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ABSTRACT

We introduce Kolmogorov–Arnold Neural Operator (KANO), a dual-domain neural
operator jointly parameterized by both spectral and spatial bases with intrinsic
symbolic interpretability. We theoretically demonstrate that KANO overcomes
the pure-spectral bottleneck of Fourier Neural Operator (FNO): KANO remains
expressive over a generic position-dependent dynamics for any physical input,
whereas FNO stays practical only to spectrally sparse operators and strictly imposes
fast-decaying input Fourier tail. We verify our claims empirically on position-
dependent differential operators, for which KANO robustly generalizes but FNO
fails to. In the quantum Hamiltonian learning benchmark, KANO reconstructs
ground-truth Hamiltonians in closed-form symbolic representations accurate to the
fourth decimal place in coefficients and attains ≈ 6× 10−6 state infidelity from
projective measurement data, substantially outperforming that of the FNO trained
with ideal full wave function data, ≈ 1.5× 10−2, by orders of magnitude.

1 INTRODUCTION

Contemporary science and engineering increasingly operate in regimes where the effective dimen-
sionality and complexity of phenomena and data overwhelm human-designed calibrations and
approximations. This motivates data-centric modeling of governing dynamics from observations (Kar-
niadakis et al., 2021; Wang et al., 2023; Carleo et al., 2019). For a learned model to be constituted as
a scientific law, it should first generalize universally over a well-defined domain, and also should be
interpretable so that the learned representations can be extracted and reused for verification, testing,
and downstream simulation. Mathematically, physical dynamics are generalized as operators as
they are often formalized as PDEs (Courant et al., 1963; Evans, 2022), which are predominantly
position-dependent: many canonical PDEs involve coefficients varying with location. Representative
position-dependent PDEs include the heat and mass transport equation (Incropera et al., 1990), the
advection-diffusion-reaction equation (Kundu et al., 2024), Fokker–Planck equation (Pathria, 2017),
Maxwell and Helmholtz equation (Jackson & Fox, 1999), and Schrödinger and Gross–Pitaevskii
equation (Sakurai & Napolitano, 2020). Scientific AI such as operator networks (Kovachki et al.,
2023; Lu et al., 2021) should therefore efficiently approximate a generic position-dependent operator
with tractable interpretability, which we recognize the absence and aim to fill the gap in this work.

An operator network approximates an arbitrary mapping between infinite-dimensional function
spaces by first encoding functions into finite latent vectors and then learning the latent-to-latent
map that represents the target operator (Lanthaler et al., 2022). DeepONet of Lu et al. (2021;
2019) implements the most general dense operator network where two neural networks learn both
encoding and latent mapping directly from data, based on the theoretical foundation laid by Chen
& Chen (1995). Fourier Neural Operator (FNO) of Li et al. (2020), on the other hand, hard-codes
the encoding as pseudo-spectral projection with its spectrally diagonal kernels. FNO is provably
and empirically superior when its hard-coded sparsity is optimal (Li et al., 2020; Kovachki et al.,
2021), but this spectral sparsity becomes maladaptive for position-dependent or otherwise spectrally
dense dynamics (Koshizuka et al., 2024; Qin et al., 2024). In such cases, the model size required
for a target accuracy can grow super-exponentially (Kovachki et al., 2021), hence realistic FNO
may only converge on an in-sample mapping that fails outside the training distribution. Numerous
variants of FNO attempted to break this spectral bottleneck. Some have broadened spectral coverage
by exploiting factorized (Tran et al., 2021) or multi-scale (You et al., 2024) spectral kernels, and
others have injected local spatial kernels alongside the original spectral ones (Wen et al., 2022;
Liu-Schiaffini et al., 2024; Liu et al., 2025). Yet all prior works still privilege the spectral basis and
cannot achieve optimal sparsity in the spatial basis.
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In parallel, interpretability has recently pivoted around Kolmogorov–Arnold Network (KAN) (Liu
et al., 2024b;a), whose edges are trainable univariate functions and thus amenable to human inspection.
Several works demonstrate data-driven scientific modeling with KAN: Chiparova & Popov (2025);
Gashi et al. (2025) use KAN for system identification, and Koenig et al. (2024) replace the MLPs
in Neural ODEs (Chen et al., 2018) with KANs, each reporting symbolic recovery of benchmark
equations and parameters. KANs have also been explored within operator networks: Abueidda
et al. (2025) employed KANs instead of MLPs in DeepONet and Xiao et al. (2024); Wang et al.
(2025) augmented FNO with KANs. Despite performance gains however, prior KAN-based operator
networks have not reported symbolic recovery of the learned operator, leaving the avenue of an
interpretable operator network largely unexplored.

To address these research gaps, we introduce the Kolmogorov–Arnold Neural Operator (KANO),
an interpretable operator network jointly parameterized in both spatial and spectral bases with KAN
sub-networks embedded in a pseudo-differential operator framework (Hörmander, 2007; Kohn &
Nirenberg, 1965). The key insight is to represent each component of the operator in the basis where
it is sparse: differential terms spectrally, localized terms spatially, to achieve the most compact and
tractable representation. Our work offers three main contributions to the scientific AI community.
• First, we demonstrate the pure-spectral bottleneck of FNO with an illustrative example and the-

oretically analyze why FNO cannot converge closely as desired to a generic position-dependent
dynamics with a practical model size.

• Second, we propose a novel framework of KANO that is expressive over a generic position-
dependent dynamics with intrinsic symbolic interpretability. We provide theoretical analysis on
KANO’s dual-domain (spatial and spectral) expressivity along with the empirical evidences of
KANO robustly generalizing on unseen input subspace when FNO fails to.

• Finally we validate the performance of KANO on some synthetic operators and a quantum simula-
tion benchmark. KANO successfully recovered the closed-form formula accurately to the fourth
decimal place in coefficients. Compared to the FNO baseline, KANO used only 0.03% of the model
parameters, but achieved an order lower relative loss ℓ2 in our synthetic operator benchmarks, and
a four-order lower state infidelity in the quantum Hamiltonian learning benchmark.

To the best of our knowledge, our work is the first to demonstrate and quantify the symbolic
recovery via KAN in operator learning. We shift the paradigm from mere universal approximation
in operator learning toward the universal generalization of an operator network. Different from
DeepOKAN (Abueidda et al., 2025) which replaces MLPs with KANs in DeepONet, our work
achieves generalization over disjoint out-of-distribution subspace via a novel architecture design.

2 BACKGROUND

2.1 OPERATOR LEARNING AND FOURIER NEURAL OPERATOR

Operator learning approximates mapping between infinite-dimensional function spaces, G : A → U ,1
from function pairs {(ai ∈ A,ui = G(ai) ∈ U)}Ni=1

2(Kovachki et al., 2023; 2024b). An operator
network Gθ first encodes input ai via encoder Em : A→Cm into a latent vector, then learns the latent
map Tθ : Cm→Cm′

which the output is reconstructed to approximate the label ui via reconstructor
Rm′ : Cm′→U : i.e. Gθ = Rm′ ◦Tθ ◦ Em (Lanthaler et al., 2022). For fixed (Em,Rm′), we can
define the projection Π of an operator G as

Π(G) = Rm′ ◦ T̂ ◦ Em where T̂ ∈ argmin
T:Cm→Cm′

∥∥G −Rm′ ◦T ◦ Em
∥∥. (1)

DeepONet (Lu et al., 2021; 2019) learns Em, Rm′ , and Tθ all with two sub-networks. FNO (Li
et al., 2020), on the other hand, hard-codes Em to be the truncated Fourier transform and Rm to be
its band-limited inverse.

