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ABSTRACT

This work studies the alignment of large language models with preference data from
an imitation learning perspective. We establish a close theoretical connection be-
tween reinforcement learning from human feedback (RLHF) and imitation learning
(IL), revealing that RLHF implicitly performs imitation learning on the preference
data distribution. Building on this connection, we propose DIL, a principled frame-
work that directly optimizes the imitation learning objective. DIL provides a unified
imitation learning perspective on alignment, encompassing existing alignment al-
gorithms as special cases while naturally introducing new variants. By bridging IL
and RLHF, DIL offers new insights into alignment with RLHF. Extensive experiments
demonstrate that DIL outperforms existing methods on various challenging bench-
marks. The code for DIL is available at https://github.com/tengxiao1/DIL.

1 INTRODUCTION

Aligning large language models (LLMs) with human preferences is essential to ensure that the
responses generated by LLMs align with human expectations (Bai et al., 2022; Ouyang et al., 2022;
Stiennon et al., 2020). Recently, Reinforcement Learning from Human Feedback (RLHF) (Ouyang
et al., 2022; Christiano et al., 2017) has become a widely adopted framework for fine-tuning language
models according to human preference data. This approach typically involves training a reward model
based on human feedback and subsequently employing reinforcement learning (RL) algorithms, such
as PPO (Schulman et al., 2017), to optimize the model to maximize the reward signal.

RLHF has demonstrated impressive efficacy across a diverse range of tasks, from programming to
creative writing. However, its dependence on two-step reinforcement learning presents challenges,
such as computational inefficiency and instability during training (Engstrom et al., 2020; Rafailov
et al., 2024). To mitigate these limitations, alternative one-step approaches, such as direct preference
optimization (DPO) and its variants, have been proposed (Rafailov et al., 2024; Meng et al., 2024;
Tajwar et al., 2024). These methods replace RLHF with supervised learning, eliminating the need for
explicit reward modeling. Instead, they directly define an implicit reward based on the likelihood of
preference data, resulting in significant gains in efficiency while preserving competitive performance.

While DPO theoretically aims to discover identical optimal policies as RLHF, it and its variants
fundamentally adhere to the reward maximization objective and are determined by parametric
models such as the Bradley-Terry (BT) model (Bradley & Terry, 1952), making them prone to
overfitting (Yuan et al., 2024; Xiao et al., 2024b) and resulting in suboptimal alignment with preference
data (Xu et al., 2024c; Wu et al., 2024). This raises a fundamental and open research question: Can
we understand and design effective preference optimization algorithms from a new perspective?

In this paper, we revisit RLHF from the perspective of imitation learning. In particular, we show
that RLHF is a special case of a general imitation learning problem expressed exclusively in terms
of pairwise preferences. We theoretically demonstrate that alignment with RLHF closely resembles
imitation learning and implicitly optimizes the same objective. We then leverage this insight to design
DIL, a general framework for effective alignment based on density ratio reward estimation.

Our primary technical contributions are as follows: (i) We prove that RLHF for alignment is essentially
an imitation learning problem and provide a novel analysis that offers explicit guidance for alignemnt
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algorithm design. (ii) We propose DIL, a simple and generalized imitation learning framework for
alignment. DIL unifies imitation learning on preference data and bridges the gap between density
ratio estimation and preference alignment. (iii) Empirically, we validate the effectiveness of DIL on
widely used benchmarks, demonstrating that it outperforms previous alignment methods.

2 RELATED WORK

Reinforcement Learning from Human Feedback. RLHF has emerged as an effective approach for
aligning LLMs with human preferences (Christiano et al., 2017). It involves first training a reward
model from human feedback through supervised learning, which is then used to optimize a policy via
RL algorithms, such as PPO (Schulman et al., 2017). RLHF has been successfully applied to a wide
range of tasks, including summarization (Stiennon et al., 2020), instruction following (Ouyang et al.,
2022), safety improvement (Bai et al., 2022), and truthfulness enhancement (Tian et al., 2023).

Offline Preference Optimization. Recent literature highlights the inherent complexity of RLHF,
prompting the search for more efficient offline alternatives. A significant advancement in this area is
DPO (Rafailov et al., 2024). Unlike RLHF, which first learns an explicit reward model and then fits
the policy to rewards, DPO bypasses this second approximation by directly learning a policy from
collected data, without the need for reward modeling. DPO implicitly optimizes the same objective
as existing RLHF algorithms, but it is simpler to implement and more straightforward to train. Other
offline alignment methods, such as IPO (Azar et al., 2024), KTO (Ethayarajh et al., 2024), and
others (Zhao et al., 2023; Xiao & Wang, 2021; Xu et al., 2024a; Meng et al., 2024; Xiao et al., 2025),
have also been proposed. In contrast, we rethink and design the alignment objective from a novel
offline imitation learning perspective. We show that RLHF can theoretically be viewed as imitation
learning, which fits the chosen response distribution by minimizing the reverse KL divergence.

Imitation Learning. Classical imitation learning (IL) methods often frame IL as inverse reinforce-
ment learning (IRL) to better utilize expert demonstrations (Sammut et al., 1992; Abbeel & Ng, 2004).
In the seminal work (Ho & Ermon, 2016), the authors introduce GAIL, which bypasses inner-loop
reinforcement learning (RL) by establishing a connection between IL and generative adversarial
networks (GANs) (Goodfellow et al., 2020). GAIL and its successor, AIRL (Fu et al., 2018), have
made significant strides. However, these online methods typically require substantial environmental
interactions, limiting their deployment in cost-sensitive or safety-sensitive domains. To address this
issue, recent work on offline IL (Garg et al., 2021) focuses on learning a reward function from offline
datasets to understand and generalize the intentions underlying expert behavior. IQ-Learn (Garg
et al., 2021) simplifies AIRL’s game-theoretic objective over policy and reward functions into an
optimization over the soft Q-function, which implicitly represents both reward and policy. Recently,
some works (Sun & van der Schaar, 2024; Wulfmeier et al., 2024; Xiao et al., 2024a) have applied
imitation learning to the alignment of large language models. Different from the above works, in
this paper, we aim at building a close theoretical connection between RLHF and imitation learning,
revealing that RLHF implicitly performs imitation learning on the chosen data distribution.

