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ABSTRACT

We introduce Kolmogorov—Arnold Neural Operator (KANO), a dual-domain neural
operator jointly parameterized by both spectral and spatial bases with intrinsic
symbolic interpretability. We theoretically demonstrate that KANO overcomes
the pure-spectral bottleneck of Fourier Neural Operator (FNO): KANO remains
expressive over a generic position-dependent dynamics (variable coefficient PDEs)
for any physical input, whereas FNO stays practical only to spectrally sparse oper-
ators and strictly imposes fast-decaying input Fourier tail. We verify our claims
empirically on position-dependent differential operators, for which KANO robustly
generalizes but FNO fails to. In the quantum Hamiltonian learning benchmark,
KANO reconstructs ground-truth Hamiltonians in closed-form symbolic represen-
tations accurate to the fourth decimal place in coefficients and attains ~ 6 x 106
state infidelity from projective measurement data, substantially outperforming that
of the FNO trained with ideal full wave function data, =~ 1.5 x 10~2, by orders of
magnitude.

1 INTRODUCTION

Contemporary science and engineering increasingly operate in regimes where the effective dimen-
sionality and complexity of phenomena and data overwhelm human-designed calibrations and
approximations. This motivates data-centric modeling of governing dynamics from observations (Kar+
niadakis et al.,|2021; |Wang et al., [2023; (Carleo et al.,[2019). For a learned model to be constituted as
a scientific law, it should first generalize universally over a well-defined domain, and also should be
interpretable so that the learned representations can be extracted and reused for verification, testing,
and downstream simulation. Mathematically, physical dynamics are generalized as operators as
they are often formalized through PDEs (Courant et al.||1963; [Evans, [2022). A large and practically
important subclass consists of variable coefficient PDEs, in which at least one term has a coefficient
that varies by its variables (Gilbarg et al.l |1977); we define physical dynamics governed by such
PDE:s as position-dependent dynamics, when one of the variables that varies the coefficient is position.
Examples include fluid flow in media with spatially varying viscosity or conductivity (Kundu et al.|
2024), and the Schrodinger equation with a potential that is a function of position operators (Sakurai
& Napolitano, [2020). Scientific Al such as operator networks (Kovachki et al., [2023; |Lu et al., 2021
that efficiently approximate a generic position-dependent dynamics with tractable interpretability are
therefore valuable, which we recognize the absence and aim to fill the gap in this work.

An operator network approximates an arbitrary mapping between infinite-dimensional function
spaces by first encoding functions into finite latent vectors and then learning the latent-to-latent
map that represents the target operator (Lanthaler et al.| [2022). DeepONet of |Lu et al.[ (2021}
2019) implements the most general dense operator network where two neural networks learn both
encoding and latent mapping directly from data, based on the theoretical foundation laid by |[Chen
& Chen|(1995). Fourier Neural Operator (FNO) of |Li et al.| (2020), on the other hand, hard-codes
the encoding as pseudo-spectral projection with its spectrally diagonal kernels. FNO is provably
and empirically superior when its hard-coded sparsity is optimal (Li et al., |2020; Kovachki et al.|
2021), but this spectral sparsity becomes maladaptive for position-dependent or otherwise spectrally
dense dynamics (Koshizuka et al.| [2024; |Qin et al., 2024). In such cases, the model size required for
a target accuracy can grow super-exponentially (Kovachki et al.| 2021}, and although the universal
approximation guarantee still holds, realistic size FNO may only converge on an in-sample mapping
that fails outside the training distribution. Numerous variants of FNO attempted to break this spectral
bottleneck. Some have broadened spectral coverage by exploiting factorized (Tran et al.,[2021)) or
multi-scale (You et al., [2024) spectral kernels, and others have injected local spatial kernels alongside
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the original spectral ones (Wen et al., 2022} [Liu-Schiaffini et al.| 2024} Liu et al.| 2025). Yet all prior
works still privilege the spectral basis and cannot achieve optimal sparsity in the spatial basis.

In parallel, interpretability has recently pivoted around Kolmogorov—Arnold Network (KAN) (Liu
et al.|[2024bial), whose edges are trainable univariate functions and thus amenable to human inspection.
Several works demonstrate data-driven scientific modeling with KAN: |Chiparova & Popov| (2025);
Gashi et al.| (2025) use KAN for system identification, and [Koenig et al.|(2024) replace the MLPs
in Neural ODEs (Chen et al., [2018)) with KANS, each reporting symbolic recovery of benchmark
equations and parameters. KANs have also been explored within operator networks: |Abueidda
et al.| (2025) employed KANSs instead of MLPs in DeepONet and |Xiao et al.| (2024); Wang et al.
(2025)) augmented FNO with KANs. Despite performance gains however, prior KAN-based operator
networks have not reported symbolic recovery of the learned operator, leaving the avenue of an
interpretable operator network largely unexplored.

To address these research gaps, we introduce the Kolmogorov—Arnold Neural Operator (KANO),
an interpretable operator network jointly parameterized in both spatial and spectral bases with KAN
sub-networks embedded in a pseudo-differential operator framework (Hormander, [2007}; | Kohn &
Nirenberg, |1965). The key insight is to represent each component of the operator in the basis where
it is sparse: differential terms spectrally, localized terms spatially, to achieve the most compact and
tractable representation. Our work offers three main contributions to the scientific Al community.

* First, we demonstrate the pure-spectral bottleneck of FNO with an illustrative example and the-
oretically analyze why FNO cannot converge closely as desired to a generic position-dependent
dynamics (variable coefficient PDEs) with a practical parameter complexity.

* Second, we propose a novel framework of KANO that is expressive over a generic position-
dependent dynamics with intrinsic symbolic interpretability. We provide theoretical analysis on
KANO’s dual-domain (spatial and spectral) expressivity along with the empirical evidences of
KANO robustly generalizing on unseen input subspace when FNO fails to.

* Finally we validate the performance of KANO on some synthetic operators and a quantum simula-
tion benchmark. KANO successfully recovered the closed-form formula accurately to the fourth
decimal place in coefficients. Compared to the FNO baseline, KANO used only 0.03% of the model
parameters, but achieved an order lower relative loss /5 in our synthetic operator benchmarks, and
a four-order lower state infidelity in the quantum Hamiltonian learning benchmark.

To the best of our knowledge, our work is the first to demonstrate and quantify the symbolic
recovery via KAN in operator learning. We shift the paradigm from mere universal approximation
in operator learning toward the universal generalization of an operator network. Different from
DeepOKAN (Abueidda et al., 2025) which replaces MLPs with KANs in DeepONet, our work
achieves generalization over disjoint out-of-distribution subspace via a novel architecture design.

2 BACKGROUND

2.1 OPERATOR LEARNING AND FOURIER NEURAL OPERATOR

Operator learning approximates mapping between infinite-dimensional function spaces, G : A — U
from function pairs {(a; € A,u; = G(a;) € U) ﬁ\f:lﬂKovachki et al., [2023;2024b). An operator
network Gy first encodes input a; via encoder £,,, : A— C™ into a latent vector, then learns the latent
map Ty : C"™ — C™ which the output is reconstructed to approximate the label u; via reconstructor
R, : C™ SU: ie. Gy = Ry o Ty o E, (Lanthaler et al.| 2022). For fixed (Ems R ), we can
define the projection IT of an operator G as

I(G) =R, 0To&, where Te argmin
T:Cm—Cm’
DeepONet (Lu et al.| 2021 [2019)) learns &,,,, R/, and Ty all with two sub-networks. FNO (Li

et al., 2020), on the other hand, hard-codes &,,, to be the truncated Fourier transform and R.,,, to be
its band-limited inverse.

G—RuoTo&l. (1

' A and U are Banach function spaces (e.g., Sobolev spaces) defined on a bounded domain D C R,
’In practice, each function is sampled on a discretized grid in D and stored as a vector.
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Fourier Neural Operator (FNO). Let the domain D C R¢ be periodic and write the Fourier
transform JF of function a(x) as a(&):

Vﬂ@ZQQZAﬂ@WWM, w = 2mg € 7. @

For fixed set of retained modes &; € = = {&1,...,&,} C Z4, truncated Fourier transform F,,
A— C™ and its band-limited inverse F,,,! : C"™ —I{ can be defined as:

m

Fm(a) =[@(&),...,aEn)],  F,'(F a(g;) P, 3)

j=1

with a slight abuse of notation. A single Fourier layer Lgyo of FNO is written as:

Livo(@)(x) = o(F, (Ra,(€) - Fun(a)(©))(x) + W, -a(x)) @

with learnable spectral block-diagonal multiplier R(£), parametrized linear transformation W, and
point-wise nonlinear activation o. FNO is comprised of iterative Lryo between lift-up (P) and
projection (Q) networks:

G°(a) = Qo Lo -0 LLLoPla). )

In the perspective of the operator network formulatlon (T) (Canthaler et al., [2022), FNO hard-codes
its encoder £, as F,,, and reconstructor R, as F,,.}, then learns the latent map T by its iterative
layers of parametrized linear kernels interleaved by non-linear activations (Kovachki et al.,[2021).

2.2 KOLMOGOROV-ARNOLD NETWORK

KAN (Liu et al., 2024bga) replaces fixed node activations of traditional MLP with simple sum
operations and train the learnable univariate 1D functions ¢ on edges. With layer width n; —n;41
and input field x¥) —x(+1) a KAN layer yields a function matrix &) at [ layer as

I+1 D (1 1 l p=1l,...,n I+1 ¢
R ) @0 =00 [ e ™ UG
=1

so each output channel is a sum of edgewise transforms of the inputs (Liu et al., [2024bja). In the
original KAN each edge function is a spline expansion

l
o) = o +Zc§§” : )

with learnable coefficients for a fixed base 1D function b(-) and 1D B-spline basis { B;}. Because
every ¢4, is a 1D curve, KANs are directly inspectable and amenable to visualization followed by
symbolic regression. On expressivity, 'Wang et al.[(2024)) theoretically prove that KANs match MLPs
up to constant depth and width factors; empirically, with appropriate optimization recipes, KANs and
MLPs exhibit comparable scaling on PDE and operator benchmarks (Shukla et al.| [2024). Hence,
swapping a latent MLP for a KAN preserves expressivity while enabling symbolic readout.

