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Abstract

Topology optimization (TO) is a family of computational methods that derive
near-optimal geometries from formal problem descriptions. Despite their success,
established TO methods are limited to generating single solutions, restricting the
exploration of alternative designs. To address this limitation, we introduce Topol-
ogy Optimization using Modulated Neural Fields (TOM) — a data-free method
that trains a neural network to generate structurally compliant shapes and explores
diverse solutions through an explicit diversity constraint. The network is trained
with a solver-in-the-loop, optimizing the material distribution in each iteration.
The trained model produces diverse shapes that closely adhere to the design re-
quirements. We validate TOM on established 2D and 3D TO benchmark problems.
Our results show that TOM generates more diverse solutions than any previous
method, all while maintaining near-optimality and without relying on a dataset.
These findings open new avenues for engineering and design, offering enhanced
flexibility and innovation in structural optimization.
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Figure 1: Solutions to the cantilever problem generated by three TO methods. (a) Deflated barrier — a
classical TO method generating high-quality but few solutions. (b) TopoDiff — a data-driven diffusion
model generating many, but low-quality solutions. (c) TOM — our modulated neural field trained with
a solver-in-the-loop and a diversity constraint generating diverse near-optimal structures. Here, we
use a circular modulation space to capture a smooth manifold of solutions. All methods minimize the
structural compliance C', which measures the total displacement of the loaded shape.

'The code will be made public upon acceptance.
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1 Introduction

Topology optimization (TO) is a computational design technique to determine the optimal material
distribution within a given design space under prescribed boundary conditions. A common objective
in TO is the minimization of structural compliance, which measures the displacement under load. Due
to the non-convex nature of TO problems, these methods generally provide near-optimal solutions,
with no guarantees of converging to global optima [1].

Traditional TO methods are limited to producing a single design. However, generating multiple diverse
solutions is important to balance performance with other considerations, such as manufacturability,
cost, and aesthetics. Therefore, we propose Topology Optimization using Modulated Neural Fields
(TOM), an approach to generate diverse, near-optimal designs: A neural network parametrizes the
shape representations and is trained to generate near-optimal solutions. The model is optimized using
a solver-in-the-loop approach [43]], where the neural network iteratively adjusts the design based on
feedback from a physics-based solver.

To enhance the diversity of solutions, we introduce an explicit diversity constraint during training.
TOM not only enables the generation of multiple, diverse designs but also leverages machine learning
to explore the design space more efficiently than traditional TO methods [36].

Empirically, we validate our method on TO for linear elasticity problems in 2D and 3D. Our results
demonstrate that TOM obtains more diverse solutions than prior work while being substantially faster
and remaining near-optimal. This addresses a current limitation in TO and opens new avenues for
automated engineering design.

Our main contributions are summarized as follows:

1. We introduce TOM, the first method for data-free, solver-in-the-loop neural network training,
which generates diverse solutions adhering to structural requirements.

2. We introduce a novel diversity constraint variant for neural density fields based on the
Chamfer discrepancy that ensures the generation of distinct and meaningful shapes and
enhances the exploration of the designs.

3. Empirically, we demonstrate the efficacy and scalability of TOM on 2D and 3D prob-
lems, showcasing its ability to generate a variety of near-optimal designs. Our approach
significantly outperforms existing methods in terms of solution diversity.

2 Background

2.1 Topology optimization

TO is a computational method developed in the late 1980s to determine optimal structural geometries
from mathematical formulations [6]. TO iteratively updates a material distribution within a design
domain under specified loading and boundary conditions. Due to the non-convex nature of most
TO problems, convergence to a global minimum is not guaranteed. Instead, the goal is to achieve a
near-optimal solution, where the objective closely approximates the global optimum. There are four
prominent method families widely recognized in TO. In this work, we focus on SIMP and refer the
reader to Yago et al. [47] for a more detailed introduction.

Solid isotropic material with penalization (SIMP) is a prominent TO method we adapt for TOM.
SIMP operates on a mesh with mesh points x; € X,i € {1,..., N} in the design region. The aim
is to find a binary density function at each mesh point p(x;) € {0, 1}, where p(x;) = 0 represents
void and p(x;) = 1 represents solid material. To make this formulation differentiable, the material
density p is relaxed to continuous values in [0, 1]. A common objective of SIMP is to minimize the
compliance C, a measure of deformation under load. The SIMP objective is then formulated as a
constrained optimization problem:

min: C(p) =u’K,u
N
st.: V= Zpivi <V* €))
i=1
0< pi < 1 VieN
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where u is the displacement vector, K, is the global stiffness matrix, V' is the shape volume, and
V'* is the target volume. The density field is optimized iteratively. In each iteration, a finite element
(FEM) solver computes the compliance and provides gradients to update the density field p. To
encourage binary densities, intermediate values are penalized by raising p to the power p > 1. Hence,

the stiffness matrix is defined as K, = Zfil pf K, , where K; describes the stiffness of solid cells
and depends on material properties.

TO for multiple solutions. Generating multiple design alternatives for TO problems is crucial for
many real-world engineering cases where single optima often don’t exist. However, classical TO
algorithms typically yield a single solution and do not ensure convergence to a global minimum.
Papadopoulos et al. [32] introduce the deflated barrier (DB) method, an extension of the classical
SIMP approach that can find multiple solutions. By employing a search strategy akin to depth-first
search, DB identifies multiple solutions without relying on initial guess variations, thereby enhancing
design diversity.
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Figure 2: Taxonomy of classical and neural topology optimization methods. The dashed lines indicate
iterative updates, such as gradient descent. TOM is the first data-free method to produce multiple
shapes with a neural network.