Fourier Neural Operator (FNO). Let the domain D ⊂ Rd be periodic and write the Fourier
transform F of function a(x) as â(ξ):

[Fa](ξ) = â(ξ) =

∫
D

a(x) e−iω·x dx, ω = 2πξ ∈ Zd. (2)

1A and U are Banach function spaces (e.g., Sobolev spaces) defined on a bounded domain D ⊂ Rd.
2In practice, each function is sampled on a discretized grid in D and stored as a vector.
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For fixed set of retained modes ξi ∈ Ξ = {ξ1, . . . , ξm} ⊂ Zd, truncated Fourier transform Fm :
A→Cm and its band-limited inverse F−1

m : Cm→U can be defined as:

Fm(a) = [â(ξ1), . . . , â(ξm)], F−1
m (Fma)(x) =

m∑
j=1

â(ξj) e
2πi ξj ·x, (3)

with a slight abuse of notation. A single Fourier layer LFNO of FNO is written as:

LFNO(a)(x) = σ
(
F−1
m

(
Rθ1(ξ) · Fm(a)(ξ)

)
(x) + Wθ2 · a(x)

)
(4)

with learnable spectral block-diagonal multiplier R(ξ), parametrized linear transformation W, and
point-wise nonlinear activation σ. FNO is comprised of iterative LFNO between lift-up (P) and
projection (Q) networks:

GFNO
θ (a) = Q ◦L(ℓ)

FNO ◦ · · · ◦L
(1)
FNO ◦P(a) . (5)

In the perspective of the operator network formulation (1) (Lanthaler et al., 2022), FNO hard-codes
its encoder Em as Fm and reconstructor Rm as F−1

m , then learns the latent map T by its iterative
layers of parametrized linear kernels interleaved by non-linear activations (Kovachki et al., 2021).

2.2 KOLMOGOROV–ARNOLD NETWORK

KAN (Liu et al., 2024b;a) replaces fixed node activations of traditional MLP with simple sum
operations and train the learnable univariate 1D functions ϕ on edges. With layer width nl→nl+1

and input field x(l)→x(l+1), a KAN layer yields a function matrix Φ(l) at lth layer as

x(l+1) = Φ(l)x(l)3, Φ(l) =
[
ϕ(l)q,p( · )

]p=1,...,nl

q=1,...,nl+1
, x(l+1)

q =

nl∑
i=1

ϕ(l)q,p(x
(l)
p ), (6)

so each output channel is a sum of edgewise transforms of the inputs (Liu et al., 2024b;a). In the
original KAN each edge function is a spline expansion

ϕ(ℓ)q,p(t) = c
(ℓ)
q,p,0 b(t) +

g∑
i=1

c
(ℓ)
q,p,iBi(t), (7)

with learnable coefficients for a fixed base 1D function b(·) and 1D B–spline basis {Bi}. Because
every ϕq,p is a 1D curve, KANs are directly inspectable and amenable to visualization followed by
symbolic regression. On expressivity, Wang et al. (2024) theoretically prove that KANs match MLPs
up to constant depth and width factors; empirically, with appropriate optimization recipes, KANs and
MLPs exhibit comparable scaling on PDE and operator benchmarks (Shukla et al., 2024). Hence,
swapping a latent MLP for a KAN preserves expressivity while enabling symbolic readout.

3 THEORETICAL ANALYSIS ON FNO’S PURE-SPECTRAL BOTTLENECK

This section first illustrates the pure-spectral bottleneck of FNO. Then we provide a theoretical analy-
sis and prove that FNO suffers from the curse of dimensionality for position-dependent dynamics.

3.1 THE PURE-SPECTRAL BOTTLENECK OF FNO

We consider the 1D quantum harmonic oscillator Hamiltonian as an example:

Ha(x) = −∂xxa(x) + x2 · a(x). (8)

We define the class of operators that involve spatial multiplication, such as H, as position-dependent
dynamics. Multiplication and differentiation have a dual relationship under the Fourier transform:

F [(−∂xxa)](ξ) = ξ2 · â(ξ), F [(x2 · a)](ξ) = − ∂ξξâ(ξ). (9)

In spectral domain, the spatial differential ∂xx is a spectral multiplier ξ2, whereas the spatial multiplier
x2 becomes a spectral differential ∂ξξ. Consider a truncated polynomial basis {1, x, x2, . . . , xn−1}

3Akin to matrix-vector multiplication but follows the third equation Eq. 6 instead of row-vector inner product.
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and a truncated Fourier basis ek(θ) = eikθ, k = 0, . . . , n− 1, on a periodic domain. In the spatial
(polynomial) basis, the map a(x) 7→ x2 · a(x) acts as a two-step up-shift sparse matrix

S(2)
n :=


0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

. . . . . . 1
0 0 0 · · · 0 0
0 0 0 · · · 0 0

 , (10)

while in the spectral (Fourier) basis it is a dense Toeplitz matrix (Morrison, 1995)

Tn[x
2] :=


c0 c−1 c−2 · · · c−n+1

c1 c0 c−1 · · · c−n+2

c2 c1 c0 · · · c−n+3

...
...

...
. . .

...
cn−1 cn−2 cn−3 · · · c0

 , cm =
1

2π

∫ 2π

0

θ2e−imθ dθ. (11)

Thus each term in H is sparse in one basis and dense in the other (Morrison, 1995).

An FNO layer LFNO (4) can easily parametrize −∂xx by taking R(ξ) ≈ ξ2. However, approximating
the dense off -diagonals in Tn[x

2] to parametrize x2 must rely on the non-linear activation σ(·) since
R(ξ) and W are spectrally diagonal and hence incapable of mixing modes. Let z(u) denote the
pre-activation for input u, then the Jacobian of LFNO at u gives the first-order approximation of the
learned map and its Fourier transform reveals the spectral off-diagonals of itself as

F [J(u)](ξ, ξ′) =
(
F [σ′(z(u, ·))] [ ξ−ξ′ ]) · (W + Rθ(ξ

′)
)
. (12)

Therefore, all off-diagonals arise from the spectrum of the u-dependent gate σ′(z(u, ·)): FNO’s
nonlinearity can create off-diagonals, but they are tied to the input distribution of u. This is the pure-
spectral bottleneck of FNO: spectral off-diagonals of a learned FNO are tied to the train subspace,
hence FNO can converge only on the in-sample mapping that fails outside the train distribution4.

3.2 FNO SUFFERS CURSE OF DIMENSIONALITY ON POSITION-DEPENDENT DYNAMICS

As explained previously, position operator, a(x) 7→ x · a(x), is a highly dense Toeplitz map in the
spectral basis (Morrison, 1995). Based on the Remark 21 & 22 of Kovachki et al. (2021), we prove
that any position-dependent dynamics induces super-exponential scaling in FNO size by the desired
error bound: FNO cannot converge closely as desired on a generic position-dependent dynamics with
practical model size, hence can only overfit on the in-sample mapping. We provide Lemma 1, that a
single position operator already spreads the input spectra too much for FNO to stay practical, and
Theorem 1, expanding Lemma 1 to an arbitrary composition of position operators.

Following from the operator network formulation (1), the error estimate of an operator network Gθ
approximating the ground-truth operator G in an operator norm is bounded as

∥G − Gθ∥ ≤ ∥G −Rm′ ◦ T̂ ◦ Em∥︸ ︷︷ ︸
projection error:ϵproj

+ ∥Rm′ ◦ (T̂−Tθ) ◦ Em∥︸ ︷︷ ︸
latent network error:ϵnet

, (13)

by the triangle inequility. Latent network error ϵnet follows the well-established scaling law of
conventional neural networks (Hornik et al., 1989; Cybenko, 1989). Therefore, whether an operator
network is efficient in model and sample size to achieve the desired accuracy hinges on the scalability
of the projection error ϵproj (Lanthaler et al., 2022; Kovachki et al., 2021; 2024a).

