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Abstract

Topology optimization (TO) is a family of computational methods that derive1

near-optimal geometries from formal problem descriptions. Despite their success,2

established TO methods are limited to generating single solutions, restricting the3

exploration of alternative designs. To address this limitation, we introduce Topol-4

ogy Optimization using Modulated Neural Fields (TOM) – a data-free method5

that trains a neural network to generate structurally compliant shapes and explores6

diverse solutions through an explicit diversity constraint. The network is trained7

with a solver-in-the-loop, optimizing the material distribution in each iteration.8

The trained model produces diverse shapes that closely adhere to the design re-9

quirements. We validate TOM on established 2D and 3D TO benchmark problems.10

Our results show that TOM generates more diverse solutions than any previous11

method, all while maintaining near-optimality and without relying on a dataset.12

These findings open new avenues for engineering and design, offering enhanced13

flexibility and innovation in structural optimization. 114

(a) Deflated barrier (b) TopoDiff (c) TOM (ours)

Figure 1: Solutions to the cantilever problem generated by three TO methods. (a) Deflated barrier – a
classical TO method generating high-quality but few solutions. (b) TopoDiff – a data-driven diffusion
model generating many, but low-quality solutions. (c) TOM – our modulated neural field trained with
a solver-in-the-loop and a diversity constraint generating diverse near-optimal structures. Here, we
use a circular modulation space to capture a smooth manifold of solutions. All methods minimize the
structural compliance C, which measures the total displacement of the loaded shape.

1The code will be made public upon acceptance.

Submitted to the AI for Science workshop (NeurIPS 2025). Do not distribute.



1 Introduction15

Topology optimization (TO) is a computational design technique to determine the optimal material16

distribution within a given design space under prescribed boundary conditions. A common objective17

in TO is the minimization of structural compliance, which measures the displacement under load. Due18

to the non-convex nature of TO problems, these methods generally provide near-optimal solutions,19

with no guarantees of converging to global optima [1].20

Traditional TO methods are limited to producing a single design. However, generating multiple diverse21

solutions is important to balance performance with other considerations, such as manufacturability,22

cost, and aesthetics. Therefore, we propose Topology Optimization using Modulated Neural Fields23

(TOM), an approach to generate diverse, near-optimal designs: A neural network parametrizes the24

shape representations and is trained to generate near-optimal solutions. The model is optimized using25

a solver-in-the-loop approach [43], where the neural network iteratively adjusts the design based on26

feedback from a physics-based solver.27

To enhance the diversity of solutions, we introduce an explicit diversity constraint during training.28

TOM not only enables the generation of multiple, diverse designs but also leverages machine learning29

to explore the design space more efficiently than traditional TO methods [36].30

Empirically, we validate our method on TO for linear elasticity problems in 2D and 3D. Our results31

demonstrate that TOM obtains more diverse solutions than prior work while being substantially faster32

and remaining near-optimal. This addresses a current limitation in TO and opens new avenues for33

automated engineering design.34

Our main contributions are summarized as follows:35

1. We introduce TOM, the first method for data-free, solver-in-the-loop neural network training,36

which generates diverse solutions adhering to structural requirements.37

2. We introduce a novel diversity constraint variant for neural density fields based on the38

Chamfer discrepancy that ensures the generation of distinct and meaningful shapes and39

enhances the exploration of the designs.40

3. Empirically, we demonstrate the efficacy and scalability of TOM on 2D and 3D prob-41

lems, showcasing its ability to generate a variety of near-optimal designs. Our approach42

significantly outperforms existing methods in terms of solution diversity.43

2 Background44

2.1 Topology optimization45

TO is a computational method developed in the late 1980s to determine optimal structural geometries46

from mathematical formulations [6]. TO iteratively updates a material distribution within a design47

domain under specified loading and boundary conditions. Due to the non-convex nature of most48

TO problems, convergence to a global minimum is not guaranteed. Instead, the goal is to achieve a49

near-optimal solution, where the objective closely approximates the global optimum. There are four50

prominent method families widely recognized in TO. In this work, we focus on SIMP and refer the51

reader to Yago et al. [47] for a more detailed introduction.52

Solid isotropic material with penalization (SIMP) is a prominent TO method we adapt for TOM.53

SIMP operates on a mesh with mesh points xi ∈ X , i ∈ {1, ..., N} in the design region. The aim54

is to find a binary density function at each mesh point ρ(xi) ∈ {0, 1}, where ρ(xi) = 0 represents55

void and ρ(xi) = 1 represents solid material. To make this formulation differentiable, the material56

density ρ is relaxed to continuous values in [0, 1]. A common objective of SIMP is to minimize the57

compliance C, a measure of deformation under load. The SIMP objective is then formulated as a58

constrained optimization problem:59

min : C(ρ) = uTKρu

s.t. : V =

N∑
i=1

ρivi ≤ V ∗

0 ≤ ρi ≤ 1 ∀i ∈ N

(1)
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where u is the displacement vector, Kρ is the global stiffness matrix, V is the shape volume, and60

V ∗ is the target volume. The density field is optimized iteratively. In each iteration, a finite element61

(FEM) solver computes the compliance and provides gradients to update the density field ρ. To62

encourage binary densities, intermediate values are penalized by raising ρ to the power p > 1. Hence,63

the stiffness matrix is defined as Kρ =
∑N

i=1 ρ
p
iKi , where Ki describes the stiffness of solid cells64

and depends on material properties.65

TO for multiple solutions. Generating multiple design alternatives for TO problems is crucial for66

many real-world engineering cases where single optima often don’t exist. However, classical TO67

algorithms typically yield a single solution and do not ensure convergence to a global minimum.68

Papadopoulos et al. [32] introduce the deflated barrier (DB) method, an extension of the classical69

SIMP approach that can find multiple solutions. By employing a search strategy akin to depth-first70

search, DB identifies multiple solutions without relying on initial guess variations, thereby enhancing71

design diversity.72

Figure 2: Taxonomy of classical and neural topology optimization methods. The dashed lines indicate
iterative updates, such as gradient descent. TOM is the first data-free method to produce multiple
shapes with a neural network.