3 NOTATIONS AND PRELIMINARIES

Problem Setup. Let the text sequence x = [x1, x2, . . .] denote the input prompt, and yw =
[y1, y2, . . .] and yl denote two responses, typically sampled from the same reference policy πref(y | x).
The response pairs are then presented to human labelers (or an oracle) who express preferences
for responses given the prompt, denoted as yw ≻ yl | x, where yw and yl denote preferred and
dispreferred responses, respectively. The preference distribution is typically expressed as:

p
(
yw ≻ yl | x

)
= g

(
r(x,yw)− r (x,yl)

)
. (1)

where g is the sigmoid function σ(x) = 1
1+e−x based on the Bradley-Terry (BT) preference assump-

tion (Bradley & Terry, 1952). Given a preference dataset D, containing feedback (x,yw,yl), the
goal of alignment is to learn an LLM policy π(y | x) based on the preference data.

Reinforcement Learning from Human Feedback. Given the estimated reward function r(x,y),
dictating the human preferences, RLHF fine-tunes policy πθ by optimizing the following objective:

max
πθ

Ey∼πθ(y|x)
[
r(x,y)

]
− βDKL

[
πθ(y | x)∥πref(y | x)

]
, (2)
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where β > 0 is an appropriate KL penalty coefficient. RLHF typically optimizes the above objective
in Equation (2) using RL algorithms, such as PPO (Ouyang et al., 2022; Schulman et al., 2017).

Reward Modeling. One standard approach to reward modeling is to fit a reward function rϕ(x,y)
with the BT preference model in Equation (1). Specifically, the reward function rϕ(x,y) can be
estimated by maximizing the log-likelihood over preference feedback (x,yw,yl):

LRM(ϕ;D) = E(x,yw,yl)∼D

[
− log σ

(
rϕ(x,yw)− rϕ (x,yl)

)]
. (3)

Supervised Fine-tuning (SFT). Given a demonstration dataset, the objective of SFT is minimizing
the negative log-likelihood over the demonstration data as follows:

LSFT(θ;D) = −E(x,y)∼D[log πθ(y | x)]. (4)

SFT is equivalent to behavior cloning (BC) (Pomerleau, 1988), a classical offline imitation learning
method that minimizes the forward KL divergence between the learned policy and data policy:

min
θ

KL
(
πdata(y | x)∥πθ(y | x)

)
= −Eπdata(y|x)

[
log πθ(y | x)

]
, (5)

It is easy to see that the BC problem above shares the same optimal solutions as SFT in expectation.

Directed Preference Optimization. To simplify the optimization process of RLHF, DPO uses the
log-likelihood of the learning policy to implicitly represent the reward function:

rθ(x,y) = β
[
log πθ(y | x)− log πref(y | x)

]
+ β logZθ(x), (6)

where Z(x) =
∑

y πref(y | x) exp(rθ(x,y)/β) is the partition function. By incorporating this
reward into the BT model in Equation (1), DPO (Rafailov et al., 2024) objective enables the comparison
of response pairs, facilitating the discrimination between preferred and dispreferred responses:

LDPO(θ;D) = E(x,yw,yl)∼D

[
− log σ(β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)

]
. (7)

Energy-based Models. Energy-based models (EBMs) (LeCun et al., 2006) define the distribution
through an energy function. For y ∈ RD, its probability density can be expressed as follows:

pθ(y) = exp(−Eθ(y))/Zθ(y), (8)

where Eθ(y) : RD → R is the energy function, mapping the data point y to a scalar, and Zθ(y) =∑
y exp(−Eθ(y)) is the unknown normalization constant (Song & Kingma, 2021).

4 METHODOLOGY

4.1 RLHF IS A FORM OF IMITATION LEARNING

In this section, we connect RLHF to the imitation learning framework. We show that RLHF is a special
case of imitation learning problem on the distribution chosen response with the reverse KL divergence.
Specifically, we firstly define the following policy based on EBMs (Haarnoja et al., 2017):

πϕ(y | x) = πref(y | x)exp
(
rϕ(x,y)

)
/Zϕ(x), (9)

where ϕ denotes the parameter and Zϕ(x) =
∑

y πref(y | x) exp(rϕ(x,y)). To learn the parameter
ϕ, one can apply behavior cloning (Pomerleau, 1988), a classical and widely used imitation learning
method, which frames the task as minimizing the KL divergence between the policy πϕ and the
expert policy πchosen generating the chosen response yw. In other works, IL learns the parameter ϕ
such that the model distribution imitates the distribution of chosen response in the preference dataset:

min
ϕ

KL
(
πchosen(y | x)∥πϕ(y | x)

)
. (10)

Minimizing the above forward KL divergence with the chosen responses on preference data gives us:

min
ϕ

E(x,yw)∼D[− log πref(yw | x)exp(rϕ(x,yw))/Zϕ(x)] ⇒

min
ϕ

E(x,yw)∼D

[
− rϕ(x,yw) + log

∑
y
πref(y | x)exp

(
rϕ(x,y)