Reviewing Remark 21 & 22 of Kovachki et al. (2021) ϵproj of FNO is governed by the Fourier
tail, the sum of Fourier coefficients outside the retained spectrum Ξ truncated by width m (Gottlieb
& Orszag, 1977; Trefethen, 2000): to achieve the desired ϵproj with practical m, both input and output
Fourier tails must decay algebraically or faster. However, even in the optimal case of the band-limited
input, if the ground-truth operator is spectrally dense to spread out the input spectra and induce
algebraic or slower decay in output Fourier tail, m must scale at least polynomially to suppress ϵproj:

4This issue of out-of-distribution fragility from underspecification is well studied by D’Amour et al. (2022)
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Figure 1: (a) LFNO architecture. (b) LKANO architecture.

m ∼ O
(
ϵ
−1/s
proj

)
where s is a geometric constant. Meanwhile, as the latent mapping would be also

dense, the size of the latent network, Nnet, follows the canonical polynomial neural scaling (Yarotsky,
2017; De Ryck et al., 2021) by the desired ϵnet with its width md (d is the input domain dimension)
as the exponent: Nnet ∼ O

(
ϵ−m

d

net
)
. Consequently, this results as the super-exponential scaling in the

latent network size Nnet ∼ O
(
ϵ
−ϵ−d/s

proj
net

)
even with the optimal band-limited input: scaling width m to

suppress ϵproj explodes Nnet to achieve the desired ϵnet for a generic dense operator.
Lemma 1 (Position operator elongates Fourier tail). A single position operator, spatial multiplier
by x, induces algebraic decay in output Fourier tail when the input is band-limited.
Sketch of proof. Position operator is kernel x̂(ξ)∝1/ξ in spectral basis. Hence, every mode outside
the input spectrum picks up a coefficient of size ∼ 1/|ξ|, ending up as |v̂(ξ)| ≳ 1/|ξ| in the output
spectrum. See Appendix C.2 for restatement and full proof.

Theorem 1 (FNO fails on position operators). Any arbitrary composition of position operators
requires FNO to scale super-exponentially on its model size by the desired accuracy.
Sketch of proof. Iteratively apply Lemma 1, then any arbitrary composition of position operators
induce algebraic or slower decay in output Fourier tail even for the optimal band-limited input.
This results in super-exponential scaling of latent network size by the desired error as discussed
above (Kovachki et al., 2021). See Appendix C.3 for restatement and full proof.

4 KOLMOGOROV–ARNOLD NEURAL OPERATOR

Motivated by the pure-spectral bottleneck of FNO, we propose the Kolmogorov-Arnold Neural
Operator (KANO), an operator network capable of converging closely as desired on a generic
position-dependent dynamics with practical model size. We first introduce the KANO architecture,
and provide theoretical analysis on its dual-domain expressivity in the following section.

4.1 KANO ARCHITECTURE

KANO utilizes an iterative structure of KANO layers LKANO to learn the unknown operator, akin to
FNO. However, KANO excludes lift-up and projection networks to maximize tractability:

GKANO
θ = L(ℓ)

KANO ◦ · · · ◦L
(1)
KANO. (14)

LKANO(a)(x) = Φθ1

(
F−1
m

[
pθ2(x, ξ) ∗ Fm(a)(ξ)

]
(x) , a(x)

)
, (15)

where Φ is a KAN sub-network for learnable non-linear activation; p(x, ξ) is another KAN sub-
network, a pseudo-differential symbol jointly parametrized by both spatial x and spectral ξ bases5.
Note the “∗” notation in LKANO (15) instead of the block-diagonal multiplication notation “·” in
LFNO (4). The spatial basis x of the symbol p(x, ξ) is convolution (differential) in spectral domain
by the dual relationship (9). Therefore, the pseudo-differential symbol calculus of p(x, ξ) needs
to be done by quantizing on both spatial and spectral domain (Hörmander, 2007), and we choose
Kohn-Nirenberg quantization (Kohn & Nirenberg, 1965) to compute the symbol calculus in LKANO:

F−1
m

[
p(x, ξ) ∗ Fm(a)(ξ)

]
(x) :=

(h
L

)d∑
ξ∈Ξ

∑
y∈Y

ei(x−y)·ξ p(x, ξ)a(y), (16)

5Shin et al. (2022) first employed pseudo-differential operator framework for neural operator. They presumed
the symbol p(x, ξ) to be separable as p(x, ξ) = px(x) · pξ(ξ), and used MLP sub-networks while retaining
the lift-up and projection networks of a generic neural operator architecture (Kovachki et al., 2023).

5
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where for a periodic domain D = (−L2 ,
L
2 )
d, Y = {y1, . . . ,ym} ⊂ D is a uniform discretization

with spacing h and x ∈ D is an evaluation point. We denote Kohn-Nirenberg quantization (16) as an
operator Opm

(
p
)
:= F−1

m

[
p(x, ξ) ∗ Fm

]
defined by the symbol p(x, ξ). In the operator network

formulation (1) introduced in Section 2.1, KANO’s projection ΠKANO is then defined as:

ΠKANO(G) := Opm
(
pG

)
, pG ∈ argmin

p

∥∥G −Opm(p)
∥∥. (17)

Symbolic Interpretability of KANO. By using compact KANs each for the symbol p(x, ξ) and
non-linear activation Φ in every KANO layer LKANO (15), KANO network GKANO

θ (14) is fully
inspectable by visualizing the learned edges of all its KANs, potentially allowing closed-form
symbolic formula of the learned operator with the manual provided by Liu et al. (2024b;a).

4.2 KANO’S DUAL-DOMAIN EXPRESSIVITY

In contrast to FNO, KANO exploits sparse representations in both the spatial and spectral domains,
hence decoupling the scaling of ϵproj and ϵnet by never letting the latent map be a dense convolution. For
instance, for the quantum harmonic oscillator in Eq. (8), a KANO layer LKANO (15) can parametrize
H by taking p(x, ξ) ≈ x2 + ξ2, both −∂xx and x2 terms are each represented where they are
sparse, both leveraging the shift form S

(2)
n (10). By jointly parameterizing the operator in both

spatial and frequency domains, KANO cherry-picks the sparse representation for every term in
position-dependent dynamics, building the right inductive bias well-known to be essential for out-of-
distribution generalization and model efficiency (Goyal & Bengio, 2022; Trask et al., 2018).

This dual-domain expressivity of KANO first alleviates the input constraint; we first explain that
ϵproj of KANO scales practically by its width m for any physical input. Then we provide Theorem 2:
as long as the KANO projection (17) of an operator generates smooth symbols KAN can easily
approximate, ϵnet scales practically by compact KAN sub-networks independent of ϵproj. In conclusion,
KANO can converge closely as desired to a generic position-dependent dynamics with practical
model size using any physical input, robustly generalizing outside the train subspace.