3 THEORETICAL ANALYSIS ON FNO’S PURE-SPECTRAL BOTTLENECK

This section first illustrates the pure-spectral bottleneck of FNO. Then we provide a theoretical
analysis and prove that FNO suffers the curse of dimensionality for position-dependent dynamics.
FNO is proven to have the universal approximation guarantee over any arbitrary non-linear Lipschitz
operator (Kovachki et al.,[2021; |[Lanthaler et al., [2025)). This section does not disprove the universal
approximation ability of FNO; it illustrates the limitation on the generalization ability of FNO
stemming from its pure-spectral bottleneck on spectrally dense operators.

3 Akin to matrix-vector multiplication but follows the third equation Eq. E]instead of row-vector inner product.
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3.1 THE PURE-SPECTRAL BOTTLENECK OF FNO

We consider the 1D quantum harmonic oscillator Hamiltonian as an example:

Ha(z) = —0pea(z) + 2% - a(z). 8)
Multiplication and differentiation have a dual relationship under the Fourier transform:
Fl(=0:20)](€) = € -a(6), Fl(=®-a)l€) = — eeals). ©
In spectral domain, the spatial differential 0, is a spectral multiplier £2, whereas the spatial multiplier
2% becomes a spectral differential Oge. Consider a truncated polynomial basis {1, z, 22,2}
and a truncated Fourier basis e (0) = e**, k = 0,...,n — 1, on a periodic domain. In the spatial
(polynomial) basis, the map a(x) + 22 - a(z) acts as a two-step up-shift sparse matrix
001 0 --- 0
000 1 --- 0
S = (10)
000 -~ 0 O
o000 -~ 0 O
while in the spectral (Fourier) basis it is a dense Toeplitz matrix (Morrison, |1995))
Co C_1 C_g r Copyl
C1 Co C_1 o Cop42 1 o
Tn[-r2] = C2 C1 Co tre Cop43 Com = 7/ 92€—im9 de. (11)
. 2 0
Cn—1 Cpn—-2 Cp-3 -*° Co

Thus each term in H is sparse in one basis and dense in the other (Morrison, |1995)).

An FNO layer Lo (4) can easily parametrize —0,., by taking R.(€) ~ £2. However, approximating
the dense off-diagonals in T, [2:2] to parametrize 22 must rely on the non-linear activation o (-) since
R(&) and W are spectrally diagonal and hence incapable of mixing modes. Let z(u) denote the
pre-activation for input u, then the Jacobian of Lgyo at u gives the first-order approximation of the
learned map and its Fourier transform reveals the spectral off-diagonals of itself as

FIWIEE) = (Flo'z) [€-¢1) - (W + Ro(€)). (12)

Therefore, all off-diagonals arise from the spectrum of the u-dependent gate o’ (z(u, -)): FNO’s
nonlinearity can create off-diagonals, but they are tied to the input distribution of u. This is the pure-
spectral bottleneck of FNO: spectral off-diagonals of a learned FNO are tied to the train subspace,
hence FNO can converge only on the in-sample mapping that fails outside the train distributio’} See
Appendix [Dfor further detailed discussion expanding to the arbitrary higher order contribution and
deep layered FNO.

3.2 FNO SUFFERS CURSE OF DIMENSIONALITY ON POSITION-DEPENDENT DYNAMICS

As explained previously, position operator, a(x) — x - a(x), is a highly dense Toeplitz map in the
spectral basis (Morrison, [1995). Based on the Remark 21 & 22 of |[Kovachki et al.|(2021)), we prove
that any position-dependent dynamics induces super-exponential scaling in FNO size by the desired
error bound: FNO cannot converge closely as desired on a generic position-dependent dynamics with
practical model size, hence can only overfit on the in-sample mapping. We provide Lemmal[I] that a
single position operator already spreads the input spectra too much for FNO to stay practical, and
Theorem [I] expanding Lemma (I]to an arbitrary composition of position operators.

Following from the operator network formulation (), the error estimate of an operator network Gy
approximating the ground-truth operator G in an operator norm is bounded as

IG — Gsll < |G — R 0T 0Enll + || R o (T —Tp) 0 Enll, (13)

projection error:ep; latent network error: e,

by the triangle inequility. Latent network error €, follows the well-established scaling law of
conventional neural networks (Hornik et al.| |{1989; Cybenko, |1989). Therefore, whether an operator
network is efficient in model and sample size to achieve the desired accuracy hinges on the scalability
of the projection error €y, (Lanthaler et al.,[2022; |Kovachki et al., 2021} [2024a).

*This issue of out-of-distribution fragility from underspecification is well studied by D’ Amour et al.[(2022)
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FRo(€) - Fula(x) Bl Op,,(p)a(x)
Ro(§) < ' .@
@ W - a(x) + @{ a(x) ‘»:L __’
w
(a) (b)

Figure 1: (a) Lgno architecture. (b) Lxano architecture.

Reviewing Remark 21 & 22 of Kovachki et al. (2021) ¢,,,; of FNO is governed by the Fourier
tail, the sum of Fourier coefficients outside the retained spectrum = truncated by width m (Gottlieb
& Orszag [1977; Trefethen| 2000): to achieve the desired ey with practical m, both input and output
Fourier tails must decay algebraically or faster. However, even in the optimal case of the band-limited
input, if the ground-truth operator is spectrally dense to spread out the input spectra and induce
algebraic or slower decay in output Fourier tail, m must scale at least polynomially to Suppress €pro;:

m ~ O(ep_r;j/ S) where s is a geometric constant. Meanwhile, as the latent mapping would be also
dense, the size of the latent network, Ay, follows the canonical polynomial neural scaling (Yarotsky},
2017;De Ryck et al.,|2021)) by the desired €, with its width m® (d is the input domain dimension)
d
as the exponent: Ao ~ (’)(en_eln ) Consequently, this results as the super-exponential scaling in the
_e~d/s
latent network size Ny ~ (’)(enefp"’J ) even with the optimal band-limited input: scaling width m to
suppress €pro; explodes Nt to achieve the desired e, for a generic dense operator.

Lemma 1 (Position operator elongates Fourier tail). A single position operator, spatial multiplier
by x, induces algebraic decay in output Fourier tail when the input is band-limited.

Sketch of proof. Position operator is kernel Z(£) o< 1/£ in spectral basis. Hence, every mode outside
the input spectrum picks up a coefficient of size ~ 1/|¢|, ending up as |0(£)| 2 1/|¢] in the output
spectrum. See Appendix for restatement and full proof. O

Theorem 1 (Curse of dimensionality on position operators ). Any arbitrary composition of position
operators requires FNO to scale super-exponentially on its model size by the desired accuracy.

Sketch of proof. Iteratively apply Lemma (1| then any arbitrary composition of position operators
induce algebraic or slower decay in output Fourier tail even for the optimal band-limited input.
This results in super-exponential scaling of latent network size by the desired error as discussed
above (Kovachki et al., 2021). See Appendix for restatement and full proof. O

Remark 1. What is missing from the upper bound analysis of FNO by|Kovachki et al.|(2021)) is the
effect of the wide lift-up and projection networks. For the generalization guarantee arguments of this
work, the upper bound analysis is still sound, yet it should be clarified that the theoretical analysis
on the role of the lift-up and projection networks is yet an open research question. Recent studies
by|Lanthaler et al.|(2025)); |Lanthaler (2024)) provide better view on it with lower bound analysis.

4 KOLMOGOROV—ARNOLD NEURAL OPERATOR

Motivated by the pure-spectral bottleneck of FNO, we propose the Kolmogorov-Arnold Neural
Operator (KANO), an operator network capable of converging closely as desired on a generic
position-dependent dynamics with practical model size. We first introduce the KANO architecture,
and provide theoretical analysis on its dual-domain expressivity in the following section.

4.1 KANO ARCHITECTURE

KANO utilizes an iterative structure of KANO layers Lano to learn the unknown operator, akin to
FNO. However, KANO excludes the wide lift-up and projection networks to maximize tractability
since it is known that wide KANs are fragile to symbolic recovery (Noorizadegan et al.||2025):

GE™ = Lo o0 Lidho: (14)
Liwo(@) (x) = @o,(F, '[P, (x,€) + Fn(a)(€)](x) . ax)), (15)
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where ® is a KAN sub-network for learnable non-linear activation; p(x, &) is another KAN sub-
network, a pseudo-differential symbol jointly parametrized by both spatial x and spectral £ basesﬂ
Note the “x” notation in Lgano @ instead of the block-diagonal multiplication notation “-” in
Lino . The spatial basis x of the symbol p(x, £) is convolution (differential) in spectral domain
by the dual relationship @]) Therefore, the pseudo-differential symbol calculus of p(x, &) needs
to be done by quantizing on both spatial and spectral domain (Hormander, 2007), and we choose
Kohn-Nirenberg quantization (Kohn & Nirenberg| [1965)) to compute the symbol calculus in Lgano:

Follp(x,€) * Fula)(€)](x) = (%)d SN € pix g aly), (16)

Ee=Zyey

where for a periodic domain D = (-, £)4, Y = {y,,...,y,,} C D is a uniform discretization
with spacing h and x € D is an evaluation point. We denote Kohn-Nirenberg quantization as an
operator Op,,(p) := F,,![ p(x,&) * F,,]| defined by the symbol p(x, £). In the operator network
formulation introduced in Section KANO?’s projection ITgano is then defined as:

iano(G) == Op,,(Pg), Pg € arg min |G — Op,.(p)|- (17)

Symbolic Interpretability of KANO. By using compact KANs each for the symbol p(x, &) and
non-linear activation ® in every KANO layer Lano , KANO network G§AN° is fully
inspectable by visualizing the learned edges of all its KANSs, potentially allowing closed-form
symbolic formula of the learned operator with the manual provided by [Liu et al.| (2024bja)). In
addition, recent endeavors have greatly expanded KAN’s symbolic recovery capacity to non-smooth,
discontinuous targets with high irregularities (Yu et al.| 2024} |Aghaeil [2024 [Lei et al., [2025; [Yang
et al., [2025} Shiraishi et al.| 2025). All of such advancements are easily and directly applicable in our
KANO framework as well, when facing an operator with high irregularity coefficients.