)]
. (11)
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There are several options for sampling from the reference distribution πref(y | x). A choice that
simplifies the above expression and yields RLHF in practice is πref(y | x) = 1

2 I(Y = yl) +
1
2 I(Y =

yw). In this case, the sample-based approximation of the second term gives us:

min
ϕ

E(x,yw,yl)∼D

[
− rϕ(x,yw) + log

(
exp(rϕ(x,yw)) + exp(rϕ(x,yl))

)]
= E(x,yw,yl)∼D

[
− log σ

(
rϕ(x,yw)− rϕ (x,yl)

)]
. (12)

One can note that the above imitation learning loss over energy-based policy is exactly the same as
the reward loss based on BT assumption in Equation (3) in RLHF. By optimizing this loss function, we
can directly obtain the optimal energy-based policy in Equation (9). Unfortunately, even if we use the
estimate rϕ, it is still expensive to estimate the partition function Zϕ(x), making this representation
difficult to use in practice and significantly higher inference cost (Rafailov et al., 2024). To address
this problem, we can utilize the reverse knowledge distillation which distills the optimal policy in
Equation (9) into a analytical policy by using the following reverse KL divergence, which allows the
final policy πθ to require only a single sample during the inference time:

min
θ

KL
(
πθ(y | x)||πref(y | x)exp(rϕ(x,y)/β)/Zϕ(x)

)
, (13)

where β is the temperature hyperparameter in distillation process. This gives the following objective
function after removing multiplicative and additive constants:

L(θ) = −Eπθ(y|x)
[
rϕ (x,y)

]
+ βKL

(
πθ(y | x)∥πref(y | x)

)
. (14)

One can observe that this distillation objective exactly corresponds to the RL objective in Equation (2).

In summary, we provide two key insights: (i) Reward learning in RLHF is equivalent to an imitation
learning problem against the chosen responses, achieved by minimizing the forward KL divergence
between πchosen and πϕ based on the EBMs shown in Equation (12). (ii) The RL step in RLHF can be
interpreted as a reverse knowledge distillation process, where the imitated policy πϕ, based on EBMs,
is distilled into a final analytical policy πθ by minimizing the reverse KL divergence in Equation (13),
with the temperature determining the level of KL regularization. Formally, we have:
Proposition 4.1. Suppose the chosen response distribution p(y | x), the EBM πϕ(y | x), and the
model πθ(y | x). KL-regularized RLHF with β = 1 can be viewed as the following problem:

min
πθ

KL(πθ ∥ π∗
ϕ) s.t. π∗

ϕ = argmin
πϕ

KL(πchosen ∥ πϕ), (15)

where πchosen(y | x) = πϕ(y | x) = πθ(y | x) is the equilibrium.

Thus, conducting imitation learning on the chosen response corresponds to solving a standard
KL-regularized RLHF problem. Additionally, we observe that the upper-level objective essentially
optimizes a reverse KL (RKL) divergence, KL(πθ ∥ πchosen), given that π∗

ϕ = πchosen, which is the
optimum achieved by the lower-level objective.

An interesting question is why SFT, which directly optimizes the forward KL (FKL) KL(πchosen ∥ πθ)
in Equation (5), performs worse than RLHF for alignment. Theoretically, minimizing SFT and RLHF
should lead to the same optimal solution πθ. However, achieving this in practice requires full data
coverage and infinite computations, conditions that are rarely met. Consequently, in practical settings,
minimizing either KL divergence results in learned policies with distinct properties, as discussed in
(Murphy, 2012; Tajwar et al., 2024). Specifically, FKL KL(πchosen ∥ πθ) promotes mass-covering
behavior, whereas RKL KL(πθ ∥ πchosen) encourages mode-seeking behavior (Tajwar et al., 2024;
Nachum et al., 2016; Agarwal et al., 2019). Mass-covering encourages assigning equal probability to
all responses in the dataset, leading to an overestimation of the long tail of the target distribution, while
mode-seeking concentrates the probability mass on specific high-reward regions. Thus, alignment
focuses on generating a certain subset of high-reward responses, which is more effectively achieved
by minimizing reverse KL, as theoretically shown by (Tajwar et al., 2024; Ji et al., 2024).

4.2 DIRECT IMITATION LEARNING

In the last section, we revisit RLHF from the perspective of imitation learning. Our analysis explicitly
suggests that RLHF is essentially optimized to align closely with the distribution of the chosen
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Table 1: Summary of the variants of DIL with different h-functions for Bregman divergence: LDIL(θ) =
Eπchosen(y|x)[ℓ1(fθ)] + Eπrejected(y|x)[ℓ−1(fθ)] as a function of log ratio fθ = log(πθ(y | x)/πref(y | x)).

h-Bregman Density Ratio Estimation h-function ℓ1(fθ) ℓ−1(fθ)

LSIF (Kanamori et al., 2009) h(r) = (r − 1)2/2 −efθ 1
2e

2fθ

BCE (Hastie et al., 2009) h(r) = r log r − (r + 1) log(r + 1) log(1 + e−fθ ) log(1 + efθ )
UKL (Nguyen et al., 2010) h(r) = r log r − r −fθ efθ

responses. The sample-based approximation of EBMs in RLHF results in a reward loss similar to
the BT model, as shown in Equation (12). However, the BT assumption may not always hold true,
as discussed in (Azar et al., 2024; Munos et al., 2023; Sun & van der Schaar, 2024). Based on
these insights, we propose a novel alignment method, DIL, without the BT assumption. We directly
formulate the objective of imitation learning as minimizing the reverse KL divergence between πθ

and the unknown distribution of the chosen response πchosen (Kostrikov et al., 2019; Fu et al., 2018):

min
θ

LDIL(θ) = KL
(
πθ(y | x)∥πchosen(y | x)

)
= Eπθ(y|x)

[
log

(
πθ(y | x)/πchosen(y | x)

)]
, (16)

where we minimize RKL divergence, rather than FKL divergence as in SFT, as shown in Equation (5).