2.2 Shape generation with neural networks73

Neural fields offer a powerful framework for geometry processing, utilizing neural networks74

to model shapes implicitly. This approach enables high-quality and topologically flexible shape75

parameterizations [12]. The two prevalent methods for representing implicit shapes are signed76

distance functions (SDF) [33, 2] and density (or occupancy) [29] fields. We opt for the density77

representation due to its straightforward compatibility with SIMP optimization.78

Given a dx ∈ {2, 3} dimensional domain X ⊂ Rdx , a neural density field employs a neural network79

fθ : X → (0, 1) with parameters θ to define the shape Ω := {x ∈ X |fθ(x) ≥ τ} as the τ ∈ [0, 1]80

super-level-set of fθ.81

Conditional neural fields. While a neural density field represents a single shape, a conditional82

neural field represents a set of shapes with a single neural network [26]. Generally, one can condition83

on text, point clouds, or other modalities of interest [49]. In this work, we use a modulation code84

z ∈ Rdz as an additional input to the network. The resulting network fθ(x, z) parametrizes a set of85

shapes. There are different ways to incorporate the modulation vector into the network, such as input86

concatenation [33], hypernetworks [17], or attention [35]. In this work, we use input concatenation,87

as it is simple and fast to train.88

Diversity constraint can be used to modify the TO problem formulation (1) to facilitate the discovery89

of multiple solutions. The diversity constraint introduced in geometry-informed neural networks90

(GINNs) [8] defines a diversity measure δ on the set of shapes {Ωi} as91

δ({Ωi}) =
(∑

j

[
min
k ̸=j

d(Ωj ,Ωk)
]1/2)2

. (2)

This measure builds upon a chosen dissimilarity function d(Ωi,Ωj). Essentially, δ encourages92

diversity by maximizing the distance between each shape and its nearest neighbor.93
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Figure 3: A single iteration of TOM trained with M = 3 shapes in parallel. In each iteration, the input
to the network consists of the mesh vertices {xi}i=1,...,N and modulation vectors {z}j=1,...,M . The
network outputs densities ρj at the vertices xi for each shape. The densities are passed to the FEM
solver, which computes the compliances Cj and volumes Vj , as well as their gradients ∇ρCj and
∇ρVj . The diversity loss δ(ρ) and its gradient ∇ρδ are based on the Chamfer discrepancy between
the surface points of the shapes.

GINNs utilize a dissimilarity function on the shape boundary, but their approach is limited to signed94

distance functions (SDFs). In Section 3.2, we show how to adapt the Chamfer discrepancy as a95

dissimilarity function on density fields.96

2.3 Topology optimization with neural networks97

Figure 2 presents an overview of various TO methods that search for either single or multiple solutions,98

further categorized by their use of neural networks.99

Neural reparameterization uses a neural network to represent the material distribution in a100

discretization-free manner. Existing work explores training a single shape by parametrizing the101

material density [40, 9, 10, 18] or boundary [13], which is optimized with a solver-in-the-loop. NITO102

[31] uses modulation of a neural field to introduce constraints on the boundary of a single shape.103

NTopo [48] uses a conditional neural field to generate individual solutions for different topology104

optimization problems, adapting to factors like target volume or force vector position. TOM, however,105

finds multiple solutions, not just one per setting.106

Data-driven neural TO uses a dataset of generated solutions to train neural networks that can107

then generate diverse solutions. Most prior works use generative adversarial networks (GANs)108

[16, 15, 44, 30]. Recent work showed the superiority of diffusion models for data-driven TO [25].109

Data-driven methods require a large amount of compute to generate a dataset and train a large110

generative model and aim to amortize these costs by fast inference on new, unseen problem settings.111

3 Method112

3.1 TO using modulated neural fields113

Definitions. Let X ⊂ Rdx be the domain of interest in which there is a shape Ω ⊂ X . Let Z ⊂ Rdz114

be a discrete or continuous modulation space, where each z ∈ Z parametrizes a shape Ωz. The115

possibly infinite set of all shapes is denoted by ΩZ = {Ωz|z ∈ Z}. The modulation vectors {zi} are116

sampled according to a probability distribution p(Z).117

For density representations a shape Ωz is defined as the set of points with a density greater than118

the level τ ∈ [0, 1], formally Ωz = {x ∈ X | ρz(x) > τ}. While some prior work on occupancy119

networks [28] treats τ as a tunable hyperparameter, we follow Jia et al. [19] and fix the level at120

τ = 0.5. We model the density ρz(x) = fθ(x, z), corresponding to the modulation vector z at a121

point x using a neural network fθ, with θ being the learnable parameters.122

TO using modulated neural fields. Our approach, akin to standard SIMP, formulates a constrained123

optimization problem aiming to minimize an objective function for multiple shapes simultaneously,124

while adhering to a volume constraint for each shape. Central to our method is the introduction125

of a diversity constraint, denoted as δ(ΩZ), which is defined over multiple shapes to reduce their126

similarity. This leads to the following constrained optimization problem:127
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min : Ez∼p(Z) [C(ρz)]

s.t. : Vz =

∫
X
ρz(x)dx ≤ V ∗

0 ≤ ρz(x) ≤ 1 δ∗ ≤ δ(ΩZ)

(3)

where V ∗ and δ∗ are target volumes and diversities, respectively. TOM updates the density fields of128

multiple shapes iteratively. In each iteration, the density distribution of each shape is computed and129

the resulting densities are passed to the FEM solver. The FEM solver calculates the compliance loss130

C and gradients∇C. To accelerate the computation, parallelization of the FEM solver is employed131

across multiple CPU cores, with a separate process dedicated to each shape.132

The diversity loss and its gradient are computed on the GPU using PyTorch [34], along with any133

optional geometric losses similar to GINNs.134

We use the adaptive augmented Lagrangian method (ALM) [4] to automatically balance multiple loss135

terms. Additionally, we gradually increase the sharpness parameter β of the Heaviside filter (Equation136

14), which acts as annealing. The complete TOM method is concisely presented in Algorithm 1.137

(a) MBB (b) Cantilever (c) Jet engine bracket

Figure 4: Three benchmark problem definitions. (a) MBB: The boundary is fixed at the attachment
points at the bottom left and right corners. The dotted line indicates the symmetry axis at L

2 where
the force F is applied. (b) Cantilever: Forces F1, F2 are applied at distance h from the upper and
lower boundaries. The left boundary is fixed. (c) Jet engine bracket. Left: Available design region
with six cylindrical interfaces where the shape must attach. Right: A diagonal force is applied at the
two central interfaces. The bracket is fixed at the four side interfaces.

