1)

with ρ representing the Euler-Mascheroni constant and ψ the digamma function.

Factor out the constants from the summation:

S =
e−µmaxt

µmint

∞∑
m=1

(µmaxt)
m

m!
Hm

Let x = µmaxt, then:

S =
e−x

µmint

∞∑
m=1

xm

m!
Hm

The series to evaluate is:
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∞∑
m=1

xm

m!
Hm

Using the definition Hm = ρ+ ψ(m+ 1), we have:

∞∑
m=1

xm

m!
Hm = ρ

∞∑
m=1

xm

m!
+

∞∑
m=1

xm

m!
ψ(m+ 1)

ρ

∞∑
m=1

xm

m!
= ρ (ex − 1)

Express ψ(m+ 1) using its integral representation:

ψ(m+ 1) = −ρ+
∫ 1

0

1− tm

1− t
dt

Substituting into the sum:

∞∑
m=1

xm

m!
ψ(m+ 1) =

∞∑
m=1

xm

m!

(
−ρ+

∫ 1

0

1− tm

1− t
dt

)
Simplifying:

= −ρ
∞∑

m=1

xm

m!
+

∫ 1

0

1

1− t

∞∑
m=1

(x(1− t))m

m!
dt

Recognize the exponential series:

∞∑
m=1

(x(1− t))m

m!
= ex(1−t) − 1

Thus:

∞∑
m=1

xm

m!
ψ(m+ 1) = −ρ(ex − 1) +

∫ 1

0

ex(1−t) − 1

1− t
dt

Make a substitution s = 1− t (ds = −dt):

= −ρ(ex − 1) +

∫ 1

0

exs − 1

s
ds

The integral is related to the exponential integral function Ei(−x):

∫ 1

0

exs − 1

s
ds = ρ+ lnx+ Ei(−x)

Therefore:

∞∑
m=1

xm

m!
Hm = ρ(ex − 1) + (ρ+ lnx+ Ei(−x)) ex − ρex = ex (ρ+ lnx+ Ei(−x))

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Substituting back into the expression for S:

S =
e−x

µmint
· ex (ρ+ lnx+ Ei(−x)) = ρ+ lnx+ Ei(−x)

µmint

Recalling that x = µmaxt, we substitute:

S =
ρ+ ln(µmaxt) + Ei(−µmaxt)

µmint

Thus, the sum evaluates to:

∞∑
m=1

e−µmaxt(µmaxt)
m

m!
· Hm

µmint
=
ρ+ ln(µmaxt) + Ei(−µmaxt)

µmint

where Euler-Mascheroni Constant (ρ) is Approximately 0.5772, it is defined as the limiting dif-
ference between the harmonic series and the natural logarithm, and exponential Integral Function
(Ei(−x)) defined for x > 0 is by:

Ei(−x) = −
∫ ∞

x

e−t

t
dt

This finishes the proof

Now, for the regret upper bound, by 1, we know that the idle time for the system is O(1). Also, we
know that the sum of total deficits for each B(t) are stochastically bounded by the maximum of MT

exponential random variables, whose mean are at most µmin. Finally, using the same arguments for
system H2, the upper bound holds.

B ADDITIONAL EXPERIMENTS

Verifier Departure Rates. Figures 5(a) and 5(b) illustrate the departure rates for verifiers V1 and
V2, respectively. Verifier V1 predominantly verifies item I1 due to its higher verification rate for this
item, with a smaller proportion allocated to verifying I2 and none for I3. Conversely, verifier V2
focuses on verifying item I3, followed by I2, and does not verify I1 given its low verification rate
for this item.

Convergence of Deficits. To validate the convergence properties of our scheduling policy, we con-
duct additional experiments. Figure 3(a) shows that the deficits converge rapidly, stabilizing around
t ≈ 70 for a two-item, two-verifier system. Figure 3(b) demonstrates that deficits continue to con-
verge efficiently even in larger systems with fifty items and ten verifiers.

Robustness Experiments. We performed additional experiments to show the robustness of our
algorithm (adding noise for actual rates) if those assumptions are violated (with mean results re-
ported).

It is noticeable that the misspecification of arrival rate affects little of the regret since we did not
use it as an input. However, the misspecification of verification rate will affect the regret since we
get suboptimal solution of equation (12). But the misspecification of distribution will not affect too
much of the regret even for uniform one.

C REAL WORLD EXAMPLE

Meituan Platform. We provide an example from Meituan, a major Chinese food delivery and local
services platform, to illustrate real-world human verification systems. Platforms like Meituan have
implemented large-scale human verification to handle questionable feedback, which aligns with our
theoretical framework.
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Table 1: Robustness Analysis: Extra Regret Accumulated Under Different Misspecifications
Extra Regret Accumulated

Misspec. of
arrival rate

(±0%)

Misspec. of
arrival rate

(±20%)

Misspec. of
arrival rate

(±50%)

Misspec. of
arrival rate

(±100%)

Misspec. of arrival
process (Truncated

Gaussian, same mean)

Misspec. of arrival
process (Uniform,

same mean)
Misspecification of
verification rate (±0%) 0.00% 0.15% -0.66% 0.89% 0.13% 1.02%