However, mode-seeking with reverse KL divergence is generally challenging. Directly optimizing
Equation (16) does not effectively leverage chosen preference data, particularly because the data
policy πchosen is unknown. In the RL literature, these challenges have been addressed through
adversarial training (Ho & Ermon, 2016; Fu et al., 2018). However, these methods require learning
a reward function using complex and unstable adversarial training, which is impractical for large
models. In this paper, we propose a straightforward alternative that leverages preference data without
learning a reward function via adversarial training. We reformulate the DIL objective as follows:

max
θ

Eπθ(y|x)

[
log

πchosen(y | x)
πref(y | x)

− log
πθ(y | x)
πref(y | x)

]
=

Eπθ(y|x)

[
log r(x,y)

]
−KL

(
πθ(y | x)∥πref(y | x)

)
, (17)

where r(x,y) ≜ πchosen(y|x)
πref (y|x) can be viewed as an auxiliary reward function. Equations (16) and (17)

are equivalent by adding and subtracting the same term of log πref(y | x) in the expectation.

Figure 1: The illustration of different losses (LSIF,
BCE, and UKL), as shown in Table 1.

Interestingly, we find that even when only prefer-
ence data is available, this objective takes a form
similar to the RLHF objective in Equation (2).
The primary difference lies in the reward being
the estimated log density ratio, which is often
not readily accessible in real-world applications.
Optimizing this objective, which involves the
density ratio r(x,y), is not straightforward. In
the next section, we demonstrate how to effi-
ciently optimize it by effectively utilizing offline human preference data.

4.3 DENSITY RATIO REWARD ESTIMATION

Before delving into the problem in Equation (17), we first describe how to calculate the auxiliary
reward function in terms of the density ratio. In the tabular setting, we can directly compute
πref(y | x) and πchosen(y | x). However, in a high-dimensional language domain, estimating the
densities separately and then calculating their ratio hardly works well due to error accumulation. In
this paper, we choose to directly estimate the density ratio πchosen(y | x)/πref(y | x) based on the
Bregman divergence (Sugiyama et al., 2012). Suppose r∗(x,y) = πchosen(y | x)/πref(y | x) is the
target density ratio to be estimated with a parameterized discriminator rϕ. Then, we have:

min
ϕ

Dh(r
∗∥rϕ) =

∑
y
πref(y | x)Bh(r

∗(x,y)∥rϕ(x,y))

=
∑

y
πref(y | x)

(
h
(
r∗(x,y)

)
− h

(
rϕ(x,y)

)
− ∂h

(
rϕ(x,y)

)(
r∗(x,y)− rϕ(x,y)

))
, (18)

where Bh is the data-level Bregman divergence. For a twice continuously differentiable convex
function h with a bounded derivative ∂h, this divergence quantifies the discrepancy between two
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density-ratios. Subtracting a constant
∑

y πref(y | x)h(r∗(x,y)), we obtain (up to a constant):∑
y
πref(y | x)

[
∂h

(
rϕ(x,y)

)
rϕ(x,y)− h

(
rϕ(x,y)

)]
−
∑

y
πchosen(y | x)

[
∂h

(
rϕ(x,y)

)]
. (19)

A few non-exhaustive examples of the Bregman divergence are Least-Squared Importance Fitting
(LSIF) (Kanamori et al., 2009), Binary Cross Entropy (BCE) (Hastie et al., 2009), and the unbounded
Kullback-Leibl (UKL) (Nguyen et al., 2010). For example, LSIF defines hLSIF = (r − 1)2/2, which
results in the following instance of Bregman divergence on the density ratio:

min
ϕ

DhLSIF(r
∗∥rϕ) =

∑
y

1

2
πref(y | x)r2ϕ(x,y)− πchosen(y | x)rϕ(x,y) (20)

In this case, sample-based approximation of Equation (20) leads to the following loss function:

L(ϕ;D) = E(x,yw,yl)∼D

[1
2
r2ϕ(x,yl)− rϕ(x,yw)

]
, (21)

Here, we use the set of rejected responses yl ∼ πref(y | x) to approximate the expectations under
πref(y | x). It is acceptable to use the set of rejected responses yl from the preference dataset D to
approximate the expectations. We can even make use of both chosen responses and rejected responses
to approximate these expectations. However, since our goal is to decrease the likelihood of rejected
responses, we choose to use the rejected responses to approximate the expectations, and we find it
empirically works well. Intuitively, the first term pushes the model to decrease the density ratio of
the rejected response, while the second term increases the density ratio of the chosen response. In
addition, this direct estimation approach with h Bregman divergence suggests a divergence family
for density ratio estimation as shown in Table 1; see Appendix A for further discussion of other h
functions such as BCE (Hastie et al., 2009) and UKL (Nguyen et al., 2010). We also empirically
analyze the effect of using different objectives with h functions in Section 6.3.

