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ABSTRACT

Truss decomposition is an effective and practical algorithm for dense subgraph
discovery. However, it is sensitive to the changes in the graph: dropping a few
edges or a bit of noise can drastically impact the truss numbers of the edges.
It is of practical importance to understand and characterize the robustness of
truss decomposition. In this work, we study and utilize the robustness of truss
decomposition in an edge-driven way. We propose to construct a dependency graph
among edges to denote the impact of an edge’s removal on the neighboring edges.
By using the dependency graph, we introduce three measures to capture the diverse
and unique properties of the edges. We provide theoretical findings and design an
efficient algorithm to compute the dependency graph faster than the naive baseline.
We also show that our new edge-based truss robustness measures capture intrinsic
graph structures and have the potential to unearth peculiar differences that can
help with various downstream tasks, such as edge classification. We integrate our
measures into the state-of-the-art GNN for edge classification and demonstrate
improved performance on multi-class datasets. The overhead of computing our
edge-based measures is insignificant when compared to the training time. We
believe that utilizing edge-based truss and robustness measures can further be
helpful in edge-driven downstream tasks.

1 INTRODUCTION

Dense subgraphs are found to be useful in various applications such as anomaly detection, visualiza-
tion, and clustering (Shin et al., 2018; Liu & Sarıyüce, 2020; Alvarez-Hamelin et al., 2005; Gibson
et al., 2005). Among many methods, truss decomposition has attracted particular interest due to its
effectiveness and practicality (Sariyuce et al., 2015; Sariyüce et al., 2017; Wang & Cheng, 2012;
Fang et al., 2020; Huang et al., 2016; Wang & Cheng, 2012). 𝑘-truss is the maximal subgraph in
which every edge is contained in at least 𝑘 triangles (Cohen, 2008). Truss number (or trussness) of
an edge is the largest 𝑘 for which the edge is part of a 𝑘-truss. 𝑘-truss is inspired by the concept of
𝑘-core—the maximal subgraph in which every node has a degree of at least 𝑘 (Seidman, 1983)—and
it is a superior alternative to 𝑘-core, outperforming it in various applications such as internet AS-level
analysis (Gregori et al., 2013; Carmi et al., 2007; Alvarez-Hamelin et al., 2005), visualization (Healy
et al., 2008; Colomer-de Simón et al., 2013), and community detection (Sariyuce et al., 2015; Sariyüce
et al., 2017).

Despite its broad applicability, 𝑘-trusses are notoriously sensitive to changes in the graph (Chen et al.,
2021; 2022; Zhu et al., 2019). Even removing a few edges or adding some noise can have cascading
effects and influence the truss numbers of surrounding edges. Chen et al. (2021) demonstrated that
even minor edge removals can significantly impact truss-based communities, emphasizing the need
for taking truss robustness into account in downstream tasks. While core decomposition robustness
has been extensively studied (Zhou et al., 2021; Hossain et al., 2023), truss robustness remains
relatively unexplored, despite its superiority in various tasks across diverse data types (Gregori et al.,
2013). Considering the wide application space of 𝑘-trusses, it is of utmost importance to comprehend
and characterize the robustness of truss decomposition on the edge-level. Identifying which edges
are susceptible to nearby changes or determining the edges whose removal has a more pronounced
impact on neighboring edges becomes crucial in this context. To the best of our knowledge, there

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

e1

e2

𝜙=2
𝜙=1
𝜙=0

  𝜙(e1) = 𝜙(e2) = 2

A toy graph G G \ {e2}G \ {e1}

  |△(e1)| = |△(e2)| = 3

Figure 1: A toy graph showing the nuances captured by the robustness of truss numbers. 𝜙 denotes
truss number and |4(𝑒) | is the number of triangles that contain 𝑒. 𝑒1 and 𝑒2 have the same triangle
counts and same truss numbers in the toy graph on the left, however their role in the graph structure
are not the same: removing each edge has unique impact on the surrounding edges—truss numbers
are different after removing each, as denoted on the middle and right.

is no study that quantifies edge-based truss robustness. The increasing importance of edge-driven
methods in graph analysis (Benson et al., 2016; Bick et al., 2023) underscores the need for robust
edge-based measures that can capture intricate graph structures. In scenarios where edge properties
are key, such as anomaly detection and edge classification, truss numbers as well as their robustness
qualities could offer unique insights. For instance, Li et al. (2024) recently proposed a 𝑘-truss based
temporal graph convolutional network to capture both intricate topology and temporal dependencies
in graphs, demonstrating the potential of truss-based approaches in enhancing GNN performance.

To exemplify the nuances truss robustness captures, we provide a toy graph in Figure 1 Edges 𝑒1 and
𝑒2 have the same triangle counts and same truss numbers in the toy graph (left). However, removing
them has different impacts on the truss number of other edges. Removing 𝑒1 solely impacts the edges
with trussness of two, reducing their value to one. Removing 𝑒2, however, triggers a broader effect:
in addition to decreasing the trussness of all edges with truss number two, it also impacts the two
edges with truss number of one. Overall, robustness of the truss numbers helps to distinguish the
structural differences around edges, especially when traditional measures such as triangle count and
trussness fail, and hence can be useful in downstream tasks like edge classification.

In this study, we characterize, quantify, and utilize the robustness of truss decomposition in an
edge-driven way. We propose to model the robustness of truss numbers by establishing a dependency
graph among edges—edges in the input graph become nodes in the dependency graph. For any two
edges 𝑒 and 𝑓 that share a triangle, edge 𝑒 is defined to be dependent on edge 𝑓 if the truss number
of 𝑒 decreases after removing 𝑓 , denoted by 𝑓 → 𝑒 relation. We only focus on the impact of a
single-edge removal for simplicity—we hypothesize that multiple-edge removals can be approximated
by considering multiple single-edge removals. We remove each edge independently and create its
dependency relations to the neighboring edges. By utilizing the dependency graph, we propose three
edge-based measures: Edge Robustness, Edge Strength, and EdgeRank, which capture the (inverse
of) in-degree, out-degree, and PageRank values of the nodes in the dependency graph, respectively.
Edge Robustness measures how likely an edge’s truss number drops when its neighbors are removed
and Edge Strength quantifies the edge’s potency to alter the truss number of surrounding edges. As
computing the dependency graph is computationally costly, we introduce several theoretical findings
that enable faster computation. Leveraging these findings, we formulate an efficient algorithm that is
3.74× faster than the naive baseline, on average.

As shown in Figure 1, edge-based truss robustness measures can capture intrinsic graph structures
and thus have the potential to reveal nuances between edges in downstream tasks. We provide an
early empirical analysis to show the extent of diversity captured by our edge-based measures. To
showcase the merits of our novel edge-based measures, we primarily focus on the multi-class edge
classification problem (Küçüktunç et al., 2013; Gupta et al., 2014; Behera & Panigrahi, 2015; Duan
et al., 2020; Leskovec et al., 2010; Wang et al., 2010) where the class distribution is imbalanced,
hence capturing rare classes is challenging. Building on a cutting-edge Graph Neural Network
(GNN) designed for edge classification (Wang et al., 2023), we seamlessly integrate our measures to
improve the edge classification performance. This integration facilitates the learning of enhanced
edge embeddings, leading to up to 3.08% improvement in F1 scores. The improvement is particularly
noteworthy in identifying rare classes. Furthermore, we underscore the efficiency of our approach by
demonstrating that the computational overhead associated with our edge-based measures is negligible
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when compared to the training runtime. We posit that incorporating edge-based truss robustness
measures holds the potential for helping edge-driven downstream tasks. Our contributions are
summarized as follows:

• We propose the first study to characterize edge-based robustness of the truss decomposition.
• We model the robustness of truss numbers by building a dependency graph among edges

and define three edge-based measures based on the dependency graph.
• We introduce theoretical findings and an algorithm to enable practical computation of the

dependency graph.
• We perform extensive experiments on real-world networks and demonstrate the effectiveness

and efficiency of our measures against other baselines on edge classification task.