3.2 Diversity138

The diversity loss, defined in Equation 2, requires the definition of a pairwise dissimilarity measure139

between shapes. GINNs [8] use boundary dissimilarity, which is easily optimized for SDFs since140

the value at a point is the distance to the zero level set. However, this dissimilarity measure does not141

apply to our density field shape representation. Hence, we propose a boundary dissimilarity based on142

the chamfer discrepancy.143

Diversity via differentiable chamfer discrepancy. To define the dissimilarity on the boundaries of144

a pair of shapes (∂Ω1, ∂Ω2), we use the one-sided chamfer discrepancy (CD):145

CD(∂Ω1, ∂Ω2) =
1

|∂Ω1|
∑

x∈∂Ω1

min
x̃∈∂Ω2

||x− x̃||2 (4)

To use the CD as a loss, it must be differentiable w.r.t. the network parameters θ. However, the146

chamfer discrepancy CD(∂Ω1, ∂Ω2) depends only on the boundary points xi ∈ ∂Ω which only147

depend on fθ(xi) implicitly. Akin to prior work [11, 7, 27], we apply the chain rule and use the148

level-set equation to derive149

∂CD
∂θ

=
∂CD
∂x

∂x

∂y

∂y

∂θ
=

∂CD
∂x

∇xfθ
|∇xfθ|2

∂y

∂θ
(5)

where y = ρ is the density field in our case. We detail this derivation in Appendix C.3. Finding150

surface points on density fields is substantially harder than for SDFs, as there is no reliable gradient151

information to exploit for root finding. Therefore, we employ a robust algorithm detailed in Algorithm152

2.153
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Geometric constraints We utilize geometric constraints similar to GINNs, leveraging the continuous154

field representation to learn finer details, particularly at interfaces. Further details are provided in155

Table 5 and Appendix B.156

4 Experiments157

(a) Deflated barrier (b) TopoDiff (c) TOM (ours)

Figure 5: Solutions to the MBB beam problem generated by three TO methods.

We solve three standard TO benchmark problems comparing TOM to established classical and158

data-driven methods. For all our TOM experiments, we employ the WIRE architecture [37], which159

uses wavelets as activation functions. This imposes an inductive bias towards high frequencies,160

while being more localized than, e.g., a sine activation [39]. We use a 2-dimensional modulation161

space and sample vectors uniformly on a circle with radius r. We denote a circle centered at the162

origin with radius r as the 1-sphere S1(r) = {x ∈ R2 : ∥x∥ = r}. This 1D manifold embedded in163

the 2D modulation space assures that modulation vectors are sufficiently far apart from each other164

to avoid mode collapse. The radius controls the initial diversity of the shapes and is an important165

hyperparameter to tune (see also Appendix A.6). At each iteration, the number of shapes M is either166

9 or 25, depending on the problem. For further experimental details, see Appendix A.167

4.1 Problem definitions168

We apply our method to common linear elasticity problems [38, 19] in two and three dimensions,169

namely the Messerschmitt-Bölkow-Blohm (MBB) beam, the cantilever beam, and the jet engine170

bracket. Due to the symmetry of the MBB beam, we follow Papadopoulos et al. [32] and optimize171

only the right half. More details and descriptions are provided in Figure 4 and Appendix D.1.172

4.2 Baselines173

The experiments compare TOM with state-of-the-art classical and data-driven approaches (see Figure174

2). As previously introduced , the standard method for single shape TO is SIMP [6], for which we use175

the FeniTop implementation [19] – a well-documented Python wrapper of the standard open-source176

FenicsX FEM solver [3].177

Deflated barrier (DB) method [32] is the state-of-the-art method for finding multiple solutions to178

TO problems. DB is a sequential algorithm that cannot perform multiple solver steps in parallel. For179

the jet engine bracket, a comparison to DB is omitted, given DB’s slow performance, complexity, and180

hyperparameter sensitivity.181

TopoDiff [25] is a state-of-the-art data-driven TO solver. It is a diffusion model trained on 33,000 TO182

problem-solution pairs, discretized as 64× 64 images. Similar to DB, we could not apply TopoDiff183

to the 3D benchmark problem, since neither a pretrained model nor a sufficiently large 3D TO dataset184

is publicly available.185

4.3 Metrics186

Quality. To evaluate structural characteristics, we report compliance C and volume V . We compute187

them using the open-source numerical library FenicsX [3]. For each problem, we use the same high-188

resolution mesh across all methods to compute the evaluation metrics. This minimizes discretization189
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errors and prevents numerical artifacts due to the mesh dependency of the solver. Following Mazé190

and Ahmed [25], we also compute the load violation LV : Ω 7→ {0, 1} for each solution Ω. LV = 1191

only when the shape lacks material where the load is applied, resulting in high compliance.192

Diversity. As a diversity measure, we use the Hill numbers Dq(S), q ∈ R over a set S as introduced193

by Leinster [24]. For q = 2, the Hill number corresponds to the expected dissimilarity if two194

elements of a set are sampled with replacement. As a dissimilarity metric we choose the Wasserstein195

distance, as it is a mathematically well-defined distance between distributions. In particular, we196

use the sliced-1 Wasserstein distance approximation, a computationally cheap implementation [14].197