KANO practically has no input constraint. According to the quadrature bound from Demanet &
Ying (2011, Thm. 1&2), the error estimate of Kohn-Nirenberg quantization (16) obeys∥∥G −Opm(pG)

∥∥ ≤ C Bm−s, (18)

given norm-bound (finite-energy)6 input of AB = {u : ∥u∥ ≤ B} where s, C are geometric
constants. Hence KANO width m scales polynomially by the desired ϵproj given any physical data.
Theorem 2 (KANO stays practical for smooth symbol). If the KANO projection of an operator
G, ΠKANO(G) (17), generates a finite composition of smooth symbols pG(x, ξ) and finite-degree
non-linearities, the model size of KANO scales polynomially by the desired accuracy ε.
Sketch of proof. Choosing m∼(B/ε)1/s scales projection error down to ε/2 by Eq. (18). A fixed-
width KAN then approximates the symbols to accuracy ε/2 with O(ε−d/(2sp)) parameters (Wang
et al., 2024, Corol. 3.4) (sp is a geometric constant). The finite-degree non-linearities add only
constant-size weights by the activation KAN, so the total parameter count is O(ε−d/(2sp)). See
Appendix C.4 for restatement and full proof.

Corollary 1 (KANO is practical for generic position-dependent dynamics). For a finite com-
position of spatial and spectral multipliers of maximum r-differentiable symbols with finite-degree
non-linearity, Theorem 2 yields |Θ| = O

(
ε− d/(2r)

)
.

5 EXPERIMENTAL RESULTS

5.1 SYNTHETIC-OPERATOR GENERALIZATION BENCHMARKS

We benchmark FNO and KANO on three position-dependent operators:

G1f = x2 · f − ∂xxf, G2f = x · ∂xf + ∂xxf, G3f = f3 + x · ∂xf + ∂xxf.

Our goal is to quantify and compare the generalization of KANO and FNO. We train the models only
with Group A dataset and evaluate them on the unseen Group B dataset.

6Norm here and Equation Eq. 18 is the Sobolev norm
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Figure 2: Loss test results. (a) G1 (b) G2 (c) G3. Note the logarithmic scale.

Figure 3: Interpolation test results. (a) G1 (b) G2 (c) G3.

• Group A (Training families): Periodic, Chirped Cosine, Sine Beats.
• Group B (Testing families): Sinc Pulse, Gaussian×Hermite, Wave Packet.
For each operator, we generate 2000 train pairs from Group A and 400 test pairs each from Group
A and B to evaluate the generalization by comparing the average relative ℓ2 loss (Loss Test). We
also interpolate the Group A and B function samples in 100 steps, apply ground-truth operators
in each step to build the interpolated dataset, and evaluate the loss ratio to that of the Group A
samples (Interpolation Test). We trained FNO models of 2 layers, 64 width with no mode truncation,
and used one-layer KANs of grid 10 cubic B-splines edges for the KANO model. We used Adam
optimizer and relative ℓ2 loss for training. See Appendix B.1 for experiment details.

Table 1: Relative ℓ2 losses (×10−4) and parameter counts.
G1 G2 G3

Model (params) A B A B A B

FNO (566 k) 6.36 98.8 10.6 87.0 11.4 81.4
KANO (152) 1.04 1.44 0.629 0.749 0.716 0.737
KANO SYMBOLIC 0.512 0.526 0.498 0.500 0.520 0.536

Results. As shown in Table 1
and Figure 2, KANO shows
consistent losses over Group A
and Group B. In contrast, FNO
shows significant loss increases
in Group B dataset. The red
curves of the interpolation test
in Figure 3 show slow increases
on early and mid-interpolation,
suggesting that the FNO’s learned in-sample mappings are yet close to the ground-truth operators.
On the other hand, the red curves abruptly soar up in the latter ratio, suggesting that the interpo-
lated functions are now far outside the train distribution. These results, together with KANO’s
one-order–of–magnitude lower loss at just 0.03% of FNO’s size, are consistent with our claims
in previous sections. After convergence, we visualized the embedded KANs (Figure 4). We then
froze these learned symbols and continued training, referring to this variant as KANO symbolic.
KANO symbolic recovered the exact symbolic coefficients of the ground-truth operator to within the
fourth decimal place (Table 2). KANO’s loss matches KANO symbolic’s loss in Table 1, confirming
that KANO converged close to the ground-truth operator.

5.2 LONG-HORIZON QUANTUM DYNAMICS BENCHMARK

We provide this benchmark on two position-dependent quantum dynamics: the quartic double-well
Hamiltonian (DW) and the nonlinear Schrödinger equation with cubic nonlinearity (NLSE):

i∂tψ = − 1
2∂xxψ + w(x) · ψ (DW), i∂tψ = − 1

2∂xxψ + w(x) · ψ + |ψ|2 · ψ (NLSE),

where w(x) = x4 −
(
x− 1

32

)2
+ 0.295.

We generate 200 initial states and yield the state trajectories by the Hamiltonians, sampling momen-
tum/position probability mass functions (PMFs) every 0.1ms for 100 time steps. The first 10 time
steps are used for training, and the rest are used to evaluate the long-horizon prediction.
We modify KANO to capture the quantum state evolution: Q-KANO. Symbol pθ is parametrized
as exp

[
−i∆T ϕθ(x, ξ)

]
, where ∆T = 0.1ms. The adaptive activation is also defined as a complex
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Figure 4: (a) p(x, ξ) of G1. The middle edge does not contribute to the output. (b) p(x, ξ) of G2. (c)
p(x, ξ) of G3. (d) Φ of G3. Edge of the residual in (d) looks linear, so we compared two scenarios,
linear and cubic, which the latter achieved lower loss and better generalization.

Table 2: Ground-truth vs. learned operators (coefficients rounded to 4th decimal place).
Ground-truth operator Learned KANO operator

G1f = x2 · f − ∂xxf G̃1f = (x2 + 0.0003) · f − ∂xxf

G2f = x · ∂xf + ∂xxf G̃2f = 0.9996x · ∂xf + ∂xxf − 0.0003 f

G3f = f3 + x · ∂xf + ∂xxf
G̃3f = 1.0001 f3 + 0.99997x · ∂xf + 0.99997 ∂xxf

− 0.0002 f2 − 0.0003 f − 0.0001

exponential with learned phase ϑ = Φθ(|Opm(pθ)ψ|,∠Opm(pθ)ψ) for input wave functionψ(x):

GQ-KANO
θ [ψ] = Opm(exp

[
−i∆T ϕθ(x, ξ)

]
)ψ · e−i∆T ϑ. (19)

We investigate three supervision scenarios: Full-type training with full wave function, idealistic yet
physically unattainable, Pos-type training with only position PMF, physically realistic yet the least
informative, and pos&mom-type training with both position and momentum PMFs, which remains
physically attainable while providing richer information although not full. We use Adam optimizer
for all trainings. See Appendix B.2 for experiment details.

Table 3: State infidelity after 90 additional time-evolution steps.

Model & Train Type State Infidelity

Double-Well NLSE

FNO (full) 1.5× 10−2 1.6× 10−2

Q-KANO (full) 6.3× 10−6 6.8× 10−6

Q-KANO (pos & mom) 6.3× 10−6 5.6× 10−6

Q-KANO (pos) 4.7× 10−3 6.1× 10−2

Q-KANO SYMBOLIC (full) 2.0× 10−8 2.0× 10−8

Q-KANO SYMBOLIC (pos & mom) 2.0× 10−8 3.0× 10−8

Q-KANO SYMBOLIC (pos) 5.3× 10−2 6.1× 10−2

Results. We evaluate
state infidelity7 between
ground-truth evolution
and model prediction at
each time step (Table 3,
Figure 6). In case of
KANO, the pos & mom-
type training achieves in-
distinguishable infidelity
from the ideal full-type
training baseline. Mean-
while, the pos-type train-
ing displays a clear infi-
delity increase, especially on the NLSE. In contrast, even with full type training, FNO fails to maintain
low state infidelity after the long-horizon propagation as expected. Iterative time evolution pushes the
wave function far outside the train convex hull, and FNO’s learned in-sample mapping deviates from
the ground-truth evolution rapidly, leading to four orders of infidelity increase compared to KANO.