2 BACKGROUND AND RELATED WORK

In this work, we focus on undirected, unweighted graphs, denoted as 𝐺 = (𝑉, 𝐸) where 𝑉 represents
nodes and 𝐸 represents edges. Assume 𝑆 is a subgraph of 𝐺, 𝑆 ⊆ 𝐺. We consider 𝑑𝑒𝑔(𝑢, 𝑆) to denote
the degree of 𝑢 in 𝑆. If the graph is directed, the notation extends to 𝑑𝑒𝑔+ (𝑢, 𝑆) and 𝑑𝑒𝑔− (𝑢, 𝑆),
representing the out-degree and in-degree of 𝑢 within 𝑆, respectively. A triangle in 𝐺 is a cycle of
three nodes and three edges, denoted by 4. If an edge e is contained in a triangle 4, we denote it by
𝑒 ∈ 4. 4(𝑒) denotes the set of triangles that contain edge 𝑒 (notation is given in Table 3 at Appendix).

A 𝑘-truss 𝐺𝑘 of an undirected graph 𝐺 is the maximal triangle-connected subgraph that contains
edges that are part of at least 𝑘 triangles in the subgraph. For each edge 𝑒 ∈ 𝐺, its truss number
(or trussness), 𝜙(𝑒, 𝐺), is defined as the maximum 𝑘 such that 𝑒 resides in a 𝑘-truss. We define
that two edges are incident (or neighbor) if they reside in the same triangle (which is different
than the typical definition in graph theory). The set of incident edges of an edge 𝑒 is denoted as
𝐸 (𝑒, 𝐺). We split the incident edges of 𝑒 into different sets based on the relative truss numbers,
e.g., Γ< (𝑒, 𝐺) = {𝑒′ : 𝑒′ ∈ 𝐸 (𝑒, 𝐺) ∧ 𝜙(𝑒′, 𝐺) < 𝜙(𝑒, 𝐺)} denotes the neighbors of edge 𝑒 with
smaller truss numbers. The support of an edge 𝑒, denoted by 𝑠𝑢𝑝(𝑒, 𝐺), is the number of triangles
containing 𝑒 in 𝐺, i.e., 𝑠𝑢𝑝(𝑒, 𝐺) = |4(𝑒) |. The trussness support, 𝑡𝑠(𝑒, 𝐺), is the support of edge
𝑒 in 𝜙(𝑒)-truss (Zhang & Yu, 2019). For each 4 ∈ 𝜙(𝑒)-truss, where 𝑒 ∈ 4, there are two incident
edges of 𝑒 contained within 4. Hence, 𝑡𝑠(𝑒, 𝐺) = |Γ≥ (𝑒, 𝜙(𝑒)-truss) |/2. Two triangles are adjacent
if they share a common edge. Two edges are triangle-connected if they are incident to each other or
there is a series of edges between them that are consecutively incident to each other. A subgraph is
triangle-connected if every pair of edges in it are triangle-connected. In all notations, we omit 𝐺
when it is obvious.

Core and truss robustness. Existing research on network robustness for dense subgraph discovery
leans heavily on 𝑘-cores (Zhou et al., 2021; Dey et al., 2020; Laishram et al., 2018; Adiga & Vullikanti,
2013; Hossain et al., 2023), while 𝑘-truss robustness is much less explored (Chen et al., 2021; 2022;
Zhu et al., 2019). Traditional methods (Dey et al., 2020; Zhou et al., 2021; Adiga & Vullikanti, 2013;
Laishram et al., 2018) have focused on core number changes across the entire graph or within specific
subgraphs, neglecting individual node robustness. Hossain et al. (2023) addressed this by proposing
Removal Strength (RS), which measure a node’s ability to influence or maintain its coreness under
edge disruptions. RS has two variants: 𝑅𝑆𝑂𝐷 measures a node’s ability to affect neighboring core
numbers upon removal, while 𝑅𝑆𝐼𝐷 measures its ability to stay within the 𝑘-core. The authors
showed that core robustness measures help to identify critical edges and influential nodes. Despite
its usefulness and superiority in various tasks on diverse data types and setups (Gregori et al., 2013;
Colomer-de Simón et al., 2013; Orsini et al., 2013; Wang & Cheng, 2012; Zhao & Tung, 2012;
Huang et al., 2016), truss robustness has received less attention. Zhu et al. (2019) introduced the
concept of using 𝑘-trusses to evaluate social network stability under edge removals. Building on this,
Chen et al. (2021) extended the analysis to consider both edge removals and insertions, addressing
community-breaking problems and network robustness. However, no measures have been developed
yet to assess the robustness of individual edges within 𝑘-trusses. In that sense, we propose the first
edge-based robustness measures for truss decomposition.

Edge classification. Edge-driven methods, which reason about edges instead of nodes, and higher-
order techniques are getting more popular due to their novel relation-first approach (Benson et al.,
2016; Bick et al., 2023). Edge classification, crucial for tasks like anomaly detection and rec-
ommendations (Bielak et al., 2022; Wang et al., 2020; Yang & Xu, 2022), presents unique chal-
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lenges. Unlike nodes with inherent features, edges rely on aggregated information from connected
nodes. However, existing methods like neighborhood aggregation (Hamilton et al., 2017) or embed-
ding techniques (Grover & Leskovec, 2016; Tang et al., 2015; Menon & Elkan, 2011) struggle to
capture complex relationships or handle large-scale graphs effectively. To address this, auto-encoders
like Edge2vec (Wang et al., 2020) and AttrE2vec (Bielak et al., 2022) attempt to learn meaningful
edge representations by leveraging deep learning architectures or random walks. However, they
suffer from high computational costs. GNN-based approaches like SEAL (Zhang & Chen, 2018)
and EGNN (Li et al., 2022) focus on the local subgraph structure around an edge for representation
learning, achieving good accuracy. More recently, Wang et al. (2023) proposed two novel methods,
Topological Edge Representation (TER) and Attributed Edge Representation (AER), specifically de-
signed for efficient and effective edge-wise graph representation learning. TER captures higher-order
proximities of edges in a low-dimensional space, significantly improving performance compared to
existing approaches. AER augments edge attributes through a carefully-designed feature aggregation
scheme, enhancing representation quality for attributed graphs. Combining TER and AER outper-
forms previous approaches in edge classification. Most of the earlier works on edge classification
heavily focus on edge information aggregated from the node attributes or edge features learned from
GNNs. Although features like triangle count, trussness (Wang & Cheng, 2012), and node-pair sum of
core robustness (Hossain et al., 2023) have been defined earlier, they have not been used for edge
classification. Motivated by the intrinsic graph structures captured by our edge-based truss robustness
measures, we integrate them into TER and AER to enhance edge classification performance.

3 EDGE-BASED TRUSS ROBUSTNESS

We employ a comprehensive approach to capture the robustness of an edge’s truss number against
edge removals. We determine whether an edge’s truss number is dependent or not on any incident edge
when the edge is removed from the graph. We consider all the edges and figure out the dependency
relationships among them to quantify the robustness of each edge. We focus on the impact of a
single-edge removal for simplicity, and create the dependency graph as follows:

Definition 1 We define that an edge 𝑒 is dependent on an incident edge 𝑓 , denoted as a relationship
𝑓 → 𝑒, if 𝜙(𝑒) decrements after removing the edge 𝑓 . For a given graph 𝐺 = (𝑉, 𝐸), we define
the dependency graph as a directed graph 𝐺𝑑 = (𝑉𝑑 , 𝐸𝑑) where each edge in 𝐺 is represented
as a node in 𝐺𝑑 (𝑉𝑑 = 𝐸) and for each pair of incident edges 𝑒, 𝑓 in 𝐸 , there is a directed edge
( 𝑓 , 𝑒) ∈ 𝐸𝑑 if 𝜙(𝑒, 𝐺 \ 𝑓 ) < 𝜙(𝑒, 𝐺).