Hence, computing the Hill number D2(ΩZ) corresponds to computing the expected Wasserstein198

distance:199

E[W1] := Ezi,zj∼p(Z)

[
W1(Ωzi

,Ωzj
)
]
. (6)

Computational cost. We report the wall clock time in Table 1, to give a sense of the practicality200

of running each method. Additionally, we further characterize the computational cost of different201

methods in Table 2.202

4.4 Results203

Table 1: Results on the three benchmark problems. C is the compliance. LVR is the ratio of
load-violating solutions. As these always result in high compliance, results marked with a * report
statistics after filtering such solutions. V is the mean (± standard deviation) of the volumes as
a fraction of the available volume. E(W1) quantifies the diversity as the expected Wasserstein-1
distance between solutions. N is the number of solutions for methods that produce a finite number
of samples. TopoDiff and TOM produce a continuous distribution that can be sampled. Last is the
wall-clock time to run the methods. Table 2 contains further computational characterization.

Problem Method C ↓ min(C) max(C) LVR[%] ↓ V[%] E(W1) ↑ N ↑ Time[min] ↓
MBB 53.5 ×10−2

FeniTop 0.68 0 53.49 0 1 2
DB 0.67± 0.01 0.66 0.67 0 53.49± 0.00 1.36 2 55.5
TopoDiff 2.29± 0.37 1.79 3.43 0 51.83± 0.59 2.14
TOM 0.75± 0.03 0.66 0.83 0 55.08± 1.04 4.23 6.1

Cantilever ×10−2 50.00 ×10−2
FeniTop 0.59 0 49.91 0 1 4
DB 0.58± 0.01 0.57 0.58 0 49.98± 0.00 1.01 2 123
TopoDiff* 1.19± 0.28 0.72 1.95 87 50.23± 0.70 2.15
TOM* 0.69± 0.13 0.64 1.27 8 49.21± 0.48 2.42 29

Bracket ×10−3 7.00 ×10−2
FeniTop 0.99 0 7.16 0 1 187
TOM 1.31± 0.01 1.07 1.54 0 6.86± 0.09 0.15 47

The quantitative results of our experiments are summarized in Table 1. Qualitatively, we show204

different results in Figures 1, 5, and 6. Further quantitative and qualitative results are shown in205

Appendix A.6.206

TOM has high quality and diversity. Across all experiments, TOM finds diverse solutions with a207

near-optimal compliance. DB has better compliance but a substantially lower diversity with a low208

number of solutions (N = 2). TopoDiff solutions are similarly diverse, but have poor compliance.209

For the cantilever, we filtered LVR = 87% of TopoDiff outputs due to load violations, whereas for210

TOM 8%. Surprisingly, the high LVR of TopoDiff contradicts the LVR = 0% reported by Mazé211

and Ahmed [25]. We attribute this to the cantilever being out of distribution of TopoDiff’s training212

dataset.213

TOM outperforms TopoDiff. At a first glance, the TopoDiff results in Figure 1 (b) may appear visu-214

ally appealing – the shapes exhibit thin features and horizontal symmetry. However, the quantitative215

examination reveals that TopoDiff produces shapes with poor compliance and high LVR, as discussed216

further in Appendix A.5. In contrast, TOM achieves lower compliance, lower LVR, and greater217

diversity. It is also data-free, eliminating the need for an expensive pretraining dataset. Furthermore,218

TopoDiff requires around 9 seconds for inference. Although training time is not reported, it is219

expected to be significantly higher due to the complex architecture, conditioning and data, as well as220

training across problem instances, limiting the direct comparability of speed.221
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TopoDiff does not amortize. Despite being trained on 30,000 designs, TopoDiff fails to generate222

compliant shapes on standard TO benchmark problems. These results align with prior work Woldseth223

et al. [46], finding large shortcomings of purely data-driven methods.224

Figure 6: Three different jet engine bracket
designs generated by TOM. Left: top view.
Right: isometric view. Notably, all three
generated designs show a similar low com-
pliance as the single solution by the Fen-
iTop baseline. These explored solutions
can be further refined and post-processed
by a classical pipeline.

TOM is more diverse and faster than DB. While the225

classical DB demonstrates higher compliance, TOM con-226

sistently outperforms DB in terms of diversity and wall-227

clock time, albeit with an increased number of solver228

steps. This performance advantage is primarily due229

to TOM’s parallel nature, contrasting with the funda-230

mentally sequential algorithm of DB. Additionally, the231

slower wall-clock time of DB can be partially attributed232

to its public implementation, which involves mesh re-233

finement during training, thereby increasing the runtime234

for each solver step.235

TOM learns a continuous space of shapes. Due to236

its modulated neural field architecture, TOM enables237

exploring different near-optimal solutions by moving238

continuously in the modulation space.239

TOM has surface undulations. Qualitatively, we240

observe, e.g., in Figure 6, that shapes produced by241

TOM are wavier than DB or TopoDiff and can contain242

floaters (small disconnected components). Undulations243

and floaters are a common problem in neural TO ap-244

proaches [25, 30] and can be corrected with simple post-245

processing [41], which we demonstrate in Appendix246

D.3.247

Ablations. We perform ablations to distill the impact of the diversity constraint, the radius of248

the modulation space, the SIMP penalty p, and annealing of the Heaviside filter. We find that all249

these components are necessary for TOM to work. Additionally, we show results for two alternative250

diversity metrics and demonstrate that they lead to similar conclusions. Furthermore, we ablate the251

uniform sampling on the circle with fixed modulation vectors. We find that this variant also leads to252

satisfactory results. The details are provided in Appendix A.6.253

5 Conclusion254

This paper presents topology optimization using modulated neural fields (TOM), a novel approach255

that addresses a limitation in traditional TO methods. By leveraging neural networks to parameterize256

shapes and enforcing solution diversity as an explicit constraint, TOM enables the exploration of257

