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Abstract
We propose a novel method for measuring the
discrepancy between a set of samples and a de-
sired posterior distribution for Bayesian inference.
Classical methods for assessing sample quality
like the effective sample size are not appropriate
for scalable Bayesian sampling algorithms, such
as stochastic gradient Langevin dynamics, that
are asymptotically biased. Instead, the gold stan-
dard is to use the kernel Stein Discrepancy (KSD),
which is itself not scalable given its quadratic cost
in the number of samples. The KSD and its faster
extensions also typically suffer from the curse-of-
dimensionality and can require extensive tuning.
To address these limitations, we develop the poly-
nomial Stein discrepancy (PSD) and an associated
goodness-of-fit test. While the new test is not fully
convergence-determining, we prove that it detects
differences in the first r moments for Gaussian tar-
gets. We empirically show that the test has higher
power than its competitors in several examples,
and at a lower computational cost. Finally, we
demonstrate that the PSD can assist practitioners
to select hyper-parameters of Bayesian sampling
algorithms more efficiently than competitors.

1. Introduction
Reliable assessment of posterior approximations was re-
cently named one of three “grand challenges in Bayesian
computation” (Bhattacharya et al., 2024). Stein discrep-
ancies (Gorham & Mackey, 2015) can assist with this by
providing ways to assess whether a distribution Q, known
via samples {x(i)}ni=1 ∼ Q, is a good approximation to a
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target distribution P . These discrepancies can be applied
when P is only known up to a normalising constant, making
them particularly appealing in the context of Bayesian in-
ference. Unlike classical tools for assessing sample quality
in Bayesian inference, Stein discrepancies are applicable
to hyperparameter tuning (Gorham & Mackey, 2017) and
goodness-of-fit testing (Chwialkowski et al., 2016; Liu et al.,
2016) for biased Monte Carlo algorithms like stochastic gra-
dient Markov chain Monte Carlo (SG-MCMC, Welling &
Teh, 2011; Nemeth & Fearnhead, 2021).

Currently, the most widely adopted Stein discrepancy is
the kernel Stein discrepancy (KSD, Gorham & Mackey,
2017; Chwialkowski et al., 2016; Liu et al., 2016), which
applies a so-called Stein operator (Stein, 1972) to a repro-
ducing kernel Hilbert space. The KSD has an analytically
tractable form and can perform well in tuning and goodness-
of-fit tasks using the recommended inverse multiquadric
(IMQ) base kernel. However, the computational cost of
KSD is quadratic in the number of samples, n, from the
distribution Q, so it is infeasible to directly apply KSD in
applications where large numbers of MCMC iterations have
been used. To address this bottleneck, Liu et al. (2016)
introduced an early linear-time alternative. However, the
statistic suffers from poor statistical power compared to
its quadratic-time counterpart, meaning that the probabil-
ity of rejecting the null hypothesis when it is false is low.
Several approaches have been disseminated in the litera-
ture to tackle these problems and reduce the cost of using
Stein discrepancies. Notably, the finite set Stein discrepancy
(FSSD, Jitkrittum et al., 2017) and the random feature Stein
discrepancy (RFSD, Huggins & Mackey, 2018) have been
proposed as linear-time alternatives to KSD.

The main idea behind FSSD is to use a finite set of test
locations to evaluate the Stein witness function, which can
be computed in linear-time. The FSSD test can effectively
capture the differences between P and Q, by optimizing the
test locations and kernel bandwidth. However, the test is
sensitive to the test locations and other tuning parameters, all
of which need to be optimized (Jitkrittum et al., 2017). The
test requires that the samples be split for this optimisation
and for evaluation. Additionally, the FSSD experiences a
degradation of power relative to the standard KSD in high
dimensions (Huggins & Mackey, 2018).
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Random Fourier features (RFF) (Rahimi & Recht, 2007)
are a well-established technique to accelerate kernel-based
methods. However, it is known (Chwialkowski et al., 2015,
Proposition 1) that the resulting statistic fails to distinguish
a large class of probability measures. Huggins & Mackey
(2018) alleviate this by generalising the RFF approach with
their RFSD method, which is near-linear-time. The authors
identify a family of convergence-determining discrepancy
measures that can be accurately approximated with impor-
tance sampling. Like FSSD, tuning can be challenging
for RFSD because of the large number of example-specific
choices, including the optimal feature map, the importance
sampling distribution, and the number of importance sam-
ples. We have also found empirically that the power of the
goodness-of-fit test based on RFSD is reduced when direct
sampling from P is infeasible.

In addition to these limitations, KSD and current linear-
time approximations can fail to detect moment convergence
(Kanagawa et al., 2022). The standard Langevin KSD us-
ing the IMQ kernel controls the bounded-Lipschitz metric,
which determines weak convergence, but fails to control
the convergence in moments. This is a significant draw-
back because moments are often the main expectations of
interest and, for many biased MCMC algorithms, they are
where bias is likely to appear, as explained in Section 3.3.
Kanagawa et al. (2022) propose an extended, quadratic-time
KSD that is able to control convergence in moments but this
method is slower than KSD with an IMQ kernel.

Motivated by the shortcomings of KSD and linear-time
KSD methods, we propose a linear-time variant of the
KSD named the polynomial Stein Discrepancy (PSD). The
method we propose in this article detects discrepancies in
moments while still being computable in linear time. This
approach, based on the use of r th order polynomials, is
motivated by the zero variance control variates (Assaraf
& Caffarel, 1999; Mira et al., 2013) used in variance re-
duction of Monte Carlo estimates. While PSD is not fully
convergence-determining, we show that when P is Gaussian,
which is a reasonable approximation for big data applica-
tions (Bardenet et al., 2017), the discrepancy is zero if and
only if the first r moments of P and Q match. We empiri-
cally show that PSD has good statistical power for detecting
discrepancies in moments, including in applications with
non-Gaussian P , and we also demonstrate its effectiveness
for tuning SG-MCMC algorithms. Importantly, the decrease
in power with increasing dimension is considerably less than
competitors, and the method requires no calibration beyond
the choice of the polynomial order, which has a clear inter-
pretation.

The paper is organized as follows. Section 2 sets notation
and provides background on Stein discrepancies, KSD and
goodness-of-fit tests. The PSD and goodness-of-fit tests

based on the same are presented in Section 3, along with
theoretical results about detecting moment discrepancies
and the asymptotic power of the test. Section 4 contains
simulation studies performed on benchmark examples. The
paper is concluded in Section 5.

2. Background
Let the probability measure Q, known through the n sam-
ples, {x(i)}ni=1, be supported in X . Suppose the target dis-
tribution P has a corresponding probability density function
p.

Utilising the notion of integral probability metrics (IPMs,
Müller, 1997), a discrepancy between P and Q can be de-
fined as

dH(P,Q) := sup
h∈H

|EX∼P [h(X)]− EX∼Q[h(X)]|. (1)

Various IPMs correspond to different choices of function
class H (Anastasiou et al., 2023). However, since we only
have access to the unnormalized density P , the first expec-
tation in (1) is typically intractable.

2.1. Stein Discrepancies

Stein discrepancies make use of a so-called Stein operator
(A) and an associated class of functions, G(A), such that

EX∼P [(Ag)(X)] = 0 for all g ∈ G(A). (2)

This allows us to define the so-called Stein discrepancy

S(Q,A,G) = sup
g∈G(A)

|| EX∼Q[(Ag)(X)] || . (3)

There is flexibility in the choice of Stein operator and we fo-
cus on operators that are appropriate when x ∈ X ⊆ Rd. By
considering the generator method of Barbour (1990) applied
to overdamped Langevin diffusion (Roberts & Tweedie,
1996), one arrives (Gorham & Mackey, 2015) at the second
order Langevin-Stein operator defined for real-valued g as

A(2)
x g = △xg(x) +∇xg(x) · ∇x log p(x). (4)

Under mild conditions on p and g, EX∼P [(A(2)
x g)(X)] =

0 as required. For example for unconstrained spaces
where X = Rd, if g is twice continuously differen-
tiable, log p is continuously differentiable and ∥∇g(x)∥ ≤
C∥x∥−δp(x)−1, for some constant C > 0 and δ > 0, then
EX∼P [(A(2)

x g)(x)] = 0 as required (South et al., 2022).

Alternatively, one can consider a first order Langevin-Stein
operator defined for vector-valued g (Gorham & Mackey,
2015)

A(1)
x g = ∇x · g(x) + g(x) · ∇x log p(x). (5)
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Under regularity conditions on g and p similar to those for
(4) we get that, EP [(A(1)

x g)(X)] = 0.