2.2 Shape generation with neural networks

Neural fields offer a powerful framework for geometry processing, utilizing neural networks
to model shapes implicitly. This approach enables high-quality and topologically flexible shape
parameterizations [12]]. The two prevalent methods for representing implicit shapes are signed
distance functions (SDF) [33] 2] and density (or occupancy) [29] fields. We opt for the density
representation due to its straightforward compatibility with SIMP optimization.

Given a d, € {2,3} dimensional domain X C R%, a neural density field employs a neural network
fo : X — (0, 1) with parameters 6 to define the shape 2 := {z € X|fo(z) > 7} asthe 7 € [0,1]
super-level-set of fy.

Conditional neural fields. While a neural density field represents a single shape, a conditional
neural field represents a set of shapes with a single neural network [26]. Generally, one can condition
on text, point clouds, or other modalities of interest [49]]. In this work, we use a modulation code
z € R% as an additional input to the network. The resulting network fy(x, z) parametrizes a set of
shapes. There are different ways to incorporate the modulation vector into the network, such as input
concatenation [33]], hypernetworks [[17]], or attention [35]]. In this work, we use input concatenation,
as it is simple and fast to train.

Diversity constraint can be used to modify the TO problem formulation (T)) to facilitate the discovery
of multiple solutions. The diversity constraint introduced in geometry-informed neural networks
(GINNS) [8] defines a diversity measure ¢ on the set of shapes {€2;} as

5({)) = (X [mind(2;, 2] 2)2 : 6

This measure builds upon a chosen dissimilarity function d(£2;,€2;). Essentially, § encourages
diversity by maximizing the distance between each shape and its nearest neighbor.
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Figure 3: A single iteration of TOM trained with M = 3 shapes in parallel. In each iteration, the input
to the network consists of the mesh vertices {x; };=1, .y and modulation vectors {z};—1 . as. The
network outputs densities p; at the vertices x; for each shape. The densities are passed to the FEM
solver, which computes the compliances C; and volumes V}, as well as their gradients V,C; and
V,V;. The diversity loss d(p) and its gradient V ,d are based on the Chamfer discrepancy between
the surface points of the shapes.

GINNS utilize a dissimilarity function on the shape boundary, but their approach is limited to signed
distance functions (SDFs). In Section [3.2] we show how to adapt the Chamfer discrepancy as a
dissimilarity function on density fields.

2.3 Topology optimization with neural networks

Figure[2]presents an overview of various TO methods that search for either single or multiple solutions,
further categorized by their use of neural networks.

Neural reparameterization uses a neural network to represent the material distribution in a
discretization-free manner. Existing work explores training a single shape by parametrizing the
material density [40} 9L 10,118] or boundary [13]], which is optimized with a solver-in-the-loop. NITO
[31]] uses modulation of a neural field to introduce constraints on the boundary of a single shape.
NTopo [48]] uses a conditional neural field to generate individual solutions for different topology
optimization problems, adapting to factors like target volume or force vector position. TOM, however,
finds multiple solutions, not just one per setting.

Data-driven neural TO uses a dataset of generated solutions to train neural networks that can
then generate diverse solutions. Most prior works use generative adversarial networks (GANs)
[L6L [15] 144, 130]. Recent work showed the superiority of diffusion models for data-driven TO [25]].
Data-driven methods require a large amount of compute to generate a dataset and train a large
generative model and aim to amortize these costs by fast inference on new, unseen problem settings.

3 Method

3.1 TO using modulated neural fields

Definitions. Let X C R% be the domain of interest in which there is a shape Q C X. Let Z C R%
be a discrete or continuous modulation space, where each z € Z parametrizes a shape 2,. The
possibly infinite set of all shapes is denoted by 2z = {Q2,]z € Z}. The modulation vectors {z;} are
sampled according to a probability distribution p(Z).

For density representations a shape (2, is defined as the set of points with a density greater than
the level 7 € [0, 1], formally Q, = {x € X' | p,(x) > 7}. While some prior work on occupancy
networks [28] treats T as a tunable hyperparameter, we follow Jia et al. [19] and fix the level at
7 = 0.5. We model the density p,(x) = fo(x,2), corresponding to the modulation vector z at a
point x using a neural network fp, with 8 being the learnable parameters.

TO using modulated neural fields. Our approach, akin to standard SIMP, formulates a constrained
optimization problem aiming to minimize an objective function for multiple shapes simultaneously,
while adhering to a volume constraint for each shape. Central to our method is the introduction
of a diversity constraint, denoted as 6(Q2z), which is defined over multiple shapes to reduce their
similarity. This leads to the following constrained optimization problem:



128
129
130
131
132
133
134
135
136
137

138

140
141
142
143

144
145

146
147
148
149

150
151
152
153

min: E, ,z)[C(ps)]

st.: V= pz(x)dx < V* 3)
X
0<px) <1 o <5(02)

where V* and 0* are target volumes and diversities, respectively. TOM updates the density fields of
multiple shapes iteratively. In each iteration, the density distribution of each shape is computed and
the resulting densities are passed to the FEM solver. The FEM solver calculates the compliance loss
C and gradients VC'. To accelerate the computation, parallelization of the FEM solver is employed
across multiple CPU cores, with a separate process dedicated to each shape.

The diversity loss and its gradient are computed on the GPU using PyTorch [34]], along with any
optional geometric losses similar to GINNS.

