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Abstract

Recent advancements in Large Language Models (LLMs) have emphasized the
critical role of fine-tuning (FT) techniques in adapting LLMs to specific tasks,
especially when retraining from scratch is computationally infeasible. Fine-tuning
enables LLMs to leverage task- or domain-specific data, producing models that
more effectively meet the requirements of targeted applications. However, con-
ventional FT approaches often suffer from catastrophic forgetting and suboptimal
data efficiency, limiting their real-world applicability. To address these challenges,
this paper proposes DEAL, a novel framework that integrates Low-Rank Adapta-
tion (LoRA) with a continuous fine-tuning strategy. By incorporating knowledge
retention and adaptive parameter update modules, the framework mitigates the
limitations of existing FT methods while maintaining efficiency. Experiments on
15 diverse datasets show that DEAL consistently outperforms baseline methods,
yielding substantial gains in task accuracy and resource efficiency. These find-
ings demonstrate the potential of our approach to advance continual adaptation in
LLMs by enhancing task performance while improving resource efficiency. The
source code is publicly available at https://github.com/Applied-Machine-Learning-
Lab/DEAL.

1 Introduction

The advent of Large Language Models (LLMs) has catalyzed transformative advances in Natural
Language Processing (NLP), enabling breakthroughs across healthcare, education, web technologies,
and other domains [1–5]. However, training and utilizing these models to evolve to real-world
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demands remains a critical challenge. Direct fine-tuning of billion-scale-parameter models incurs
prohibitive computational costs, creating accessibility barriers for resource-constrained researchers
and institutions. Even for small and medium-sized enterprises, it is also difficult to independently
implement pre-training of these models. In such scenarios, Parameter-Efficient Fine-Tuning (PEFT)
methods—particularly Low-Rank Adaptation (LoRA)—have emerged as practical solutions that
leverage pre-trained models by “standing on the shoulders of giants” [6, 7]. By applying low-rank
matrix decompositions, LoRA reduces the number of trainable parameters by over 90% while
maintaining baseline performance. By selectively updating task-specific subspaces, LoRA enables
targeted knowledge integration in non-stationary environments—a capability aligned with the core
objectives of continual learning.

As LLMs require ongoing updates to ensure their knowledge remains current and relevant over
time, continual learning of LoRA is required to integrate new information while preserving existing
capabilities [8]. This approach mitigates catastrophic forgetting by freezing most parameters and
restricting updates to a low-rank matrix, allowing LoRA to differentially activate specific knowledge
within the model. For instance, a LoRA-based model trained on Wiki-QA [9] can be further refined
on TruthfulQA [10] to enhance performance. However, while continual learning of the LoRA module
only unlocks up-to-date task-specific outcomes, it may compromise cross-domain performance [11],
particularly when smaller, specialized datasets lack the breadth of the original pre-training data [12].
Therefore, could we design a high-level fine-tuning method that maintains excellent performance
across all tasks while allowing continuous fine-tuning with small-scale datasets?

Several existing studies have explored this problem. In particular, continuous learning can be achieved
through two main strategies: (1) direct model editing, and (2) introducing additional adapters. On
the one hand, studies [13–18] have shown that key-value-like structures in the Transformer layers
can be directly edited. For example, ROME [13] and MEMIT [14] directly update the key-value-like
structures in Transformer layers via causal weight interventions. However, these approaches require
massive additional experiments to pinpoint which neurons to edit, making it both inefficient and
costly. On the other hand, for LoRA-based LLMs, the process of locating and modifying parameters
in the low-rank matrix remains largely opaque [19]. To reduce the complexity of targeting specific
parameters, many studies turn to stack additional adapter modules [20–23]. Yet, these modules
inevitably impose extra computational overhead. Consequently, interpretability and efficiency remain
the two major challenges in applying continuous learning to LoRA-tuned LLMs.