2.2. Kernel Stein Discrepancy

The key idea behind KSD is to write the maximum dis-
crepancy between the target distribution and the observed
sample distribution by considering G in (3) to be functions
in a reproducing kernel Hilbert space (RKHS, Berlinet &
Thomas-Agnan, 2004) corresponding to an appropriately
chosen kernel.

A symmetric, positive-definite kernel k : Rd × Rd → R
induces an RKHS Kk of functions from Rd → R. For any
x ∈ Rd, k(x, ·) ∈ Kk. From the reproducing property of
the RKHS, if f ∈ Kk then f(x) = ⟨f, k(x, ·)⟩.

The Stein set of functions G with the associated kernel is
taken to be the set of vector-valued functions g, such that
each component gj belongs to Kk and the vector of their
norms ∥gj∥Kk

belongs to the unit ball, i.e. G := {g =
(g1, . . . , gd) : ∥v∥ ≤ 1 for vj = ∥gj∥Kk

}.

Under certain regularity conditions enforced on the choice
of the kernel k, Gorham & Mackey (Proposition 2, 2017)
and also Liu et al. (2016); Chwialkowski et al. (2016) arrive
at the closed form representation for the Stein discrepancy
given in (3) for this particular choice of Stein set and label
it the KSD

KSD := S(Q,A,G) =
√
Ex,x′∼Q[k0(x, x′)], (6)

where in the particular case of the first order operator (5),

k0(x, x
′) = ∇x · ∇′

xk(x, x
′) +∇xk(x, x

′) · u(x′)

+∇x′k(x, x′) · u(x) + k(x, x′)u(x) · u(x′).

Here, u(x) = ∇x log p(x) and k(x, x′) is the chosen ker-
nel.

Gorham & Mackey (Theorem 6, 2017) show that KSDs
based on common kernel choices like the Gaussian ker-
nel k(x, x′) = exp(− 1

2h2 ∥x − x′∥22) and the Matérn ker-
nel fail to detect non-convergence for d ≥ 3. Gaussian
kernels are also known to experience rapid decay in statis-
tical power in increasing dimensions for common errors
(Gorham & Mackey, 2017). As an alternative, Gorham
& Mackey (2017) recommend the IMQ kernel k(x, x′) =
(c2 + ∥x − x′∥22)β with c = 1 and β = −0.5. They show
that IMQ KSD detects convergence and non-convergence for
c > 0 and β ∈ (−1, 0) for the class of distantly dissipative
P with Lipschitz log p and Ex∼P [∥∇x log p(x)∥22] < ∞,
and they provide a lower-bound for the KSD in terms of the
bounded Lipschitz metric.

The discrepancy S(Q, τ,G) can be estimated with its corre-

sponding U-statistic (Serfling, 2009) as follows

K̂SD
2
=

1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

k0(x
(i), x(j)). (7)

This is the minimum variance unbiased estimator of KSD
(Liu et al., 2016). Alternatively, one could consider the
V-Statistic proposed in Gorham & Mackey (2017) and
Chwialkowski et al. (2016), given by

K̂SD
2
=

1

n2

n∑
i=1

n∑
j=1

k0(x
(i), x(j)). (8)

The V-statistic, while no longer unbiased, is strictly non-
negative and hence can be better suited as a discrepancy
metric when compared to the U-statistic.

2.3. Goodness-of-Fit Testing

In goodness-of-fit testing, the objective is to test the null
hypothesis H0: Q = P against an alternative hypothesis,
typically that H1: Q ̸= P . Existing goodness-of-fit tests
are based on either asymptotic distributions of U-statistics
(Liu et al., 2016; Jitkrittum et al., 2017; Huggins & Mackey,
2018) or bootstrapping (Liu et al., 2016; Chwialkowski et al.,
2016).

Asymptotic goodness-of-fit tests cannot be implemented di-
rectly for KSD or its early linear-time alternatives (Liu et al.,
2016; Chwialkowski et al., 2016). Instead, bootstrapping is
used to estimate the distribution of the test statistic under
H0. Chwialkowski et al. (2016) develop a test for poten-
tially correlated samples {x(i)}ni=1 using the wild bootstrap
procedure (Leucht & Neumann, 2013). Liu et al. (2016)
use the bootstrap procedure of Hušková & Janssen (1993);
Arcones & Gine (1992) for degenerate U-statistics, in the
setting where the samples are uncorrelated. As the number
of samples n and the number m of bootstrap samples go to
infinity, Liu et al. (2016) and Chwialkowski et al. (2016)
show1 that their bootstrap methods have correct type I error
rate (i.e. correct probability of rejecting the null hypothesis
when it is true) and power one.

More recent linear-time alternatives, specifically the FSSD
and RFSD, employ tests based on the asymptotic distribu-
tion of U-statistics. These methods have similar theoretical
guarantees as n → ∞ and the number m of simulations
from the tractable null distribution go to infinity but they
can suffer from poor performance in practice. These tests
require an estimate for a covariance under P . When di-
rect sampling from P is infeasible, which is typically the

1Liu et al. (2016) do not appear to directly state the requirement
that n → ∞ in their theorem, but this follows from the proof on
which it is based (Hušková & Janssen, 1993).
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case when measuring sample quality for Bayesian inference,
these methods estimate this covariance using samples from
Q. While this is asymptotically correct as n → ∞ (Jitkrit-
tum et al., 2017; Huggins & Mackey, 2018), we have found
empirically that the use of samples from Q can substan-
tially reduce the statistical power of the tests, particularly
for RFSD.

3. Polynomial Stein Discrepancy
Motivated by the practical effectiveness of polynomial func-
tions in MCMC variance reduction and post-processing
(Mira et al., 2013; Assaraf & Caffarel, 1999), we develop
PSD as a linear-time alternative to KSD.

3.1. Formulation

This section presents an intuitive and straightforward ap-
proach to derive the PSD. The corresponding goodness-of-fit
tests are presented in Section 3.2.

Consider the class of rth order polynomials. That is, let
G = span{

∏d
i=1 x[i]

αi : α ∈ Nd
0,
∑d

i=1 αi ≤ r}, where
x[i] denotes the ith dimension of x. Intuitively, G is the
span of J =

(
d+r
d

)
− 1 monomial terms that we will simply

denote by Pi(x) for i = 1, . . . , J . This is a valid Stein set in
that EP [A(2)

x g(x)] = 0 for all g ∈ G under mild conditions
depending on the distribution P . For example, when the
density of P , p(x), is supported on an unbounded set then a
sufficient condition is that the tails of P decay faster than
an rth order polynomial. One can also consider boundary
conditions for bounded spaces, as per Proposition 2 of Mira
et al. (2013).

Henceforth we denote the second order operator A(2)
x as

simply A. Using the linearity of the Stein operator (4),
the aim is to optimize over different choices β with real
coefficients βk for k = 1, 2, . . . , J in (3). Analogous to the
optimization in KSD, the optimization is constrained over
the unit ball, that is ∥β∥22 ≤ 1. The result is

PSD = sup
g∈G

|EQ[Ag(x)]|

= sup
β∈RJ :∥β∥2≤1

∣∣EQ

[ J∑
k=1

βkAPk(x)
]∣∣

= sup
β∈RJ :∥β∥2≤1

∣∣ J∑
k=1

βkEQ

[
APk(x)

]∣∣
=

√√√√ J∑
k=1

z̄2k, (9)

where z̄k = EQ[APk(X)]. This derivation is provided
in more detail in Appendix A. For the sample {x(i)}ni=1

from Q, we have z̄k = 1
n

∑n
i=1 APk(x

(i)). Note that PSD

implicitly depends on a polynomial order r through J . A
simple form for APk(x) is available in Appendix A of South
et al. (2023).

The squared linear-time solution for PSD can also be ex-
pressed as a V-statistic. Specifically

P̂SD
2

v =

J∑
k=1

z̄2k

=
1

n2

n∑
i=1

n∑
j=1

∆(x(i), x(j)),

where ∆(x, y) = τ(x)⊤τ(y) =
∑J

k=1 AxPk(x)AyPk(y)
and [τ(x)]k = APk(x).

The U-statistic version of the squared PSD, which will be
helpful in goodness-of-fit testing, is

P̂SD
2

u =
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

∆(x(i), x(j))

=
1

n(n− 1)

(
n2

J∑
k=1

z̄2k − n

J∑
k=1

z2k

)
, (10)

where z2k = 1
n

∑n
i=1

(
APk(x

(i))
)2

.