Remark 2 (Complexity analyses of KANO). As apparent in Eq. (I6), KANO layer must perform
double sum which can be computationally heavy. However, for the target operator class of variable-
coefficient PDEs such as position-dependent dynamics, we show this can be compensated in principle
by the parameter efficiency we prove in the following Section{.2] See Appendix|E]

4.2 KANO’s DUAL-DOMAIN EXPRESSIVITY

In contrast to FNO, KANO exploits sparse representations in both the spatial and spectral domains,
hence decoupling the scaling of €, and €,¢; by never letting the latent map be a dense convolution. For
instance, for the quantum harmonic oscillator in Eq. , a KANO layer Lxano can parametrize
H by taking p(x,&) ~ x2 + £2, both —0,, and x? terms are each represented where they are

sparse, both leveraging the shift form S,(f) . By jointly parameterizing the operator in both
spatial and frequency domains, KANO cherry-picks the sparse representation for every term in
position-dependent dynamics, building the right inductive bias well-known to be essential for out-of-
distribution generalization and model efficiency (Goyal & Bengio, [2022; Trask et al.,2018)).

This dual-domain expressivity of KANO first alleviates the input constraint; we first explain that
€proj Of KANO scales practically by its width m for any physical input. Then we provide Theorem@
as long as the KANO projection of an operator generates smooth symbols KAN can easily
approximate, €, scales practically by compact KAN sub-networks independent of €py,;. In conclusion,
KANO can converge closely as desired to a generic position-dependent dynamics with practical
model size using any physical input, robustly generalizing outside the train subspace.

KANO practically has no input constraint. According to the quadrature bound from Demanet &
Ying| (2011 Thm. 1&2), the error estimate of Kohn-Nirenberg quantization (I6) obeys

|G — Op,,(pg)|| < CBm™*, (18)

given norm-bound (ﬁnite—energyﬂ input of Ap = {u : ||ju|| < B} where s,C are geometric
constants. Hence KANO width m scales polynomially by the desired €, given any physical data.

5Shin et al |(2022) first employed pseudo-differential operator framework for neural operator. They presumed
the symbol p(x, €) to be separable as p(x, &) = px(x) - pe(€), and used MLP sub-networks while retaining
the lift-up and projection networks of a generic neural operator architecture (Kovachki et al., 2023).

Norm here and Equation Eq. is the Sobolev norm



Under review as a conference paper at ICLR 2026

Theorem 2 (KANO stays practical for smooth symbol). If the KANO projection of an operator
G. Wxuno(G) (I7). generates a finite composition of smooth symbols pg(x,€) and finite-degree
non-linearities, the model size of KANO scales polynomially by the desired accuracy e.

Sketch of proof. Choosing m ~ (B/e)'/* scales projection error down to £/2 by Eq. . A fixed-
width KAN then approximates the symbols to accuracy £/2 with O(e_d/ (2511)) parameters (Wang
et al.} 2024, Corol. 3.4) (s, is a geometric constant). The finite-degree non-linearities add only
constant-size weights by the activation KAN, so the total parameter count is O(s~%(25r)). See
Appendix [C4] for restatement and full proof.

Corollary 1 (KANO is practical for generic position-dependent dynamics). For a finite com-
position of spatial and spectral multipliers of maximum r-differentiable symbols with finite-degree
non-linearity, Theorem[2|yields |©] = O (e~ 4/ ("),

Remark 3 (Scope of KANO). Recent studies demonstrate that wide lift-up and projection networks
are essential for strong performance on high-dimensional benchmarks (Diab & Al Kobaisi, 2025}
Eker, |2024; |Liu et al.} |2023). In contrast, KANO is designed to prioritize symbolic recovery with
robust generalization, complementary to the scope of FNO. Because the core dual-domain expressivity
is mathematically agnostic to dimensionality, extending KANO to conventional high-dimensional use
cases is a natural and promising direction for future work.

5 EXPERIMENTAL RESULTS
5.1 SYNTHETIC-OPERATOR GENERALIZATION BENCHMARKS

We benchmark FNO-based models and KANO on three position-dependent operators:
glf:xz’f - ammfa g2f:zazf + aﬂczf7 gSf:fB‘i’xamf‘i’azzf

Our goal is to quantify and compare the generalization of each model. We train the models only with
Group A dataset and evaluate them on the unseen Group B dataset.

* Group A (Training families): Periodic, Chirped Cosine, Sine Beats.

* Group B (Testing families): Sinc Pulse, Gaussian x Hermite, Wave Packet.

For each operator, we generate 2000 train pairs from Group A and 400 test pairs from Group B to
evaluate the generalization by comparing the ratio between the average relative /5 loss over each
group (Loss Test). We also interpolate the Group A and B function samples in 100 steps, apply
ground-truth operators in each step to build the interpolated dataset, and evaluate the loss ratio to that
of the Group A samples (Interpolation Test). We trained FNO models of 2 layers, 64 width with no
mode truncation, and used one-layer KANS of grid 10 cubic B-splines edges for the KANO model.
For other FNO variant baselines, we used 2-layer models of similar size to FNO. Lastly, we trained a
KANO variant for an ablation study, which we replaced the KAN subnetworks with compact MLPs
of 32 hidden width and 2 hidden layers (KANO_MLP). See Appendix [B.T|for experiment details. We
used Adam optimizer and relative /5 loss for training.

(b) ©
102 ™= KANO Unseeny o107 mm KaNo  Unseern , 107 mm KaNQ  Unseen
2 .- FNO 4 - FNO 2 - FNO
= =103 —1073
w10 < -
] S 107 <104
gltr‘* . & 7
1073
PO w“ o o° o \w“\ew & S \o W« \ .10 o
%\ @c““ o gt \ 5 s G «“ g,\ \“}, \9%( e e G “‘\ & ro@ c" \w( T 5& o ‘\«*

Figure 2: Loss test results. (a) Gy (b) G (¢) G3. Note the logarithmic scale.
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Table 1: Relative /5 losses (x10™*) and parameter counts.

G1 G Gs
Model (params) A B B/A A B B/A A B B/A
FNO (566k) 6.36 98.8 1553 10.6 87.0 8.21 114 81.4 7.14
U-FNO (579k) 2.79 22.9 8.21 8.14 339 41.65 924 292 3.16
AM-FNO (548k) 1.08 209 1935 1.20 16.5 1375 1.16 29.8  25.69
PDNO (538k) 1.41 6.31 4.5 1.92 12.1 6.3 4.03 27.2 6.7
KANO (152) 1.04 1.44 1.38  0.629 0.749 1.19 0.716 0.737 1.03

KANO_MLP (2k) 3.37 6.59 1.96 449 8.07 1.80 3.59 6.87 1.91
KANO_symBoLIC 0.512 0526 1.03 0498 0500 1.00 0520 0.536 1.03

Results. As shown in Table T] and Figure 2] KANO shows consistent losses over Group A and
Group B, validating its robust generalization ability for position-dependent operators. KANO_MLP
also shows comparable out-of-distribution performance, which suggests that the generalization ability
of KANO stems from its dual-domain architecture apart from KAN. In contrast, FNO shows fragile
out-of-distribution behavior on Group B dataset with the significant loss increases. U-FNO (Wen et al.|
2022) and AM-FNO (Xiao et al.,[2024) show even worse results. On the other hand, PDNO (Shin
et al., [2022) shows the most stable generalization among FNO families, although not as robust as
KANO and KANO_MLP. Along with the ablation study, this confirms that the pseudo-differential
operator framework is judicious for robust generalization on position-dependent operators, while
primarily relying on only spectral kernels makes the model fragile out of train distribution even with
localized enhancements.

@ (b) (©

14| — KANO 7 6/ — KANO

12| — FNO 6 —— FNO
e 10 o5 es
g ki Fa
~ 8 4 &
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2 2
2 1 — |1

00 02 04 06 08 10 0.0 02 04 06 08 1.0 00 02 04 06 08 10
Interpolation Ratio Interpolation Ratio Interpolation Ratio

Figure 3: Interpolation test results. (a) G; (b) G5 (¢) Gs.

Interpolation test results in Figure [3] further empirically validate our theories. The FNO curves (red)
of Figure [3]show slow increases on early and mid-interpolation, suggesting that the FNO’s learned
in-sample mappings are yet close to the ground-truth operators. However, the FNO curves abruptly
soar up in the latter ratio, suggesting that the interpolated functions are now far outside the train
distribution. These results, together with KANO’s one-order—of—-magnitude lower loss at just 0.03%
of FNO’s size, are consistent with our claims in Theorem[T]and Theorem [2}

After convergence, we visualized the embedded KANs (Figure ). We then froze these learned
symbols and continued training, referring to this variant as KANO_symbolic. KANO_symbolic
recovered the exact symbolic coefficients of the ground-truth operator to within the fourth decimal
place (Table[2). KANO’s loss matches KANO_symbolic’s loss in Table[T] confirming that KANO
converged close to the ground-truth operator.