multiple near-optimal designs. This is crucial for industrial applications, where manufacturing or258

aesthetic constraints often necessitate the selection of alternative designs. Our empirical results259

demonstrate that TOM is both effective and scalable, generating more diverse solutions than prior260

methods while adhering to mechanical requirements. This work opens new avenues for generative261

design approaches that do not rely on large datasets, addressing current limitations in engineering262

and design.263

Limitations and future work. While TOM shows notable progress, several areas warrant further264

investigation to fully realize its potential. Future research could explore extending the one-dimensional265

modulation manifold into higher dimensions, allowing multi-axis design exploration. Notably, the266

mitigation of floaters and undulations requires more in-depth investigation. Additionally, more267

research is needed to explore different dissimilarity metrics for the diversity loss, as this could further268

enhance the variety of generated designs. Improving sample efficiency is also crucial for practical269

applications, as the current method may require significant computational resources. Promising270

directions include using second-order optimizers [20]. Lastly, future work could train TOM on coarse271

designs and subsequently refine them with classical TO methods, combining the strengths of both272

approaches to achieve even better results.273
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A Implementation and experimental details417

A.1 Algorithmic description418

The TOM algorithm is given in Algorithm 1. A detailed textual description is provided in the main419

paper.420

A.2 Additional results421

Table 2 contains additional characterization of the main experimental results in terms of computational422

resources.423

A.3 Model hyperparameters424

The most important hyperparameters are summarized in Table 3. The hyperparameters were found by425

manual search with compliance and diversity as targets. The search was additionally guided by visual426

inspection and interpretation of the produced shapes.427
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Algorithm 1 TOM

Input: parameterized density fθ, vector of mesh points xi ∈ Rdx , β and annealing factor ∆β ,
number of shapes per iteration k, learning rate scheduler γ(t), iterations T
for t = 1 to T do
zj ∼ p(Z) {sample modulation vectors}
ρ̃zj ← fθ(xi, zj) {net forward all shapes j}
ρj ← H(ρ̃zj , β) {Heaviside contrast filter}
C, V, ∂C

∂ρ ,
∂V
∂ρ ← FEM(ρj) {solver step}

∂ρ
∂θ ← backward(fθ, ρj) {autodiff backward}
∇θC ← ∂C

∂ρ
∂ρ
∂θ {compliance gradient}

∇θV ← λV
∂C
∂ρ

∂ρ
∂θ {volume gradient}

LG ← λinterfaceLinterface + ... {GINN constraints}
∆θ ← ALM (∇θC,∇θV,∇θLG) {ALM}
θ ← θ − γ(t)∆θ {parameter update}
β ← β∆β {annealing}

end for

Table 2: Additional characterization of the main experimental results reported in Table 1, including
iterations needed to converge. Each iteration consists of several FEM solver calls, which are executed
in parallel for TOM, resulting in an overall faster training than the sequential DB. Lastly, we report
the mesh resolution used by the FEM solver. For DB, it changes over training due to the adaptive
mesh refinement, which is indicated by the initial grid→ final refined mesh size.

Problem Method Iterations Total solver calls FEM resolution
MBB

FeniTop 400 400 180× 60
DB 3190 50× 150→ 27174
TopoDiff 64× 64
TOM 400 10000 180× 60

Cantilever
FeniTop 400 400 150× 100
DB 4922 25× 37→ 52024
TopoDiff* 64× 64
TOM* 1000 25000 150× 100

Bracket
FeniTop 400 400 104× 172× 60
TOM 1000 9000 26× 43× 15

Compute. We report additional information on the experiments and their implementation. We run428

all experiments on a single GPU (NVIDIA Titan V12) on a node with a Xeon Gold 6150 CPU (36429

Cores, 2.70GHz) and 384GB RAM. The maximum GPU memory requirements are less than 2GB for430

all experiments.431

Neural network. For the model to effectively learn high-frequency features, it is important to use a432

neural network represenation with a high frequency bias [39, 42]. Hence, all models were trained433

using the real, 1D variant of the WIRE architecture [37]. WIRE allows to adjust the frequency bias434

by setting the hyperparameters ω1
0 and s0. For this architecture, each layer consists of 2 Multi-layer435

perceptron (MLPs), one has a periodic activation function cos(ω0x), the other with a gaussian e(s0x)
2

.436

The post-activations are then multiplied element-wise.437

Optimization. The overall loss for a data point x can be expressed as L(x) = o(x) +
∑

i λici(x),438

where o(·) represents the objective function, ci(·) denotes the constraints, and λi are the balancing439

coefficients for these constraints. We employ the augmented Lagrangian method (ALM) [5] to440

dynamically balance the various constraints throughout the training process. Intuitively, the better a441

constraint ci is satisfied, the smaller the corresponding λi. We designate the compliance loss as the442

objective function, which consequently remains unaffected by the balancing mechanism of ALM.443

Crucially, for ALM to function optimally, we scale all loss terms by a dedicated factor to ensure they444

12



are approximately on the same magnitude. This adjustment is analogous to harmonizing the different445

“units” of the losses (e.g., volume loss versus diversity loss).446

Delayed start of diversity loss for jet engine bracket. For the jet engine bracket, we start the447

chamfer discrepancy loss at an iteration where the shapes already have reasonable formed (see “start448

diversity” in Table 3). Empirically, this is needed to not destroy the shapes early on. This could449

have several potential reasons, including a low target volume of only 0.07 or the fact that 3D shape450

optimization might be fundamentally harder. We leave further investigations to future work.451

Table 3: TOM hyperparameters for different experiments.
MBB beam Cantilever JEB

Hidden layers 32x3 32x3 64x3
ω1
0 for WIRE 10 9 18

s0 for WIRE 10 10 6
Learning rate 5 · 10−5 5 · 10−5 10−3

Decay rate 400 200
radius r 1.2 0.6 0.02
SIMP penalty p 3 3 1.5
β annealing [0, 400] [0, 400] [0, 400]
minimal diversity δ∗ 0.3 0.4 0.13
# iterations 400 1,000 1,000
# shapes per batch 25 25 9
Compliance scale 1 1 1,000
Volume scale 1 1 10
Chamfer diversity scale 1 10 10
Interface scale 2,000
Interface normal scale 1
Design region scale 1
Start diversity 350