The computational complexity of this discrepancy is
O(nJ) = O(n

(
d+r
d

)
). In very high dimensions, practi-

tioners concerned about computational cost could run an
approximate version of the test for O(ndr) by excluding in-
teraction terms from the polynomial, for example for r = 2,
monomial terms xixj would only be included for i = j. In
the case of a Gaussian P with diagonal covariance matrix,
such a discrepancy would detect differences in the marginal
moments.

We note that while it would be possible to implement
KSD with the conventional polynomial kernel k(x, y) =
(1 + x⊤y)r, such discrepancies have not yet been exten-
sively explored in the literature. We show the promise of
polynomial kernels in terms of statistical power and linear-
time complexity. Our PSD also differs from what one would
obtain with a conventional polynomial kernel, offering a
simpler formulation that may be more effective for identify-
ing specific moments where discrepancies occur; in the case
of a Gaussian P with independent components, monomial
terms correspond directly to multi-index moments. We also
present novel theory (Proposition 3.2) that enhances the
understanding and interpretability of PSD in the Bayesian
big data limit.

3.2. Goodness-of-fit Test

For the goodness-of-fit test based on PSD, we will be test-
ing the null hypothesis H0: Q = P against a composite
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or directional alternative hypothesis. The form of the alter-
native hypothesis depends on P , but we show in Section
3.3 that for Gaussian P(a suitable assumption under the
Bayesian big data/Bernstein-Von-Mises limit), H1 is that
the first r moments of Q do not match the first r moments
of P . Achieving high statistical power for these moments is
important, as described in Section 3.3.

Observe that (10) is a degenerate U-statistic, so an asymp-
totic test can be developed using [τ(x)]k = APk(x).

Corollary 3.1 (Jitkrittum et al. (2017)). Let Z1, . . . , ZJ

be i.i.d. random variables with Zi ∼ N (0, 1). Let
µ := Ex∼Q[τ(x)] and Σr := covx∼r[τ(x)] ∈ RJ×J for
r ∈ {P,Q}. Let {ωi}Ji=1 be the eigenvalues of the co-
variance matrix Σp = Ex∼p[τ(x)τ

⊤(x)]. Assume that
Ex∼QEy∼Q∆

2(x, y) < ∞. Then, the following statements
hold

1. Under H0 : Q = P ,

nP̂SD
2

u
d−→

J∑
i=1

(Z2
i − 1)ωi.

2. Under H1 (Q ̸= P in a way specified by PSD), if
σ2
H1 := 4µ⊤Σqµ > 0, then

√
n(P̂SD

2

u − PSD2)
d−→ N (0, σ2

H1).

Proof. This follows immediately from Proposition 2 of
Jitkrittum et al. (2017), which itself follows from Liu et al.
(Theorem 4.1, 2016) and Serfling (Chapter 5.5, 2009).

A simple approach to testing H0: Q = P would then
be to simulate from the stated distribution under the null
hypothesis m times and to reject H0 at a significance
level of α if the observed test statistic (10) is above the
Tα = 100(1 − α) percentile of the m samples. How-
ever, simulating from this distribution can be impractical
since Σp requires samples from the target P , which is typ-
ically not feasible. Following the suggestion of Jitkrittum
et al. (2017), Σp can be replaced with the plug-in estimate
computed from the sample, Σ̂q := 1

n

∑n
i=1 τ(xi)τ(xi)

⊤ −[
1
n

∑n
i=1 τ(xi)

] [
1
n

∑n
j=1 τ(xj)

]⊤
. Theorem 3 of Jitkrit-

tum et al. (2017) ensures that replacing the covariance ma-
trix with Σ̂q still renders a consistent test.

In practice, however, there may be unnecessary degradation
of power, especially in high dimensions due to the approx-
imation of the covariance in Theorem 3.1. To circumvent
this, we propose an alternative test which is to follow the
bootstrap procedure suggested by Liu et al. (2016), Arcones
& Gine (1992), Hušková & Janssen (1993). This bootstrap

test will itself be linear-time; such a method was not avail-
able in the linear-time KSD alternatives of Jitkrittum et al.
(2017) and Huggins & Mackey (2018).

In each bootstrap replicate of this test, one draws weights
(w1, w2, . . . , wn) ∼ Multinomial(n; 1

n , . . . ,
1
n ) and com-

putes the bootstrap statistic

P̂SD
2

u,boot =

n∑
i=1

n∑
j=1
i ̸=j

(wi −
1

n
)(wj −

1

n
)∆(x(i), x(j))

=

J∑
k=1

(
n∑

i=1

(wi −
1

n
)APk(x

(i))

)2

−
J∑

k=1

n∑
i=1

(
(wi −

1

n
)APk(x

(i))

)2

.

(11)

If the observed test statistic, (10), is larger than the 100(1−
α) percentile of the bootstrap statistics, (11), then H0 is
rejected. The consistency of this test follows from Theorem
4.3 of Liu et al. (2016) and from Hušková & Janssen (1993).
We recommend the bootstrap test because we empirically
find that it has higher statistical power than the asymptotic
test using samples from Q.

The aforementioned tests are suitable for independent sam-
ples; in the case of correlated samples, an alternate linear-
time bootstrap procedure for PSD can be developed follow-
ing the method of Chwialkowski et al. (2016).

3.3. Convergence of Moments

Since we are using a finite-dimensional (i.e. non-
characteristic) kernel, PSD is not fully convergence-
determining. We do not view this as a major disadvantage.
Rather than aiming to detect all possible discrepancies be-
tween P and Q and doing so with low statistical power, the
method is designed to achieve high statistical power when
the discrepancy is in one of the first r moments.

Often, moments of the posterior distribution, such as the
mean and variance, are the main expectations of inter-
est. These moments can also be where differences are
most likely to appear; for example, the posterior variance
is asymptotically over-estimated in SG-MCMC methods
(Nemeth & Fearnhead, 2021). Tuning SG-MCMC amounts
to selecting the right balance between a large step-size and
a small step-size. Large step-sizes lead to over-estimation
(bias) in the posterior variance, while small step-sizes may
not sufficiently explore the space for a fixed n, and thus
may lead to under-estimated posterior variance. Hence, it
is critical to assess the performance of these methods in
estimated second-order moments.
Proposition 3.2. If P is Gaussian with a symmetric positive-
definite covariance matrix Σ, PSD = 0 if and only if the
multi-index moments of P and Q match up to order r.
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The proof of Proposition 3.2 is provided in Appendix B. As
a consequence of Proposition 3.2, we have the following
result:

Corollary 3.3. Suppose the conditions in Corollary 3.1 hold.
Then, in the Bernstein-von Mises limit (i.e. the Bayesian big
data limit), the asymptotic and bootstrap tests have power
→ 1 for detecting discrepancies in the first r moments of P
and Q as n → ∞.

Proof. This result follows from the consistency of these
tests and the conditions under which PSD = 0 as per Propo-
sition 3.2.

This is an important result given that biased MCMC al-
gorithms are often used for big-data applications, with
subsampling-based methods arguably being the most com-
mon application of KSD. In this context, P is often close
to Gaussian because typically the “Bernstein-von Mises ap-
proximation of the target posterior distribution is excellent”
(Bardenet et al., 2017). We also empirically show good per-
formance for detecting discrepancies in moments in Section
4 and in supplementary results in the Appendices.

4. Experiments
This section demonstrates the performance of PSD on
the current benchmark examples from Liu et al. (2016),
Chwialkowski et al. (2016), Jitkrittum et al. (2017) and Hug-
gins & Mackey (2018). The proposed PSD is compared to
existing methods on the basis of runtime, power in goodness-
of-fit testing and performance as a sample quality measure.
The following methods are the competitors:

• IMQ KSD: standard, quadratic time KSD (Gorham &
Mackey, 2017; Liu et al., 2016; Chwialkowski et al.,
2016) using the recommended IMQ kernel with c = 1
and β = −0.5.

• Gauss KSD: standard, quadratic time KSD using the
common Gaussian kernel with bandwidth selected us-
ing the median heuristic.

• FSSD: The linear-time FSSD method with optimized
test locations (Jitkrittum et al., 2017). We consider
the optimized test locations (FSSD-opt), optimized
according to a power proxy detailed in Jitkrittum et al.
(2017). We set the number of test locations to 10.

• RFSD: The near-linear-time RFSD method (Huggins
& Mackey, 2018). Following recommendations by
Huggins & Mackey (2018), we use the L1 IMQ base
kernel and fix the number of features to 10.