Re[p(z,¢)] Im[p(z,€)]  Relp(w,€)] Imlp(z,€)] Re[p(z,¢)]  Im[p(z,§)] /"“g‘“

VY, A N NAD A

\3?/ \5. i’ S~ - \€$ Op(:) Residual
@) ® © Y@ ()

Figure 4: (a) p(x, ) of G;. The middle edge does not contribute to the output. (b) p(x, &) of Ga. (c)
p(x, &) of Gs. (d) @ of G3. Edge of the residual in (d) looks linear, so we compared two scenarios,
linear and cubic, which the latter achieved lower loss and better generalization.
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Table 2: Ground-truth vs. learned operators (coefficients rounded to 4** decimal place).

Ground-truth operator Learned KANO operator
Gif =2 f—Owf Gif = (2% +0.0003) - f — Oy f
Gof =x -0z f + Oz f Gof =0.9996x - O f + Ozaf — 0.0003 f

Gsf = 1.0001 f3 4 0.99997 z - 9, f + 0.99997 O, f

_ 3 )
Gof ="+ 7 0uf + Ouef —0.0002 f> — 0.0003 f — 0.0001

5.2 LONG-HORIZON QUANTUM DYNAMICS BENCHMARK

We provide this benchmark on two position-dependent quantum dynamics: the quartic double-well
Hamiltonian (DW) and the nonlinear Schrédinger equation with cubic nonlinearity (NLSE):

i) = =20 +w(z) - (DW), i0p = —20u00 + w(z) - ¢ + ||* - ¢ (NLSE),

where w(z) = 2 — (z — 5)2 +0.295.

We generate 200 initial states and yield the state trajectories by the Hamiltonians, sampling momen-
tum/position probability mass functions (PMFs) every 0.1ms for 100 time steps. The first 10 time
steps are used for training, and the rest are used to evaluate the long-horizon prediction.

We modify KANO to capture the quantum state evolution: Q-KANO. Symbol py is parametrized
as exp[fiAT bo(x, E)] , where AT = 0.1 ms. The adaptive activation is also defined as a complex
exponential with learned phase ¥ = ®4(|Op,,,(Ps) |, ZOPp,,, (po)?) for input wave function 1 (x):

gé}KANO[,l/)] = Op,,, (exp[—iAT ¢p(x,£)])2p - e IAT Y (19)

We investigate three supervision scenarios: Full-type training with full wave function, idealistic yet
physically unattainable, Pos-type training with only position PMF, physically realistic yet the least
informative, and pos&mom-type training with both position and momentum PMFs, which remains
physically attainable while providing richer information although not full. We use Adam optimizer
for all trainings. See Appendix [B.2]for experiment details.

Resu!ts. We evaluate Table 3: State infidelity after 90 additional time-evolution steps.
state 1nﬁdehtyﬂ between -

. . State Infidelity
ground-truth evolution Model & Train Type
and model prediction at Double-Well NLSE
each time step (Table [3} FNO (full) 151072 1.6x 1072
Figure [6). In case of Q-KANO (full) 63x10°° 6.8x10°°
KANO, the pos & mom- Q-KANO (pos & mom) 6.3x10°° 5.6x10°°
type training achieves Q-KANO (pos) 47x107%  6.1x107?
indistinguishable  infi- ] 6 6
delity from the ideal Q-KANO_MLP (pos & mom) 7.7 %10 8.5 x 10
full-type training base- Q-KANO_SYMBOLIC (full) 20x107%  2.0x 1078
line. The ablation study Q-KANO_SYMBOLIC (pos & mom) 2.0 x 107®% 3.0 x 1078
with  MLP variant of Q-KANO_SYMBOLIC (pos) 53x107%  6.1x1072

Q-KANO achieved
comparably low state
infidelity by pos & mom-type training as well. Meanwhile, the pos-type training displays a clear
infidelity increase, especially on the NLSE.

In contrast, even with full type training, FNO fails to maintain low state infidelity after the long-
horizon propagation as expected. Iterative time evolution pushes the wave function far outside the
train convex hull, and FNO’s learned in-sample mapping deviates from the ground-truth evolution
rapidly, leading to four orders of infidelity increase compared to KANO.

Table [ juxtaposes the learned symbols with that of the ground-truth Hamiltonians and Figure [3]
shows the KAN visualizations from pos & mom-type training. With full-type training coefficients are
recovered to the fourth decimal place, vindicating the ideal capacity of KANO when the information

"For predicted state ¢ and ground-truth state ¢, the state fidelity F is defined as the inner product between
them (F' :=< @, ¢ >), and the state infidelity is defined as (1 — F'), hence shows how distant two states are.
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is fully provided. Under the realistic pos & mom-type training, the reconstruction remains accurate
except for two terms: the constant (global phase) and the NLSE’s cubic coefficient. Both discrepancies
are predicted by quantum observability: global phases cancel in all PMFs, and the Kerr coefficient
enters only through higher-order correlations that become harder to estimate from finite-shot statistics.

Q-KANO faithfully reveals what the data support and nothing more.

Table 4: Ground truth vs. learned symbols. Coefficients rounded to 4" decimal place.

Hamiltonian  Train Type Learned symbolic structure
ground truth  z* — 2 4 0.0625 x + 0.295 + 0.5 £2

bW full 1.0004 2* + 0.0001 2* — 1.0013 2 4 0.0625 = + 0.2955 + 0.5 £
pos & mom  1.0003 z* + 0.0001 z* — 1.0008 2% + 0.0623 x + 0.0001 + 0.5 €2

ground truth  z* — 2 4+ 0.0625 = + 0.295 + 0.5 £ + ||
NLSE full 1.0005 z* — 0.0001 3 — 1.0014 % + 0.0626 = + 0.2942 + 0.5 &2 +
0.9815[¢|? + 0.0110]2)|
pos & mom  0.9999 z* — 0.0003 2> — 1.0001 22 + 0.0630 z + 0.1141 4+ 0.5&2 +
0.9514)9|? — 0.5504¢)|

\J VR \V/
., 6‘ ., 5‘ B /.
(@) (b) © (@)

Figure 5: pos&mom type training results. (a) Structure of the potential w(x) (b) p(x, &) of DW. (c)
p(x, &) of NLSE. (d) (]|, £-) of NLSE. Potential w(x) structure is clearly reconstructed.

(a) State Fidelity (b) State Fidelity
1.0000 —TE=— 1.00 e
T = E TP AR LTIV SR
0.9975 “"—--__,w_‘ 0.99 1 .
0.9950 0.98 ~.
. ~,
>, 0.9925 . 0.97 ~
= = ™~
S 0.9900 2 0.96+ ~.
= . = N,
0.9875 095 ~.
~
0.9850 0.94 ~
= KANO_full = KANO_pos train steps. = KANO_full == KANO_pos train steps
0.9825 — KANO_pos&mom «++. FNO_full 0934 KANO_pos&mom vr. FNO_full
0.9800 +———— ; ; ; . 092l — } } ; ;
Q 20 40 60 80 100 0 20 40 60 80 100
Time Step Time Step

Figure 6: State fidelity over 100 time steps. (a) DW (b) NLSE

6 CONCLUSION

We have presented the Kolmogorov—Arnold Neural Operator, an interpretable neural operator expres-
sive on a generic position-dependent dynamics. KANO cherry-picks sparse representations of each
term via jointly parametrizing on both spectral and spatial bases, and achieves robust generalization
outside train distribution while exposing clear tractable representation via its KAN sub-networks. In
all our benchmarks, KANO have successfully recovered the ground-truth operators accurately to the
fourth decimal place in coefficients. In addition to the superior out-of-distribution generalization,
KANO has also achieved orders of magnitude lower losses with less than 0.03% of the model
size compared to the FNO baseline. KANO shifts operator learning from an opaque, surrogate-
based paradigm towards interpretable data-driven scientific modeling, and provides robust empirical
evidence supporting its enhanced dual-domain expressivity and interpretability.
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7 REPRODUCIBILITY STATEMENT

All codes and dataset of the experiments in this work are submitted as a zip file via the Supplementary
Material. Details in the data generation and implementation are provided in Appendix |B} and the
full proofs of Theorems and Lemma are provided in Appendix [C| along with their mathematical
restatements.

8 ETHICS STATEMENT

All authors of this work sincerely adhered to the ICLR Code of Ethics. We do not expect any potential
violation to the best of our knowledge.
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APPENDIX

A TABLE OF NOTATION

Table 5: Main symbols and notation used in the paper.

Symbol Meaning / Definition
Domains, spaces, and operators
D:=(-L/2,L/2)* Periodic d-dimensional spatial box of side length L
g Ground-truth solution operator to be learned
Spectral & spatial sampling
E={&,...,&n} Retained Fourier modes (truncated spectrum); m = |=|
F Fourier transform
Fomy Fiid Truncated Fourier transform by = and its band-limited inverse
Y=A{y1,..-.,ymt CD Uniform spatial grid
h Grid spacing of )
Fourier Neural Operator (FNO)
Lrno Single FNO layer
ggNO FNO network
Ry (&) Learnable block-diagonal spectral multiplier
Wy Point-wise learnable linear map
a() Point-wise non-linear activation
KANO layer, symbol calculus, and projection
Lxano Single KANO layer
p(x,§) Learnable pseudo-differential symbol
Op,,.(p) Kohn-Nirenberg quantization of width m defined by p
ITkano(G) KANO projection of G
g},SANO KANO network
Py Learnable activation
Kolmogorov-Arnold Network (KAN) primitives
ffg](-) 1D edge function on layer £, connecting p™ node of layer £ to ¢ node
of layer (£ + 1)
b(t), {Bi(t)} Base function and B-spline basis used to parametrize ¢\ ()
Q-KANO (quantum dynamics) notation
P(z) Input wave function
w(zx) Quartic double-well potential
AT Time step of propagation
bo(x,€) Parametrized phase for symbol p(x, &) of Q-KANO
Do (||, £) Parametrized phase for non-linear activation of Q-KANO
QS'KANO Q-KANO network
Function spaces
L?*(D) Square-integrable function space on domain D
H*(D) Sobolev function space of order s > 0 on domain D

B EXPERIMENT DETAILS

B.1 SYNTHETIC OPERATOR BENCHMARK

All experiments are carried out on periodic functions f : T — R with T = (—, 7] and a uniform
trigonometric grid

2
Tj = Tmin + J Az, Am:%, ji=0,...,N—1,
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with N = 128. Unless noted otherwise every random quantity is drawn independently for every
sample.