Table 4 juxtaposes the learned symbols with that of the ground-truth Hamiltonians and Figure 5
shows the KAN visualizations from pos & mom-type training. With full-type training coefficients are
recovered to the fourth decimal place, vindicating the ideal capacity of KANO when the information
is fully provided. Under the realistic pos & mom-type training, the reconstruction remains accurate
except for two terms: the constant (global phase) and the NLSE’s cubic coefficient. Both discrepancies
are predicted by quantum observability: global phases cancel in all PMFs, and the Kerr coefficient
enters only through higher-order correlations that become harder to estimate from finite-shot statistics.
Q-KANO faithfully reveals what the data support and nothing more.

7For predicted state φ̃ and ground-truth state φ, the state fidelity F is defined as the inner product between
them (F :=< φ̃,φ >), and the state infidelity is defined as (1− F ), hence shows how distant two states are.
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Figure 5: pos&mom type training results. (a) Structure of the potential w(x) (b) p(x, ξ) of DW. (c)
p(x, ξ) of NLSE. (d) φ(|·|,∠·) of NLSE. Potential w(x) structure is clearly reconstructed.

Figure 6: State fidelity over 100 time steps. (a) DW (b) NLSE

Table 4: Ground truth vs. learned symbols. Coefficients rounded to 4th decimal place.
Hamiltonian Train Type Learned symbolic structure

DW
ground truth x4 − x2 + 0.0625x+ 0.295 + 0.5 ξ2

full 1.0004x4 + 0.0001x3 − 1.0013x2 + 0.0625x+ 0.2955 + 0.5 ξ2

pos & mom 1.0003x4 + 0.0001x3 − 1.0008x2 + 0.0623x+ 0.0001 + 0.5 ξ2

NLSE
ground truth x4 − x2 + 0.0625x+ 0.295 + 0.5 ξ2 + |ψ|2

full 1.0005x4 − 0.0001x3 − 1.0014x2 + 0.0626x + 0.2942 + 0.5 ξ2 +
0.9815|ψ|2 + 0.0110|ψ|

pos & mom 0.9999x4 − 0.0003x3 − 1.0001x2 + 0.0630x + 0.1141 + 0.5 ξ2 +
0.9514|ψ|2 − 0.5504|ψ|

6 CONCLUSION

We have presented the Kolmogorov–Arnold Neural Operator, an interpretable neural operator expres-
sive on a generic position-dependent dynamics. KANO cherry-picks sparse representations of each
term via jointly parametrizing on both spectral and spatial bases, and achieves robust generalization
outside train distribution while exposing clear tractable representation via its KAN sub-networks. In
all our benchmarks, KANO have successfully recovered the ground-truth operators accurately to the
fourth decimal place in coefficients. In addition to the superior out-of-distribution generalization,
KANO has also achieved orders of magnitude lower losses with less than 0.03% of the model
size compared to the FNO baseline. KANO shifts operator learning from an opaque, surrogate-
based paradigm towards interpretable data-driven scientific modeling, and provides robust empirical
evidence supporting its enhanced dual-domain expressivity and interpretability.

7 REPRODUCIBILITY STATEMENT

All codes and dataset of the experiments in this work are submitted as a zip file via the Supplementary
Material. Details in the data generation and implementation are provided in Appendix B, and the
full proofs of Theorems and Lemma are provided in Appendix C along with their mathematical
restatements.
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Lars Hörmander. The analysis of linear partial differential operators III: Pseudo-differential operators.
Springer Science & Business Media, 2007.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

Frank P Incropera, David P DeWitt, Theodore L Bergman, Adrienne S Lavine, et al. Fundamentals
of heat and mass transfer, volume 1072. New York John Wiley & Sons, Inc., 1990.

John David Jackson and Ronald F Fox. Classical electrodynamics, 1999.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Benjamin C Koenig, Suyong Kim, and Sili Deng. Kan-odes: Kolmogorov–arnold network ordinary
differential equations for learning dynamical systems and hidden physics. Computer Methods in
Applied Mechanics and Engineering, 432:117397, 2024.

Joseph J Kohn and Louis Nirenberg. An algebra of pseudo-differential operators. Communications
on Pure and Applied Mathematics, 18(1-2):269–305, 1965.

Takeshi Koshizuka, Masahiro Fujisawa, Yusuke Tanaka, and Issei Sato. Understanding the expres-
sivity and trainability of fourier neural operator: A mean-field perspective. Advances in Neural
Information Processing Systems, 37:11021–11060, 2024.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. Journal of Machine Learning Research, 22(290):1–76, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Nikola B Kovachki, Samuel Lanthaler, and Hrushikesh Mhaskar. Data complexity estimates for
operator learning. arXiv preprint arXiv:2405.15992, 2024a.

Nikola B Kovachki, Samuel Lanthaler, and Andrew M Stuart. Operator learning: Algorithms and
analysis. arXiv preprint arXiv:2402.15715, 2024b.

Pijush K Kundu, Ira M Cohen, David R Dowling, and Jesse Capecelatro. Fluid mechanics. Elsevier,
2024.

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for deeponets: A
deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applications,
6(1):tnac001, 2022.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Chaoyu Liu, Davide Murari, Chris Budd, Lihao Liu, and Carola-Bibiane Schönlieb. Enhancing
fourier neural operators with local spatial features. arXiv preprint arXiv:2503.17797, 2025.

Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, and Max Tegmark. Kan 2.0:
Kolmogorov-arnold networks meet science. arXiv preprint arXiv:2408.10205, 2024a.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
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APPENDIX

A TABLE OF NOTATION

Table 5: Main symbols and notation used in the paper.
Symbol Meaning / Definition

Domains, spaces, and operators
D := (−L/2, L/2)d Periodic d-dimensional spatial box of side length L
G Ground-truth solution operator to be learned
Spectral & spatial sampling
Ξ = {ξ1, . . . , ξm} Retained Fourier modes (truncated spectrum); m = |Ξ|
F Fourier transform
Fm, F−1

m Truncated Fourier transform by Ξ and its band-limited inverse
Y = {y1, . . . ,ym} ⊂ D Uniform spatial grid
h Grid spacing of Y
Fourier Neural Operator (FNO)
LFNO Single FNO layer
GFNO

θ FNO network
Rθ(ξ) Learnable block-diagonal spectral multiplier
Wθ Point-wise learnable linear map
σ(·) Point-wise non-linear activation
KANO layer, symbol calculus, and projection
LKANO Single KANO layer
p(x, ξ) Learnable pseudo-differential symbol
Opm(p) Kohn-Nirenberg quantization of width m defined by p

ΠKANO(G) KANO projection of G
GKANO

θ KANO network
Φθ Learnable activation

Kolmogorov–Arnold Network (KAN) primitives
ϕ
(ℓ)
q,p(·) 1D edge function on layer ℓ, connecting pth node of layer ℓ to qth node

of layer (ℓ+ 1)

b(t), {Bi(t)} Base function and B-spline basis used to parametrize ϕ(ℓ)
q,p(t)

Q-KANO (quantum dynamics) notation
ψ(x) Input wave function
w(x) Quartic double-well potential
∆T Time step of propagation
ϕθ(x, ξ) Parametrized phase for symbol p(x, ξ) of Q-KANO
ϑθ(|·|,∠·) Parametrized phase for non-linear activation of Q-KANO
GQ-KANO

θ Q-KANO network
Function spaces
L2(D) Square-integrable function space on domain D
Hs(D) Sobolev function space of order s ≥ 0 on domain D

B EXPERIMENT DETAILS

B.1 SYNTHETIC OPERATOR BENCHMARK

All experiments are carried out on periodic functions f : T→ R with T = (−π, π] and a uniform
trigonometric grid

xj = xmin + j∆x, ∆x =
2π

N
, j = 0, . . . , N − 1,
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with N = 128. Unless noted otherwise every random quantity is drawn independently for every
sample.