The simulations are run using the settings and implementa-
tions provided by the respective authors, with the exception

that we sample from Q for all asymptotic methods since
sampling from P is rarely feasible in practice. Goodness-
of-fit testing results for PSD in the main paper are with the
bootstrap test, which we recommend in general. Results for
the PSD asymptotic test with samples from Q are shown in
Appendix C.1. Following Jitkrittum et al. (2017) and Hug-
gins & Mackey (2018), our bootstrap implementations for
KSD and PSD use V-statistics with Rademacher resampling.
The performance is similar to the bootstrap described in Liu
et al. (2016) and in Section 3.2.

Code to reproduce these results is available at
textcolorbluehttps://github.com/Nars98/PSD. This code
builds on existing code (Huggins, 2018; Jitkrittum, 2019) by
adding PSD as a new method. All experiments were run on
a high performance computing cluster, using a single core
for each individual hypothesis test.

Further empirical investigations are available in Appendix C.
In Appendix C.2, we show that PSD with r = 2 is tracking
second order moments well for the second order moment
example of Kanagawa et al. (2022). We also provide two
logistic regression examples in Appendices C.3 and C.4,
where we demonstrate that PSD can tracks discrepancies
in moments for realistic Bayesian inference tasks. The for-
mer is an example where P is far from normality, while the
Bernstein-von Mises approximation is reasonable for the
latter. We investigate performance of PSD without interac-
tions in Appendix C.5 and we find that the performance is
remarkably similar to PSD with interactions. Finally, we
provide an extreme example where moments are not well
approximated and show what expectations are being tracked
instead in Appendix C.6.

4.1. Goodness-of-Fit Tests

Following standard practice for assessing Stein goodness-
of-fit tests, we begin by considering P = N(0d, Id) and
assessing the performance for a variety of Q and d using
statistical tests with significance level α = 0.05. We use
m = 500 bootstrap samples to estimate the rejection thresh-
old for the PSD and KSD tests.

We investigate four cases: (a) type I error rate: Q =
N (0d, Id) (b) statistical power for misspecified variance:
Q = N (0d,Σ), where Σij = 0 for i ̸= j, Σ11 = 1.7 and
Σii = 1 for i = 2, . . . , d, (c) statistical power for misspeci-
fied kurtosis: Q = T (0, 5), a standard multivariate student-t
distribution with 5 degrees of freedom, and (d) statistical
power for misspecified kurtosis: q(x) =

∏d
t=1 Lap(xt |

0, 1√
2
), the product of d independent Laplace distributions

with variance 1. Following Huggins & Mackey (2018), all
experiments use n = 1000 except the multivariate t, which
uses n = 2000.

As seen in Figure 1a, the type I error rate is generally close

6
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(a) Unit Gaussian (i.e. Q =
P ), 500 repeats

(b) Variance-perturbed
Gaussian, 200 repeats

(c) Student-t, 250 repeats (d) Laplace, 500 repeats

Figure 1. Type I error rate (a) and statistical power (b,c,d) for detecting discrepancies between the unit Gaussian P and the sampling
distribution Q (see the main text for details).

to 0.05 even with this finite n. Exceptions include RFSD
which has decaying type I error rate with increasing d, and
PSD with r = 4, which has a slightly over-inflated type I
error rate for d = 1.

As expected, PSD with r = 1 is incapable of detecting
discrepancies with the second (b) or fourth order moments
(c,d). Similarly, PSD with r = 2 and r = 3 are incapable of
detecting discrepancies with the fourth moment (c,d). When
the polynomial order is at least as high as the order of the
moment in which there are discrepancies, PSD outperforms
linear-time methods and is competitive with quadratic-time
KSD methods. Specifically, PSD with r = 4 is the only
method to consistently achieve a power of ≈ 1 in Figures
1c and 1d. In Figure 1b, PSD with r = 2 and r = 4 are the
only methods to consistently achieve a power of 1, while
PSD with r = 3 has a higher statistical power than the
competitors at d = 20. Overall, the new methods have
a statsistical power up to double the statistical power of
IMQ KSD and four times that of linear-time competitors for
d = 20.

Next, following Liu et al. (2016) and Jitkrittum et al.
(2017), we consider the case where the target P is the
non-normalized density of a restricted Boltzmann machine
(RBM); the samples Q̂n are obtained from the same RBM
perturbed by independent Gaussian noise with variance σ2.
For σ2 = 0, H0 : Q = P holds, and for σ2 > 0 the goal
is to detect that the n = 1000 samples come from the per-
turbed RBM. Similar to the previous goodness-of-fit test,
the null rejection rate for a range of perturbations using 100
repeats is given in Table 1. Notably, PSD with r = 2 and
r = 3 both outperform linear-time methods and are com-
petitive with quadratic-time methods, but for a substantially
reduced computational cost. This illustrates that PSD is a
potentially valuable tool for goodness-of-fit testing in the
non-Gaussian setting.

4.2. Measure of Sample Quality

To demonstrate the advantages of PSD as a measure of dis-
crepancy we follow the stochastic gradient Langevin dynam-

Table 1. Null rejection rates for testing methods at different pertur-
bation levels in the RBM example.

PERTURBATION: 0 0.02 0.04 0.06
RFSD 0.00 0.48 0.93 0.98

FSSD-opt 0.05 0.70 0.96 0.99
IMQ KSD 0.08 0.99 1.00 1.00

Gauss KSD 0.08 0.95 1.00 1.00
PSD r1 0.08 0.51 0.96 0.99
PSD r2 0.06 1.00 1.00 1.00
PSD r3 0.09 0.97 1.00 1.00

ics (SGLD) hyper-parameter selection setup from Gorham &
Mackey (Section 5.3, 2015). Since no Metropolis-Hastings
correction is used, SGLD with constant step size ϵ is a bi-
ased MCMC algorithm that aims to approximate the true
posterior. Importantly, the stationary distribution of SGLD
deviates more from the target as ϵ grows, leading to an in-
flated variance. However, smaller ϵ decreases the mixing
speed of SGLD. Hence, an appropriate choice of ϵ is critical
for accurate posterior estimation.

Similar to the experiments considered in Gorham & Mackey
(2015), Chwialkowski et al. (2016) and Huggins & Mackey
(2018), the target P is the bimodal Gaussian mixture model
posterior of Welling & Teh (2011). We compare the step
size selection made by PSD to that of RFSD and IMQ KSD
when n = 10000 samples are obtained using SGLD. Figure
2 shows the performance of SGLD for a variety of step-
sizes in comparison with high quality samples obtained
using MALA. Figure 3 shows that PSD with r = 2, r = 3
and r = 4 agree with IMQ KSD, selecting ϵ = 0.005 which
is visually optimal as per Figure 2. Moreover, when utilized
as a measure of discrepancy, PSD is around 70 times faster
than KSD and around 7 times faster than RFSD.

4.3. Runtime

We now compare the computational cost of computing PSD
with that of RFSD and IMQ KSD. Datasets of dimension
d = 10 with the sample size n ranging from 500 to 10000
were generated from P = N (0d, Id). As seen in Figure

7
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Figure 2. Approximate posterior for mixture example with SGLD for varying step sizes and when sampling from the true posterior using
MALA.

Figure 3. Step size selection results for SGLD using various meth-
ods.

4, even for moderate dataset sizes, the PSD and RFSDs
are computed orders of magnitude faster than KSD. While
RFSD is faster than PSD with r = 3 or r = 4, we have
found in Sections 4.1 and 4.2 that PSD can have higher
statistical power for detecting discrepancies in moments.

Figure 4. Runtime for various testing methods where P =
N (0d, Id) with d = 10.

5. Conclusion
Our proposed PSD is a powerful measure of sample quality,
particularly for detecting discrepancies in moments. The
method eliminates the need for extensive tuning, is linear-
time and empirically provides high statistical power in high
dimensions. This makes it a valuable tool for practitioners
needing efficient, dependable measures of sample quality,
especially in the context of complex Bayesian inference
applications. For practitioners using PSD for biased MCMC
samplers like SG-MCMC, we recommend using PSD with
r = 2.

It is well known that probability distributions are completely
determined by their moment generating functions, provided
they exist (a necessary condition is that all moments are
finite). This highlights the main drawback of our method,
since we can potentially expect the KSD to outperform PSD
for target distributions lacking well-defined moments. For
example those with heavy tails such as the Cauchy distri-
bution. However, we also note that the standard KSD (and
the linear time variants) also fail for Cauchy distributions,
due to Theorem 10 of Gorham & Mackey (2015). In such
situations, Stein discrepancies based on diffusion Stein op-
erators can be considered (Kanagawa et al., 2022). Similar
extensions for PSD can be considered in future research

Another situation in which KSD outperforms PSD of order
r is when the discrepancies lie in moments higher than the
rth order moment. For example, KSD outperforms PSD
with r = 1, 2, 3 for the student-t and Laplace examples in
Figure 1 since the discrepancy is in the kurtosis (4th order
moment).