We use the adaptive augmented Lagrangian method (ALM) [4]] to automatically balance multiple loss
terms. Additionally, we gradually increase the sharpness parameter [ of the Heaviside filter (Equation
[T4), which acts as annealing. The complete TOM method is concisely presented in Algorithm T}

(a) MBB (b) Cantilever (c) Jet engine bracket

Figure 4: Three benchmark problem definitions. (a) MBB: The boundary is fixed at the attachment
points at the bottom left and right corners. The dotted line indicates the symmetry axis at % where
the force F is applied. (b) Cantilever: Forces Fi, F5 are applied at distance h from the upper and
lower boundaries. The left boundary is fixed. (c) Jet engine bracket. Left: Available design region
with six cylindrical interfaces where the shape must attach. Right: A diagonal force is applied at the

two central interfaces. The bracket is fixed at the four side interfaces.

3.2 Diversity

The diversity loss, defined in Equation 2] requires the definition of a pairwise dissimilarity measure
between shapes. GINNSs [8] use boundary dissimilarity, which is easily optimized for SDFs since
the value at a point is the distance to the zero level set. However, this dissimilarity measure does not
apply to our density field shape representation. Hence, we propose a boundary dissimilarity based on
the chamfer discrepancy.

Diversity via differentiable chamfer discrepancy. To define the dissimilarity on the boundaries of
a pair of shapes (0€21, 9€)s), we use the one-sided chamfer discrepancy (CD):

1 -
CD(094,009) = o] Z min ||z — Z(|2 )
1

€00
o0, 2

To use the CD as a loss, it must be differentiable w.r.t. the network parameters §. However, the
chamfer discrepancy CD(9€2;, 9€22) depends only on the boundary points ; € 92 which only
depend on fy(x;) implicitly. Akin to prior work [L1} [7, 27], we apply the chain rule and use the
level-set equation to derive

OCD _ 9CDOxdy OCD V.fy 0Oy

00 — Bz Oyl Oz |Vufs|2 00

where y = p is the density field in our case. We detail this derivation in Appendix [C.3] Finding
surface points on density fields is substantially harder than for SDFs, as there is no reliable gradient
information to exploit for root finding. Therefore, we employ a robust algorithm detailed in Algorithm

&)
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Geometric constraints We utilize geometric constraints similar to GINNs, leveraging the continuous
field representation to learn finer details, particularly at interfaces. Further details are provided in
Table [5]and Appendix

4 Experiments

C=0.7642
€=1.9795 €=1.9839 C=12.0816 Co07791 b C=07903
C=0.67
C=2.1154 C=2.2062 €=2.3193 C=0.6625 C=0.7264
C=2.5308 C=3.0828 C=3.0828 C=07568 C=07440
(a) Deflated barrier (b) TopoDiff (c) TOM (ours)

Figure 5: Solutions to the MBB beam problem generated by three TO methods.

We solve three standard TO benchmark problems comparing TOM to established classical and
data-driven methods. For all our TOM experiments, we employ the WIRE architecture [37]], which
uses wavelets as activation functions. This imposes an inductive bias towards high frequencies,
while being more localized than, e.g., a sine activation [39]. We use a 2-dimensional modulation
space and sample vectors uniformly on a circle with radius r. We denote a circle centered at the
origin with radius r as the 1-sphere S'(r) = {x € R? : ||x|| = r}. This 1D manifold embedded in
the 2D modulation space assures that modulation vectors are sufficiently far apart from each other
to avoid mode collapse. The radius controls the initial diversity of the shapes and is an important
hyperparameter to tune (see also Appendix [A.6). At each iteration, the number of shapes M is either
9 or 25, depending on the problem. For further experimental details, see Appendix [A]

4.1 Problem definitions

We apply our method to common linear elasticity problems [38,[19] in two and three dimensions,
namely the Messerschmitt-Bolkow-Blohm (MBB) beam, the cantilever beam, and the jet engine
bracket. Due to the symmetry of the MBB beam, we follow Papadopoulos et al. [32] and optimize
only the right half. More details and descriptions are provided in Figure [d]and Appendix [D.1]

4.2 Baselines

The experiments compare TOM with state-of-the-art classical and data-driven approaches (see Figure
E]). As previously introduced , the standard method for single shape TO is SIMP [6]], for which we use
the FeniTop implementation [19] — a well-documented Python wrapper of the standard open-source
FenicsX FEM solver [3]].

Deflated barrier (DB) method [32] is the state-of-the-art method for finding multiple solutions to
TO problems. DB is a sequential algorithm that cannot perform multiple solver steps in parallel. For
the jet engine bracket, a comparison to DB is omitted, given DB’s slow performance, complexity, and
hyperparameter sensitivity.

TopoDiff [25] is a state-of-the-art data-driven TO solver. It is a diffusion model trained on 33,000 TO
problem-solution pairs, discretized as 64 x 64 images. Similar to DB, we could not apply TopoDiff
to the 3D benchmark problem, since neither a pretrained model nor a sufficiently large 3D TO dataset
is publicly available.

4.3 Metrics

Quality. To evaluate structural characteristics, we report compliance C' and volume V. We compute
them using the open-source numerical library FenicsX [3]]. For each problem, we use the same high-
resolution mesh across all methods to compute the evaluation metrics. This minimizes discretization
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errors and prevents numerical artifacts due to the mesh dependency of the solver. Following Mazé
and Ahmed [23], we also compute the load violation LV : Q — {0, 1} for each solution . LV =1
only when the shape lacks material where the load is applied, resulting in high compliance.