Outer envelope. To avoid the Gibbs phenomenon all basis functions are multiplied by a smooth
taper that decays to zero in a 7/6-wide buffer near the periodic boundary:

1, |z| < 57/6,
A(z) = { cos? W; , bT/6 < |z| <,
0, |z| > 7.

The full “base” function is always fuue(z) = A(x) g(x).

Spectral derivatives and ground-truth operator. Derivatives are computed with an exact Fourier
stencil:

[y = FiEf©) @ = F-ER)
Ula, b] denotes random digit drawn from range [a, b].

Training families (Group A)
Al. sine_beats:
g(x) = sin(wrz + ¢1) sin(wex + ¢2), w; =8U[0.5,3], ¢; = U[0, 27].

A2. chirped_cosine:
g(z) = cos(az?),  a=12U[0.5,2).

A3. periodic (random harmonic series):
g(x) = sin(wz + ¢1) + cos(wz + ¢2), w=_8UJ0.5,3], ¢12 =U][0,27].
Unseen families (Group B)

B1. wave_packet:

g(z) = eXp{f (:2?;)2} sin(wz+4), p=U[=2,2], 0 = & U[0.5,2], w = 12U[2,6], ¢ = U[0, 2n].

B2. sinc_pulse:
sin(ax)
, > 10712,
g(z) = ax 21 a=12U][0.5,3].
1, |z < 10712,

B3. gaussian_hermite:

g(x) = Hn(x ; M) exp[— (007“)2], n € {1,2,3} uniform, p=U[-2,2], 0 = %U[O.E),Q],

202

where H,, is the degree-n Hermite polynomial.

NORMALIZATION

Each realization is divided by its maximum absolute value, || f|| o, to obtain || f|| = 1. The envelope
guarantees periodicity and keeps the numerical spectrum sharply band-limited.

Sample counts. #train = 2000 samples from the three Group A families for train data and
#test = 400 samples each from the Group A and Group B families for generalization tests..
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B.2 QUANTUM DYNAMICS BENCHMARK

We model a quantum apparatus with 200 state-preparation protocols each with perfect reproducibility,
capable of generating an identical initial state whose wave function is drawn from one of the three
families: Periodic, Gaussian wave-packet, and Gaussianx Hermite. The prepared initial states evolve
under one of two unknown, time-independent Hamiltonians, and two arrays of 128 detectors measure
position and momentum on uniform grids, yielding probability mass functions (PMFs) every 0.1ms
for 100 time steps. PMFs collected from the first 10 time steps are used for training the models, and
the rest of the PMFs collected from the remaining 90 time steps are used to evaluate the long-horizon
fidelity drop beyond the train steps.

B.2.1 QUANTUM APPARATUS ASSUMPTIONS

1. State preparation. A collection of calibrated protocols can each prepare a designated initial
wave-function each of one of three real-valued families Periodic, Gaussian wave-packet, or

Gaussian—Hermite: 1,[1((]m) (r)eL? (']I‘ m =1,...,200. Repeated shots under the same protocol

start from exactly the same 1/J(()m)

the ensemble.

, enabling trajectory-level reproducibility for every member of

2. Hamiltonian stability. The (unknown) Hamiltonian is time—independent, so trajectories are
perfectly repeatable once 1)y is fixed.

3. Dual-basis detection. Two 128-grid projective detectors measure the position basis {|z;) } and the
momentum basis {|¢;)}, yielding empirical probability mass functions (PMFs) p (i) = |¢(z;)|?

and p¢(j) = |1Z(§j)|2 on a common torus grid Ty, L = 4.

B.2.2 DATA GENERATION DETAILS
For each of 200 distinct sample trajectories we

1. draw the initial wave function and propagate on the Hamiltonian with a high-resolution Strang split:
0t = 1 us for 10000 micro-steps, producing coarse snapshots every 100 steps (AT = 0.1 ms,
T=1,...,100);

2. store (1r, pL, pL) where pT (i) = |tr(x;)[? and pf (j) = | (&;)]?

Only the first 10 coarse steps are used for training; the remaining 90 steps test fidelity drop on
long-horizon. All simulations employ an n = 128-point FFT grid to match the detectors.

Spatial discretization. We place the problem on a periodic box of length L = 4 with N = 128
grid points 2; = Tmin + jAz, Az = L/N. Periods suppress wrap—around artifacts because every
initial state is tapered by the smooth envelope A(z) defined in Appendix Spatial derivatives are

taken spectrally: let &, = 2am/L form = —N/2,..., N/2 — 1. Writing ¢, = F[]({m).

Ozp = f_l[i gm'(/)m]a Opatp = T_l[—ﬁgnl/fm]-
Strang-splitting time integrator. Let IC := —%&m (kinetic), V : ¢ — w(x) - ¢ (potential) and
N 19— [9]? - 9 (cubic nonlinearity). With time step At the second—order Strang factorization

reads
(K+VHN)AEL _ e%(’@r") AN e%(;c%;) + O(At%).

Because KC is diagonal in Fourier space and V in real space we implement each half step explicitly:

1/1 Vv/2 e~ %Atw(r)d},

b L F), G e e TG,
YoM FU), e e iAty,

repeat IC/2 and V' /2.

8Square-integrable function space.
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The L? norm is renormalized after every macro step to compensate numerical drift. For DW
Hamiltonian, non-linearity time evolution is omitted.

Integrator parameters. We use an inner step 6t = 1075, A macro step of AT = 1006t = 104
is recorded and the sequence is propagated for T}y = 100 AT = 1072,

Initial-state families (real wave-functions). Each sample draws a real profile f(z) from
{A;1, Az, A3} below, multiplies it by the envelope A and normalizes it in L?:

A@) ()

vol®) =TT,

Al. random harmonic series
5

f(z) = Z %f,(,‘j) cos(2mmé) + %5,(,‘3) sin(2rm¢), &=

m=0

T+ 2
4 )

&) ~N(,1).

A2. Gaussian wave packet f(z) = exp[—(z — z0)?/(20%)] with zg ~ U[-0.47,0.47] and
o~U[0.1,0.3].

A3. Gaussian-Hermite mode f(z) = H,(%=%) exp[—(z — z0)?/(20?)] with n € {0,1,2}

o
uniform, zq, o as above, and H,, the Hermite polynomial.

Stored quantities. For every sample index s and every snapshot T € {0,1,...,100} we save

(x, $(@.T), [ 1), |$(T)?) — wavefunc, pos_pdf, mompdf.

All arrays are written in £loat32 except the complex wave-function, stored as complex64. Alto-
gether one call to generate_dataset (num_samples=200) produces 200 x 101 x 4 = 80,800
labeled records.

B.2.3 TRAIN TYPE DETAILS

Let w(@T) be the T-step prediction of Q-KANO given ).

Train Type Train Dataset Loss function

8 — D,

T _
full cc:rTn)plex ) Ly = ||¢;T)||2 .
pos Pz Lyos = D (Pt || [0 ' %)
pos&mom pi"” " Lposron = Dictp” || 1#6”1) + Dialof” || 1961)
C PROOFS
C.1 NOTATION AND PRELIMINARIES
Throughout, T¢ := [—, 7]¢ denotes the flat d—torus and Z< the lattice of Fourier indices. For & € Z4

let e¢(x) := €. The Fourier coefficient of a square integrable function f is

f(¢) = (277)_d/ f(x) e "> dx.
Td
In a Sobolev space H*® with an order of smoothness s € R, the Sobolev norm of function f is
(2m)4 s\ (7
€115 = 5 D@ +[EP) FE)1”

gczd

Asymptotics. Write A < B if A < C B for a constant C' depending only on fixed parameters
(dimension, regularity exponents, etc.).

18
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Vector Notation Fix a spatial dimension d > 1 and an index j € {1,...,d}. For & =
(&1,...,&q) € Z% we write

£ =&, &-1,641, ..., &) €297
for the vector obtained by removing the j-th coordinate of £. Conversely, for a = (a1,...,aq4-1) €

79" and n € Z we define the insertion map
d
(a,n)j = (o1,...,qj_1, M, Qj,...,0q-1) € Z°.

We use | - | for the max—norm on Z<, i.e. |€|o = max;<;<q|&|. When we write t(a, r), this is
shorthand for the d—dimensional coefficient U((cx,7);).

C.2 ProOOF oF LEMMAII

Restatement of Lemma(with explicit notation). Letu € H*(T?) with s > 0, and assume that
its Fourier coefficients are compactly supported:

u(€) =0 forall |€] > No, and u#o0.
Fix j € {1,...,d} and set v(x) := x; u(x). Then there exist
o e 7% m e {1,2,...,2Ng + 1}, ¢>0, REeN,
and an infinite set of the fiber at " coordinate,
EarC{E€Z: & =a, || >R}
such that

~ Cc —_
V()| > re)” V¢ € Zar- (20)
In particular, if for some o € 7%= one has
No NO
Z U((a,7);) #0 (equivalently, Z u(a, r) # 0 in the shorthand above),
r=—Np r=—Nog

then the bound equation 20| holds with the sharper exponent m = 1.
Proof. We work with square-integrable function v € L?(T%) where T¢ = [0, 27]%.