We give an example in Figure 2a. In the toy graph on the top, each edge has a truss number of one.
The corresponding dependency graph is given on the bottom. Each edge in the toy graph corresponds
to a node in the dependency graph and the edges in the dependency graph represent the dependencies
among incident edges in the toy graph. On the bottom, 𝑒4 has two in-neighbors (𝑒3 and 𝑒5), meaning
it is dependent on 𝑒3 and 𝑒5. For a pair of incident edges in the toy graph, if neither edge is dependent
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(a) A toy graph (top) and its dependency
graph (bottom).
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Figure 2: Dependency graph example (left) and implications on edge classification (right).
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on the other, then no edge appears in the dependency graph—as is the case for (𝑒3, 𝑒5) which are
incident on the left but not connected on the right. Also, if two edges in the toy graph are dependent
on each other, there are two edges in both directions in the dependency graph, as for (𝑒1, 𝑒2).

In-/out-degree of a node in the dependency graph (edge in the original graph, 𝐺) provides important
insights about its truss robustness. A node with a large in-degree is dependent on many of its
neighbors, hence removing a nearby edge (in 𝐺) could reduce its truss number, implying a lower truss
robustness. To capture this inversely, we define Edge Robustness of a node in 𝐺𝑑 to quantify the
robustness of the corresponding edge 𝑒 ∈ 𝐺 to retain its truss number upon an incident edge removal:

𝐸𝑅(𝑒) = 1/𝑑𝑒𝑔− (𝑒, 𝐺𝑑) (1)

The higher a node’s out-degree in the dependency graph, the more strength it has to change the other
edges’ truss numbers. We define Edge Strength of a node in 𝐺𝑑 to quantify the strength of the
corresponding edge 𝑒 ∈ 𝐺 to change the trussness of other edges:

𝐸𝑆(𝑒) = 𝑑𝑒𝑔+ (𝑒, 𝐺𝑑) (2)

Our two measures capture the impact of an edge on its direct neighbors’ trussness. To capture
the higher-order influences of an individual edge, we introduce another measure called EdgeRank.
EdgeRank of a node in the dependency graph is the PageRank score of it in a modified dependency
graph where edge directions are reversed. In the reversed dependency graph (𝐺𝑟𝑑), nodes with
higher strength (Edge Strength in the dependency graph) have a greater number of incoming links.
EdgeRank scores help to discover the nodes that have incoming edges from other nodes with high
EdgeRank scores, effectively highlighting their potential to influence the overall truss structure of the
network. Below is the formula for EdgeRank, where 𝑑 is the damping factor (default 𝑑 = 0.85), 𝑒′
represents the incoming neighbors of 𝑒, and deg+ (𝑒′, 𝐺𝑟𝑑) is the out-degree of 𝑒′ in the 𝐺𝑟𝑑:

EdgeRank(𝑒) = (1 − 𝑑) + 𝑑 ·
∑︁

𝑒′∈InNeighbors(𝑒)
EdgeRank(𝑒′)/𝑑𝑒𝑔+ (𝑒′, 𝐺𝑟𝑑) (3)

Implications of truss robustness measures for edge classification. As shown in Figure 1, truss
robustness captures intrinsic graph structures that cannot be captured by triangle counts or trussness
values. Here we perform an early empirical analysis of our truss robustness measures as well as
several graph structural features to see their potential impact on edge classification task. We analyze
two multi-class datasets from Wang et al. (2023) (details are given in Table 1). Analysis of other
four datasets is given in Figure 5 at Appendix. To find the importance of each edge-based feature,
we conduct a thorough analysis of their value distributions across different classes. Generally, a
valuable feature exhibits distinct values across classes. The greater this difference, the more effective
the feature is for classification. To quantify this difference for each edge feature, we first calculate
the average value of the feature across all edges belonging to the same class. This results in a set
of average values, one for each class. Then we compute the standard deviation of these class-wise
average values. A higher standard deviation indicates greater variation in the feature across classes,
suggesting its potential value for edge classification. In essence, a high standard deviation implies
that the edge feature can effectively separate different classes. We consider nine features in total,
including our three measures, ES, ER, EdgeRank, the triangle count and trussness values of edges,
and the sum of coreness, degree, 𝑅𝑆𝑂𝐷 , and 𝑅𝑆𝐼𝐷 values of the endpoints of each edge. All are
scaled to the same range. Figure 2b shows the standard deviations for all measures. For each
dataset, each bar represents the standard deviation of their values across different classes. We observe
high standard deviations for 𝐸𝑆 and 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 for the AMiner and MAG graphs, suggesting their
potential in better distinguishing edge classes. Note that, aside from triangle count and 𝑅𝑆𝐼𝐷 sum,
other variant measures have consistently lower standard deviations for all the datasets. Overall, our
edge-based truss robustness measures, particularly 𝐸𝑆 and 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 , have a high potential to be
help distinguish classes in the edge classification task.

4 AN EFFICIENT ALGORITHM TO COMPUTE THE DEPENDENCY GRAPH

A naive way to compute the dependency graph is to run the incremental truss decomposition algorithm
used by Zhang & Yu (2019) for every single edge removal, which will be costly. Here we propose
efficient heuristics by using key observations about the truss structure. We begin by introducing a few
useful definitions and lemmas about truss number changes upon edge removal.
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Definition 2 An edge 𝑒 ∈ 𝐺 is defined to be vulnerable if 𝜙(𝑒, 𝐺) = |Γ≥ (𝑒, 𝐺𝜙 (𝑒) ) |/2. For a
vulnerable edge 𝑒, Γ≥ (𝑒, 𝐺𝜙 (𝑒) ) is called the sensitive incident edges of 𝑒.

Depending on the vulnerable edges and its connectedness within a 𝑘-truss, we introduce the following
definition.

Definition 3 k-exposed is a maximal triangle-connected subgraph of vulnerable edges with the
same truss number, 𝑘 . Formally, 𝑆 ⊆ 𝐺 is a 𝑘-exposed if ∀𝑒 ∈ 𝑆, 𝜙(𝑒, 𝐺) = 𝑘 and 𝑒 is a vulnerable
edge.

Lemma 1 If a sensitive incident edge 𝑒′ of a vulnerable edge 𝑒 is removed, then 𝜙(𝑒, 𝐺) will
decrease.

Proof 1 Let us consider that edge 𝑒 in a 𝑘-truss subgraph where 𝜙(𝑒, 𝐺) = |Γ≥ (𝑒, 𝐺𝜙 (𝑒) ) |/2 = 𝑘 .
This states that edge 𝑒 has exactly 𝑘 ∗ 2 incident edges (or 𝑡𝑠(𝑒, 𝐺) = 𝑘) whose truss numbers are
at least 𝑘 . Now, if we delete any sensitive edge 𝑒′ of 𝑒 (i.e., 𝑒′ ∈ Γ≥ (𝑒, 𝐺𝜙 (𝑒) )), then edge 𝑒 will
have less than 𝑘 ∗ 2 incident edges whose truss numbers are at least 𝑘 and thus the 𝑡𝑠(𝑒, 𝐺) will also
decrease. As a result, from the definition of truss number, 𝜙(𝑒, 𝐺 \ {𝑒′}) will be less than 𝑘 , and
lemma holds.

Focusing on the vulnerable edges and the sensitive incident edges around them can help figuring out
the dependency relations in a quicker way.

Definition 4 Given a graph 𝐺 = (𝑉, 𝐸) and an edge 𝑒 ∈ 𝐸 , the subtruss of 𝑒, also denoted as 𝑆𝑇𝑒,
is a set of edges 𝑒′ ∈ 𝐸 that have 𝜙(𝑒′) = 𝜙(𝑒) and are reachable from 𝑒 via a series of adjacent
triangles where the common edge 𝑒′′ in every adjacent triangle has truss values 𝜙(𝑒′′) equal to 𝜙(𝑒).