A practical heuristic to determine whether PSD may perform
well in detecting moments specifically, one could consider
plotting the marginal gradients versus the marginal samples.
The closer this is to a perfect linear relationship, the more
one might expect the moments to be assessed. Further, if the
gradients are available in analytic form, as against indirectly
through automatic differentiation procedures, then one can
also determine which expectations are being tracked by
investigating the system of linear equations in equation (14)
of Appendix B. We do this for the Rosenbrock target in
Appendix C.6, and we are able to determine exactly which
expectation values are being tracked. Regardless of whether
P is Gaussian, the RBM, SGLD and logistic regression
examples show that PSD can be a useful measure of sample
quality.

The primary advantage of using the Langevin Stein opera-
tor is that, for a Gaussian target, the operator preserves the
form of the monomials, and consequently we are tracking
convergence in moments. This may not hold true for other
Stein operators. Nevertheless, applying the aforementioned
diffusion Stein operators and other Stein operators to differ-
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ent types of polynomials or function classes can be studied
further in future work.

We show in Appendix D that in the case of Gaussian P (by
extension, in the Bernstein-von Mises limit), one can ap-
ply any invertible linear transform to the parameters and the
method will still detect discrepancies between the original Q
and P in the first r moments. We suggest applying whiten-
ing or, simply standardization when the variances differ
substantially across dimensions. Future work could also con-
sider using alternative norms, for example by maximising
subject to the constraint that ∥β∥1 ≤ 1 or ∥β⊤Wβ∥2 ≤ 1,
the latter of which could be used to weight different mono-
mials and therefore different moments.

Since the PSD is not translation invariant, determining the
optimal parameterisation for Stein discrepancies is an open
problem and an interesting point for further research. We
investigate this further in Appendix C.7.

A further extension could be the use of PSD as a tool to de-
termine the moments in which discrepancies between Q and
P are occurring. In particular, we could examine τ and its
distribution under H0 to obtain an ordering of which mono-
mial terms contribute the most to the discrepancy. Finally,
theoretical investigations into the topological properties re-
lating to the convergence of PSD can be a potential avenue
for future research

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Derivation of Closed Form Solution
Consider the optimisation problem

PSD = sup
g∈G

|EQ[Ag(x)]|

= sup
β∈RJ :∥β∥2≤1

∣∣EQ

[ J∑
k=1

βkAPk(x)
]∣∣

= sup
β∈RJ :∥β∥2≤1

∣∣ J∑
k=1

βkEQ

[
APk(x)

]∣∣
= sup

β∈RJ :∥β∥2≤1

∣∣ J∑
k=1

βkz̄k
∣∣

= sup
β∈RJ :∥β∥2≤1

J∑
k=1

βkz̄k,

where z̄k = EQ[APk(X)]. This can be written as an optimisation problem with a Lagrange multiplier to enforce the
constraint ∥β∥2 ≤ 1 (or equivalently ∥β∥22 ≤ 1). Specifically, we have PSD = supβ∈RJ L(β, λ), where

L(β, λ) =

J∑
k=1

βkz̄k − λ(∥β∥22 − 1).

Computing the gradient of L(β, λ) with respect to β and setting this to zero for the optimisation, we have

0 = ∇βL(β, λ)

0 = z̄ − 2λβ

β =
z̄

2λ
.

Acknowledging that the supremum occurs when ∥β∥2 = 1, we have ∥β∥2 = ∥ z̄
2λ∥2 = ∥z̄∥2

2λ = 1, so λ = ∥z̄∥2

2 and thus
β = z̄

∥z̄∥2
. Finally, substituting this solution for β back into the original objective, the solution for the supremum is

PSD = sup
β∈RJ :∥β∥2≤1

J∑
k=1

βkz̄k

=

J∑
k=1

z̄k
∥z̄∥2

z̄k

= ∥z̄∥2

=

√√√√ J∑
k=1

z̄2k.

B. Proof of Proposition 3.2

Proof. Using the multi-index notation xα =
∏d

i=1 x[i]
αi , we have G = span{xα : α ∈ Nd

0,
∑d

i=1 αi ≤ r} for PSD with
polynomial order r and

PSD =
√ ∑

α∈Nd
0 :
∑d

i=1 αi≤r

EQ[Axα]2.

Thus, PSD = 0 if and only if EQ[Axα] = 0 for all α ∈ Nd
0 :

∑d
i=1 αi ≤ r. We will now proceed by proving that

EQ[Axα] = 0 for all α ∈ Nd
0 :
∑d

i=1 αi ≤ r (i.e. PSD = 0) if and only if the moments of P and Q match up to order r.
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The condition that EQ[Axα] = 0 for all α ∈ Nd
0 :
∑d

i=1 αi ≤ r can be written as a system of
(
d+r
d

)
− 1 linear equations.

For each α, we wish to understand the conditions under which

EQ[Axα] = EQ[∆xα +∇ log p(x) · ∇xα]

= EQ[∆xα + (−Σ−1(x− µ)) · ∇xα]

= EQ[∆xα]− EQ[Σ
−1x · ∇xα] + EQ[Σ

−1µ · ∇xα] (12)
= 0.

This uses the property that P is a Gaussian distribution as per the Bernstein-von Mises limit, so ∇ log p(x) = −Σ−1(x−µ).

Since P decays faster than polynomially in the tails, we can also use the property that EP [Axα] = 0. This leads to a system
of
(
d+k
d

)
− 1 linear equations, where for each α

EP [Axα] = EP [∆xα +∇xα · (−Σ−1(x− µ))]

= EP [∆xα]− EP [∇xα · Σ−1x] + EP [∇xα · µ] (13)
= 0.

Subtracting (13) from (12),

EQ−P [∆xα]− EQ−P [∇xα · Σ−1x] + EQ−P [∇xα · µ] = 0, (14)

where EQ−P [f(x)] is used as a shorthand for EQ[f(x)]−EP [f(x)]. Equation (14) combines the condition that EQ[Axα] =
0 with the property that EP [Axα] = 0 into a single system of equations. Our task is to prove that this system of equations
holds if and only if the moments of P and Q match up to order r. We will do so using proof by induction on the polynomial
order r.

B.1. Base case (r = 1)

For r = 1, xα simplifies to xi for i ∈ {1, . . . , d}. It is simpler in this case to work directly with (12) than to work with (14).
For each i ∈ {1, . . . , d}, we have

EQ[Axi] = 0

EQ[∆xi]− EQ[Σ
−1x · ∇xi] + EQ[Σ

−1µ · ∇xi] = 0

−EQ[Σ
−1
i· x] + EQ[Σ

−1
i· µ] = 0

EQ[Σ
−1
i· x] = Σ−1

i· µ,

where Σ−1
i· denotes the ith row of Σ−1. Vectorising the above system of equations we have

Σ−1EQ[x] = Σ−1µ

EQ[x] = µ.

This proves that PSD with r = 1 is zero if and only if the first order moments (means) of P and Q match.

B.2. Base case (r = 2)

For r = 2, xα simplifies to xixj for i, j ∈ {1, . . . , d}. Following (14), for each i, j we have

EQ−P [∆xixj ]− EQ−P [Σ
−1x · ∇xixj ] + EQ−P [Σ

−1µ · ∇xixj ] = 0.

The first term is EQ−P [∆xixj ] = 0 because ∆xixj = 2Ii=j does not depend on x so the expectations under P and Q
match. Similarly, the final term EQ−P [µ · ∇xixj ] disappears because first-order moments match. Thus

EQ−P [Σ
−1x · ∇xixj ] = 0

EQ−P [Σ
−1
i· xxj ] + EQ−P [Σ

−1
j· xxi] = 0(

Σ−1EQ−P [xx
⊤]
)
ij
+
(
Σ−1EQ−P [xx

⊤]
)
ji
= 0(

Σ−1EQ−P [xx
⊤]
)
ij
+
(
EQ−P [xx

⊤]Σ−1
)
ij
= 0(

Σ−1A
)
ij
+
(
AΣ−1

)
ij
= 0, (15)

13
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where A = EQ−P [xx
⊤]. Note that xx⊤ gives all possible second order moments so if A = 0 then all second order moments

match. We need to show that A = 0 is the only possible solution to this equation.