Step 1 — The periodic “coordinate” and its Fourier coefficients. The function x — x; is not
periodic. Introduce the zero-mean, periodic 1D sawtooth

Yi(x) =z —m,  xe€0,27],

extended periodically to T¢. A direct computation (factorization of the integral and one-dimensional
integration by parts) shows that its Fourier coefficients are supported on the j"-coordinate: for
£ec7,

1
—~ ——, if§_;=0and§; #0,
e = ig e MG @
0, if§=0o0r&_; #0.
Moreover z; = 1; + 7, hence
v(§) = Fly;ul(§) +mu(f). (22)

Step 2 — Exact coefficient formula outside the support of u. Since u(k) = 0 for |£|o, > No, the
second term in equation 22] vanishes whenever |£|o > No. Using equation [21]and the convolution
theorem, we obtain for any &€ € Z9 with €|, > No:

~ —~ . ule
W - Y GE-0i-—1 Y o 23)
eer o <ng Y
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Thus, along any fixed transverse index « := £_; € Z471, the tail V(c,n) for large |n| is a finite
sum of simple fractions in the single variable n.

Step 3 — Moments on a nontrivial fiber and the first non-vanishing moment. Because u # 0,
there exists at least one v € Z%~! for which the fiber

Fo={reZ: u(a,r) # 0}
is nonempty. Define the (finite) coefficients ¢, := U(e, r') for r € [—Ng, No], and their moments

No
By = Z rPc, (p>0).
T:7N0
Letm € {1,...,2Np + 1} be the smallest index for which p,,,_1 # 0. Such an m exists since not

all c¢,. vanish.

Step 4 — Asymptotics along a line and a polynomial lower bound. For n € Z with |n| > N,
formula equation [23|along the line §_; = o reads

No

~ 1 c,
v(a,n) = — Z —
T:7N()
Expanding nir = % ZqZO (%)q for |n| > 2Ny and collecting terms yields the asymptotic expansion
~ 1o Mm—1 1
v(a,n)——i(n—&—rﬂ—i—---—i— s +0 et ) ) [n| — oo.

By the choice of m, the first nonzero term is g,,—1/n™. Consequently, there exist R € N and ¢ > 0
such that

[V(o,n)| > forall |n| > R, n € Z.

_c
n|™
Step 5 — Conclusion and the special case m = 1. Then equation[20|holds for all § € 2,z with the
exponent m determined in Step 3, by the definition of Z4 g and that [n| > R. If po = ZT c.#0
for the chosen fiber (equivalently, iV:‘)_ N, U(e,7) # 0), then m = 1 and we obtain the sharper
[V(€)| = (1+ &) along the line £_; = cv. O
Remark 4. The explicit one-dimensional tail equation 23| shows that multiplying a band-limited
field by the coordinate x; produces a polynomial Fourier tail decay along lines parallel to the 5t
coordinate, with rate (1 + |£;|) ™™ where m is the first non-vanishing moment of the finitely many
coefficients on the relevant fiber. In particular, when m = 1, the decay is exactly (1 + |&;]) L. Such
algebraic tails are consistent with the pseudo-spectral projection error estimate quoted in |Kovachki

et al.| (2021} Thm. 40).

C.3 PROOF OF THEOREM/[I]

Restate of Theorem Leta = (ay,...,a4) € N? with total degree M := || > 1 and define
the position-multiplier

M(x) =] 252 - xf
For inputs band-limited to radius Ny and lying in H*(T?) with s > %, any Fourier Neural Operator
GINO that achieves || M (x) — GENO|| o, o5 < € (0 < § < 1) must employ a spectral bandwidth
(FNO width) m > e~™/* and a parameter count || > exp(ce™ d/ ¢) for some ¢ > 0 depending
only on (d, s, d, Ny).

Proof. Sets’ := s — 0 with0 < § < 1.

Step 1 — Algebraic tail produced by M (x). Applying Lemma once per factor of x; shows that
for some constant Cy > 0 and an infinite set =, C Z%,

FIMEul©) > O

> W VE € Exe. (24)
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Step 2 — Pseudo-spectral projection lower bound. For any f € H*®, pseudo-spectral projection
error estimate gives (Gottlieb & Orszagl [1977)

25"\ [F(£)2 1/2
I~ o)t = G Y 1+ €2 E©F]
[€loo>N
where Z is an identity operator. Insert f = M (x)u and the tail bound equation summing over

Eoc N {|€]oc > m} yields
(T — Hrno) M(x)ull g 2 m~ 2,
Imposing this residual < %5 forces

m > Coe M/s, Cy = Cy(d, 5,6, M, Ny) > 0. (25)

Step 3 — Canonical neural scaling in the latent map. An FNO with spectral radius (width) m
manipulates a latent vector of dimension (2m + 1)¢ ~ m?. Approximating a generic Lipschitz map

G:C"" = C™ 1o accuracy &/2 with a fully connected network requires (Yarotskyl, [2017; De Ryck
et al.l [2021)) at least

md

parameters > &
(Kovachki et al., 2021, Remark 22)

Step 4 — Substitute the bandwidth lower bound. Using equation mé ~ e=Md/s Hence the

latent network must have at least
_e—Mad/s

0] 2 € ;

a super-exponential curse of dimensionality in the target accuracy ¢.

C.4 PROOF OF THEOREM[Z]

Restate of Theorem Let s > s’ > 0 and Sp > d /2. Consider any finite composition
G = (g0 Ly)o---0o(s10Ly), L; = Op,,(pi),

where each Kohn-Nirenberg symbol p; belongs to W *»+2 (’]I‘i X Tg)ﬂ and each g; is a point-wise non-

linearity of uniformly bounded degree (so the number of such nonlinearities is O(¢) and independent
of €). For every £ > 0 there exists a single-layer KANO G5ANO such that

16 — G5l sy <& 0] = O(E_d/(z%))-

Proof. Step 1 — Kohn—Nirenberg quantization error. By the quadrature bound from | Demanet &
Ying| (2011), for each £; we have

HLz - Op'm(pi)HHS*)Hs’ S C'Bm_(s_sl),

where Op,,, (p;) keeps only frequencies |€|,, < m. Since each g; is a bounded-degree pointwise
map, its Nemytskii operator is Lipschitz on bounded sets; write L; := Lip(gi) on the relevant
range and set Lyax := max; L;. Let M := max;{||£; || yo_ g+, |OP (P))|| gy g+ }- Because
sp > 3 implies ||p;||= < ||pjllwes -2, both £; and Op,,,(p;) are bounded on H*' with a bound
independent of m. A telescoping estimate for the interleaved composition then yields

Hg - HKANO(g)HHs*}HS/ S C* C/ B m7(578,)7 C* S 14 (LmaxM)eileax-

°Standard square integrable periodic Sobolev space on the product torus T4,
OLipschitz constant of the point-wise nonlinearity ¢; on the relevant value range, ie. L; :=

SUp,, 4y, % with a, b restricted to the compact interval attained by the i-th preactivations.
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Pick m := (2 C.C'B/ 5) 1/(s=s ). Then the full composition G deviates from its projected counter-
part

ITkano(G) = (s¢0 Op,,(pe)) © -+~ 0 (10 Op,, (P1))

by atmoste/2in H®— H s’ operator norm.

Step 2 — KAN approximation of both symbols and pointwise nonlinearities. By the width-fixed
KAN scaling law from|Wang et al.|(2024)), for any 1 > 0 there exists a Kolmogorov—Arnold Network
&, , with |®; | = O(n~%(2%e)) such that ||p; — ®; ||~ < non T x’]I‘g. Likewise, since each g;
is a fixed-degree pointwise map, its action over the compact value range visited by the projected flow
can be uniformly approximated by a width-fixed KAN ¥, ,, with size |¥,; ,| = 0(77*1/ (2517)) and

llsi — ¥ 0|l < 7. Choose
— < _ £
nsym . 46’ Ml * 46

Define the single-layer KANO

Go O = (W10 OP (Pl ) © - 0 (B1,,0 OP (R0

where the same spectral radius m from Step 1 is used in every Op,,,( - ).

Step 3 — Error accumulation beyond projection. Using linearity of the symbol-to-operator map
and stability of Nemytskii (pointwise) maps under uniform approximation, the post-projection error
splits into a sum of the symbol parts and the nonlinearity parts:

¢
[TIkano(G) — G5 oy o < ZHOPm(pi) = Op,,,(®in.,) HH g Z 166 = Wi [l oo

i=1
<L Nsym + L = /2.

Combining with Step 1 yields |G — GXANO|| ., ;o < e

Step 4 — Parameter complexity. Summing the sizes of all KAN blocks gives

0
0] = Zon—y% 25,; Zo(n;ll/(%p)) +0(1) = O((E/g)_d/(Qsp))+O((E/£)_1/(28P)).

i=1

Since ¢ and the number/degree of the ¢; are fixed (do not scale with ¢€), the dominating term is
O(e=4/(5p)), establishing the claimed complexity. O

D ADDITIONAL DETAILS ON THE PURE-SPECTRAL BOTTLENECK OF FNO

In Section we performed a linear analysis of a single FNO layer via its Jacobian to illustrate the
pure-spectral bottleneck. We showed that, in the first-order approximation, all spectral off—diagonals
arise from the spectrum of the input—dependent gate o’(z(u, -)) (12). Hence, although a single
FNO layer is capable of generating spectral off-diagonals, they are tied to the input distribution and
leads to the structural fragility in out-of-distribution performance (generalization on the unseen input
distribution). Experimental results in Section [5]are aligned with our concerns.