A.4 Reference solutions452

We provide reference solutions to the problem settings generated by the standard TO. We use the453

implementation of the SIMP method provided by the FeniTop library [19] as the classical TO baseline.454

We also generate single solutions using TOM without a diversity constraint or modulation variable as455

input. These single shape training runs showcase the baseline capability of TOM.456

The reference solutions for MBB beam problem are shown in Figure 7, for the cantilever beam457

problem in Figure 8, and for the jet engine bracket problem in Figure 9.458

(a) Single solution generated with
FeniTop

(b) Single solution generated with
TOM

Figure 7: Reference solutions for the MBB beam problem

A.5 Load violations in TopoDiff459

[25] provide a detailed evaluation of TopoDiff, including a test data set (called level 2 test data) with460

unseen boundary conditions. They report that TopoDiff successfully generalizes to unseen boundary461

conditions and produces shapes which fit these new, unseen boundaries with 100% accuracy (0%462

load violations, Table 1 in [25]).463

In the case of the 2D cantilever problem, we find that 87.2% of the shapes generated by TopoDiff464

contain load violations. Our FEM solver regularizes the solve step by placing so-called ersatz material465
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(a) Single solution gener-
ated with FeniTop

(b) Single solution gener-
ated with TOM

Figure 8: Reference solutions for the Cantilever problem

(a) Single solution generated with FeniTop (b) Single solution generated with TOM

Figure 9: Reference solutions for the jet engine bracket (JEB) problem

with a very low (but non-zero) density at void mesh elements. This prevents NaNs or undefined466

behavior by the solver when encountering violated boundary conditions, such as no material at467

loading points (load violations), see Figure 10b.468

This results in a large jump in the compliance values, which can be seen in Figure 10a. Note that469

these values are, however, unphysical and an artifact of the solver using ersatz-material instead of470

void cells. Physically, the compliance is simply undefined as a force cannot be applied when no471

material is present.472

We filter out all shapes containing load violations in the results section to allow for a better comparison473

and to avoid reporting compliances that are mere solver artifacts and not physically meaningful.474

A.6 Ablations475

To better understand the impact of different parts of TOM, we perform ablations and summarize the476

results in Table 4.477

Diversity constraint. We ablate the diversity loss term. While some diversity remains in the 2D case478

due to the network initialization randomness, we observe complete mode collapse in 3D, illustrated479

in Figure 13.480

Radius r of modulation space. We highlight the choice of radius r by ablating it with a radius481

r′ = 1
10r. The resulting shapes are less diverse (c.f. Table 4) despite applying the diversity constraint482

during training.483

The importance of a network’s frequency bias has been highlighted by several works [39, 37].484

Importantly, depending on the problem, there might be a different frequency bias necessary for the485

coordinates x and the modulation vectors z. For the WIRE architecture we use in our experiments,486

the frequency bias of the modulation is implicitly controlled by the radius r. The greater r, the greater487

the diversity at initialization and convergence as suggested by Teney et al. [42].488
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(a) Distribution of compliance C of TopoDiff shapes. The large jump in
compliance above 10−1 is explained by forces being applied to the ersatz
material.

(b) Load violations of TopoDiff
shapes. Shapes do not attach to
all load points, leading to artifacts
in the computed compliance C.

Table 4: Results for ablations on the three TO problems.
Problem Method C min(C) max(C) V[%] LVR[%] E(W1) E(dH) E(dSSIM)
MBB Beam

Base 0.75± 0.03 0.66 0.83 55.08± 1.04 0.0 0.042 186.22 0.1096
No diversity constraint 0.76± 0.02 0.73 0.84 54.62± 1.07 0.0 0.042 170.10 0.1124
Radius 1/10 0.85± 0.23 0.65 1.43 58.55± 2.63 0.0 0.040 93.29 0.1075
Penalty p = 1.5 1.56± 1.31 0.68 5.54 58.17± 2.93 0.0 0.043 169.28 0.1299
Annealing 0.89± 0.25 0.67 1.66 59.75± 1.70 0.0 0.028 221.58 0.0917
Fixed modulation 0.71± 0.01 0.70 0.76 53.49± 0.32 0.0 0.022 197.55 0.0784

Cantilever
Base 0.69± 0.13 0.64 1.28 49.21± 0.48 8.0 0.024 85.33 0.1799
No diversity constraint 0.90± 0.88 0.62 4.95 49.63± 0.61 8.0 0.023 89.25 0.1791
Radius 1/10 0.92± 0.07 0.79 1.01 49.43± 2.08 0.0 0.032 84.02 0.1186
Penalty p = 1.5 1.19± 1.21 0.54 4.97 50.55± 1.15 12.0 0.019 69.14 0.1565
Annealing 0.74± 0.22 0.61 1.35 49.53± 0.33 12.0 0.027 84.42 0.1767
Fixed modulation 0.82± 0.26 0.62 1.25 48.87± 0.28 4.0 0.026 93.93 0.1848

Simjeb
Base 0.13± 0.01 0.11 0.15 6.86± 0.09 0.0 0.027 9.01 0.0782
No diversity constraint 0.11± 0.01 0.10 0.14 7.51± 0.06 0.0 0.006 8.2 0.0687
Radius 1/10 0.13± 0.01 0.12 0.15 7.35± 0.02 0.0 0.002 5.54 0.0093
Penalty p = 1.5 0.09± 0.00 0.09 0.10 7.09± 0.01 0.0 0.010 11.33 0.0443
Annealing 0.60± 0.19 0.40 0.85 6.21± 0.05 66.7 0.041 9.47 0.1024
Fixed modulation 0.08± 0.01 0.07 0.09 7.64± 0.04 0.0 0.034 11.01 0.0970