Let Σ−1 = QDQ⊤, where D is the diagonal matrix of eigenvalues with Dkk = λk for k ∈ {1, . . . , d}. This is an
eigen-decomposition so Q and Q⊤ are orthogonal (Q⊤ = Q−1). Now, (15) holds for all i, j so the vectorised system of
linear equations is

Σ−1A+AΣ−1 = 0

QDQ⊤A+AQDQ⊤ = 0

DQ⊤AQ+Q⊤AQD = 0

Dβ + βD = 0,

where β = Q⊤AQ. The third line comes from multiplying by Q⊤ on the left-hand side and Q on the right-hand side.
Consider now the ijth element:

(Dβ)ij + (βD)ij = 0

(λi + λj)βij = 0.

We know that λk > 0 for all k ∈ {1, . . . , d} because Σ−1 is symmetric positive definite, so it must be that β = 0 and
therefore A = 0 is the only solution.

This proves that PSD with r = 2 if and only if the moments of P and Q match up to order two, i.e. the means and
(co)variances match.

B.3. Inductive Step

Suppose that the moments up to and including order r − 1 match. Noting that EQ−P [∆xα] is of order r − 2 and
EQ−P [∇xα · µ] is of order r − 1 and using (14), we have

EQ−P [∇xα · Σ−1x] = 0. (16)

We must show this signifies that the moments of order r must also match.

For a general rth order monomial, xα can alternatively be written as
∏r

m=1 xim for im ∈ {1, . . . , d}. Therefore we have

EQ−P [Σ
−1x · ∇

r∏
m=1

xim ] =

r∑
n=1

EQ−P [Σ
−1
in·x

r∏
m=1,m ̸=n

xim ] = 0.

This can be written in matrix form for all possible multi-indices of order r using Kronecker products:

0 = EQ−P [

r terms︷ ︸︸ ︷
Σ−1x⊗ x⊤ ⊗ x⊤ ⊗ · · · ⊗ x⊤] + EQ−P [x⊗ (x⊤Σ−1)⊗ x⊤ ⊗ · · · ⊗ x⊤]+

EQ−P [x⊗ x⊤ ⊗ (x⊤Σ−1)⊗ . . .⊗ x⊤] + · · ·+ EQ−P [x⊗ x⊤ ⊗ x⊤ ⊗ . . .⊗ (x⊤Σ−1)].

Writing A = EQ−P [

r terms︷ ︸︸ ︷
x⊗ x⊤ ⊗ · · · ⊗ x⊤] ∈ Rd×dr−1

and using (A⊗B)(C ⊗D) = AB⊗CD provided that one can form
the products AB and CD, this becomes

Σ−1A+A(

r−1 terms︷ ︸︸ ︷
Σ−1 ⊗ I ⊗ · · · ⊗ I) +A(I ⊗ Σ−1 ⊗ · · · ⊗ I) + · · ·+A(I ⊗ I ⊗ · · · ⊗ Σ−1) = 0.

Once again using Σ−1 = QDQ⊤, we have

QDQ⊤A+A(QDQ⊤ ⊗ I ⊗ · · · ⊗ I) +A(I ⊗QDQ⊤ ⊗ · · · ⊗ I) + · · ·+A(I ⊗ I ⊗ · · · ⊗QDQ⊤) = 0.
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Multiplying by Q⊤ on the left and (

r−1 terms︷ ︸︸ ︷
Q⊗Q⊗ · · · ⊗Q) on the right

0 = DQ⊤A(Q⊗Q · · · ⊗Q) +Q⊤A(QDQ⊤ ⊗ I ⊗ · · · ⊗ I)(Q⊗Q · · · ⊗Q)

+Q⊤A(I ⊗QDQ⊤ ⊗ · · · ⊗ I)(Q⊗Q · · · ⊗Q) + · · ·+Q⊤A(I ⊗ I ⊗ · · · ⊗QDQ⊤)(Q⊗Q · · · ⊗Q)

0 = DQ⊤A(Q⊗Q · · · ⊗Q) +Q⊤A(QD ⊗Q⊗ · · · ⊗Q)

+Q⊤A(Q⊗QD ⊗ · · · ⊗Q) + · · ·+Q⊤A(Q⊗Q⊗ · · · ⊗QD)

0 = DQ⊤A(Q⊗Q · · · ⊗Q) +Q⊤A(Q⊗Q · · · ⊗Q)(D ⊗ I ⊗ · · · ⊗ I)

+Q⊤A(Q⊗Q · · · ⊗Q)(I ⊗D ⊗ · · · ⊗ I) + · · ·+Q⊤A(Q⊗Q · · · ⊗Q)(I ⊗ I ⊗ · · · ⊗D)

0 = Dβ + β(D ⊗ I ⊗ · · · ⊗ I) + β(I ⊗D ⊗ · · · ⊗ I) + · · ·+ β(I ⊗ I ⊗ · · · ⊗D),

where β = Q⊤A(Q ⊗ Q ⊗ · · · ⊗ Q). Now consider the ijth entries in these equations, where i ∈ {1, . . . , d} and
j ∈ {1, . . . , dr−1}. The Kronecker product of diagonal matrices is diagonal, so the terms (D⊗I⊗· · ·⊗I), (I⊗D⊗· · ·⊗I)
up to (I ⊗ I ⊗ · · · ⊗D) all consist of diagonal matrices with elements of λ on the diagonal. The explicit value of λ for
any given i and j is not important, so for now consider indices zs ∈ {1, . . . , d} for s = 1, . . . , r which may not be unique2.
Then we have

(λz1 + λz2 + · · ·λzk)βij = 0.

Since all λ > 0 by positive-definiteness of Σ−1, we have that βij = 0 for all i and j and therefore

β = 0

Q⊤A(Q⊗Q⊗ · · · ⊗Q) = 0

A = 0,

where the third line comes from multiplying by Q on the left and (Q⊤ ⊗ Q⊤ ⊗ · · · ⊗ Q⊤) on the right. We have now
shown that EQ[Axα] = 0 for all α ∈ Nd

0 :
∑d

i=1 αi ≤ r if and only if the moments of P and Q match up to order r. Thus
PSD = 0 if and only if the moments of P and Q match up to order r.

C. Additional Empirical Results
This section provides additional empirical results, as explained in Section 4.

C.1. Asymptotic Goodness-of-fit Test

(a) Unit Gaussian (i.e. Q =
P ), 500 repeats

(b) Variance-perturbed
Gaussian, 200 repeats

(c) Student-t, 250 repeats (d) Laplace, 500 repeats

Figure 5. Type I error rate (a) and statistical power (b,c,d) for detecting discrepancies between the unit Gaussian P and the sampling
distribution Q, using the test based on the asymptotic distribution of the U-statistic.

We reproduce Figure 1 in Section 4.1 of the main paper by using Corollary 3.1 to implement a test based on the asymptotic

distribution of the U-statistic, P̂SD
2

u. Specifically, we set P = N(0d, Id) and assess the performance for a variety of Q

2To be explicit in an example of a fourth order polynomial, consider instead i and j indices starting at zero so i ∈ {0, . . . , d− 1} and
j ∈ {0, . . . , d3 − 1}. Then the explicit form of the equation is (λi + λ⌊j/d2⌋ + λ⌊j/d⌋%d + λj%d)βij = 0 where a%d = a− d⌊a/d⌋ is
the remainder operator.
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and d using statistical tests with significance level α = 0.05. We draw 5000 samples from the null distribution given in
Corollary 3.1 using the plugin estimator Σ̂q . We investigate the four cases described in Section 4.1 with identical settings as
in the main paper.

The results are shown in Figure 5. Primarily, while PSD displays good performance for the variance-perturbed (r = 2 and
r = 4) and Laplace (r = 4) experiments, PSD with r = 4 does not maintain high power in the case of the student-t. Also,
we note that the type I error is not well controlled. Further, the asymptotic test can be slower than the bootstrap test due to
the computation of the eigenvalues of the covariance matrix (complexity O(J3)). This can be improved by considering
approximations to the covariance matrix, however this would introduce bias asymptotically.

We recommend the bootstrap procedure for goodness-of-fit testing over the asymptotic test due to its higher statistical power,
better control over type I error and lower computational complexity.

C.2. Detecting Second Moment Discrepancies

Section 4.1 of Kanagawa et al. (2022) illustrates the failure of the standard KSD with IMQ kernel for detecting non-
convergence of the second moment of a simple sequence, (Qn)n≥1 to its target P , set to be the standard Gaussian of d
dimensions, P = N (0, Id). The sequence Qn is defined as follows:

Qn =

(
1− 1

n+ 1

)
Pn +

1

n+ 1
δxn

,

where Pn = 1
n

∑n
j=1 δXj , and xn =

√
n+ 1 · 1 with 1 = (1, . . . , 1) (a vector of ones), and {X1, . . . , Xn}

i.i.d∼ P are i.i.d.
with Xi ∼ P .