In this Appendix, we show that the same phenomenon persists at every order of the Fréchet expansion
of a single FNO layer, and composing deep layers does not remove the input distribution dependence
of the spectral off-diagonals generated by the model as well.

Throughout, we work on the flat torus T¢ = [, w]¢ and Sobolev spaces H* as in Appendix

D.1 HIGHER-ORDER SPECTRAL OFF—DIAGONALS OF FNO

Recall the FNO layer Leyo @):

Loo(W)(x) = o(F (Ra,(€) - Fn(w)(€))(x) + W, -u(x)).
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For the analysis it is convenient to collect the linear terms into a linear operator

A = FloRy(€)oF + Wy, (26)
so that
Livo(u)(x) = a(z(u, X)), z(u,x) := (Au)(x), 27

where o is the non-lineaer activation acting point-wise.

We first compute the k-th Fréchet derivative (Fréchet, [1906) of Leno(u)(x).

Proposition 1 (Structure of higher—order derivatives of a single Fourier layer). Let u € H?
and k be the order of the Freéchet derivative. Also lethy, ... hy € H?® be the arbitrary direction
Sunctions of each order. Then for every integer k > 1, the Freéchet derivative of Lpyo(u)(X) is:

k
D Lixo(w)hy, ..., hy](x) = 0¥)(z(u,x)) [](Ahy)(x), (28)
j=1
where o %) is the usual scalar k-th derivative. More explicitly, for each channel g,

k
[D*Livo(w)[hy, ... 1] (%) = 0¥(zg(u,x)) [[LAR] (). (29)
Jj=1

Proof. Since A is linear, Dz(u) = A and D"z(u) = 0 for all » > 2. By the chain rule,
DLio(u)[hi](x) = o'(z(u,x)) (Ah;)(x),

where ¢’ acts point-wise on each channel. For higher order derivatives, we apply the Faa di Bruno
formula (Faa di Bruno} [1855). Because all higher derivatives of z vanish, every term involving
D"z(u) with r > 2 drops out, leaving

D Lino(u)[hy, ..., hy] = o™ (z(u))[Ahy,..., Ah]. (30)
Since o acts point-wise, this reduces to Eq. (28), and to Eq. (equation 29) on each channel. O

Thus, as apparent in Eq. (29), every Fréchet derivative is a point-wise product of

« an input-dependent gate o*)(z(u, x)) depending on the current input u, and

* the product of k fixed linear responses (.Ah;)(x) incapable of generating spectral off-
diagonals.

Therefore, the structure of the high-order derivatives of a single layer FNO is just as tied to the input
u distribution as the first-order Jacobian shown in Section

D.2 SPECTRAL REPRESENTATION OF HIGH-ORDER DERIVATIVES AND MULTI-LAYER FNO

Fix k£ > 1 and define
si(u,x) := o (z(u,x)), b;(x) := (Ah;)(x), i=1,... k. (31)

Then Eq. reads
D*Leno(W)hy, ... hy](x) = sp(u,x) - [[bi(x). (32)

The Fourier transform of a product of (k+1) functions is a (k+1)-fold convolution, so for each
output frequency & € Z% we have

D* Leno(W)[hy, ..., hi](€) = (sp(w) by %--- % by)(€). (33)
Spectrally, the linear operator A (26) acts diagonally:

Ah;(€) = A(€)hi(€), (34)
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where A (€) = R(€) + W as in Eq. (12)). Expanding the convolution in Eq. @ yields

D Loo(lh, . (€)= Y si(w)(E & &) - HA &), (395)

€1,.,6K €LY

depends on inputu

where {&;} are the frequency variable for each direction {h;}. Eq. (350 shows that the k-th derivative
could be read as a multi-linear operator whose spectral kernel

k

Ki(w; €581, .., &) = si(u )(5 & - — &) 'HA(Ei) (36)

i=1
connects (&1, .. ., &) to the output function frequency &.

Two structural facts follow immediately from Eq. (36):

1. Input function u decides the value ;(;) = F[c™ (z(u,"))],
2. The spectral multipliers A (&;) depend only on the learned weights and remain diagonal in Fourier:
they are independent to input u but does not contribute to spectral off-diagonals.

Consequently, for any £ > 1:

Every non-diagonal spectral coupling is induced by Fourier coefficients of non-
linear activation derivatives U(k)(z(u, )) evaluated on the current input u.

Higher orders k > 2 introduce convolutions of higher derivatives (%), but they do not mitigate the
input dependence argument of spectral off-diagonals provided in Section

Deep FNO networks. A full FNO is a composition of multiple FNO layers:
G5 = Lo+ Lo, (37)
Applying the Faa di Bruno formula (Faa di Bruno, |1855) to this composition, every term in
DFGINO (1) becomes a product of:
* spectral multipliers {A;(£)} from the linear parts of the layers, and
» Fourier transforms of activation derivatives o (") (z(j )(u, )) from intermediate layers 7 and

derivative orders r > 1.

Thus, in a deep FNO, all spectral off-diagonals at any order k still factors through Fourier transforms
of activation derivatives evaluated on intermediate pre-activations governed by the input u. Adding
layers introduces more such gates but do not mitigate the input dependence on spectral off-diagonals
introduced in Section[3.1]

D.3 THE MEANING OF INPUT DEPENDENCE OF SPECTRAL OFF-DIAGONALS WHEN
LEARNING A SPECTRALLY DENSE GROUND-TRUTH OPERATORS

Let 7T be a fixed linear operator such as the position multiplier a(z) — z2a(x ) in Sect10n In
Fourier basis, 7 is represented by a dense Toeplitz matrix such as T, [z?] as in Eq. (11] and its
Fréchet derivatives are

DT (u)=T forallu, DT (u)=0 forallk > 2,
i.e., the spectral off-diagonals of 7 are completely independent of the input u.
Suppose we wish to learn T~ with robust out-of-distribution performance over a Sobolev ball
Bp:={uec H®:|ul|g: < B}.
A natural notion of generalization is a small error in operator norm for an unseen Sobolev ball 53:
195 (w) - Tl .

ueBs [l ae

(38)

This requires that on Bp
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* the Jacobian DG (u) stays close to T, and
« all higher-order derivatives D*GEN°(M1), k > 2, remain uniformly small (negligible).

Combining Eq. (36) with the composition structure above reveals a paradox:

1. If the gates o*) (z() (u, -)) and their Fourier transforms s\’ )(u) vary significantly with
u € Bp, then both the Jacobian and all higher-order kernels Ky (u; &€, &1, . .., &) vary with
the input. In that case the effective spectral off—diagonals of G;"° cannot coincide with a
single, input-independent Toeplitz kernel across all u € Bg. Any dense off-diagonal pattern
learned from the train distribution will be tied to the train subspace and becomes fragile
under distribution shift, as observed in our experiments in Section [5]

2. If, on the other hand, we try to make these kernels effectively independent of u on Bz, then
Eq. (28) and Eq.(36) force all activation derivatives to be nearly constant (for k£ = 1) or
nearly zero (for k > 2) on the relevant pre-activation range. In this regime, the network is
forced into an almost linear operating region where

—

» ¢’ is approximately constant, so s1(u) is concentrated near zero frequency and
D Lino(u) becomes (block-)diagonal in spectral basis; and

e (%) 0 for k > 2, so higher-order terms vanish.

The resulting layer effectively reduces to a spectral multiplier A (£) and cannot represent a
dense Toeplitz map such as T, [22] whose off-diagonals are non-trivial and fixed independent
of inputs.

In other words, for spectrally dense, position-dependent operators, FNO faces a fundamental trade-off:

* it can use strongly input-dependent gates to synthesize spectral off-diagonals, but then those
off-diagonals are necessarily tied to the input distribution, or

* it can suppress the input dependence of the gates to emulate a fixed operator, but then the
spectral kernel collapses towards a diagonal (or nearly diagonal) multiplier.

In neither case does a practical-size FNO realize a fixed, input-independent dense Toeplitz kernel with
robust out-of-distribution generalization for spectrally dense operators, even though a sufficiently
large FNO can parametrize the off-diagonals of the in-sample mapping on the training distribution.

What we do (and do not) claim about FNO. The generalized analysis in this Appendix refines
the statement of Section[3.1k

* We do not claim that FNO cannot generate spectral off-diagonals. Eq. (12 and Eq. (36)
show that at first and higher order, off-diagonals appear whenever the activation derivatives
have non-trivial Fourier coefficients.

* We do claim that for spectrally dense operators, these off-diagonals are always tied to
input-dependent gates. As a result, a large FNO can fit the off-diagonals of the in-sample
mapping on the training subspace, but it cannot efficiently learn a fixed dense off-diagonals
with robust out-of-distribution generalization on unseen function spaces which is exactly
what we observe in our experiments in Section 5]

Stacking more layers introduces more input-dependent gates but does not create an input-independent
spectral mixing mechanism, so depth does not mitigate this bottleneck.

D.4 WHY KANO DOES NOT SUFFER THE SAME PROBLEM

By contrast, KANO directly learns an input-independent pseudo-differential symbol py(x, £) in the
dual bases via Eq. (I5). KANO has a spectral kernel capable of mode mixing as it is governed by
spatial basis x (which is convolution in spectral basis) as well as the frequency mode £ via symbol
Po(x, &), not only by the non-linear activation gates tied to the input function u. Once py is learned,
it is shared across all input functions in the ball B, including even the unseen function subspace.
This dual-domain, symbol-based parameterization allows KANO to learn the fixed off-diagonals
of spectrally dense, position-dependent operators with robust out-of-distribution generalization, as
confirmed by our experiments in Section 3]
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E COMPUTATION AND MEMORY COMPLEXITY OF KANO

In this Appendix we compare the memory and computation complexity of KANO compared to FNO.
We first quantify the per—layer costs of a single FNO layer (@) and a single KANO layer (I5)), and
then combine them with the parameter complexity results of Section [3.2] and Section [4.2]to argue
that, on the target class of variable—coefficient PDE and position—dependent dynamics, the higher
per—layer cost of KANO is compensated by better model size scaling.