Lemma 2 (From Huang et al. (2014)) After removing a single edge, if the truss number of an edge
𝑒 decreases, then it may only affect the truss number of other edges in the subtruss of 𝑒 (𝑆𝑇𝑒).

Definition 5 After removing a single edge, if the truss number of an edge 𝑒 decreases, the subset of
edges 𝑒′ ∈ 𝑆𝑇𝑒 whose truss number change is called the Truss Changed Edges of 𝑒 (𝑇𝐶𝐸𝑒).

Leveraging the previously defined concepts of 𝑘-exposed and Truss Changed Edges (𝑇𝐶𝐸), we
introduce the following lemmas to design an efficient algorithm to compute dependency relations.

Lemma 3 In a 𝑘-exposed 𝑆, if the truss number of an edge 𝑒 ∈ 𝑆 decreases, then the truss number
of all the other edges 𝑒′ ∈ 𝑆 \ {𝑒} will also decrease.

Lemma 4 Given a 𝑘-exposed 𝑆 and any two edges 𝑒1, 𝑒2 ∈ 𝑆, 𝑇𝐶𝐸𝑒1 = 𝑇𝐶𝐸𝑒2 . 𝑇𝐶𝐸 of any edge
in a 𝑘-exposed 𝑆 is denoted by 𝑇𝐶𝐸𝑆 (Proofs of Lemma 3 and Lemma 4 are given in Section 7.3 in
Appendix).

Observation 1 From Lemma 1 and Definition 5, the truss number of an edge 𝑒′ will change after
the removal of edge 𝑒 if it satisfies one of the two conditions:
1. 𝑒′ is vulnerable and 𝑒 is a sensitive incident edge of 𝑒′.
2. 𝑒′ is not vulnerable and 𝑒′ ∈ 𝑇𝐶𝐸𝑒′′ s.t. 𝑒′′ is vulnerable and 𝑒 is a sensitive incident edge of 𝑒′′.

4.1 EDGE ROBUSTNESS COMPUTATION (ERC)

Building on our theoretical findings, which culminated in Observation 1, here we provide the
ERC algorithm (Algorithm 1) for computing edge-based truss robustness measures, 𝐸𝑅, 𝐸𝑆, and
𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 values of edges, in a given graph.

ERC algorithm. To compute the truss robustness measures, we need to construct a dependency graph
that considers the edges whose removal may affect the truss numbers of their incident edges. While
building this dependency graph typically involves removing and evaluating each edge, Lemma 4
provides a powerful optimization. Edges within the same 𝑘-exposed subgraph share the same impact
on trussness changes. This allows us to avoid redundant calculations by analyzing the impact of only
a single representative edge from a 𝑘-exposed subgraph and using it for all the other edges.
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Algorithm 1: ERC: Edge Robustness Computation (𝐺 (𝑉, 𝐸))
1 Input: 𝐺 (𝑉, 𝐸): graph. Output: 𝐸𝑅, 𝐸𝑆, 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘
2 𝐺𝑑 (𝑉 ′ , 𝐸 ′) ← empty graph // dependency graph
3 𝑇𝐶𝐸 ← [] // store 𝑇𝐶𝐸𝑆 for any 𝑘-exposed, 𝑆

4 𝐼𝐷𝑒𝑥𝑝 ← [] // store 𝑘-exposed id for each edge
5 Compute all 𝑘-trusses of 𝐺; and 𝜙(𝑒) and 𝑡𝑠(𝑒), where 𝑒 ∈ 𝐺
6 Find all 𝑘-exposed of 𝐺, put in S𝐺 and update 𝐼𝐷𝑒𝑥𝑝

7 foreach 𝑘-exposed 𝑆 ∈ S𝐺 do 𝑇𝐶𝐸 [𝑆] = TCECompute(𝐺 (𝑉, 𝐸), 𝑆, 𝜙, 𝑡𝑠)
8 foreach 𝑒 ∈ 𝐸 do
9 𝑇𝐷𝑒 ← ∅ // edges whose truss number will decrease after

removing 𝑒

10 foreach 𝑒′ ∈ |Γ≤ (𝑒, 𝐺) | do
11 if 𝜙(𝑒′, 𝐺) = |Γ≥ (𝑒′, 𝐺𝜙 (𝑒′) ) |/2 then
12 𝐸

′
.push((𝑒, 𝑒′)); foreach 𝑒′′ ∈ 𝑇𝐶𝐸 [𝐼𝐷𝑒𝑥𝑝 [𝑒′]] do 𝑇𝐷𝑒.push(𝑒′′) // By
Lem 1

13 foreach 𝑒′ ∈ |Γ≤ (𝑒, 𝐺) | s.t. 𝑒′ ∈ 𝑇𝐷𝑒 & (𝑒, 𝑒′) ∉ 𝐸 ′ do 𝐸
′
.push((𝑒, 𝑒′)) // By

Obs 1
14 foreach 𝑝 in 𝑉

′ do
15 𝐸𝑅(𝑝) ← 1

𝑑𝑒𝑔− (𝑝,𝐺𝑑) ; 𝐸𝑆(𝑝) ← 𝑑𝑒𝑔+ (𝑝, 𝐺𝑑); 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 (𝑝) ← 𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘 (𝑝) in

reversed 𝐺𝑑

16 Return 𝐸𝑅, 𝐸𝑆, 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘

In Algorithm 1, we use 𝑇𝐶𝐸 to store the Truss Changed Edges for all 𝑘-exposed where the 𝐼𝐷𝑒𝑥𝑝

save the 𝑘-exposed information of each edge. Leveraging the order-based algorithm of Zhang &
Yu (2019), we begin by identifying the 𝑘-trusses and computing trussness and trussness support
of each edge (Line 5). Then by traversing over the edges, we compute the set of all 𝑘-exposed
(S𝐺) of graph 𝐺 (Line 6). For each 𝑘-exposed 𝑆 ∈ S𝐺 , we find the 𝑇𝐶𝐸𝑆 (stored as 𝑇𝐶𝐸 [𝑆]) by
decreasing the truss number of a random edge 𝑒𝑟𝑛𝑑 ∈ 𝑆 (Line 7). Here, to find the 𝑇𝐶𝐸 of any
𝑘-exposed 𝑆, we adapt the algorithm from Zhang & Yu (2019) (explained below). Next, we consider
each edge 𝑒 ∈ 𝐺 to compute the dependency information for their incident edges and use 𝑇𝐷𝑒 to
track all the edges whose 𝜙 will change in 𝐺 \ {𝑒}. Our algorithms only consider the incident edges
𝑒′ ∈ |Γ≤ (𝑒, 𝐺) | for potential impact when removing any edge 𝑒. If edge 𝑒 is a sensitive incident edge
of any vulnerable edge 𝑒′, then removing 𝑒 will affect 𝑒′ and we put a directed edge in 𝐺𝑑 from 𝑒 to
𝑒′ (Line 12). A decrease in 𝑒′ will also affect the other edges 𝑒′′ ∈ 𝑇𝐶𝐸 [𝐼𝐷𝑒𝑥𝑝 [𝑒′]] (Lemma 4),
and this information is accumulated and saved in 𝑇𝐷𝑒 for each vulnerable edge 𝑒′ ∈ |Γ≤ (𝑒, 𝐺) |
(Line 12). Now, the incident edges (𝑒′) of 𝑒 that are not vulnerable but are affected by some other
vulnerable edges will be dependent on 𝑒 (Observation 1). We check this information (stored in 𝑇𝐷𝑒)
and put a directed edge in the 𝐺𝑑 (Line 13). Finally, we compute and return all three truss robustness
measures of the nodes in the dependency graph (edges in the original graph) (Lines 14 to 16).