Kanagawa et al. (2022) demonstrate that the sequence Qn converges to P almost surely. However, it has the following
(almost sure) biased limit:

lim
n→∞

EY∼Qn [Y ⊗ Y ] = EX∼P [X ⊗X] + 1⊗ 1.

Figure 6 shows trace plots of KSD, PSD and the Euclidean distance between the true and estimated moments up to order
2. While KSD appears to decay exponentially to zero, the trace plot for our recommended PSD with r = 2 is remarkably
similar to the trace plot for the Euclidean discrepancy in moments up to order 2. This is in contrast to the method from
Kanagawa et al. (2022), which quickly asymptotes to a non-zero value. While their approach is likely to have higher
statistical power, we believe PSD has practical advantages since it is aimed at directly tracking discrepancies in moments.
Moreover, we achieve moment tracking in linear time rather than the quadratic time of Kanagawa et al. (2022).
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Figure 6. Moment tracking capabilities of PSD for Example 4.1 of Kanagawa et al. (2022)

C.3. Logistic Regression: Sparsity Prior

We extend the empirical investigations to consider a more challenging logistic regression task with a sparsity-inducing prior.
We use the stochastic search variable selection (SSVS) prior of George & McCulloch (1993), corresponding to a mixture of
Gaussians with standard deviations of 0.1 and 10. The resulting posterior is multimodal with modes capturing the zero and
non-zero estimates from the sparse prior. We simulate data with 100 observations and d = 20 variables, of which three
are non-zero. We use multiple ULA runs with different step sizes and different initialisations to thoroughly investigate the
performance of PSD.

Our results (averaged over 5 runs) are presented in Table 2 and the posterior distributions corresponding to the different step
sizes are given in figure 7. The normalised median discrepancy values are reported. KSD and PSD with r = 1 have similar
performance and fail to identify the poor performance of ULA for large step sizes. PSD with r ≥ 2 identifies the step size
with the best moment estimation. In particular, despite the posterior being far from normal, our methods still attain superior
performance for assessing moment discrepancies compared to IMQ KSD.
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Step Size KSD PSD1 Eucl1 PSD2 Eucl2 PSD3 Eucl3 PSD4 Eucl4
1× 10−5 1.0e+00 1.0e+00 6.2e-02 1.0e+00 2.2e-02 1.0e+00 7.4e-03 2.3e-01 2.4e-03
5× 10−5 5.7e-01 5.6e-01 5.8e-02 5.6e-01 2.1e-02 5.7e-01 7.2e-03 1.3e-01 2.3e-03
1× 10−4 4.3e-01 4.3e-01 5.4e-02 4.5e-01 2.0e-02 4.8e-01 6.7e-03 1.2e-01 2.2e-03
5× 10−4 2.0e-01 2.0e-01 3.9e-02 2.3e-01 1.5e-02 2.6e-01 5.0e-03 6.6e-02 1.6e-03
1× 10−3 1.4e-01 1.4e-01 3.1e-02 1.6e-01 1.2e-02 1.9e-01 3.8e-03 5.1e-02 1.2e-03
5× 10−3 7.2e-02 6.7e-02 1.56e-02 8.38e-02 4.88e-03 1.07e-01 1.79e-03 3.25e-02 5.75e-04
1× 10−2 6.6e-02 4.7e-02 7.0e-02 1.0e-01 2.9e-02 1.5e-01 1.1e-02 5.4e-02 3.8e-03
5× 10−2 2.9e-02 2.4e-02 7.6e-01 1.5e-01 6.5e-01 5.3e-01 5.4e-01 4.5e-01 4.5e-01
1× 10−1 2.78e-02 1.70e-02 1.0e+00 2.0e-01 1.0e+00 9.7e-01 1.0e+00 1.0e+00 1.0e+00

Table 2. Normalised discrepancies for the logistic regression example with sparsity-inducing prior. Shown are the KSD, the PSD and the
Euclidean distance between estimated and gold-standard moments of order at most r. The lowest value is shown in bold.

Figure 7. ULA sample plots in blue approximating the true posterior (red) for the logistic regression example with sparsity-inducing prior.
PSD selects a step size of 0.005 which visually provides a good approximation the true posterior.

C.4. Logistic Regression: Big Data Example

We consider another logistic regression example looking at the performance of PSD when the posterior is close to normal.
This example is a logistic regression with 104 observations and d = 5 variables using Gaussian priors with a standard
deviation of 10, thereby making the Bernstein-von Mises approximation suitable. Similarly to the previous example, we run
each example five times with multiple ULA initialisations. The results are shown in Table 3 and the posterior distributions
corresponding to the different step sizes given in figure 8. We find that PSD performs well in identifying the best choice of
step size in ULA, though the performance for PSD with r = 1 is not optimal. Looking at plots of the marginal gradients
versus the marginal samples as a heuristic, as per the suggestion made in Section 5, we find that when the samples are largely
in the tails (e.g. for larger step-sizes), the Gaussian approximation is poor. Higher-order PSD performs excellently and in
particular, PSD with r = 2, which is what we recommend in general, is both computationally cheap and capable of dealing
with samples taken mainly in the tails.
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Step Size PSD1 Eucl1 PSD2 Eucl2 PSD3 Eucl3 PSD4 Eucl4
1× 10−5 7.44e-01 5.92e-05 1.97e-04 7.98e-07 1.80e-06 7.70e-09 1.11e-08 7.12e-11
5× 10−5 2.80e-01 2.89e-05 7.07e-05 4.22e-07 6.75e-07 4.30e-09 4.26e-09 3.70e-11
1× 10−4 2.02e-01 2.31e-05 5.14e-05 3.41e-07 4.92e-07 3.68e-09 2.76e-09 3.35e-11
5× 10−4 8.19e-02 1.40e-05 2.30e-05 2.51e-07 2.35e-07 2.97e-09 1.61e-09 2.77e-11
1× 10−3 6.25e-02 2.10e-05 3.20e-05 3.89e-07 3.74e-07 4.65e-09 2.71e-09 4.35e-11
5× 10−3 5.89e-01 2.92e-02 5.89e-02 1.19e-03 2.21e-03 3.53e-05 5.52e-05 9.13e-07
1× 10−2 7.32e-01 7.14e-02 1.19e-01 5.46e-03 7.98e-03 3.40e-04 4.71e-04 1.97e-05
5× 10−2 9.23e-01 4.60e-01 5.03e-01 2.08e-01 2.10e-01 9.19e-02 9.63e-02 4.05e-02
1× 10−1 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00

Table 3. Normalised discrepancies for the logistic regression example with big data. Shown are the PSD and the Euclidean distance
between estimated and gold-standard moments of order at most r. The lowest value is shown in bold.

Figure 8. ULA sample plots in blue approximating the true posterior (red) for the logistic regression example with big data. PSD selects a
step size of 5× 10−4 which visually provides a good approximation the true posterior.

C.5. PSD without interaction terms

In Section 3, we proposed an alternative PSD methods that excludes interactions to achieve a computational complexity that
scales linearly with dimension, specifically O(ndr). In the context of a Gaussian P with independent components, this
means the inability to detect discrepancies in correlation.

We now empirically investigate the performance of PSD without interactions on the SGLD example from Section 4.2 and on
the two additional logistic regression examples. The results are shown in Figure 9 for the SGLD example and in Figure 10
for the logistic regression examples. The performance is remarkably similar to the performance with interactions. This is
also true for the logistic regression examples when the covariates are simulated using an auto-regressive process with high
positive or negative autocorrelation.

We do not investigate this for the Gaussian goodness-of-fit examples since we know there is no disadvantage to removing
interactions in that context, and the statistical power would therefore be similar to or better than the power with interactions.

We believe PSD without interactions should generally perform similarly to PSD with interactions when applied to biased
sampling methods like ULA and SGLD. Removing interactions may have more effect on bespoke sampling methods that
treat multivariate relationships differently.
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Figure 9. PSD with and without interactions for the SGLD example from Section 4.2.

Figure 10. PSD with and without interactions for the logistic regression examples with (a) sparsity-inducing prior and (b) big data.

C.6. Rosenbrock Target

We conduct an empirical study with the target P , set to the two-dimensional Rosenbrock function (Rosenbrock, 1960;
Goodman & Weare, 2010), given by:

p(x) ∝ exp
(
− (x1 − µ1)

2 − b
(
x2 − x2

1

)2)
,

where b is a constant and EP [x1] = µ1. Inference for this target is challenging because there is high probability mass in a
narrow, curved region with complex dependencies and different scales across dimensions (Pagani et al., 2022).