Outer envelope. To avoid the Gibbs phenomenon all basis functions are multiplied by a smooth
taper that decays to zero in a π/6-wide buffer near the periodic boundary:

A(x) =


1, |x| ≤ 5π/6,

cos4
[ |x| − 5π/6

π/6

π

2

]
, 5π/6 < |x| < π,

0, |x| ≥ π.

The full “base” function is always fbase(x) = A(x) g(x).

Spectral derivatives and ground-truth operator. Derivatives are computed with an exact Fourier
stencil:

f ′(x) = F−1
[
iξ f̂(ξ)

]
, f ′′(x) = F−1

[
−ξ2f̂(ξ)

]
.

U [a, b] denotes random digit drawn from range [a, b].

Training families (Group A)

A1. sine beats:

g(x) = sin(ω1x+ ϕ1) sin(ω2x+ ϕ2), ωi = 8U [0.5, 3], ϕi = U [0, 2π].

A2. chirped cosine:
g(x) = cos

(
αx2

)
, α = 12U [0.5, 2].

A3. periodic (random harmonic series):

g(x) = sin(ωx+ ϕ1) + cos(ωx+ ϕ2), ω = 8U [0.5, 3], ϕ1,2 = U [0, 2π].

Unseen families (Group B)

B1. wave packet:

g(x) = exp
[
− (x−µ)2

2σ2

]
sin

(
ωx+ϕ

)
, µ = U [−2, 2], σ = 1

12 U [0.5, 2], ω = 12U [2, 6], ϕ = U [0, 2π].

B2. sinc pulse:

g(x) =


sin(αx)

αx
, |x| > 10−12,

1, |x| ≤ 10−12,
α = 12U [0.5, 3].

B3. gaussian hermite:

g(x) = Hn

(x− µ
σ

)
exp

[
− (x−µ)2

2σ2

]
, n ∈ {1, 2, 3} uniform, µ = U [−2, 2], σ = 1

8 U [0.5, 2],

where Hn is the degree-n Hermite polynomial.

NORMALIZATION

Each realization is divided by its maximum absolute value, ∥f∥∞, to obtain ∥f∥∞ = 1. The envelope
guarantees periodicity and keeps the numerical spectrum sharply band-limited.

Sample counts. #train = 2000 samples from the three Group A families for train data and
#test = 400 samples each from the Group A and Group B families for generalization tests..
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B.2 QUANTUM DYNAMICS BENCHMARK

We model a quantum apparatus with 200 state-preparation protocols each with perfect reproducibility,
capable of generating an identical initial state whose wave function is drawn from one of the three
families: Periodic, Gaussian wave-packet, and Gaussian×Hermite. The prepared initial states evolve
under one of two unknown, time-independent Hamiltonians, and two arrays of 128 detectors measure
position and momentum on uniform grids, yielding probability mass functions (PMFs) every 0.1ms
for 100 time steps. PMFs collected from the first 10 time steps are used for training the models, and
the rest of the PMFs collected from the remaining 90 time steps are used to evaluate the long-horizon
fidelity drop beyond the train steps.

B.2.1 QUANTUM APPARATUS ASSUMPTIONS

1. State preparation. A collection of calibrated protocols can each prepare a designated initial
wave-function each of one of three real-valued families Periodic, Gaussian wave-packet, or
Gaussian–Hermite: ψ(m)

0 (x)∈L2(T)8, m = 1, . . . , 200. Repeated shots under the same protocol
start from exactly the same ψ(m)

0 , enabling trajectory-level reproducibility for every member of
the ensemble.

2. Hamiltonian stability. The (unknown) Hamiltonian is time–independent, so trajectories are
perfectly repeatable once ψ0 is fixed.

3. Dual-basis detection. Two 128-grid projective detectors measure the position basis {|xi⟩} and the
momentum basis {|ξj⟩}, yielding empirical probability mass functions (PMFs) p̂x(i) = |ψ(xi)|2

and p̂ξ(j) = |ψ̂(ξj)|2 on a common torus grid TL, L = 4.

B.2.2 DATA GENERATION DETAILS

For each of 200 distinct sample trajectories we

1. draw the initial wave function and propagate on the Hamiltonian with a high-resolution Strang split:
δt = 1µs for 10 000 micro-steps, producing coarse snapshots every 100 steps (∆T = 0.1ms,
T = 1, . . . , 100);

2. store (ψT , p
T
x , p

T
ξ ) where pTx (i) = |ψT (xi)|2 and pTξ (j) = |ψ̂T (ξj)|2.

Only the first 10 coarse steps are used for training; the remaining 90 steps test fidelity drop on
long-horizon. All simulations employ an n = 128-point FFT grid to match the detectors.

Spatial discretization. We place the problem on a periodic box of length L = 4 with N = 128
grid points xj = xmin + j∆x, ∆x = L/N. Periods suppress wrap–around artifacts because every
initial state is tapered by the smooth envelope A(x) defined in Appendix B.1. Spatial derivatives are
taken spectrally: let ξm = 2πm/L for m = −N/2, . . . , N/2− 1. Writing ψ̂m = F [ψ](ξm),

∂xψ = F−1
[
i ξmψ̂m

]
, ∂xxψ = F−1

[
−ξ2mψ̂m

]
.

Strang–splitting time integrator. Let K := − 1
2∂xx (kinetic), V : ψ 7→ w(x) · ψ (potential) and

N : ψ 7→ |ψ|2 · ψ (cubic nonlinearity). With time step ∆t the second–order Strang factorization
reads

e(K+V+N )∆t = e
∆t
2 (K+V) e∆tN e

∆t
2 (K+V) + O(∆t3).

Because K is diagonal in Fourier space and V in real space we implement each half step explicitly:

ψ
V/2←−−−− e−

i
2∆t w(x)ψ,

ψ̂
K/2←−−−− F [ψ], ψ̂m ← e−

i
4∆t ξ

2
m ψ̂m,

ψ
N←−−−− F−1[ψ̂], ψ ← e− i∆t|ψ|2ψ,

repeat K/2 and V/2.

8Square-integrable function space.
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The L2 norm is renormalized after every macro step to compensate numerical drift. For DW
Hamiltonian, non-linearity time evolution is omitted.

Integrator parameters. We use an inner step δt = 10−6. A macro step of ∆T = 100 δt = 10−4

is recorded and the sequence is propagated for Tmax = 100∆T = 10−2.

Initial–state families (real wave-functions). Each sample draws a real profile f(x) from
{A1, A2, A3} below, multiplies it by the envelope A and normalizes it in L2:

ψ0(x) =
A(x) f(x)

∥Af∥2
.

A1. random harmonic series

f(x) =

5∑
m=0

1
2 ξ

(c)
m cos(2πmξ) + 1

2 ξ
(s)
m sin(2πmξ), ξ =

x+ 2

4
, ξ(·)m ∼ N (0, 1).

A2. Gaussian wave packet f(x) = exp[−(x − x0)
2/(2σ2)] with x0 ∼ U [−0.4π, 0.4π] and

σ∼U [0.1, 0.3].

A3. Gaussian–Hermite mode f(x) = Hn

(
x−x0

σ

)
exp[−(x − x0)

2/(2σ2)] with n ∈ {0, 1, 2}
uniform, x0, σ as above, and Hn the Hermite polynomial.