Truss changed edges computation (TCECompute). To compute the Truss Changed Edges of 𝑆
(𝑇𝐶𝐸𝑆) for any 𝑘-exposed 𝑆, we decrease the truss number of only one edge from any 𝑆 (thanks to
Lemma 4). The algorithm is adapted from the order-based algorithm by Zhang & Yu (2019). Different
from Zhang & Yu (2019), our approach focuses on strategically decreasing the trussness of an edge
rather than removing the edge entirely. Here, we use a queue to manage the set of 𝑇𝐶𝐸𝑆 depending
on the trussness support. Initially, we choose a random edge 𝑒𝑟𝑛𝑑 ∈ 𝑆 to decrease its trussness, insert
it into the queue, update the trussness support (𝑡𝑠), and 𝑇𝐶𝐸𝑆 . Then, we iterate over each edge (𝑒𝑑𝑒𝑐)
from the queue to update the 𝑡𝑠 of its incident edges and the 𝑇𝐶𝐸𝑆 . We update the trussness support
of incident edges of 𝑒𝑑𝑒𝑐 in the process. Then, for each incident edges 𝑒 ∈ Γ≤ (𝑒𝑑𝑒𝑐 , 𝐺), we update
the queue and 𝑇𝐶𝐸𝑆 according to Zhang & Yu (2019). The pseudocode is given in Section 7.4 in
Appendix.

Time complexity. The time complexity of truss decomposition as well as Line 5 of Algorithm 1 is
𝑂 ( |𝐸 |1.5) (Wang & Cheng, 2012). Line 6 finds all the 𝑘-exposed subgraphs by traversing over the
edges via triangle connections, requiring 𝑂 ( |4(𝐸) |) time, where 4(𝐸) is the list of all triangles in the
graph. Complexity of Line 7 depends on the order-based algorithm by Zhang & Yu (2019), which is
𝑂 ( |4(𝑇𝐶𝐸𝑆) |) time for the unit edge removal. Here, |4(𝑇𝐶𝐸𝑆) | is the total time required to list all
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Table 1: Statistics of the datasets and runtime results. #𝐶 is the number of classes, R is the ratio of
smallest class size to the largest class size, denoting the class imbalance, and 𝜙𝑚 is the maximum
trussness of a graph. |S𝐺 | is the total number of 𝑘-exposed subgraphs and |𝑇𝐶𝐸 | is the average
number of truss changed edges after removing any edge 𝑒 ∈ 𝐺. In the remaining columns, we
compare the naive approach and 𝐸𝑅𝐶 algorithm, and show the fraction of edges processed by 𝐸𝑅𝐶

as well as its speedup (Sp.) against the naive approach. We also give the GNN runtime for edge
classification and compare the 𝐸𝑅𝐶 runtime to the toal 𝐸𝑅𝐶+GNN computation.

Graph |V| |E| #edge
attr. #C R φm |TCE| |SG|

Naive
runtime

(seconds)

ERC
runtime
(seconds)

Frac. of
edges
proc.

Sp.
GNN

runtime
(seconds)

Frac.
of ERC
to total

AMiner 40.0K 105.4K 256 10 0.1992 8 27 20.0K 1.055 0.519 0.19 2.03 436.933 0.00119
MAG 40.0K 120.4K 256 10 0.0020 8 44 20.4K 1.624 0.652 0.17 2.49 516.228 0.00126
MIND 242.9K 2.1M 256 10 0.3423 8 391 73.5K 145.068 32.425 0.04 4.47 9322.486 0.00347

BoT-IoT 32.2K 457.1K 12 5 0.0041 4 3 156.7K 4.080 1.932 0.34 2.12 1962.106 0.00098
ToN-IoT 38.9K 124.9K 12 10 0.0003 3 5 35.5K 3.362 1.465 0.28 2.30 10612.520 0.00014

UNSW-NB15 64.7K 1.1M 12 10 0.0001 5 12 469.5K 414.707 45.894 0.44 9.04 20612.52 0.00222

the triangles containing 𝑒 for all 𝑒 ∈ 𝑇𝐶𝐸𝑆 . Hence, Line 7 will take 𝑂 ( |S𝐺 | · |4(𝑇𝐶𝐸𝑆) |) time where
S𝐺 stores all the 𝑘-exposed of graph 𝐺. Lines 8 to 13 have a time complexity of 𝑂 ( |𝐸 | · |𝑇𝐶𝐸𝑆 |), as
we iterate over all the edges (𝐸) and their corresponding 𝑘-exposed sets (𝑇𝐶𝐸𝑆) in the loop. Hence,
the overall time complexity is 𝑂 ( |𝐸 |1.5 + |S𝐺 | · |4(𝑇𝐶𝐸𝑆) | + |𝐸 | · |𝑇𝐶𝐸𝑆 |). Note that, in practice
|S𝐺 | is notably smaller than |𝐸 | and the average size of 𝑇𝐶𝐸𝑆 is also much smaller than |𝐸 |, as
shown in Table 1.

Space complexity. In addition to the graph; 𝑡𝑠 and 𝜙 require 𝑂 ( |𝐸 |) space. In 𝑇𝐶𝐸 of Algorithm 1,
we store the truss changed edges information for any 𝑘-exposed 𝑆 ∈ S𝐺 , which takes 𝑂 ( |S𝐺 | ·
|𝑇𝐶𝐸𝑆 |) space. Finally, the 𝐸 ′ of the dependency graph takes 𝑂 ( |𝐸 | · |𝑇𝐶𝐸𝑆 |) to store 𝑇𝐶𝐸𝑆 for
each edge. So, the overall space complexity is 𝑂 ( |S𝐺 | · |𝑇𝐶𝐸𝑆 | + |𝐸 | · |𝑇𝐶𝐸𝑆 |).

5 EXPERIMENTAL EVALUATION

In this section, we evaluate our algorithms on several real-world datasets. We first investigate the
distribution of the three new edge-based measures. Then we check the efficiency of ERC against
the naive baseline. Next, we use our edge-based measures for the edge classification task and give
a comprehensive evaluation on effectiveness and efficiency. All experiments are performed on a
Linux operating system (v. 3.10.0-1127) running on a machine with Intel(R) Xeon(R) Gold 6130
CPU processor at 2.10 GHz with 192 GB memory. We implemented our ERC algorithm in C++.
For the edge classification, we utilized the code from Wang et al. (2023), which is implemented in
Python 3.9. Our code and datasets are publicly available at https://anonymous.4open.
science/r/robustness/.

We consider six datasets for evaluation. Table 1 gives the details. AMiner (Tang et al., 2008) and
MAG (Sinha et al., 2015) are co-authorship networks where nodes are scholars, edges represent
couathorships, and edge classes are the papers’ field of study. MIND (Wu et al., 2020) is a user
interaction network from Microsoft News where edges connect users who clicked/viewed the same
news and classes denote the news categories. BoT-IoT, ToN-IoT, and UNSW-NB15 (Sarhan et al.,
2021) are constructed from NetFlow-based datasets, where nodes are port addresses and edges are
interactions between ports. Edge features include network flow statistics and the class of edges are
attack types.

Truss robustness measures. To understand whether the truss robustness measures, 𝐸𝑆, 𝐸𝑅,
𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 , capture something different than the triangle counts and trussness values, we com-
pare their distribution. Figure 3 gives the results for AMiner graph (results for MAG is given in
Figure 6 in Appendix). Feature values are shown on the 𝑥-axis, and corresponding frequencies are
shown on the 𝑦-axis. 𝐸𝑆, 𝐸𝑅, and 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 all exhibit distinct distributions from each other
and also show different behaviors than the trussness and triangle counts. This suggests that our
edge-based robustness measures can be useful at discriminating between different types of edges. 𝐸𝑆
and 𝐸𝑅 typically exhibit left-skewed distributions whereas 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 has a bimodal behavior. The
more skewed and spread-out distributions of 𝐸𝑆 and 𝐸𝑅 suggests wider variations in these aspects
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Figure 3: Value distribution of five different edge features—𝐸𝑆, 𝐸𝑅, 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 , trussness, and
triangle count—for AMiner graph. 𝑥-axis represents the feature values and 𝑦-axis represents the
corresponding frequency (∗105).