Diversity. As a diversity measure, we use the Hill numbers Dy (.S), ¢ € R over a set S as introduced
by Leinster [24]]. For ¢ = 2, the Hill number corresponds to the expected dissimilarity if two
elements of a set are sampled with replacement. As a dissimilarity metric we choose the Wasserstein
distance, as it is a mathematically well-defined distance between distributions. In particular, we
use the sliced-1 Wasserstein distance approximation, a computationally cheap implementation [14].
Hence, computing the Hill number D5 ({2z) corresponds to computing the expected Wasserstein
distance:

E[Wl} = Ezi,zj ~p(2) [Wl (sz Qz]' )} . (6)

Computational cost. We report the wall clock time in Table|l} to give a sense of the practicality
of running each method. Additionally, we further characterize the computational cost of different
methods in Table

4.4 Results

Table 1: Results on the three benchmark problems. C' is the compliance. LVR is the ratio of
load-violating solutions. As these always result in high compliance, results marked with a * report
statistics after filtering such solutions. V' is the mean (£ standard deviation) of the volumes as
a fraction of the available volume. F (W) quantifies the diversity as the expected Wasserstein-1
distance between solutions. NV is the number of solutions for methods that produce a finite number
of samples. TopoDiff and TOM produce a continuous distribution that can be sampled. Last is the
wall-clock time to run the methods. Table [2] contains further computational characterization.

Problem Method Cl min(C) max(C) LVR[%] ] V(%] E(W;) T N1 Time[min] |
MBB 53.5 x1072
FeniTop 0.68 0 53.49 0 1 2
DB 0.67 £0.01  0.66 0.67 0 53.49 £ 0.00 1.36 2 55.5
TopoDiff 2.29+0.37 1.79 3.43 0 51.83 £+ 0.59 2.14
TOM 0.754+0.03  0.66 0.83 0 55.08 £1.04  4.23 6.1
Cantilever x1072 50.00 x1072
FeniTop 0.59 0 49.91 0 1 4
DB 0.58 £0.01  0.57 0.58 0 49.98 + 0.00 1.01 2 123
TopoDiff* 1.19+0.28 0.72 1.95 87 50.23 £ 0.70 2.15
TOM* 0.69 £0.13 0.64 1.27 8 49.21 +0.48 2.42 29
Bracket x1073 7.00 x1072
FeniTop 0.99 0 7.16 0 1 187
TOM 1.314+£0.01 1.07 1.54 0 6.86 £ 0.09 0.15 47

The quantitative results of our experiments are summarized in Table [T} Qualitatively, we show
different results in Figures [I] 5} and [6] Further quantitative and qualitative results are shown in
Appendix[A.6

TOM has high quality and diversity. Across all experiments, TOM finds diverse solutions with a
near-optimal compliance. DB has better compliance but a substantially lower diversity with a low
number of solutions (N = 2). TopoDiff solutions are similarly diverse, but have poor compliance.
For the cantilever, we filtered LVR = 87% of TopoDiff outputs due to load violations, whereas for
TOM 8%. Surprisingly, the high LVR of TopoDiff contradicts the LVR = 0% reported by Mazé
and Ahmed [25]]. We attribute this to the cantilever being out of distribution of TopoDiff’s training
dataset.

TOM outperforms TopoDiff. At a first glance, the TopoDiff results in Figure[I](b) may appear visu-
ally appealing — the shapes exhibit thin features and horizontal symmetry. However, the quantitative
examination reveals that TopoDiff produces shapes with poor compliance and high LVR, as discussed
further in Appendix In contrast, TOM achieves lower compliance, lower LVR, and greater
diversity. It is also data-free, eliminating the need for an expensive pretraining dataset. Furthermore,
TopoDiff requires around 9 seconds for inference. Although training time is not reported, it is
expected to be significantly higher due to the complex architecture, conditioning and data, as well as
training across problem instances, limiting the direct comparability of speed.
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TopoDiff does not amortize. Despite being trained on 30,000 designs, TopoDiff fails to generate
compliant shapes on standard TO benchmark problems. These results align with prior work Woldseth
et al. [46]], finding large shortcomings of purely data-driven methods.

TOM is more diverse and faster than DB. While the
classical DB demonstrates higher compliance, TOM con-
sistently outperforms DB in terms of diversity and wall-
clock time, albeit with an increased number of solver
steps. This performance advantage is primarily due
to TOM’s parallel nature, contrasting with the funda-
mentally sequential algorithm of DB. Additionally, the
slower wall-clock time of DB can be partially attributed
to its public implementation, which involves mesh re-
finement during training, thereby increasing the runtime
for each solver step.

TOM learns a continuous space of shapes. Due to
its modulated neural field architecture, TOM enables
exploring different near-optimal solutions by moving
continuously in the modulation space.

TOM has surface undulations.  Qualitatively, we Figure 6: Three different jet engine bracket
observe, e.g., in Figure [6] that shapes produced by designs generated by TOM. Left: top view.
TOM are wavier than DB or TopoDiff and can contain Right: isometric view. Notably, all three
floaters (small disconnected components). Undulations ~generated designs show a similar low com-
and floaters are a common problem in neural TO ap- pliance as the single solution by the Fen-
proaches [25130] and can be corrected with simple post- iTop baseline. These explored solutions
processing [41]], which we demonstrate in Appendix can be further refined and post-processed
by a classical pipeline.