Sensitivity to penalty p. As noted by prior work [36], neural reparemeterization is sensitive to489

the penalty parameter p. For SIMP, the density is penalized with an exponent p. We ablate this490

parameter by setting the 2D penalty from p = 3 to 1.5 and for 3D from p = 1.5 to 3. Our experiments491

confirm that TOM is sensitive to the choice of p, as it sharpens the loss landscape. This becomes492

more apparent when looking at the derivative of the stiffness of a mesh element ∂Ki(ρi)
∂ρi

= pρp−1
i Ki.493

E.g., for p = 3 the gradient is quadratically scaled by the current density value. This implies that the494

higher p, the harder it is to escape local minima. We do not observe a large performance impact in495

the 2D experiments. However, in 3D, we observe that p = 3 instead of p = 1.5 leads to convergence496

to an undesired local minimum, illustrated in Figure 12a.497

Annealing is necessary for good convergence. We find that TOM requires annealing to achieve498

good convergence. Figure 12b demonstrates a failed run without β scheduling the Heaviside function499

(Equation 14). The optimization fails to converge to a useful compliance value and does not fulfill500

the desired interface constraints.501

Fixed modulation vectors. TOM uses a continuous modulation space, and in our current implemen-502

tation, samples modulation vectors from a circle. An interesting alternative is to keep the modulation503
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Figure 11: The cantilever ablation of the radius leads to mode collapse qualitatively.

vectors fixed throughout training. As shown in Table 4, the results of this variant also produce shapes504

with satisfactory compliance and diversity.505

Alternative diversity metrics We measure diversity via the Hill number Dq(S) over the set S, where506

we choose q = 2 as it is interpretable as the expected dissimilarity between two elements drawn from507

S. The diversity can be computed based on an arbitrary pairwise dissimilarity function. As a measure508

of dissimilarity, we chose the Wasserstein distance because we consider material distributions, and509

the Wasserstein distance is a distance between distributions. Also, it is a proper metric distance510

satisfying the four axiomatic properties.511

In addition to the Wasserstein-1 distance, we performed additional evaluations of the diversity based512

on two other dissimilarity functions: the Hausdorff distance (dH ) and structural dissimilarity (dSSIM)513

[45]. The results in Table 4 show similar results across all dissimilarity functions. Note that the514

Hausdorff distance is particularly sensitive to outliers, making it less suitable for robust measurements.515

Additionally, we observe that the proposed diversity metrics do not fully capture our intuition about516

the variety of shapes. For instance, the radius-ablation variant of the cantilever exhibits a higher517

diversity score than the base model. However, the qualitative evaluation in Figure 11 reveals mode518

collapse. These shapes also exhibit poor compliance. Sanu et al. [36] demonstrated that neural519

networks can more effectively explore the solution space of topology optimization (TO) problems.520

We therefore hypothesize that inducing higher diversity, either at initialization or as a constraint, may521

promote further exploration.522

(a) (b)

Figure 12: Ablations for penalty and β annealing. (a) Jet engine bracket trained with penalty p = 3.
(b) Jet engine bracket trained without annealing.
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Figure 13: JEB: Training in 3D without diversity constraint results in mode collapse.

Table 5: Geometric constraints are derived from GINNs. The shape Ω and its boundary ∂Ω are
implicitly defined by the level set τ of the function f . The shape must reside within the design region
E ⊆ X and adhere to the interface I ⊂ E with a specified normal n̄(x).

Set constraint ci(Ω) Function constraint Constraint violation ci(f)

Design region Ω ⊂ E f(x) < τ ∀x /∈ E
∫
X\E [max(0, f(x)− τ)]2 dx

Interface ∂Ω ⊃ I f(x) = τ ∀x ∈ I
∫
I [f(x)− τ ]2 dx

Prescribed normal n(x) = n̄(x) ∀x ∈ I ∇f(x)
||∇f(x)|| = n̄(x) ∀x ∈ I

∫
I

[
∇f(x)

||∇f(x)|| − n̄(x)
]2

dx

B Geometric constraints523

We formulate geometric constraints analogously to GINNs in Table 5 for density representations.524

There are two important differences when changing the shape representation from a signed distance525

function (SDF) to a density function.526

First, the level set ∂Ωτ changes from ∂Ωτ =
{
x ∈ Rdx |fθ = 0

}
to ∂Ωτ =

{
x ∈ Rdx |fθ = 0.5

}
.527

Second, for a SDF the shape Ωtau is defined as the sub-level set Ωτ =
{
x ∈ Rdx |fθ ≤ 0

}
, whereas528

for a density it is the super-level set Ωτ =
{
x ∈ Rdx |fθ ≥ 0

}
.529

C Diversity530

C.1 Diversity on the volume531

As noted by Berzins et al. [8], one can define a dissimilarity loss as the Lp function distance532

d(Ωi,Ωj) =
p

√∫
X
(fi(x)− fj(x))pdx (7)

We choose L1, to not overemphasize large differences in function values. Additionally, we show533

in the next paragraph that for L1 and for the extreme case where f(x) ∈ {0, 1} this is equal to the534

Union minus Intersection of the shapes:535 ∫
X
|fi(x)− fj(x)|dx = Vol(Ωi ∪ Ωj)− Vol(Ωi ∩ Ωj) (8)

C.2 L1 distance on neural fields resembles Union minus Intersection536

To derive that the distance metric537
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d(Ωi,Ωj) =
p

√∫
X
(fi(x)− fj(x))pdx (9)

for p = 1 and fi, fj ∈ {0, 1} corresponds to the union minus the intersection of the shapes, we538

consider the following cases:539

fi(x) fj(x) |fi(x)− fj(x)|
1 1 0

1 0 1

0 1 1

0 0 0
Table 6: Function distance if the function only has binary values.