Table 2: Macro F1 scores for edge classification on Poisson variant. Best scores are marked in bold
for each graph and method. On average, merging ES, ER, and EdgeRank gives the best results.

Graph TER+AER
TER+AER
+RS_𝑶𝑫
+RS_𝑰𝑫

TER+AER
+Trussness
+Triangle c.

TER+AER
+Coreness
+Degree

TER+AER
+ES+ER+
EdgeRank

AMiner 87.51 ± 1.49 87.12 ± 5.32 87.25 ± 2.55 87.17 ± 2.70 88.24 ± 0.75
MAG 85.71 ± 3.44 85.86 ± 2.97 87.06 ± 2.22 86.26 ± 2.08 88.39 ± 2.70
MIND 90.13 ± 0.07 92.50 ± 0.07 90.52 ± 0.09 92.70 ± 0.06 90.44 ± 0.07

BoT-IoT 50.27 ± 2.34 51.23 ± 3.01 51.38 ± 2.86 51.13 ± 2.63 53.1 ± 1.81
ToN-IoT 28.04 ± 0.52 28.4 ± 0.51 28.18 ± 0.29 28.16 ± 0.42 30.48 ± 0.64

UNSW-NB15 11.64 ± 0.21 11.62 ± 0.12 11.55 ± 0.13 11.69 ± 0.15 14.72 ± 0.14

across edges, which is in line with the standard deviation numbers in Figure 2b. This indicates that
they could be more useful for identifying edges with distinct local network structures. Besides, the
bimodal distribution of 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 might be useful in distinguishing certain edge classes.

Efficiency of ERC algorithm. Here we compare the runtime performances of our ERC algorithm
against the naive strategy which simply runs the algorithm designed by Zhang & Yu (2019) for each
edge removal. Table 1 gives the absolute runtimes, fraction of edges processed by ERC against the
baseline, and the overall speedup of ERC. Using our ERC algorithm, we process as low as 4% of
edges compared to the naive method. On average, ERC is 3.74× faster than the baseline across all
datasets and gives up to 9.04× speedup.

5.1 EDGE CLASSIFICATION

We consider the state-of-the-art edge classification method, TER+AER (both Poisson and Geometric
variants), from (Wang et al., 2023) as the baseline and integrate our truss robustness measures into it
for comparison. As an alternative baseline that uses higher-order information, we integrate triangle
count and trussness values of edges into TER+AER. And as an alternative robustness baseline, we
use the core robustness-based edge features from (Hossain et al., 2023), by aggregating the end-
point features of 𝑅𝑆𝑂𝐷 , 𝑅𝑆𝐼𝐷 , degree, and core number, and again integrate into TER+AER. We
consider all the edge attributes given in the datasets, as in (Wang et al., 2023), and also keep the same
parameters such as the GNN layer, dropout rate, Adam optimizer, and learning rate. Considering
the significant imbalance in the datasets, particularly in MAG and NetFlow-based ones (see R in
Table 1), we give the macro F1 scores for all approaches to better highlight the gains in minority
classes. We conduct ten runs with different random seeds for each method on each graph and compute
the averages and standard deviations.

Table 2 gives the results for Poisson variant of TER+AER (AUC results and Geometric variant
of TER+AER are given in Section 7.5 at Appendix). Overall, integrating our measures provides
consistently better performance than the vanilla TER+AER approach and other baselines. Although
the integration of coreness and degree gives the best results on MIND, our approach outperforms
the TER+AER baselines. In MIND, approximately 75% of edges have consistently high triangle
counts (see Figure 7 at Appendix), which puts most of them in small 𝑘-exposed clusters, and hence
they get the same 𝐸𝑅 score, which hinders our performance. From similar experiments shown in
Figure 2b, we observe that the structures contributing to the improved performance are similar to
those in the toy graph in Figure 1 (details are in Figure 8 at Appendix). Besides, our hypothesis
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Figure 4: Per-class recall scores for edge classification task. 𝑥-axis is the class size for each edge
class type and 𝑦-axis is the recall score of TER+AER and truss robustness measures.

that the higher standard deviations of class-wise average values (𝐸𝑆 and 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘) in AMiner
and MAG graphs would translate to improved performance on edge classification, as depicted in
Figure 2b, is materialized in our experimental results.

We further evaluate our prediction performance on specific edge classes in AMiner and MAG graphs
in Figure 4 (a more detailed result for AMiner is given in Section 7.6.3 at Appendix). We show
the Recall scores (on the 𝑦-axis) for the vanilla TER+AER (Geometric) method and our approach
which merges edge-based truss robustness features to TER+AER (Geometric) (Precision scores are
similar). 𝑥-axis is the class size for each edge class type, sorted in increasing order of the class size.
Recall performance gets significantly better for the rare classes after incorporating our measures.
Unlike Wang et al. (2023), who reported low F1 scores on the AMiner graph due to its imbalanced
nature, our measures yield high F1 scores.

Additionally, to visualize the impact of integrating ES+ER+EdgeRank into TER+AER on learned
edge embeddings, we consider t-SNE plots focusing on three rarest classes, plots are given in Figure 10
at Appendix. We reduce the dimensionality of these embeddings to two components to effectively
compare their distributions before and after integration. The visual difference between the plot pairs
indicates that the inclusion of ES+ER+EdgeRank helps in distinguishing the edges more effectively.

Ablation study. To evaluate the contribution of each robustness measure, we conduct an ablation
study. Each of the three robustness features improves the edge classification independently and using
all collectively gives the best results consistently. Details are given in Section 7.6.4 at Appendix.

GNN runtime comparison. Lastly, we investigate the computational overhead of computing the
edge-based truss robustness measures for the edge classification task. We show the runtime of the
GNN in Wang et al. (2023), ERC, and the fraction of ERC to GNN+ERC as the average of ten runs
in Table 1. For all the datasets, ERC takes significantly less time than the GNN. The computation
time of ERC is negligible when compared to the GNN runtime.

6 CONCLUSION

In this paper, we characterized and utilized the robustness of truss decomposition in an edge-driven
way. We proposed to build a dependency graph among edges to capture the impact on neighbor edges
and devised three new edge-based truss robustness measures on it. We introduced several theoretical
findings and designed an efficient algorithm to practically compute those measures. We showed the
utility and practicality of our measures in the edge classification task for real-world networks.

Limitations and future work. While our work focuses on edge robustness under removal, exploring
its behavior upon insertion presents a promising future direction. As pointed in Zhang & Yu (2019),
updating the truss numbers upon insertions is a much more challenging problem with no known
non-trivial upper bound. This is a limitation of the current approach and warrants further investigation.
Moreover, it will be interesting to incorporate our measures into other graph analysis tasks, such as
link prediction, and investigate their performances. Additionally, we plan to perform a theoretical
analysis on synthetic graphs (with simple formation processes) to prove how truss robustness measures
have a better discriminative power (than the other traditional graph analytics). Lastly, to assess node
importance within the dependency graph, we employed efficient local (in-degree, out-degree) and
global (PageRank) measures. More complex metrics, such as Eigenvector and Betweenness centrality,
are computationally costly for our large dependency graphs, which we aim to explore in future work.
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Reproducibility Statement: All of our experimental results are reproducible. The anonymous code is
publicly available at https://anonymous.4open.science/r/robustness/, with more
details provided in Section 5. The datasets we used are accessible at https://mega.nz/
folder/hj8EHIRR#ZAtmgX8eVao-FxScFqxHIQ, with additional information available in
the aforementioned code repository. Additionally, we include the Lemmas, their proofs, and the
algorithm in Section 4 and Appendix (Section 7.3).
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7 APPENDIX

7.1 NOTATION TABLE

Table 3: Notations.