To address these limitations, we introduce Data-Efficient Adaptation via continuous Low-rank
fine-tuning (DEAL), a method that facilitates efficient knowledge acquisition while preserving the
interpretability of model updates. Specifically, we design a wavelet kernel to adaptively preserve
core features of historical knowledge in the filtered low-rank matrix while seamlessly incorporating
new information. By focusing on core aspects of historical knowledge, DEAL prevents catastrophic
forgetting, thus maintaining model performance across multiple tasks. This innovative approach
provides a robust framework for continuous learning, making it an effective solution for dynamic
data environments. Our contributions of the paper are summarized as follows:

1. We introduce DEAL, an innovative continual learning framework that efficiently utilizes small
amounts of new data for continuous learning, thereby avoiding the need for relearning and signifi-
cantly conserving computing resources.

2. We leverage a wavelet kernel to preserve historical knowledge and deploy differentiated regulariza-
tion terms to control the knowledge updating process, improving both transparency and efficiency.
Additionally, by simply replacing the original low-rank matrices with their fine-tuned counterparts,
DEAL ensures that inference time remains unchanged.

3. Comprehensive experiments on 15 multi-task open-source datasets validate the effectiveness
and efficiency of our framework. These experiments demonstrate its ability to maintain high
performance across different tasks while efficiently managing computational resources.

2 Preliminaries

In this section, we give the definitions of LoRA-based LLM at first and then introduce the continual
learning for LoRA fine-tuning. Finally, we state the problem that we solve in this paper.
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Figure 1: The framework overview.

LoRA-based LLM. LoRA enhances LLM by introducing low-rank matrices to weight updates
during fine-tuning. Given a pre-trained weight matrix W ∈ Rm×n, LoRA decomposes the weight
update ∆W into two smaller matrices A ∈ Rm×r and B ∈ Rn×r, where r is a user-defined rank
(r << min{m,n}). The update is then expressed as ∆W = A×B⊤, allowing the model to adapt
to new tasks with significantly fewer parameters compared to full fine-tuning. This decomposition
reduces the number of trainable parameters from m × n to m × r + n × r, leading to substantial
computational savings.

Continual LoRA Fine-Tuning. The parameter-efficient fine-tuning approaches of LoRA enable
LLMs to learn new tasks while retaining performance on previously learned tasks. By updating only
the low-rank matrices A and B, the LoRA-based LLM mitigates catastrophic forgetting, a common
challenge in continual learning, by enabling the model to learn new tasks while retaining performance
on prior tasks.

In this paper, we aim to effectively learn new tasks with acceptable training cost, while retaining
performance on previously learned tasks. Mathematically, this involves adjusting the weight matrix
W of the model AW by introducing low-rank updates ∆W = A × B⊤, where A and B are
low-rank matrices. The learning target is to minimize the loss function L over the new task data
Dnew, subject to a regularization term that penalizes changes to the original parameters to prevent
catastrophic forgetting. This can be formulated as:

min
A,B

L
(
AW+A×B⊤ ,Dnew

)
+ λ|A×B⊤|, (1)

where λ is a hyperparameter controlling the trade-off between learning new information and retaining
prior knowledge. The goal is to find the optimal low-rank matrices A and B that allow the model to
adapt to new tasks while preserving its performance on previous tasks.

3 Methodology

In this section, we first provide a framework overview of DEAL and then we introduce each part of
DEAL in detail. Finally, we outline the training procedure, which fine-tunes the low-rank matrices to
ensure the model adapts to new tasks without sacrificing performance on previously learned tasks.

3.1 Framework Overview
Figure 1 shows the overall framework for continuous learning on domain-specific dataset, which
consists of a wavelet kernel-based knowledge retention module and a controlled knowledge updating
module. (a) Wavelet Kernel-based Knowledge Retention Module extracts and filters singular
values from the low-rank matrices to preserve the core representations of historical knowledge, which
should be maintained throughout continual learning. (b) Controlled Knowledge Updating Module
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applies higher-order regularization to constrain parameter updates in LoRA, thereby regulating the
integration of new knowledge while minimizing disruption to previously learned representations. In
LoRA, the small-parameter knowledge representation embedded in the low-rank matrix could activate
the corresponding understanding and reasoning abilities in the original LLM, facilitating the learning
of new tasks. These two modules allow the model to effectively learn and incorporate new information
without disrupting previously acquired knowledge. As for the inference phase, the updated low-rank
matrix, with its new knowledge representation, will directly replace the corresponding part in the
original LoRA module, ensuring that the inference delay of DEAL remains unaffected.