From the table, we observe that the integrand |fi(x)− fj(x)| is 1 when x belongs to one shape but540

not the other, and 0 when x belongs to both or neither. Thus, the integral
∫
X |fi(x)− fj(x)|dx sums541

the volumes where x is in one shape but not the other, which is precisely the volume of the union of542

Ωi and Ωj minus the volume of their intersection. It follows that543

d(Ωi,Ωj) =

∫
X
|fi(x)− fj(x)|dx = Vol(Ωi ∪ Ωj)− Vol(Ωi ∩ Ωj) (10)

.544

C.3 Diversity on the boundary via differentiable chamfer discrepancy545

We continue from Equation 5:546

∂L

∂θ
=

∂L

∂x

∂x

∂y

∂y

∂θ

=
∂L

∂x

∇xfθ
|∇xfθ|2

∂y

∂θ
(11)

The center term ∇xfθ
|∇xfθ|2 and the last term ∂y

∂θ can be obtained via automatic differentiation. For the547

first term, we derive ∂L
∂x , where L is the one-sided chamfer discrepancy CD(∂Ω1, ∂Ω2).548

∂

∂x
CD(∂Ω1, ∂Ω2) =

∂

∂x

1

|∂Ω1|
∑

x∈∂Ω1

min
y∈∂Ω2

||x− y||2 (12)

=
1

|∂Ω1|
min

y∈∂Ω2

x− y

∥x− y∥
(13)

This completes the terms in the chain rule.549

C.4 Finding surface points550

We detail the algorithm to locate boundary points of implicit shapes defined by a neural density field,551

Algorithm 2.552

On a high level, the algorithm first identifies points inside the boundary where neighboring points lie553

on opposite sides of the level set. Subsequently, it employs binary search to refine these boundary554

points. The process involves evaluating the neural network to determine the signed distance or density555

values, which are then used to iteratively narrow down the boundary points. We find that 10 binary556

steps suffice to reach the boundary sufficiently close.557

For the 3D jet engine bracket, we additionally follow Berzins et al. [8] and exclude surface points558

which are within some ϵ region of the interface.559
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Algorithm 2 Find Boundary Points with Binary Search

Input: regular point grid xi, level set l, neural density field fθ, binary search steps T
Find points xin

i ∈ xi for which f(xin
i ) > l

Find neighbor points (xout
i )i ∈ xi to xin

i f(xout) < l { for 2D/3D we check 4/6 neighbors
respectively}
Refine pairs (xin, xout)i via T binary search steps
Return ((xin + xout)/2)i

D Topology optimization560

D.1 Problem definitions561

Messerschmitt-Bölkow-Blohm beam (2D). The MBB beam is a common benchmark problem in562

TO and is depicted in Figure 4a. The problem describes a beam fixed on the lower right and left563

edges with a vertical force F applied at the center. As the problem is symmetric around x = L/2, we564

follow Papadopoulos et al. [32] and only optimize the right half.565

The concrete dimensions of the beam are H = 1, L = 6, and the force points downwards with F = 1.566

Cantilever beam (2D). The cantilever beam is illustrated in Figure 4b. The problem describes a567

beam fixed on the left-hand side, and two forces F1, F2 are applied on the right-hand side.568

The dimensions are H = 1, L = 1.5, h = 0.1 and the forces F1 = F2 = 0.5.569

Jet engine bracket (3D). We apply TOM to a challenging 3D task, namely the optimization of a570

jet engine bracket as defined by Kiis et al. [21]. The design region for this problem is enclosed by a571

freeform surface mesh (see Figure 4c). The load case is depicted in Figure 4c in which a diagonal572

force pulls in positive x and positive z direction.573

D.2 Smoothing and contrast filtering574

Filtering is a general concept in topology optimization that aims to reduce artifacts and improve575

convergence. Helmholtz PDE filtering is a smoothing filter similar to Gaussian blurring, but easier to576

integrate with existing finite element solvers. By solving a Helmholtz PDE, the material density ρ is577

smoothened to prevent checkerboard patterns, which is typical for TO [23]. Heaviside filtering is a578

type of contrast filter, which enhances the distinction between solid and void regions. The Heaviside579

filter function, as defined in Equation 14, equals the sigmoid function up to scaling of the input. β is a580

parameter controlling the sharpness of the transform, similar to the inverse temperature of a classical581

softmax (higher beta means a closer approximation to a true Heaviside step function). Note that in582

contrast to the Helmholtz PDE filter, the Heaviside filter is not volume preserving. Therefore, the583

volume constraint has to be applied to the modified output.584

H(x, β) = 0.5 +
tanh(β(x− 0.5))

2 tanh(0.5β)
(14)

Annealing is employed to make the continuous relaxation closer to the underlying discrete problem585

[22], enhancing the effectiveness of gradient-based optimization methods. Annealing gradually586

adjusts the sharpness of a function during the optimization. For TO, this is often done by gradually587

increasing the penalty p or by scheduling a sharpness filter. A common choice is the Heaviside filter588

as defined in Equation 14.589

D.3 Post-processing590

In general, the post-processing of TO solutions heavily depends on the downstream task and the spe-591

cific manufacturing requirements, e.g., additive vs subtractive manufacturing. Here, we demonstrate592

two simple methods to post-process TOM solutions:593

Method A is a simple yet standard image-based approach that removes disconnected components594

(floaters) and performs morphological closing to remove small artifacts (holes).595
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Method B is a fine-tuning approach that performs a few iterations of classical TO updates (5% of596

a full run, learning rate reduced by ×10 compared to the standard FeniTop settings) on the TOM597

output. This approach also removes the artifacts. This illustrates how TOM extends, not competes,598

with classical TO.599

We depict a version of an MBB beam with many floaters and its post-processed version in Figure 14.600

(a) Output of TOM model.

(b) Method A: Simple post-processing using OpenCV to remove
artifacts.

(c) Method B: Finetune by running a few FeniTop iterations to
convergence (5% of total iterations).

Figure 14: Post-processing: Showcasing 2 possible post-processing steps to remove artifacts from
the TOM solutions.
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