Notation Description
𝜙(𝑒, 𝐺) truss number (trussness) of edge 𝑒 in 𝐺

𝜙𝑚 maximum truss number in the graph
𝐸 (𝑒, 𝐺) set of incident edges to edge 𝑒 in 𝐺, i.e., share a triangle
Γ< (𝑒, 𝐺) incident edges of 𝑒 with smaller trussness
𝑠𝑢𝑝(𝑒, 𝐺) support of an edge 𝑒 in 𝐺

𝑡𝑠(𝑒, 𝐺) support of an edge 𝑒 in 𝜙(𝑒)-truss
4(𝑒) set of triangles that contain edge 𝑒

4(𝐸) union of all 4(𝑒) for each edge 𝑒 ∈ 𝐸
S𝐺 set of all 𝑘-exposed in 𝐺

7.2 IMPLICATIONS OF TRUSS ROBUSTNESS MEASURES FOR EDGE CLASSIFICATION
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Figure 5: Standard deviation of class-wise mean values for each edge feature in four different datasets.
The higher the standard deviation, the more distinguishing the edge feature is expected to be in the
edge classification task. Overall, the higher standard deviation of 𝐸𝑅, 𝐸𝑆, and 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 features
highlights their potential.

7.3 OMITTED PROOFS

Proof of Lemma 3: Any two edges 𝑒, 𝑒′ in a 𝑘-exposed 𝑆 are either in the same triangle or connected
via a series of adjacent triangles. For the first case, if they are in the same triangle, then they will
be one of the sensitive incident edges of one another. Hence, for those edges, decreasing the truss
number on one edge will decrease the trussness support of another edge resulting in a decrease in
the truss number. Otherwise, for the second case, the proof follows from the fact that there are
(consecutive) pairs of triangles that connect 𝑒 to 𝑒′ where the first case holds for each edge pair. We
define two edges to be incident if they are in a same triangle. As 𝑘-exposed is a triangle-connected
subgraph, consider a path of incident edges between 𝑒 and 𝑒′, {𝑒1, 𝑒2, · · · , 𝑒𝑛−1, 𝑒𝑛}, in 𝑆 where
𝑒1 = 𝑒, 𝑒𝑛 = 𝑒′, and 𝑒1 is incident to only {𝑒2}, 𝑒2 is incident to only {𝑒1, 𝑒3}, and 𝑒𝑖 is incident
to only {𝑒𝑖−1, 𝑒𝑖+1} for 𝑖 < 𝑛. Here, 𝑒1 and 𝑒2 are the sensitive incident edges of one another and
from the first case, a decrease in 𝜙(𝑒1) will also affect the 𝜙(𝑒2). Likewise, edges 𝑒𝑖 and 𝑒𝑖+1 are
also dependent on each other from the first case. As 𝑒1 and 𝑒𝑛 are connected by a series of adjacent
triangles, we can conclude that any two edges in a 𝑆 are dependent on each other, and a decrease
in one edge’s truss number will affect all other edge’s truss numbers. As a result, truss number of
all the edges 𝑒 ∈ 𝑆 will change if we choose any edge’s truss number to decrease, and the lemma holds.

Proof of Lemma 4: From Lemma 3, for any 𝑘-exposed 𝑆, all the edge’s truss numbers will decrease
if there is a decrease of truss number in any edge. Changes in the truss number of those edges may
affect the truss number of some other edges 𝑒′ ∈ 𝑆𝑇𝑒 where 𝑒 ∈ 𝑆 according to Lemma 2. Here, a
decrease in the truss number of any edge is affecting the same set of edges in 𝑆; thus the decreases of
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trussness support of their incident edges will be the same. As a result, a decrease in 𝜙(𝑒) for any edge
𝑒 ∈ 𝑆 will affect all the edges ∀𝑒′ ∈ 𝑆 and their effect on Truss Changed Edges will be the same.

7.4 TCE COMPUTE ALGORITHM

Algorithm 2: TCECompute (𝐺 (𝑉, 𝐸), 𝑆, 𝜙, 𝑡𝑠)
1 Input: 𝐺 (𝑉, 𝐸): graph, 𝑆: 𝑘-exposed, 𝜙: trussness vector of 𝐺, 𝑡𝑠: trussness support vector of
𝐺

2 Output: 𝑇𝐶𝐸𝑆: Truss changed edges of 𝑆
3 𝑄 ← [] // empty queue to store truss changed edges
4 𝑒𝑟𝑛𝑑 ← any random edge in 𝑆 to decrease it’s 𝜙(𝑒𝑟𝑛𝑑)
5 𝑡𝑠(𝑒𝑟𝑛𝑑) ← 𝑡𝑠(𝑒𝑟𝑛𝑑) − 1
6 𝑄.push(𝑒𝑟𝑛𝑑), 𝑇𝐶𝐸𝑆 .push(𝑒𝑟𝑛𝑑)
7 while 𝑄 is not empty do
8 𝑒𝑑𝑒𝑐 ← 𝑄.pop()
9 foreach triangle 4 ∈ 4(𝑒𝑑𝑒𝑐) in 𝐺 do

10 let 𝑒′ and 𝑒′′ be the other two edges of 4
11 update 𝑡𝑠(𝑒′) and 𝑡𝑠(𝑒′′) by inspecting 𝜙(𝑒𝑑𝑒𝑐), 𝜙(𝑒′) and 𝜙(𝑒′′)
12 foreach 𝑒 ∈ Γ≤ (𝑒𝑑𝑒𝑐 , 𝐺) do
13 if 𝑡𝑠(𝑒) < 𝜙(𝑒) then 𝑄.push(𝑒), 𝑇𝐶𝐸𝑆 .push(𝑒)
14 Return 𝑇𝐶𝐸𝑆

7.4.1 VALUE DISTRIBUTION OF MAG GRAPH
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Figure 6: Value distribution of five different (𝐸𝑆, 𝐸𝑅, 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 , Trussness, and Triangle count)
edge features of MAG graph. 𝑥-axis represents the feature values and 𝑦-axis represents corresponding
frequency (∗105).

7.5 EDGE CLASSIFICATION RESULTS

Table 4: Macro F1 scores for edge classification on Geometric variant. Best scores are marked in
bold for each graph and each method. On average, merging edge-based truss robustness measures
performs better than others.

Graph TER+AER
TER+AER
+𝑅𝑆_𝑂𝐷

+𝑅𝑆_𝐼𝐷

TER+AER
+Trussness
+Triangle c.

TER+AER
+Coreness
+Degree

TER+AER
+𝐸𝑆+𝐸𝑅+
𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘

AMiner 87.56 ± 4.12 88.68 ± 3.58 86.39 ± 4.60 88.30 ± 3.40 89.59 ± 1.31
MAG 86.14 ± 1.70 86.57 ± 4.20 86.99 ± 3.47 86.58 ± 3.44 87.90 ± 1.82
MIND 92.76 ± 0.06 94.24 ± 0.05 93.08 ± 0.05 94.49 ± 0.08 92.99 ± 0.07

BoT-IoT 50.27 ± 2.34 51.23 ± 3.01 51.38 ± 2.86 51.13 ± 2.63 53.1 ± 1.81
ToN-IoT 28.04 ± 0.52 28.4 ± 0.51 28.18 ± 0.29 28.16 ± 0.42 30.48 ± 0.64

UNSW-NB15 11.64 ± 0.21 11.62 ± 0.12 11.55 ± 0.13 11.69 ± 0.15 14.72 ± 0.14
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Table 5: AUC scores for edge classification. G and P denote Geometric and Poisson variants of
TER+AER. Best scores are marked in bold for each graph and each method. On average, merging
edge-based truss robustness measures performs better than others.