4.4 OPTIMIZATION

So far, we have observed that the RL-style objective in Equation (17), combined with density ratio
estimation in Equation (21), can effectively leverage the preference dataset for imitation learning.
However, this two-step process is complex and unstable, requiring first the fitting of a reward model to
estimate the density ratio and then fine-tuning the language model policy using the RL-style objective
in Equation (17). To address these challenges, we introduce a simpler approach that directly optimizes
the imitation learning objective, bypassing the need for RL training and density ratio estimation. The
core idea lies in a specialized parameterization of the density ratio reward, which allows for the direct
extraction of the optimal policy, eliminating the need for an RL loop (Rafailov et al., 2024). Notably,
the optimal policy in Equation (17) has a closed-form solution, as shown by (Rafailov et al., 2024):

π∗(y | x) = 1

Z(x)
πref(y | x) exp

(
log r∗(x,y)

)
, (22)

where Z(x) =
∑

y πref(y|x) exp
(
log r∗(x,y)

)
=

∑
y πchosen(y|x) = 1, meaning that the optimal

π∗(y|x) is forced to be self-normalized! This characteristic, determined by the reward definition in
Equation (17), is super beneficial as it allows our imitation learning to theoretically generalize to a
broader class of loss functions beyond the pairwise BT preference model used in DPO. Taking the
logarithm of both sides of Equation (22) and then with some algebra, we obtain the following:

log
π∗(y | x)
πref(y | x)

= log r∗(x,y), (23)

where r∗(x,y) is the density ratio estimated by Equation (21) on the preference dataset. Since the
optimal density ratio is now represented in terms of the optimal policy, rather than the discriminator
model, we can explicitly derive the following maximum likelihood objective for a parameterized
policy over the preference dataset (Rafailov et al., 2024). Analogous to the approach used for density
ratio estimation and utilizing a change of variables, we can formalize our DIL objective as follows:

LDIL(θ;D) = E(x,yw,yl)∼D

[
− πθ(yw | x)

πref(yw | x) +
1

2
(
πθ

(
yl | x)

πref(yl | x)
)2]

, (24)
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where we directly fit an implicit density ratio in Equation (21) using an alternative parameterization
in Equation (23). Interestingly, there are no hyperparameters in our loss, yet it achieves promising
performance, as demonstrated in our experiments. Since our procedure is equivalent to fitting
a reparameterized density ratio estimation model, it theoretically conducts imitation learning by
minimizing RKL divergence against the unknown distribution of the chosen response. Table 1 shows
a family of objectives that meet the definition of Bregman divergence.

4.5 DISCUSSION: DPO IS A SPECIAL CASE OF DIL

In this section, we show that DPO can be also viewed as a special case of our framework by using
contrastive predictive coding (CPC) (also as known as InfoNCE) (Oord et al., 2018) for density ratio
estimation. Given the prompt distribution p(x) and the conditional distribution of the chosen response
πchosen(y | x), we sample x ∼ p(x),yw ∼ πchosen(y | x), and yl ∼ πref(y | x). CPC optimizes:

LCPC(ϕ;D) = −E(x,yw,yl)∼D

[
log

exp(fϕ(x
⊤yw)/β)

exp(fϕ(x⊤yw/β)) + exp(fϕ
(
x⊤yl)/β

)], (25)

where fϕ : X × Y 7→ R is a parametric critic function. The optimal critic for this CPC with one
negative sample satisfies the following (Zheng et al., 2024; Ma & Collins, 2018; Oord et al., 2018):

f∗(x,y)/β = log
πchosen(y | x)
πref(y | x)c(x) = log r∗(x,y)− log c(x), (26)

where c(x) is a function (Oord et al., 2018; Zheng et al., 2024), that depends on x but not y. Thus,
CPC also estimates the density ratio reward in IL objective in Equation (17). Similar to Section 4.4,
by using the closed-form optimal policy in Equation (22) and using a change of variables, we have:

LDIL(θ;D) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x) − β log

πθ(yl | x)
πref(yl | x)

)]
, (27)

which is exactly the same objective as the well-known DPO. Thus, our framework enables us to
reinterpret DPO. Specifically, we demonstrate that DPO also falls under the imitation learning objective
in Equation (16) and essentially employs the CPC method for density ratio reward estimation.

5 EXPERIMENTS

Datasets. We evaluate DIL on widely used datasets: the UltraFeedback Binarized dataset (Cui et al.,
2023; Tunstall et al., 2023), the Reddit TL;DR summarization dataset (Völske et al., 2017), and the
Anthropic-HH dataset (Bai et al., 2022). The details of these datasets are provided in Appendix B.1.

Tasks and Evaluation. Following previous work (Rafailov et al., 2024; Tunstall et al., 2023),
we evaluate methods fine-tuned on the UltraFeedback Binarized dataset across tasks on the Open
LLM Leaderboard (Gao et al., 2023). The Anthropic HH dataset is used for dialogue generation
to produce helpful and harmless responses (Rafailov et al., 2024). For summarization, we use the
Reddit TL;DR dataset. For these tasks, we use GPT-4 for zero-shot pairwise evaluation (see prompts
in Appendix B.2). The task and evaluation details are also provided in Appendix B.2.

Models. For summarization and dialogue generation tasks, we use Pythia-2.8b (Biderman et al.,
2023) as our base model, with the model after SFT serving as a reference model, following (Rafailov
et al., 2024). For fine-tuning on the UltraFeedback Binarized dataset, we use Mistral-7B-Base (Tun-
stall et al., 2023) and Llama3-8b-SFT used in (Meng et al., 2024) as our base models.

Baselines and Implementation. We compare DIL with the following state-of-the-art baselines:
DPO (Rafailov et al., 2024), f-DPO (Wang et al., 2024a), IPO (Azar et al., 2024), SLiC (Zhao
et al., 2023), CPO (Xu et al., 2024b), and SimPO (Meng et al., 2024). We thoroughly tuned the
hyperparameters for each baseline and reported the best performance. The details of the baselines
and the hyperparameter search space can be found in Appendix B.3. The density ratio in Section 4.3
is estimated through optimization toward the Bregman divergence. A variety of functions meet the
requirements of h, but in all experiments, we choose the widely used LSIF as the default objective.
The effect of using different density ratio estimation objectives is empirically analyzed in Section 6.3.
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Table 2: Evaluation results on various tasks from the Huggingface Open Leaderboard v1 and v2. The
best and second best performance under each dataset are marked with boldface and underline.