Ablations. We perform ablations to distill the impact of the diversity constraint, the radius of
the modulation space, the SIMP penalty p, and annealing of the Heaviside filter. We find that all
these components are necessary for TOM to work. Additionally, we show results for two alternative
diversity metrics and demonstrate that they lead to similar conclusions. Furthermore, we ablate the
uniform sampling on the circle with fixed modulation vectors. We find that this variant also leads to
satisfactory results. The details are provided in Appendix

5 Conclusion

This paper presents topology optimization using modulated neural fields (TOM), a novel approach
that addresses a limitation in traditional TO methods. By leveraging neural networks to parameterize
shapes and enforcing solution diversity as an explicit constraint, TOM enables the exploration of
multiple near-optimal designs. This is crucial for industrial applications, where manufacturing or
aesthetic constraints often necessitate the selection of alternative designs. Our empirical results
demonstrate that TOM is both effective and scalable, generating more diverse solutions than prior
methods while adhering to mechanical requirements. This work opens new avenues for generative
design approaches that do not rely on large datasets, addressing current limitations in engineering
and design.

Limitations and future work. While TOM shows notable progress, several areas warrant further
investigation to fully realize its potential. Future research could explore extending the one-dimensional
modulation manifold into higher dimensions, allowing multi-axis design exploration. Notably, the
mitigation of floaters and undulations requires more in-depth investigation. Additionally, more
research is needed to explore different dissimilarity metrics for the diversity loss, as this could further
enhance the variety of generated designs. Improving sample efficiency is also crucial for practical
applications, as the current method may require significant computational resources. Promising
directions include using second-order optimizers [20]. Lastly, future work could train TOM on coarse
designs and subsequently refine them with classical TO methods, combining the strengths of both
approaches to achieve even better results.
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A Implementation and experimental details

A.1 Algorithmic description

The TOM algorithm is given in Algorithm[I] A detailed textual description is provided in the main
paper.

A.2 Additional results

Table[2]contains additional characterization of the main experimental results in terms of computational
resources.

A.3 Model hyperparameters

The most important hyperparameters are summarized in Table|3| The hyperparameters were found by
manual search with compliance and diversity as targets. The search was additionally guided by visual
inspection and interpretation of the produced shapes.
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Algorithm 1 TOM

Input: parameterized density fy, vector of mesh points x; € R, 3 and annealing factor Ag,
number of shapes per iteration k, learning rate scheduler ~(t), iterations T'
fort =1to 7T do

z; ~ p(2) {sample modulation vectors}
p=;  fo(xi,25) {net forward all shapes j }
pj < H(pz,;,B) {Heaviside contrast filter}
c.,V, %, %7‘; + FEM(p,) {solver step}
% « backward(fs, p;) {autodiff backward )
VoC %% {compliance gradient}
VoV /\V%% {volume gradient}
LG — AinterfaceLinterface + ... {GINN Constraints}
A+ ALM (VyC, VgV, VyLg) {ALM}
0+ 0—~(t)A {parameter update }
B+ BAg {annealing}
end for

Table 2: Additional characterization of the main experimental results reported in Table including
iterations needed to converge. Each iteration consists of several FEM solver calls, which are executed
in parallel for TOM, resulting in an overall faster training than the sequential DB. Lastly, we report
the mesh resolution used by the FEM solver. For DB, it changes over training due to the adaptive
mesh refinement, which is indicated by the initial grid — final refined mesh size.

Problem Method Iterations  Total solver calls FEM resolution
MBB
FeniTop 400 400 180 x 60
DB 3190 50 x 150 — 27174
TopoDiff 64 x 64
TOM 400 10000 180 x 60
Cantilever
FeniTop 400 400 150 x 100
DB 4922 25 x 37 — 52024
TopoDiff* 64 x 64
TOM* 1000 25000 150 x 100
Bracket
FeniTop 400 400 104 x 172 x 60
TOM 1000 9000 26 x 43 x 15

Compute. We report additional information on the experiments and their implementation. We run
all experiments on a single GPU (NVIDIA Titan V12) on a node with a Xeon Gold 6150 CPU (36
Cores, 2.70GHz) and 384GB RAM. The maximum GPU memory requirements are less than 2GB for
all experiments.

Neural network. For the model to effectively learn high-frequency features, it is important to use a
neural network represenation with a high frequency bias [39}42]]. Hence, all models were trained
using the real, 1D variant of the WIRE architecture [37]. WIRE allows to adjust the frequency bias
by setting the hyperparameters w} and sq. For this architecture, each layer consists of 2 Multi-layer
perceptron (MLPs), one has a periodic activation function cos(wox), the other with a gaussian e(s02)”,
The post-activations are then multiplied element-wise.

Optimization. The overall loss for a data point x can be expressed as L(z) = o(z) + Y. Aici(x),
where o(+) represents the objective function, ¢;(-) denotes the constraints, and \; are the balancing
coefficients for these constraints. We employ the augmented Lagrangian method (ALM) [J5] to
dynamically balance the various constraints throughout the training process. Intuitively, the better a
constraint ¢; is satisfied, the smaller the corresponding \;. We designate the compliance loss as the
objective function, which consequently remains unaffected by the balancing mechanism of ALM.
Crucially, for ALM to function optimally, we scale all loss terms by a dedicated factor to ensure they
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are approximately on the same magnitude. This adjustment is analogous to harmonizing the different
“units” of the losses (e.g., volume loss versus diversity loss).

Delayed start of diversity loss for jet engine bracket. For the jet engine bracket, we start the
chamfer discrepancy loss at an iteration where the shapes already have reasonable formed (see “start
diversity” in Table [3). Empirically, this is needed to not destroy the shapes early on. This could
have several potential reasons, including a low target volume of only 0.07 or the fact that 3D shape
optimization might be fundamentally harder. We leave further investigations to future work.