Misspecification of
verification rate (±20%) 15.32% 16.37% 14.95% 15.03% N/A N/A

Misspecification of
verification rate (±50%) 25.32% 23.38% 24.57% 29.01% N/A N/A

Misspecification of verification
process (Truncated Gaussian,
same mean)

1.89% N/A N/A N/A 2.03% 6.20%

Misspecification of verification
process (Uniform,
same mean)

11.96% N/A N/A N/A 15.11% 28.92%

(a) Convergence on a 2-Item, 2-Verifier Instance (b) Convergence on a 50-Item, 10-Verifier Instance

Figure 3: Convergence of Deficits

(a) Convergence on a 1000-Item, 200-Verifier In-
stance

(b) Convergence on a 30000-Item, 1000-Verifier In-
stance

Figure 4: Convergence of Deficits

(a) Average Departure Rate for V1 (b) Average Departure Rate for V2

Figure 5: Multi-Server Experiments
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Meituan’s verification system addresses issues such as businesses disputing negative reviews and
competitors alleging artificial review manipulation. Their ”Xiaomei Review Panel” involves com-
munity members who vote on review disputes, creating a natural queueing system where verification
requests exceed processing capacity.

The platform maintains neutrality by using independent reviewers selected based on activity level,
registration duration, and demographic factors. Reviewers must maintain objectivity and follow
strict confidentiality rules. The review process involves evidence submission, task assignment,
anonymous voting, and majority-rule decisions.

This real-world implementation demonstrates the practical relevance of our theoretical model, where
the relationship between regret bounds and verification efficiency µ becomes crucial for system
performance.

D ALGORITHMS
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Algorithm 1 Hierarchical Elimination
Input: sets Aq(t) for q ∈ [K], current time t, termination time T , verified sample size mk(t),
total sample size nk(t)
for k = 1 to K do
LCBk(t) = β̂k(t)−

√
γ log(T )
mk(t)

UCBk(t) = β̂k(t) +
√

γ log(T )
mk(t)

end for
for q = 1 to K do

for (i, j) ∈ Aq do
if UCBi(t) < LCBj(t) then
Aq(t+) = Aq(t) \ {Ii}
Aq+1(t+) = Aq+1(t) ∪ {Ii}

end if
end for

end for
HERank({Aq(t+)}Kq=1)

Algorithm 2 HERank
Input: sets Aq(t) for q ∈ [K], B = ∅
for q = 1 to K do

if |Aq| > 1 then
B = B ∪ Aq

end if
end for
for (p, q) in [K]2 do

if |Ap| ≤ 1 and |Aq| ≤ 1 then
if p < q then

Rank Ap before Aq

else
Rank Aq before Ap

end if
end if

end for
for Ik in B do

Rank in ascending order according to nk(t), use smaller nk(t)−mk(t) for tie breaking
end for
Rank B before other items
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Algorithm 3 Deficit Hierarchical Elimination (DHE) Scheduling Policy
Input:

Item set I = {I1, . . . , IK}
Verifier set V = {V1, . . . , VN}
Verification rates µij for verifier Vi and item Ij
Time horizon T
HE ranking policy that maintains order sets {Aq}Kq=1

State variables:
B(t): union of non-singleton order sets under HE ranking at time t
Qj(t): queue length of feedback for item Ij
Sij(t): total service time spent by verifier Vi on item Ij up to time t
θij(t): deficit of pair (i, j) at time t

Procedure Initialize DHE(B):
// Solve fair allocation LP for current ambiguous set B
Solve

maxxij
minj∈B

∑N
i=1 xijµij

subject to
∑

j∈B xij ≤ 1 for all i, and xij ≥ 0

Obtain optimal solution x∗ij(B) and optimal value z∗(B)
// Reset service times and deficits (local time origin for this B)

for each verifier i = 1, . . . , N do
for each item j = 1, . . . ,K do
Sij ← 0
θij ← 0

end for
end for

Return x∗ij(B)

Main loop (event-driven, t from 0 to T ):
Initialize HE ranking; compute initial B(0)
x∗ij ← Initialize DHE(B(0))
Set t← 0
while t ≤ T do

Advance t to next event time t+ (arrival or verification completion)
t← t+

if HE ranking eliminates some items and changes {Aq} then
Update B(t) as union of non-singleton sets Aq

x∗ij ← Initialize DHE(B(t))
end if
if a verification by verifier Vi on item Ij completes at time t then

Let ∆t be the service time of this verification (exponential with rate µij)
Sij ← Sij +∆t
Remove this feedback from queue Qj(t) (FCFS within Qj)

end if
for each verifier Vi that is idle at time t do

// Total busy time of Vi since last initialization:
ti ←

∑K
j=1 Sij

// Update deficits for items in current ambiguous set B(t):
for each item j ∈ B(t) do
θij ← x∗ij(B(t)) · ti − Sij

end for
// Candidate items that Vi is supposed to serve (and that have waiting feedback):
Ji ← {j ∈ B(t) : x∗ij(B(t)) > 0 and Qj(t) > 0}
if Ji ̸= ∅ then

Select j∗ ∈ Ji such that
θij∗ = maxj∈Ji θij

Assign verifier Vi to verify the oldest feedback in queue Qj∗

else
Vi remains idle (no eligible job in B(t))

end if
end for

end while
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