Model (↓) / Benchmark (→) MMLU-PRO BBH MUSR MATH GSM8K ARC
M

is
tr

al
-7

B
-B

as
e

SFT 27.58 41.26 41.93 2.34 28.13 58.28

DPO (Rafailov et al., 2024) 26.73 43.27 43.65 1.36 21.76 61.26
SLiC (Zhao et al., 2023) 26.52 42.33 33.74 1.38 33.74 55.38

f-DPO (Wang et al., 2024a) 25.96 42.39 37.82 1.27 23.18 62.01
IPO (Azar et al., 2024) 25.87 40.59 42.15 1.25 27.14 60.84

KTO (Ethayarajh et al., 2024) 27.35 42.37 43.17 2.34 36.58 62.39
CPO (Xu et al., 2024b) 27.04 42.05 42.15 2.15 33.06 57.00

SimPO (Meng et al., 2024) 27.13 42.94 39.68 2.49 22.21 62.63

DIL w/ LSIF 27.44 43.59 44.05 2.95 32.19 63.31

L
L

am
a3

-8
B

-B
as

e

SFT 31.00 46.16 41.27 3.70 46.32 60.15

DPO (Rafailov et al., 2024) 31.58 47.80 40.48 4.53 38.67 64.42
SLiC (Zhao et al., 2023) 31.11 46.53 40.55 3.92 48.82 61.43

f-DPO (Wang et al., 2024a) 30.85 47.55 40.39 4.37 39.55 62.85
IPO (Azar et al., 2024) 30.18 46.78 39.58 4.02 22.67 62.88

KTO (Ethayarajh et al., 2024) 31.16 47.92 40.24 4.13 38.99 63.17
CPO (Xu et al., 2024b) 30.95 47.17 41.59 4.25 46.93 61.69

SimPO (Meng et al., 2024) 31.61 48.38 40.08 4.23 31.54 65.19

DIL w/ LSIF 32.22 48.78 42.75 4.68 48.98 65.37

Table 3: Win rates computed by GPT-4 against the SFT generated response and the chosen responses
on the TL;DR summarization and Anthropic-HH datasets on Pythia-2.8b. The best and second best
performance under each dataset are marked with boldface and underline, respectively.

Dataset (→) TL;DR Summarization Anthropic-HH

Method (↓) / Metric (→) vs SFT vs Chosen Average vs SFT vs Chosen Average

DPO (Rafailov et al., 2024) 71.22 57.58 64.40 69.32 59.35 64.34
SLiC (Zhao et al., 2023) 68.61 55.72 62.17 65.52 57.71 61.62
f-DPO (Wang et al., 2024a) 66.19 51.37 58.78 60.21 52.38 56.30
IPO (Azar et al., 2024) 72.17 56.51 64.34 63.19 55.12 59.16
CPO (Xu et al., 2024b) 73.13 58.89 66.01 72.30 63.39 67.86
SimPO (Meng et al., 2024) 69.71 54.38 62.05 67.85 57.51 62.68

DIL w/ LSIF 75.47 60.25 67.86 73.32 65.02 69.17

6 EXPERIMENTAL RESULTS

6.1 PERFORMANCE COMPARISON ON BENCHMARKS

Table 4: Ablation study on h-function of Bregman divergence: We
observe that these variants of DIL can further bring improvements.

Model (↓) / Benchmark (→) BBH MUSR MATH GSM8K

Mistral-7B
Base

DIL w/ LSIF 43.59 44.05 2.95 32.19

DIL w/ UKL 43.92 45.11 2.04 30.71
DIL w/ BCE 45.13 43.92 2.79 33.13

LLama3-8B
Base

DIL w/ LSIF 48.78 42.75 4.68 48.98

DIL w/ UKL 49.71 43.01 4.98 50.95
DIL w/ BCE 48.96 47.35 5.06 49.36

In this section, as shown in Ta-
ble 2, we compare the perfor-
mance of DIL against other align-
ment methods on Open LLM
Leaderboard. Our results show
that DIL exhibits remarkable ef-
fectiveness in improving perfor-
mance. Overall, DIL consis-
tently outperforms state-of-the-
art SimPO and DPO in various
benchmarks. For instance, on
LLama3, the improvements are notable on the Math benchmarks, with relative gains exceeding
7.5% over SimPO. Notably, we observe DPO and SimPO hurt the overall performance in most
reasoning-heavy tasks such as GSM8K. This indicates that both SimPO and DPO might not be suitable
to improve reasoning abilities, which is consistent with findings in concurrent works (Pal et al., 2024;
Meng et al., 2024). In contrast, DIL shows clear improvements in both the Mistral and LLama3
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Figure 2: The training dynamics of DIL variants, DPO and SimPO on Mistral show that DIL exhibits
the smallest decline in chosen likelihoods, while still increasing the likelihood margins between
rejected and chosen responses, compared to SimPO and DPO. In contrast, SimPO and DPO progres-
sively focuses on unlearning the chosen responses, leading to poor performance on reasoning tasks.

models. These findings underscore the effectiveness of DIL. These improvements can be attributed to
avoiding the BT assumption and preventing the likelihood decrease of chosen responses.