Table 3: TOM hyperparameters for different experiments.
MBB beam Cantilever JEB

Hidden layers 32x3 32x3 64x3
wi for WIRE 10 9 18
50 for WIRE 10 10 6

Learning rate 5-107° 5-107° 1073
Decay rate 400 200

radius r 1.2 0.6 0.02
SIMP penalty p 3 3 1.5
[ annealing [0, 400] [0, 400] [0, 400]
minimal diversity * 0.3 0.4 0.13
# iterations 400 1,000 1,000
# shapes per batch 25 25 9
Compliance scale 1 1 1,000
Volume scale 1 1 10
Chamfer diversity scale 1 10 10
Interface scale 2,000
Interface normal scale 1
Design region scale 1
Start diversity 350

A.4 Reference solutions

We provide reference solutions to the problem settings generated by the standard TO. We use the
implementation of the SIMP method provided by the FeniTop library [[19] as the classical TO baseline.
We also generate single solutions using TOM without a diversity constraint or modulation variable as
input. These single shape training runs showcase the baseline capability of TOM.

The reference solutions for MBB beam problem are shown in Figure [7} for the cantilever beam
problem in Figure[§] and for the jet engine bracket problem in Figure [0

C = 0.68 C = 0.68

(a) Single solution generated with (b) Single solution generated with
FeniTop TOM

Figure 7: Reference solutions for the MBB beam problem

A.5 Load violations in TopoDiff

[25] provide a detailed evaluation of TopoDiff, including a test data set (called level 2 test data) with
unseen boundary conditions. They report that TopoDiff successfully generalizes to unseen boundary
conditions and produces shapes which fit these new, unseen boundaries with 100% accuracy (0%
load violations, Table 1 in [25]).

In the case of the 2D cantilever problem, we find that 87.2% of the shapes generated by TopoDiff
contain load violations. Our FEM solver regularizes the solve step by placing so-called ersatz material
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C = 0.0059

(a) Single solution gener-(b) Single solution gener-
ated with FeniTop ated with TOM

Figure 8: Reference solutions for the Cantilever problem

(a) Single solution generated with FeniTop  (b) Single solution generated with TOM

Figure 9: Reference solutions for the jet engine bracket (JEB) problem

with a very low (but non-zero) density at void mesh elements. This prevents NaNs or undefined
behavior by the solver when encountering violated boundary conditions, such as no material at
loading points (load violations), see Figure [T0b}

This results in a large jump in the compliance values, which can be seen in Figure[T0al Note that
these values are, however, unphysical and an artifact of the solver using ersatz-material instead of
void cells. Physically, the compliance is simply undefined as a force cannot be applied when no
material is present.

We filter out all shapes containing load violations in the results section to allow for a better comparison
and to avoid reporting compliances that are mere solver artifacts and not physically meaningful.

A.6 Ablations

To better understand the impact of different parts of TOM, we perform ablations and summarize the
results in Table [l

Diversity constraint. We ablate the diversity loss term. While some diversity remains in the 2D case
due to the network initialization randomness, we observe complete mode collapse in 3D, illustrated

in Figure[13]

Radius r of modulation space. We highlight the choice of radius r by ablating it with a radius
= 1—107“. The resulting shapes are less diverse (c.f. Table despite applying the diversity constraint
during training.

The importance of a network’s frequency bias has been highlighted by several works [39, 37].
Importantly, depending on the problem, there might be a different frequency bias necessary for the
coordinates x and the modulation vectors z. For the WIRE architecture we use in our experiments,
the frequency bias of the modulation is implicitly controlled by the radius r. The greater r, the greater

the diversity at initialization and convergence as suggested by Teney et al. [42]].
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(a) Distribution of compliance C' of TopoDiff shapes. The large jump in (b) Load violations of TopoDitf

compliance above 107! is explained by forces being applied to the ersatz shapes. Shapes do not attach to

material. all load points, leading to artifacts
in the computed compliance C.

Table 4: Results for ablations on the three TO problems.

Problem Method C min(C) max(C) V[%] LVR[%] E(W1) E(dy) E(dssm)
MBB Beam
Base 0.75+£0.03 0.66 0.83  55.08 £1.04 0.0 0.042 186.22 0.1096
No diversity constraint 0.76 £0.02  0.73 0.84  54.62+£1.07 0.0 0.042 170.10 0.1124
Radius 1/10 0.85+0.23 0.65 1.43  58.55 +2.63 0.0 0.040  93.29  0.1075
Penalty p = 1.5 156 +£1.31 0.68 5.504  58.17+£2.93 0.0 0.043 169.28  0.1299
Annealing 0.89+0.25 0.67 1.66  59.75 4+ 1.70 0.0 0.028 221.58 0.0917
Fixed modulation 0.71£0.01  0.70 0.76  53.49£0.32 0.0 0.022  197.55 0.0784
Cantilever
Base 0.69+0.13 0.64 1.28  49.21+0.48 8.0 0.024 8533 0.1799
No diversity constraint 0.90 £+ 0.88  0.62 4.95  49.63£0.61 8.0 0.023  89.25  0.1791
Radius 1/10 0.92+0.07 0.79 1.01  49.43 +£2.08 0.0 0.032 84.02 0.1186
Penalty p = 1.5 1.194+1.21  0.54 497 50.55£1.15 120 0.019 69.14  0.1565
Annealing 0.744+0.22 0.61 1.35  49.534+0.33 120 0.027  84.42  0.1767
Fixed modulation 0.82+£0.26 0.62 1.25  48.87+0.28 4.0 0.026  93.93  0.1848
Simjeb
Base 0.13+£0.01  0.11 0.15  6.86+0.09 0.0 0.027  9.01  0.0782
No diversity constraint 0.11 £0.01  0.10 0.14 7.51 £0.06 0.0 0.006 8.2 0.0687
Radius 1/10 0.13+£0.01 0.12 0.15  7.35£0.02 0.0 0.002  5.54  0.0093
Penalty p = 1.5 0.09£0.00 0.09 0.10 7.09+0.01 0.0 0.010  11.33  0.0443
Annealing 0.60 £0.19  0.40 0.85 6.21 £ 0.05 66.7 0.041 947  0.1024
Fixed modulation 0.08+0.01 0.07 0.09  7.64+0.04 0.0 0.034 11.01  0.0970