Throughout this appendix we work on the discrete torus T¢ with a uniform spatial grid Y =
{¥1,-...¥m} and a truncated Fourier set = = {&;,..., &y} as in Section[2.1]and Section[4.1]

E.1 PER-LAYER FLOPS AND ACTIVATION MEMORY

We measure complexity in floating—point operations (FLOPs) and activation memory per forward pass
for a single layer of each model. Backward passes in standard automatic differentiation are assumed
to be within a constant factor of the forward cost and do not change the asymptotic conclusions.

FNO layer. Consider a single FNO layer
Lovo(@)(x) = (" (Re, (€) - Fnl@)(€))(x) + Wy, -a(x))

with Cj, input channels and C\,,, output channels. On a d-dimensional grid Y with m¢? coordinates, a
single forward application of Lgyo has the following costs:

* FFT and inverse FFT: F,, and F,.} are applied channel-wise and cost
FFT cost ~ O((Cin + Cow) m*logm?).

* Spectral multiplier: for each retained mode & € =, Ry (&) € C%*Cn is a dense matrix;
multiplying by (&) € C% costs O(Ci,Coy) per mode, hence

spectral block ~ O(m? CinCou)-

* Point-wise linear map: Wy is applied at each spatial point y € ) as a dense matrix in
channel space, costing

spatial linear map ~ O(md CinCour)-
s Nonlinearity: the point-wise nonlinearity o is O(m% Cyy).
Collecting terms, for fixed channel counts we obtain the per—layer forward cost:
FLOPs(Lo) ~ O(m®logm® +m?) ~ O(m?logm?). (39)

The activation memory footprint is dominated by storing u, J,,,u, the pre—activation z(u, -) and the
post—activation:

memory (Lyo) = O(md Cin + m? Cou) ~ O(m?). (40)
The parameter memory is O(m¢ Ciy Coy) for the spectral multipliers plus O(CiyCou) for Wi.

KANO layer. Now consider a KANO layer (I5)

Lrano(@)(x) = Bo,(F,, [po, (x.) * Fu(@)(€)](x) , alx)).

where py,(x, &) is implemented by a width—fixed KAN symbol network and ®y, is another
width—fixed KAN activation network. Using Kohn—Nirenberg quantization (T6):

Fr[p(x,€) « Fu(@)(©)](x) 1= ()30 32 € plx ) aly)
£eEye)Y

on a d-dimensional grid ) with m? points and a retained frequency set = with m? modes, a single
forward application of Lyano has the following costs:
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* KN quantization (double sum): for each output location x we evaluate the double sum over
£ cZandy € ),ie. m?? terms per x. Each term involves a dense matrix—vector product
p(x, &) a(y) of cost O(CinCoy). Summed over all x € Y this yields

KN operator ~ O(m*? CiyCou).

* Symbol network evaluation: the symbol KAN py, is evaluated once per pair (x,£) € Y x E,
i.e. at m2? points. Let P, denote the cost of a single forward evaluation of py,. Then

symbol KAN ~ O(m?? P,).

* Activation KAN: the activation network ®y, is applied point-wise at each spatial point
x € ). Let Pg denote the cost of one forward pass of ®,. Then

activation KAN ~ O(m? Py).

Collecting terms, for fixed channel counts and fixed KAN architectures we obtain the per—layer
forward cost:

FLOPs (Lxano) ~ O(m?*? CiyCou + m** P, + mPs). (41)
The activation memory footprint is dominated by storing the feature maps and, if materialized, the
symbol grid pg, (x, £):

memory (L:KANO) ~ O(md Cin + m* Cout + m*? C*incvout) ~ O(de CinCoul)> (42)

in addition to the parameter size of the KAN subnetworks.

Inference cost of compact KAN subnetworks. For completeness, we quantify the inference cost
P, and Ps of the KAN subnetworks. Consider a fully connected KAN layer with input width dj,,
output width doy, and G basis functions per edge. Each edge (j — i) carries a learnable univariate
function f;; : R — R represented as

G
fii(@) = Y wijg dg(x),
g=1

where {¢, gG:1 are fixed basis functions (e.g. B—splines or rational functions) and w;;, are learned
coefficients. Evaluating f;;(z;) for a given scalar input z; requires computing the active basis

functions ¢4 (x;) and a dot product over G elements.

A single KAN layer thus computes, for each output coordinate i,
din
yi = Y fij(z)),
j=1

and the total cost of one forward pass through this layer would be (’)(dom din G), up to lower order
terms from basis evaluation. The parameter count of this layer is of the same order, O(doy din G).
Under the assumption of compact KAN subnetworks, widths, depths, and the number of basis
functions G are all small and independent to the operator resolution m. If we denote by N an upper
bound on their layer widths and by L,y their depth, then their total inference costs satisfy

P,, Py = O(Lxax N?G).

In the per—layer KANO complexity (@) the KAN subnetworks contribute only a constant—factor
overhead that does not grow with the spatial or spectral resolution, hence for large resolution
m > N, Lgan the dominant term would be the KN quantization term O (m>?Ci,Coy).

E.2 COMPUTATION COMPLEXITY AS A FUNCTION OF ACCURACY FOR POSITION-DEPENDENT
DYNAMICS

As apparent in Eq. (39]and Eq. @#I), KANO requires orders heavier FLOPs compared to FNO due
to the expensive double sum nature of its KN quantization, when two models are of similar size.
For small resolution m, the inference cost P, and P still set hard lower bound on the computation
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complexity as well. However, one of the main arguments we make in this work is that KANO enjoys
incomparable parameter efficiency compared to FNO on the target class of spectrally dense operators
such as position-dependent dynamics: parameter complexity of KANO scales polynomially where
that of FNO can scale super-exponentially on a spectrally dense ground-truth operator. Therefore,
KANO'’s expensive FLOPs requirement can be compensated by parameter efficiency where FNO
suffers the curse of dimensionality.

For a position-dependent dynamics G and accuracy € > 0, we write |Opno(€)| and |Ogano(e)| for
the smallest parameter counts required by FNO and KANO respectively to achieve |G — G| < ¢,
following Theorem and Theorem Also, let Trno(€) and Txano(g) denote the cost of one forward
(or forward-+backward) pass of an FNO or KANO architecture chosen to achieve accuracy ¢ on the
ground-truth operator. We do not attempt to model the number of optimization steps; instead, we
focus on how the cost of a single training or inference step scales with . Assuming a model must
perform at least a constant number of FLOPs per parameter in each step, lower bound for computation
complexity can be estimated as:

TFNo(g) 2 CO|6FNO(5)‘7 TKAN0(€) Z 06|9KANO(5)| (43)

for constants cg, ¢{, > 0. Such lower bound assumption is not universal for any neural network, but in
FNO architecture all its parameters equally appear in the matrix computation via the dense parameter
block R and W; especially for implementations that evaluate and update all parameters in every step.
Hence, computation complexity lower bound assumption by its model size is reasonable for FNO.

Computation complexity of FNO by accuracy for position operators from Theorem[I, For
the position—-multiplier M (x) := z{* --- x5 of total degree M := |a| > 1, the restatement of

Theorem|1)in Appendix shows that an FNO G that achieves
IM =G5 Clln: <e
on band-limited inputs can suffer curse of dimensionality:
|Omo(e)| ~ exp(c E_Md/s), (44)

for some constant ¢ > 0 depending only on geometric constants of Sobolev space H*®. From Eq. {#3),
the computation complexity of FNO by accuracy on M can be written as:

Tmvo(e) 2 co|Omole)] ~ O(eXp(EiMd/s)) (45)

~

Computation complexity of KANO by accuracy for position operators from Theorem[2, On
the other hand, Theorem [2]and Corollary [T|show that as the KANO projection of M yields symbols
pPam(x, &) of sufficient smoothness, KANO can achieve || M — GEANO|| < e with

Oxkano(e)] ~ O(™7F), (46)

where § = d/(2s,) or B = d/(2r) is a geometric exponent determined by the symbol regular-
ity (Wang et al.,[2024). From Eq. (3), the computation complexity of KANO by accuracy on M
can be written as:

Txano(€) = ¢f |Okano(€)] ~ O(exp(s*ﬁ)) 47

Therefore, when the ground-truth operator is spectrally dense yet its KANO projection give smooth
enough symbol so that both Theorem |l{and Theorem [2|are effective (for instance, position-dependent
dynamics), lower bound of computation complexity of FNO can prevail over that of KANO because
of the curse of dimensionality discussed in Section[3.2]

We emphasize that this is an asymptotic statement under the specific operator class where both
Theorem [T]and Theorem [2hold. For operators that are nearly spectrally diagonal (e.g. standard FNO
benchmarks), FNO is theoretically much faster than KANO when the two models are in similar size.
However, when learning a spectrally dense, variable—coefficient operators to high precision, KANO’s
parameter efficiency can, in theory, compensate for its expensive double sum KN quantization while
FNO faces a super—exponential growth in model size hence per—step FLOPs to achieve the same
level of accuracy.
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F USE OF LARGE LANGUAGE MODEL

Large Language Model (LLM) is used to polish the writing in this paper, such as detecting grammar
errors and typos. LLM is also used to search for appropriate references for correct citations, and all
the proposed references are fully inspected and verified before citing in the paper.
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