6.2 PERFORMANCE COMPARISON WITH HUMAN PREFERENCES

We also explore learning from real human preferences, focusing on summarization and dialogue
generation tasks. Specifically, we utilize the Reddit TL;DR dataset for summarization and the
Anthropic-HH dataset for dialogue generation. We employ Pythia-2.8B (Biderman et al., 2023) as the
base model and fine-tuned it on the chosen completions to train a reference model, ensuring that the
completions remained within the model’s distribution. Table 3 presents the GPT-4 evaluation results,
indicating that DIL outperforms baselines when compared to both the SFT and the chosen responses.
Notably, DIL aligns better with human preferences than baselines, achieving a win rate of at least 60%
against the chosen responses. This highlights the strong potential of DIL for aligning with human
preferences. Furthermore, GPT-4 consistently favored DIL over both baselines and chosen responses,
demonstrating improvements of DIL over baselines in both helpfulness and harmlessness.

6.3 FURTHER ANALYSIS

Generalization to other objectives. As mentioned in Section 4.3, our approach to conducting
imitation learning from preference data generalizes in a straightforward manner to other density ratio
estimations, including UKL and BCE. Table 4 shows the comparison on UltraFeedback. We can
observe that different variants of the h-function can lead to general improvements across various
benchmarks. Specifically, UKL performs best on BBH, achieving the highest scores on both the
Mistral and LLama3 models. BCE achieves a significant improvement on MUSR, with a notable
7.27% increase. These results indicate that appropriate variant can further enhance our performance.

Training Dynamics. We also analyze the likelihood patterns during the training process of DIL.
Figure 2 illustrates the likelihood trends of SimPO and DIL on UltraFeedback. We observe that the
likelihood of rejected responses continues to decrease, while the margin between chosen and rejected
responses steadily increases. However, for DPO and SimPO, the likelihood of chosen responses drops
below zero and continues to decline. These results validate our motivation and demonstrate the
effectiveness of DIL in preventing the likelihood of chosen responses from decreasing. This also
explains why DIL generally enhances downstream task performance, particularly in reasoning-heavy
tasks such as math, as shown in Table 2.

7 CONCLUSION

We consider the problem of aligning large language models with preference data. We provide a novel
perspective on imitation learning for the alignment problem, and demonstrate RLHF/DPO essentially
conduct imitation learning on the distribution of chosen response with reverse KL divergence.
Building upon this connection, we propose DIL, which directly optimizes the imitation learning
objective based on Bregman divergence and can more effectively preserve reasoning abilities than
baselines while aligning with human preferences. Empirical result shows that DIL establishes superior
performance on a comprehensive set of benchmarks and different families of language models. We
hope that our work will inspire future research on preference alignment with imitation learning,
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A DETAILS OF METHODS FOR DENSITY RATIO ESTIMATION

We overview examples of density ratio estimation methods under Bregman Divergence framework.

Least Squares Importance Fitting (LSIF). LSIF (Kanamori et al., 2009) minimizes the squared
error between a density ratio model r and the true density ratio r∗ defined as follows:

DhLSIF
(r∗∥rϕ) = Eπref

[(rϕ(x,y)− r∗(x,y)2]

= Eπref
[(r∗(x,y))2]− 2Eπchosen

[rϕ(x,y)] + Eπref
[(rϕ(x,y))

2], (28)

where the first term in the above equation is constant w.r.t ϕ. This empirical risk minimization is
equal to minimizing the empirical BD defined in Equation (18) with h(r) = (r − 1)2/2.

KL Importance Estimation Procedure (KLIEP). KLIEP is derived from the unnormalized Kull-
back–Leibler (UKL) divergence objective (Sugiyama et al., 2008; Nguyen et al., 2010), which uses
h(r) = r log(r)− r. Ignoring terms irrelevant to the optimization, we obtain (up to a constant):

DhKLIEP
(r∗∥rϕ) = Eπref

[
r(x,y)

]
− Eπchosen

[
log

(
r(x,y)

)]
. (29)

KLIEP is also known as solving a Lagrangian of the constrained problem with further imposing a
constraint that the ratio model r(x,y) is non-negative and normalized as follows:

max
r

Eπchosen

[
log

(
r(x,y)

)]
(30)

s.t. Eπref

[
r(x,y)

]
= 1 and r(x,y) ≥ 0 for all (x,y). (31)

Binary Cross Entropy. By using h(r) = log(r) − (1 + r) log(1 + r), we obtain the following
Bregman Divergence called the Binary Cross Entropy (BCE) divergence:

DhBCE
(r∗∥rϕ) = −Eπref

[
log

(
1

1 + r(x,y)

)]
− Eπchosen

[
log

(
r(x,y)

1 + r(x,y)

)]
.

This Bregman divergence is derived from a formulation of logistic regression (Sugiyama et al., 2012).

B EXPERIMENTAL DETAILS

B.1 THE DETAILS OF DATASETS

UltraFeedback Binarized (Cui et al., 2023; Tunstall et al., 2023): This dataset1 consists of 64k
prompts, each paired with four completions generated by various open-source and proprietary models.
GPT-4 assigns scores to these completions based on helpfulness, honesty, and other criteria. Binary
preferences are then constructed by selecting the completion with the highest score as the chosen
response, while one of the remaining three completions is randomly selected as the rejected response.

Anthropic-HH (Bai et al., 2022): The Anthropic Helpful and Harmless dialogue dataset2 comprises
170k dialogues between humans and LLM assistants, designed for evaluating single-turn dialogue
tasks. Each dialogue consists of a human query and two model responses rated for helpfulness and
harmlessness. Following DPO (Rafailov et al., 2024), the chosen responses from this dataset were
used during the supervised fine-tuning (SFT) phase.

Reddit TL;DR Summarization (Völske et al., 2017): This dataset3 comprises Reddit forum posts
curated for summarization tasks with associated preference labels. Following prior work (Stiennon
et al., 2020), we use a filtered version of this dataset to train the SFT policy and leverage its preference
labels during the subsequent alignment phase.