Sensitivity to penalty p. As noted by prior work [36]], neural reparemeterization is sensitive to
the penalty parameter p. For SIMP, the density is penalized with an exponent p. We ablate this
parameter by setting the 2D penalty from p = 3 to 1.5 and for 3D from p = 1.5 to 3. Our experiments
confirm that TOM is sensitive to the choice of p, as it sharpens the loss landscape. This becomes
more apparent when looking at the derivative of the stiffness of a mesh element BKl(p D = pp? K.
E.g., for p = 3 the gradlent is quadratlcally scaled by the current density value. ThlS implies that the
higher p, the harder it is to escape local minima. We do not observe a large performance impact in
the 2D experiments. However, in 3D, we observe that p = 3 instead of p = 1.5 leads to convergence
to an undesired local minimum, illustrated in Figure [12a]

Annealing is necessary for good convergence. We find that TOM requires annealing to achieve
good convergence. Figure demonstrates a failed run without 3 scheduling the Heaviside function
(Equation[T4). The optimization fails to converge to a useful compliance value and does not fulfill
the desired interface constraints.

Fixed modulation vectors. TOM uses a continuous modulation space, and in our current implemen-
tation, samples modulation vectors from a circle. An interesting alternative is to keep the modulation
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Figure 11: The cantilever ablation of the radius leads to mode collapse qualitatively.

vectors fixed throughout training. As shown in Table[d} the results of this variant also produce shapes
with satisfactory compliance and diversity.

Alternative diversity metrics We measure diversity via the Hill number D, (S) over the set S, where
we choose ¢ = 2 as it is interpretable as the expected dissimilarity between two elements drawn from
S. The diversity can be computed based on an arbitrary pairwise dissimilarity function. As a measure
of dissimilarity, we chose the Wasserstein distance because we consider material distributions, and
the Wasserstein distance is a distance between distributions. Also, it is a proper metric distance
satisfying the four axiomatic properties.

In addition to the Wasserstein-1 distance, we performed additional evaluations of the diversity based
on two other dissimilarity functions: the Hausdorff distance (dz) and structural dissimilarity (dssm)
[45]]. The results in Table E] show similar results across all dissimilarity functions. Note that the
Hausdorff distance is particularly sensitive to outliers, making it less suitable for robust measurements.
Additionally, we observe that the proposed diversity metrics do not fully capture our intuition about
the variety of shapes. For instance, the radius-ablation variant of the cantilever exhibits a higher
diversity score than the base model. However, the qualitative evaluation in Figure[TT|reveals mode
collapse. These shapes also exhibit poor compliance. Sanu et al. [36] demonstrated that neural
networks can more effectively explore the solution space of topology optimization (TO) problems.
We therefore hypothesize that inducing higher diversity, either at initialization or as a constraint, may
promote further exploration.

(a) (b)

Figure 12: Ablations for penalty and 5 annealing. (a) Jet engine bracket trained with penalty p = 3.
(b) Jet engine bracket trained without annealing.
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Figure 13: JEB: Training in 3D without diversity constraint results in mode collapse.

Table 5: Geometric constraints are derived from GINNs. The shape 2 and its boundary 0f2 are
implicitly defined by the level set 7 of the function f. The shape must reside within the design region
& C X and adhere to the interface T C £ with a specified normal 1(x).

‘ Set constraint ¢;(2) ‘ Function constraint ‘ Constraint violation c; ( f)
Design region Qce flx)y<TVx ¢ & Jae Imax(0, f(z) — ) da
Interface N>T flxy=7vVx el [ 1f(z) —7)° dz
Prescribed normal | n(z) = a(z) Ve € Z % =n(x)Ve el | [, [H%g;\l - ﬁ(az)] ’ dx

B Geometric constraints

We formulate geometric constraints analogously to GINNs in Table [5] for density representations.
There are two important differences when changing the shape representation from a signed distance
function (SDF) to a density function.

First, the level set 9, changes from 9Q, = {z € R%|fy = 0} to 9Q, = {x € R%|fy = 0.5}.

Second, for a SDF the shape ¢4, is defined as the sub-level set €2, = {z € R%|fy < 0} , whereas
for a density it is the super-level set QO = {z € R |fy > 0}.

C Diversity

C.1 Diversity on the volume

As noted by Berzins et al. [8], one can define a dissimilarity loss as the LP function distance

d($2;,€Y;) = (//X(fi(x) — fi(@))rda (M

We choose L', to not overemphasize large differences in function values. Additionally, we show
in the next paragraph that for L! and for the extreme case where f(z) € {0, 1} this is equal to the
Union minus Intersection of the shapes:

C.2 ! distance on neural fields resembles Union minus Intersection

To derive that the distance metric
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d(§2;,8;) = (//X(fi(x) — fi(x))Pdz )

for p = 1 and f;, f; € {0,1} corresponds to the union minus the intersection of the shapes, we
consider the following cases:

filz) | fi(@) | [fi(x) = f;(2)]
1 1 0
1 0 1
0 1 1
0 0 0

Table 6: Function distance if the function only has binary values.