Graph TER+AER
TER+AER
+𝑅𝑆_𝑂𝐷

+𝑅𝑆_𝐼𝐷

TER+AER
+Trussness
+Triangle c.

TER+AER
+Coreness
+Degree

TER+AER
+𝐸𝑆+𝐸𝑅+
𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘

G 97.33 ± 0.3 97.39 ± 0.16 97.45 ± 0.28 97.46 ± 0.27 97.54 ± 0.31AMiner P 97.84 ± 0.2 97.8 ± 0.22 97.79 ± 0.2 97.85 ± 0.18 97.86 ± 0.2
G 99.26 ± 0.12 99.22 ± 0.1 99.32 ± 0.11 99.3 ± 0.1 99.34 ± 0.08MAG P 98.76 ± 0.02 99.17 ± 0.01 98.94 ± 0.01 99.27 ± 0.02 99.26 ± 0.01
G 99.32 ± 0.05 99.3 ± 0.13 99.36 ± 0.1 99.37 ± 0.1 99.34 ± 0.04MIND P 97.93 ± 0.02 98.71 ± 0.02 98.16 ± 0.01 98.83 ± 0.01 98.1 ± 0.02
G 93.93 ± 0.14 93.95 ± 0.23 93.87 ± 0.29 93.98 ± 0.25 94.12 ± 0.23BoT-IoT P 94.08 ± 0.14 94.05 ± 0.18 94.1 ± 0.13 94.1 ± 0.11 94.23 ± 0.21
G 89.15 ± 0.08 89.11 ± 0.1 89.06 ± 0.1 89.19 ± 0.11 89.81 ± 0.09ToN-IoT P 88.72 ± 0.06 88.71 ± 0.07 88.72 ± 0.07 88.75 ± 0.05 89.3 ± 0.05
G 87.09 ± 0.33 86.98 ± 0.4 86.91 ± 0.69 87.04 ± 0.43 88.65 ± 0.33UNSW-NB15 P 86.96 ± 0.36 86.74 ± 0.37 86.89 ± 0.7 87.2 ± 0.34 88.23 ± 0.6

7.6 ADDITIONAL EXPERIMENTAL RESULTS

7.6.1 TRIANGLE COUNT DISTRIBUTION
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Figure 7: Triangle count distribution of three different datasets. 𝑥-axis represents the triangle count
values and 𝑦-axis represents corresponding frequency

7.6.2 STRUCTURE CONTRIBUTING IMPROVED PERFORMANCE

When we check the edges solely identified by our edge robustness measures (but not by other
methods), we notice that the structures that contribute to the improved performance are similar to
the toy graph in Figure 1. The reasoning for this is similar to what we provided in Figure 2b. We
focus on edges exclusively identified by our measures (and not by others). For each class, the average
robustness of these edges are given in Figure 8. The standard deviation of these class-wise averages
is high, which means our measure assigns distinct robustness values to different classes, unlike other
measures whose stdevs remain low across classes. In simpler terms, while other measures (e.g.,
trussness, triangle count) tend to provide similar values across classes, ours provide different values
across different classes (thanks to the structures in Figure 1). This ability of edge robustness to
differentiate across classes is the key factor contributing to the superior performance.
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Figure 8: Standard deviation of class-wise mean values on edges exclusively identified by
+ER+ES+EdgeRank for each edge feature. Higher standard deviations for ER, ES, and EdgeR-
ank features indicate their potential for effective edge classification, as a larger standard deviation
suggests a more distinguishing feature.

7.6.3 ALL FEATURES RECALL SCORE ON AMINER GRAPH
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Figure 9: Per-class recall scores for edge classification task (AMiner). 𝑥-axis is the class size for each
edge class type and 𝑦-axis is the recall score of TER+ AER and after integrating all other measures
with TER+AER.
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7.6.4 ABLATION STUDY RESULTS

Having demonstrated the overall performance boost from using all three truss robustness measures,
we now conduct an ablation study to evaluate the individual contributions. We repeat each experiment
ten times using different random seeds and consider the average results. The results are given in
Table 7. Notably, excluding any single measure results in a performance decline, underlining the
individual significance of each of the three measures. As suggested by Figure 2b, excluding 𝐸𝑆

or 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 significantly reduces the performance for the MAG graph, whereas from Figure 5,
omitting 𝐸𝑅 affects the MIND graph performance. Importantly, combining all measures yields the
highest performance in all cases. Also, the enhanced performance on AMiner and MAG graphs with
𝐸𝑆 and 𝐸𝑑𝑔𝑒𝑅𝑎𝑛𝑘 measures supports their collective contribution, as anticipated in Figure 2b.

Table 6: Edge classification performance (F1 scores) with the integration of all features. G and P
represent the Geometric and Poisson variants of TER+AER. The best scores are highlighted in bold
for each graph and method. The final column shows the results after merging all features, including
TER + AER + RS_OD + RS_ID + Trussness + Triangle count + Coreness + Degree + ES + ER +
EdgeRank.

Graph G/P TER+AER
TER+AER
+RS_OD
+RS_ID

TER+AER
+Trussness
+Triangle c.

TER+AER
+Coreness
+Degree

TER+AER
+ES+ER+
EdgeRank

TER+AER
+All Features

AM G 87.56 ± 4.12 88.68 ± 3.58 86.39 ± 4.60 88.30 ± 3.40 89.59 ± 1.31 90.94 ± 1.31
P 87.51 ± 1.49 87.12 ± 5.32 87.25 ± 2.55 87.17 ± 2.70 88.24 ± 0.75 89.18 ± 2.67

MA G 86.14 ± 1.70 86.57 ± 4.20 86.99 ± 3.47 86.58 ± 3.44 87.90 ± 1.82 88.45 ± 2.78
P 85.71 ± 3.44 85.86 ± 2.97 87.06 ± 2.22 86.26 ± 2.08 88.39 ± 2.70 89.23 ± 3.11

MI G 92.76 ± 0.06 94.24 ± 0.05 93.08 ± 0.05 95.41 ± 0.03 92.99 ± 0.07 95.70 ± 0.06
P 90.13 ± 0.07 92.50 ± 0.07 90.52 ± 0.09 92.70 ± 0.06 90.44 ± 0.07 92.95 ± 0.08

Table 7: Ablation study showing the performance contribution of each edge robustness measure
(higher the better). G and P denote Geometric and Poisson variants of TER+AER. Best F1 scores are
marked in bold across different combined features.

Graph TER+AER TER+AER
+ ES + ER

TER+AER
+ ES

+EdgeRank

TER+AER
+ ER

+ EdgeRank

TER+AER
+ ES + ER

+ EdgeRank

AMiner G 87.56 ± 4.12 88.51 ± 3.17 89.07 ± 2.99 88.17 ± 3.69 89.59 ± 1.31
P 87.51 ± 1.49 86.82 ± 2.55 87.51 ± 3.84 86.51 ± 2.77 88.24 ± 0.75

MAG G 86.14 ± 1.70 85.37 ± 2.87 86.84 ± 2.03 85.89 ± 2.58 87.90 ± 1.82
P 85.71 ± 3.44 85.18 ± 2.41 85.07 ± 2.63 85.82 ± 2.40 88.39 ± 2.70

MIND G 92.76 ± 0.06 92.92 ± 0.08 92.92 ± 0.07 92.88 ± 0.07 92.99 ± 0.07
P 90.13 ± 0.07 90.38 ± 0.05 90.39 ± 0.10 90.38 ± 0.08 90.44 ± 0.07
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Figure 10: t-SNE plots illustrating the learned edge embeddings before (left) and after (right)
integrating ES+ER+EdgeRank with TER+AER on three datasets: AMIner, BoT-IoT, and MAG.
The Kullback-Leibler (KL) divergence (denoted as KD) represents the difference between the high-
dimensional and low-dimensional probability distributions of the t-SNE projection. Lower KL
divergence signifies a better representation of the data in the reduced dimensional space.
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