We use this non-Gaussian example to show analytical reasoning and empirical investigations for a case where we are failing
to track differences in the first r moments. We provide the form of the expectations we are tracking instead when r = 1.

By explicitly writing the form of the PSD, we can see that PSD with r = 1 is zero if and only if 2b
(
EQ[x1x2]− EQ[x

3
1]
)
=

EQ[x1]− µ1 (associated with monomial x1), and EQ[x
2
1] = EQ[x2] (associated with monomial x2). This can be derived by

setting EQ[∇x1
log p(x)] = 0 (associated with monomial x1), and EQ[∇x2

log p(x)] = 0 (associated with monomial x2)
and rearranging. Unlike in PSD for Gaussian targets, this is not simply assessing the accuracy of the first moment. The
equation associated with monomial x1 may hold when EQ[x1] is correct (i.e. EQ[x1] = µ1), but it could also hold when
EQ[x1] is incorrect and this is offset by having EQ[x1x2] ̸= EQ[x

3
1]. Similarly, the equation associated with monomial x2

is not directly assessing whether the moments of P and Q match, but rather whether certain relationships between moments
are correct. This is different from the situation when we have Gaussian P .

The conditions under which PSD with higher r is zero can also be derived. For example, to have zero PSD with r = 2
would also require that EQ[2 + 2x1∇x1 log p(x)] = 0 (monomial x2

1), EQ[2 + 2x2∇x2 log p(x)] = 0 (monomial x2
2) and
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EQ[x1∇x2
log p(x) + x2∇x1

log p(x)] = 0 (monomial x1x2). However, these become increasingly complex and difficult
to interpret for higher r.

To empirically investigate the performance of PSD, we provide time series plots of PSD and KSD with increasing n using
samples either from P (Figure 11) or from an altered Rosenbrock target with incorrect b (Figure 12). For the former,
all expectations converge to their true values as n → ∞ and we expect all discrepancies to go towards zero. This is
what we find empirically as well. For the latter, the first moment is correct but the variance is incorrect. One might then
hope that PSD with r = 1 would convergence towards zero but this not the case, as we have discovered analytically and
empirically in Figure 12. Importantly, since P is far from Gaussian, PSD is not tracking the discrepancies in the moments
well. Nevertheless, it may be a useful discrepancy, even for this unusual P , for certain tasks like choosing a sampler.

Figure 11. Time series plots of KSD, PSD and Euclidean distances between estimated and true moments up to order r when sampling
from the correct Rosenbrock target. Results are shown for (a) r = 1 and (b) r = 2.

Figure 12. Time series plots of KSD, PSD and Euclidean distances between estimated and true moments up to order r when sampling
from a Rosenbrock distribution with misspecified b. Results are shown for (a) r = 1 and (b) r = 2.
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C.7. Translation of Mean

The PSD is not translation invariant. Specifically, one could inflate the value of PSD by considering arbitrary translations of
the data by its mean. To further investigate, we have performed empirical investigations into the effect of the transformation
x̃ = x− µQ, where µQ is the mean of Q. We believe this is the most sensible and practical translation to consider. However,
using a mean-shift, as described, does not affect which discrepancies PSD is theoretically capable of detecting but it may
affect its statistical power in doing so. It can be observed that PSD with r = 1 is mean-shift invariant because it is based
solely on the score function, which does not change with such a transformation. However, PSD with higher r uses both the
samples and the score function in the discrepancy so it can be sensitive to the mean-shift.

We consider two cases based on a Gaussian P with unit covariance, N = 100 and d = 5. Further, we are interested in the
case where the mean of P (µP ) is not the same across all dimensions, since we believe this is where the impact on statistical
power will have the most effect. For this reason, we consider two cases, (1) µP = (a, 0, . . . , 0) and (2) µP = (0, a, . . . , a).
The discrepancy will be in the first dimension in both cases, so we are interested in how the relative scales of the means that
are correctly specified versus misspecified affect the results. We consider the two cases of mean translation for situations
with a misspecified mean as well as misspecified variance.

Table 4. We consider both case (1) and case (2) in situations where the discrepancy is in the (first) mean (µQ = µP + 0.5e1) or in the
(first) variance ([ΣQ]11 = [ΣP ]11 + 0.5). A “t” in front of the discrepancy indicates we have performed a mean-shift reparameterisation.

a
Case Misspecified Discrepancy -1.5 -1.0 -0.5 0.0 0.5

1 Mean PSD2 0.70 0.11 0.06 0.16 0.87
tPSD2 0.98 0.22 0.06 0.13 0.84
PSD3 0.71 0.26 0.06 0.18 0.76
tPSD3 0.92 0.30 0.05 0.19 0.74

2 Mean PSD2 1.00 1.00 0.76 0.20 0.08
tPSD2 1.00 1.00 0.84 0.14 0.06
PSD3 1.00 0.96 0.72 0.26 0.06
tPSD3 1.00 1.00 0.82 0.25 0.10

1 Variance PSD2 1.00 0.96 0.78 0.55 0.32
tPSD2 1.00 0.98 0.84 0.54 0.32
PSD3 0.96 0.92 0.70 0.36 0.17
tPSD3 0.97 0.90 0.70 0.32 0.17

2 Variance PSD2 0.97 0.83 0.62 0.39 0.27
tPSD2 1.00 0.98 0.88 0.56 0.34
PSD3 0.83 0.65 0.44 0.29 0.16
tPSD3 0.98 0.90 0.70 0.36 0.16

Table 4 shows the estimated statistical power based on 200 independent simulations. The results demonstrate that the
original mean scaling does affect the results, but the performance with the mean-shift reparamerisation is generally similar
to, if not slightly better than, the performance with no reparameterisation. Importantly, the choice of parameterisation
is a problem that affects Stein discrepancies more generally. KSD with radial kernels, i.e. kernels that are functions of
the form ∥∥x− y∥∥, like the Gaussian kernel, are mean-shift invariant. However, they are still sensitive to other types of
reparameterization, such as whitening (considered in Appendix D).

D. Using an Invertible Linear Transform
Corollary D.1. Consider PSD applied on the transformed space y = Wx, where W ∈ Rd×d is an invertible matrix
that is independent of {xi}Ni=1. Denote the distribution of y = Wx by Q̃. Using a change of variables, ∇y log p̃(y) =
W−⊤∇x log p(x). The new discrepancy,

PSDW =
√ ∑

α∈Nd
0 :
∑d

i=1 αi≤r

EQ̃[∆yyα +∇y log p̃(y) · ∇yyα]2,

is zero if and only if the moments of P and Q match up to order r.
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Proof. Under the Bernstein-von-Mises limit (or generally for Gaussian targets), P = N (µ,Σ) so in the transformed space
P̃ = N (µ̃, Σ̃) where µ̃ = Wµ and Σ̃ = WΣW⊤.

Next, we will show that Σ̃ is symmetric positive definite. Since Σ̃ = WΣW⊤ = Σ̃⊤, Σ̃ is symmetric. Since Σ is
positive-definite, z⊤Σ̃z = z⊤WΣW⊤z > 0 only requires that we do not have W⊤z = 0 and therefore by invertibility of
W , that we do not have z = 0. Thus, z⊤Σ̃z = z⊤WΣW⊤z > 0 for all non-zero z ∈ Rd, which by definition means that Σ̃
is positive-definite.

The assumptions of Proposition 3.2 (symmetric, positive-definite covariance) are met for this transformed space so for any
r ∈ N we have

Ey∼Q̃[

(r terms)︷ ︸︸ ︷
y ⊗ y⊤ ⊗ · · · ⊗ y⊤] = Ey∼P̃ [

(r terms)︷ ︸︸ ︷
y ⊗ y⊤ ⊗ · · · ⊗ y⊤]

Ex∼Q[Wx⊗ (Wx)⊤ ⊗ · · · ⊗ (Wx)⊤] = Ex∼P [Wx⊗ (Wx)⊤ ⊗ · · · ⊗ (Wx)⊤]

WEx∼Q[x⊗ x⊤ ⊗ · · · ⊗ x⊤](W⊤ ⊗ · · · ⊗W⊤) = WEx∼P [x⊗ x⊤ ⊗ · · · ⊗ x⊤](W⊤ ⊗ · · · ⊗W⊤)

Ex∼Q[x⊗ x⊤ ⊗ · · · ⊗ x⊤] = Ex∼P [x⊗ x⊤ ⊗ · · · ⊗ x⊤].

Therefore we have that PSD applied to the transformed y = Wx is equal to zero if and only if the moments of P and Q
match up to order r.
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