From the table, we observe that the integrand | f;(z) — f;(z)| is 1 when z belongs to one shape but
not the other, and 0 when x belongs to both or neither. Thus, the integral [, |f;(x) — f;(x)|dx sums
the volumes where x is in one shape but not the other, which is precisely the volume of the union of
€2; and €2; minus the volume of their intersection. It follows that

C.3 Diversity on the boundary via differentiable chamfer discrepancy

We continue from Equation [5}

oL 0L 0x Oy
00~ 9z dy 96
_9L Vafe 9y (11)
97 [V fo2 90

The center term % and the last term % can be obtained via automatic differentiation. For the
first term, we derive %’ where L is the one-sided chamfer discrepancy CD(9€21, 982s).

0 0 1 .
%CD(aﬁb 0€p) = oz |00 xe;z ym1n2 |z —yll2 (12)

1 . -y
_ 13
900 b, Tz — ] (3

This completes the terms in the chain rule.

C.4 Finding surface points

We detail the algorithm to locate boundary points of implicit shapes defined by a neural density field,
Algorithm 2}

On a high level, the algorithm first identifies points inside the boundary where neighboring points lie
on opposite sides of the level set. Subsequently, it employs binary search to refine these boundary
points. The process involves evaluating the neural network to determine the signed distance or density
values, which are then used to iteratively narrow down the boundary points. We find that 10 binary
steps suffice to reach the boundary sufficiently close.

For the 3D jet engine bracket, we additionally follow Berzins et al. [8] and exclude surface points
which are within some e region of the interface.
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Algorithm 2 Find Boundary Points with Binary Search

Input: regular point grid x;, level set [, neural density field fy, binary search steps T’

Find points zi" € x; for which f(zi") > I

Find neighbor points (z%"); € x; to o f(zou) < [ { for 2D/3D we check 4/6 neighbors
respectively}

Refine pairs (i, Zou )i via T' binary search steps

Return ((zin + Tour)/2)s

D Topology optimization
D.1 Problem definitions

Messerschmitt-Bolkow-Blohm beam (2D). The MBB beam is a common benchmark problem in
TO and is depicted in Figure The problem describes a beam fixed on the lower right and left
edges with a vertical force F applied at the center. As the problem is symmetric around « = L/2, we
follow Papadopoulos et al. [32] and only optimize the right half.

The concrete dimensions of the beam are H = 1, L = 6, and the force points downwards with /' = 1.

Cantilever beam (2D). The cantilever beam is illustrated in Figure @bl The problem describes a
beam fixed on the left-hand side, and two forces F}, F5 are applied on the right-hand side.
The dimensions are H = 1, L = 1.5, h = 0.1 and the forces F; = F5 = 0.5.

Jet engine bracket (3D). We apply TOM to a challenging 3D task, namely the optimization of a
jet engine bracket as defined by Kiis et al. [21]. The design region for this problem is enclosed by a
freeform surface mesh (see Figure fic). The load case is depicted in Figure icin which a diagonal
force pulls in positive x and positive z direction.

D.2 Smoothing and contrast filtering

Filtering is a general concept in topology optimization that aims to reduce artifacts and improve
convergence. Helmholtz PDE filtering is a smoothing filter similar to Gaussian blurring, but easier to
integrate with existing finite element solvers. By solving a Helmholtz PDE, the material density p is
smoothened to prevent checkerboard patterns, which is typical for TO [23]]. Heaviside filtering is a
type of contrast filter, which enhances the distinction between solid and void regions. The Heaviside
filter function, as defined in Equation |14} equals the sigmoid function up to scaling of the input. (5 is a
parameter controlling the sharpness of the transform, similar to the inverse temperature of a classical
softmax (higher beta means a closer approximation to a true Heaviside step function). Note that in
contrast to the Helmholtz PDE filter, the Heaviside filter is not volume preserving. Therefore, the
volume constraint has to be applied to the modified output.

tanh(B(x — 0.5))
2tanh(0.50)

H(z,) =05+ (14)

Annealing is employed to make the continuous relaxation closer to the underlying discrete problem
[22]], enhancing the effectiveness of gradient-based optimization methods. Annealing gradually
adjusts the sharpness of a function during the optimization. For TO, this is often done by gradually
increasing the penalty p or by scheduling a sharpness filter. A common choice is the Heaviside filter
as defined in Equation[T4]

D.3 Post-processing

In general, the post-processing of TO solutions heavily depends on the downstream task and the spe-
cific manufacturing requirements, e.g., additive vs subtractive manufacturing. Here, we demonstrate
two simple methods to post-process TOM solutions:

Method A is a simple yet standard image-based approach that removes disconnected components
(floaters) and performs morphological closing to remove small artifacts (holes).
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Method B is a fine-tuning approach that performs a few iterations of classical TO updates (5% of
rate reduced by x10 compared to the standard FeniTop settings) on the TOM
output. This approach also removes the artifacts. This illustrates how TOM extends, not competes,

a full run, learning

with classical TO.

We depict a version of an MBB beam with many floaters and its post-processed version in Figure

Figure 14: Post-processing: Showcasing 2 possible post-processing steps to remove artifacts from

the TOM solutions.
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(b) Method A: Simple post-processing using OpenCV to remove
artifacts.
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(c) Method B: Finetune by running a few FeniTop iterations to
convergence (5% of total iterations).
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