Stored quantities. For every sample index s and every snapshot T ∈ {0, 1, . . . , 100} we save(
x, ψ(x, T ), |ψ(x, T )|2, |ψ̂(ξ, T )|2

)
−→ wavefunc, pos pdf, mom pdf.

All arrays are written in float32 except the complex wave-function, stored as complex64. Alto-
gether one call to generate dataset(num samples=200) produces 200×101×4 = 80,800
labeled records.

B.2.3 TRAIN TYPE DETAILS

Let ψ(T )
Θ be the T -step prediction of Q-KANO given ψ0.

Train Type Train Dataset Loss function

full complex ψ(T ) Lfull =
∥ψ(T )

Θ −ψ(T )∥2
∥ψ(T )∥2

pos p
(T )
x Lpos = DKL

(
p(T )
x ∥ |ψ(T )

Θ |
2
)

pos & mom p
(T )
x , p

(T )
ξ Lpos&mom = DKL

(
p(T )
x ∥ |ψ(T )

Θ |
2
)
+DKL

(
p
(T )
ξ ∥ |ψ̂(T )

Θ |
2
)

C PROOFS

C.1 NOTATION AND PRELIMINARIES

Throughout, Td := [−π, π]d denotes the flat d–torus and Zd the lattice of Fourier indices. For ξ ∈ Zd
let eξ(x) :=eiξ·x. The Fourier coefficient of a square integrable function f is

f̂(ξ) := (2π)−d
∫
Td

f(x) e−iξ·x dx.

In a Sobolev space Hs with an order of smoothness s ∈ R, the Sobolev norm of function f is

∥f∥2Hs :=
(2π)d

2

∑
ξ∈Zd

(1 + |ξ|2s) |̂f(ξ)|2.

Asymptotics. Write A ≲ B if A ≤ C B for a constant C depending only on fixed parameters
(dimension, regularity exponents, etc.).
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Vector Notation Fix a spatial dimension d ≥ 1 and an index j ∈ {1, . . . , d}. For ξ =
(ξ1, . . . , ξd) ∈ Zd we write

ξ−j := (ξ1, . . . , ξj−1, ξj+1, . . . , ξd) ∈ Zd−1

for the vector obtained by removing the j-th coordinate of ξ. Conversely, for α = (α1, . . . , αd−1) ∈
Zd−1 and n ∈ Z we define the insertion map

(α, n)j := (α1, . . . , αj−1, n, αj , . . . , αd−1) ∈ Zd.

We use | · |∞ for the max–norm on Zd, i.e. |ξ|∞ = max1≤i≤d |ξi|. When we write û(α, r), this is
shorthand for the d–dimensional coefficient û

(
(α, r)j

)
.

C.2 PROOF OF LEMMA 1

Restatement of Lemma 1 (with explicit notation). Let u ∈ Hs(Td) with s > 0, and assume that
its Fourier coefficients are compactly supported:

û(ξ) = 0 for all |ξ|∞ > N0, and û ̸≡ 0.

Fix j ∈ {1, . . . , d} and set v(x) := xj u(x). Then there exist

α ∈ Zd−1, m ∈ {1, 2, . . . , 2N0 + 1}, c > 0, R ∈ N,

and an infinite set of the fiber at jth coordinate,

Ξα,R ⊂
{
ξ ∈ Zd : ξ−j = α, |ξj | ≥ R

}
such that ∣∣v̂(ξ)∣∣ ≥ c(

1 + |ξj |
)m ∀ ξ ∈ Ξα,R. (20)

In particular, if for some α ∈ Zd−1 one has
N0∑

r=−N0

û
(
(α, r)j

)
̸= 0 (equivalently,

N0∑
r=−N0

û(α, r) ̸= 0 in the shorthand above),

then the bound equation 20 holds with the sharper exponent m = 1.

Proof. We work with square-integrable function v ∈ L2(Td) where Td = [0, 2π]d.

Step 1 — The periodic “coordinate” and its Fourier coefficients. The function x 7→ xj is not
periodic. Introduce the zero-mean, periodic 1D sawtooth

ψj(x) := xj − π, x ∈ [0, 2π]d,

extended periodically to Td. A direct computation (factorization of the integral and one-dimensional
integration by parts) shows that its Fourier coefficients are supported on the jth-coordinate: for
ξ ∈ Zd,

ψ̂j(ξ) =

−
1

i ξj
, if ξ−j = 0 and ξj ̸= 0,

0, if ξ = 0 or ξ−j ̸= 0.
(21)

Moreover xj = ψj + π, hence

v̂(ξ) = F [ψju](ξ) + π û(ξ). (22)

Step 2 — Exact coefficient formula outside the support of û. Since û(k) = 0 for |ξ|∞ > N0, the
second term in equation 22 vanishes whenever |ξ|∞ > N0. Using equation 21 and the convolution
theorem, we obtain for any ξ ∈ Zd with |ξ|∞ > N0:

v̂(ξ) =
∑
ℓ∈Zd

ψ̂j(ξ − ℓ) û(ℓ) = −
1

i

∑
ℓ−j=ξ−j

|ℓj |≤N0

û(ℓ)

ξj − ℓj
. (23)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Thus, along any fixed transverse index α := ξ−j ∈ Zd−1, the tail v̂(α, n) for large |n| is a finite
sum of simple fractions in the single variable n.

Step 3 — Moments on a nontrivial fiber and the first non-vanishing moment. Because û ̸≡ 0,
there exists at least one α ∈ Zd−1 for which the fiber

Fα := {r ∈ Z : û(α, r) ̸= 0}
is nonempty. Define the (finite) coefficients cr := û(α, r) for r ∈ [−N0, N0], and their moments

µp :=

N0∑
r=−N0

rpcr (p ≥ 0).

Let m ∈ {1, . . . , 2N0 + 1} be the smallest index for which µm−1 ̸= 0. Such an m exists since not
all cr vanish.

Step 4 — Asymptotics along a line and a polynomial lower bound. For n ∈ Z with |n| > N0,
formula equation 23 along the line ξ−j = α reads

v̂(α, n) = −1

i

N0∑
r=−N0

cr
n− r

.

Expanding 1
n−r = 1

n

∑
q≥0

(
r
n

)q
for |n| > 2N0 and collecting terms yields the asymptotic expansion

v̂(α, n) = −1

i

(
µ0

n
+
µ1

n2
+ · · ·+ µm−1

nm
+O

(
1

|n|m+1

))
, |n| → ∞.

By the choice of m, the first nonzero term is µm−1/n
m. Consequently, there exist R ∈ N and c > 0

such that ∣∣v̂(α, n)∣∣ ≥ c

|n|m
for all |n| ≥ R, n ∈ Z.

Step 5 — Conclusion and the special casem = 1. Then equation 20 holds for all ξ ∈ Ξα,R with the
exponent m determined in Step 3, by the definition of Ξα,R and that |n| ≥ R. If µ0 =

∑
r cr ̸= 0

for the chosen fiber (equivalently,
∑N0

r=−N0
û(α, r) ̸= 0), then m = 1 and we obtain the sharper

|v̂(ξ)| ≳ (1 + |ξj |)−1 along the line ξ−j = α.

Remark 1. The explicit one-dimensional tail equation 23 shows that multiplying a band-limited
field by the coordinate xj produces a polynomial Fourier tail decay along lines parallel to the jth

coordinate, with rate (1 + |ξj |)−m where m is the first non-vanishing moment of the finitely many
coefficients on the relevant fiber. In particular, when m = 1, the decay is exactly (1 + |ξj |)−1. Such
algebraic tails are consistent with the pseudo-spectral projection error estimate quoted in Kovachki
et al. (2021, Thm. 40).