1https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
2https://huggingface.co/datasets/Anthropic/hh-rlhf
3https://huggingface.co/datasets/openai/summarize_from_feedback
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Table 5: The hyperparameter search space for the baselines.

Method Method

DPO/f-DPO β ∈ [0.01, 0.05, 0.1] IPO τ ∈ [0.01, 0.1, 0.5, 1.0]

CPO λ = 1.0 SLiC λ ∈ [0.1, 0.5, 1.0, 10.0]
β ∈ [0.01, 0.05, 0.1] δ ∈ [0.1, 0.5, 1.0, 2.0]

KTO λl = λw = 1.0 SimPO β ∈ [2.0, 2.5]
β ∈ [0.01, 0.05, 0.1] γ ∈ [0.3, 0.5, 1.0, 1.2, 1.4, 1.6]

B.2 THE DETAILS OF TASKS AND EVALUATION

This section introduces the benchmark for model evaluation. The model fine-tuned on the UltraFeed-
back Binarized dataset is evaluated following previous works (Rafailov et al., 2024; Tunstall et al.,
2023) using the HuggingFace Open LLM Leaderboard v14 and v25 (Beeching et al., 2023; Fourrier
et al., 2024). The evaluation includes MMUL-PRO, BBH, MUSR, MATH, GSM8k, and ARC.
Models fine-tuned on the Anthropic-HH dataset follow the evaluation protocol outlined by (Rafailov
et al., 2024), leveraging GPT-4 for zero-shot pairwise evaluation.

MMUL-PRO (Wang et al., 2024b): Short hand for Massive Multitask Language Understanding
Professional. This dataset builds on the MMLU by incorporating more complex multiple-choice
questions and undergoing rigorous expert review to enhance quality, difficulity and reduce data biases.

BBH (Suzgun et al., 2022): Short hand for Big Bench Hard. This benchmark includes 23 tasks
selected from BigBench testing capabilities in arithmetic, comprehension, and general knowledge.

MUSR (Sprague et al., 2024): Short hand for Multistep Soft Reasoning. This benchmark contains
complex scenarios to assesses capacity to integrate information and reason across long contexts.

MATH (Hendrycks et al., 2021): This collection comprises math problems for high-school competi-
tions, consistently presented using LaTeX and Asymptote to ensure clear and precise formatting.

GSM8k (5-shot) (Cobbe et al., 2021): This benchmark consists of grade school math problems to
test the model’s capability to navigate and solve complex, multi-step mathematical challenges.

ARC (25-shot) (Clark et al., 2018): Short hand for AI2 Reasoning Challenge. This science-focused
benchmark includes questions from a grade-school curriculum to test factual and logical reasoning.

GPT-4 Evaluation (Rafailov et al., 2024): The safety of models trained on Anthropic HH is assessed
using the Anthropic HH test set, with preferred responses serving as benchmarks. GPT-4’s evaluations
are aligned with human judgments, ensuring reliable safety assessments. The model version used for
these evaluations is gpt-4-0314, with specific prompts detailed in Table 6.

B.3 IMPLEMENTATION DETAILS

Training For the general hyperparameters, we closely followed the configurations used in SimPO.
Specifically, during the SFT stage, we applied a learning rate of 2 × 10−5. For both the SFT and
preference optimization stages, we used a batch size of 128, a maximum sequence length of 2048, and
implemented a cosine learning rate schedule with 10% warmup steps for a single epoch, utilizing the
Adam optimizer (Kingma, 2014). These settings were maintained consistently across all experiments
to ensure uniformity and comparability. For method-specific hyperparameters, we also adhered to
the search strategy outlined in SimPO. For each baseline method, which had its own unique set of
hyperparameters, the search strategy is detailed in Table 5. Learning rates for each method were
individually searched within the range of [3e− 7, 5e− 7, 6e− 7, 1e− 6]. For our methods, we also
normalize the likelihood of the response, calculated as the average log probability of all tokens in
a response using the policy model, to avoid the length bias as in SimPO. All training experiments

4https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
5https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
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described in this paper were conducted using either four NVIDIA A100 80GB GPUs with 128
batchsize, utilizing the codebase from the alignment-handbook repository.6

Evaluation For the evaluation on the Open LLM Leaderboard V1, we use 5-shot setting for
GSM8K, and 25-shot for ARC. For the evaluation on Open LLM Leaderboard V2, all tasks were
performed by the default setting of the leaderboard.

For the following dialogue history to a chatbot, which response is more helpful and
harmless?

Dialogue history:
{dialogue history}

Response 1:
{Response 1}

Response 2:
{Response 2}

FIRST provide a one-sentence comparison of the two responses and explain which you
feel is more helpful and harmless. SECOND, on a new line, state only "1" or "2" to
indicate which response is more helpful and harmless. Your response should use the
format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"1" or "2">

Table 6: GPT-4 prompt (Rafailov et al., 2024) for the safety evaluation on the Anthropic-HH dataset.

C FUTURE WORK

This paper presents several exciting directions for future work. First, we aim to develop a deeper
theoretical understanding of which density-ratio estimation techniques are most effective for align-
ment. Our current analysis is limited to the offline setting and does not account for on-policy learning,
where the policy interacts with the reward model during training. Exploring DIL in an on-policy
learning scenario would be particularly interesting. Moreover, the relationship between DIL and DPO
structurally resembles the connection between Bregman divergence and contrastive predictive coding,
suggesting that further exploration of this link could be fruitful. While this paper primarily focuses on
three density-ratio estimation loss functions, investigating DIL with additional loss functions would
also be a compelling direction for future research.

6https://github.com/huggingface/alignment-handbook
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