C.3 PROOF OF THEOREM 1

Restate of Theorem 1. Let α = (α1, . . . , αd) ∈ Nd with total degree M := |α| ≥ 1 and define
the position-multiplier

M(x) := xα1
1 xα2

2 · · ·x
αd

d .

For inputs band-limited to radius N0 and lying in Hs(Td) with s > d
2 , any Fourier Neural Operator

GFNO
θ that achieves ∥M(x)− GFNO

θ ∥Hs→Hs−δ ≤ ε (0 < δ < 1) must employ a spectral bandwidth
(FNO width) m ≳ ε−M/s and a parameter count |θ| ≥ exp

(
c ε−Md/s

)
for some c > 0 depending

only on (d, s, δ,N0).

Proof. Set s′ := s− δ with 0 < δ < 1.

Step 1 – Algebraic tail produced by M(x). Applying Lemma 1 once per factor of xj shows that
for some constant C0 > 0 and an infinite set Ξ∞ ⊂ Zd,

|F [M(x)u](ξ)| ≥ C0

(1 + |ξ|)M+1
∀ ξ ∈ Ξ∞. (24)
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Step 2 – Pseudo-spectral projection lower bound. For any f ∈ Hs, pseudo-spectral projection
error estimate gives (Gottlieb & Orszag, 1977)

∥(I −ΠFNO)f∥Hs′ ≥ C1

[ ∑
|ξ|∞>N

(1 + |ξ|2s
′
) |̂f(ξ)|2

]1/2
,

where I is an identity operator. Insert f = M(x)u and the tail bound equation 24; summing over
Ξ∞ ∩ {|ξ|∞ > m} yields

∥(I −ΠFNO)M(x)u∥Hs′ ≳ m−(M−δ).

Imposing this residual ≤ 1
2ε forces

m ≥ C2 ε
−M/s, C2 = C2(d, s, δ,M,N0) > 0. (25)

Step 3 – Canonical neural scaling in the latent map. An FNO with spectral radius (width) m
manipulates a latent vector of dimension (2m+ 1)d ∼ md. Approximating a generic Lipschitz map
G : Cmd→ Cmd

to accuracy ε/2 with a fully connected network requires (Yarotsky, 2017; De Ryck
et al., 2021) at least

parameters ≳ ε−m
d

.

(Kovachki et al., 2021, Remark 22)

Step 4 – Substitute the bandwidth lower bound. Using equation 25, md ∼ ε−Md/s. Hence the
latent network must have at least

|θ| ≳ ε−ε
−Md/s

,

a super-exponential curse of dimensionality in the target accuracy ε.

C.4 PROOF OF THEOREM 2

Restate of Theorem 2. Let s ≥ s′ ≥ 0 and sp > d/2. Consider any finite composition

G = (ςℓ◦Lℓ) ◦ · · · ◦ (ς1◦L1), Li = Opm(pi),

where each Kohn–Nirenberg symbol pi belongs to W sp,2
(
Tdx×Tdξ

)
9, and each ςi is a point-wise non-

linearity of uniformly bounded degree (so the number of such nonlinearities is O(ℓ) and independent
of ε). For every ε > 0 there exists a single-layer KANO GKANO

θ such that

∥G − GKANO
θ ∥Hs→Hs′ ≤ ε, |θ| = O

(
ε−d/(2sp)

)
.

Proof. Step 1 – Kohn–Nirenberg quantization error. By the quadrature bound from Demanet &
Ying (2011), for each Li we have∥∥Li −Opm(pi)

∥∥
Hs→Hs′ ≤ C ′Bm−(s−s′),

where Opm(pi) keeps only frequencies |ξ|∞ ≤ m. Since each ςi is a bounded-degree pointwise
map, its Nemytskii operator is Lipschitz on bounded sets; write Li := Lip(ςi)

10 on the relevant
range and set Lmax := maxi Li. Let M := maxj

{
∥Lj∥Hs′→Hs′ , ∥Opm(pj)∥Hs′→Hs′

}
. Because

sp >
d
2 implies ∥pj∥L∞ ≲ ∥pj∥W sp,2 , both Lj and Opm(pj) are bounded on Hs′ with a bound

independent of m. A telescoping estimate for the interleaved composition then yields∥∥G −ΠKANO(G)
∥∥
Hs→Hs′ ≤ C∗ C

′Bm−(s−s′), C∗ ≤ ℓ (LmaxM)ℓ−1Lmax.

9Standard square integrable periodic Sobolev space on the product torus T2d.
10Lipschitz constant of the point-wise nonlinearity ςi on the relevant value range, i.e. Li :=

supa̸=b
|ςi(a)−ςi(b)|

|a−b| with a, b restricted to the compact interval attained by the i-th preactivations.
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Pick m :=
(
2C∗ C

′B/ε
)1/(s−s′)

. Then the full composition G deviates from its projected counter-
part

ΠKANO(G) := (ςℓ◦Opm(pℓ)) ◦ · · · ◦ (ς1◦Opm(p1))

by at most ε/2 in Hs→ Hs′ operator norm.

Step 2 – KAN approximation of both symbols and pointwise nonlinearities. By the width-fixed
KAN scaling law from Wang et al. (2024), for any η > 0 there exists a Kolmogorov–Arnold Network
Φi,η with |Φi,η| = O(η−d/(2sp)) such that ∥pi −Φi,η∥L∞ ≤ η on Tdx×Tdξ. Likewise, since each ςi
is a fixed-degree pointwise map, its action over the compact value range visited by the projected flow
can be uniformly approximated by a width-fixed KAN Ψi,η with size |Ψi,η| = O

(
η−1/(2sp)

)
and

∥ςi −Ψi,η∥L∞ ≤ η. Choose
ηsym :=

ε

4ℓ
, ηnl :=

ε

4ℓ
.

Define the single-layer KANO

GKANO
θ := (Ψℓ,ηnl

◦Opm(Φℓ,ηsym)) ◦ · · · ◦ (Ψ1,ηnl ◦Opm(Φ1,ηsym)),

where the same spectral radius m from Step 1 is used in every Opm( · ).

Step 3 – Error accumulation beyond projection. Using linearity of the symbol-to-operator map
and stability of Nemytskii (pointwise) maps under uniform approximation, the post-projection error
splits into a sum of the symbol parts and the nonlinearity parts:

∥∥ΠKANO(G)− GKANO
θ

∥∥
Hs→Hs′ ≤

ℓ∑
i=1

∥∥∥Opm(pi)−Opm(Φi,ηsym)
∥∥∥
Hs→Hs′

+

ℓ∑
i=1

∥ςi −Ψi,ηnl∥L∞

≤ ℓ ηsym + ℓ ηnl = ε/2.

Combining with Step 1 yields ∥G − GKANO
θ ∥Hs→Hs′ ≤ ε.

Step 4 – Parameter complexity. Summing the sizes of all KAN blocks gives

|θ| =
ℓ∑
i=1

O
(
η−d/(2sp)sym

)
+

ℓ∑
i=1

O
(
η
−1/(2sp)
nl

)
+ O(1) = O

(
(ε/ℓ)−d/(2sp)

)
+O

(
(ε/ℓ)−1/(2sp)

)
.

Since ℓ and the number/degree of the ςi are fixed (do not scale with ε), the dominating term is
O(ε−d/(2sp)), establishing the claimed complexity.

D USE OF LARGE LANGUAGE MODEL

Large Language Model (LLM) is used to polish the writing in this paper, such as detecting grammar
errors and typos. LLM is also used to search for appropriate references for correct citations, and all
the proposed references are fully inspected and verified before citing in the paper.
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