3.2 Wavelet Kernel-based Knowledge Retention
Due to limited hardware resources, continual learning with LoRA-based LLM typically involves fine-
tuning only the LoRA module, while the pre-trained LLM parameters remain unchanged. However,
updates to the low-rank matrix can increasingly hinder the model’s ability to retain the original
features crucial for activating the corresponding capabilities within the LLM. To address this, we
introduce a wavelet kernel to filter and preserve the key features of LoRA during continual learning.

In the LoRA module, the matrices A and B are singular, meaning they are not full-rank. This
presents a challenge for effective feature extraction. We assume that the singular matrix Y := A or
B can be decomposed into a task-relevant component X and a redundant or noisy component D,
i.e., Y = X +D.

Here, X denotes the core feature matrix, capturing the intrinsic low-rank structure that encodes
task-relevant semantics. According to the Eckart—Young—Mirsky theorem [24], the best low-rank
approximation of a matrix in the Frobenius norm sense is achieved via truncation of its singular value
decomposition (SVD). This motivates our use of truncated SVD to estimate X from the observed
matrix Y , with the goal of recovering task-relevant features from its singular representation.

We further assume that both Y and X lie in Rn×r, sharing the same dimensions. Their corresponding
singular value decompositions (SVD) can be given by:

Y = ( P 1 P 2 )

(
S1 0
0 S2

)(
Q⊤

1 V
H
x1

QH
2 V ⊤

x2

)
, (2)

X = UxΣxV x

= ( Ux1 Ux2 )

(
Σx1 0
0 0

)(
V x1

V x2

)
,

(3)

where Ux1 ∈ Rnx×rx , Ux1 ∈ Rnx×(nx−rx), V x1 ∈ Rrx×r, V x2 ∈ R(nx−rx)×r.

The following theorem states that we cannot directly compute the core features of X from Y :

Theorem 1 Let Y be the observed data matrix and X the underlying core feature matrix. Then,
without additional constraints, there does not exist a pair of matrices P 1 and Ux1 such that
P 1 = Ux1. See Appendix A.2.

Therefore, we aim to recover the core feature matrix X by representing it as a linear combination of
the columns of the observed matrix Y . To this end, we introduce a coefficient matrix H and formulate
the following least-squares objective:

min
H

∥Y H −X∥2F , (4)

where || · ||F denotes the Frobenius norm. In this formulation, X is treated as the target (e.g., the ideal
low-rank component), and H is the optimization variable that linearly combines the basis vectors in
Y to approximate X . The optimal H can be derived as:

H =
(
Y ⊤Y

)−1

Y ⊤X. (5)

Then, X̂ , the minimum variance estimate of X , can be presented as:

X̂ = Y H = Y
(
Y ⊤Y

)−1

Y ⊤X, (6)
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Obviously, we cannot calculate X̂ directly by Eq. (6). Note that P Y = Y
(
Y ⊤Y

)−1

Y ⊤ is the

orthogonal projection operator onto the column space of Y . Importantly, X̂ is denoised when the
target X lies entirely within that subspace. To proceed with estimation, we assume that the redundant
features in the matrices A and B behave as white noise, i.e., D⊤D = σ2

DI , X⊤D = 0, where σ2
D

is the variance of the noise. Then we can simply X̂:

X̂ =

rx∑
k=1

σ2
k − σ2

D

σk
ukv

⊤
k , (7)

where uk and vk is the left and right singular vectors of Y , σk is the k-th largest singular value of
Y (σ1 > σ2 > · · · > σr). In traditional signal analysis algorithms, large singular values represent
low-frequency data distribution and macro trends, and small singular values represent high-frequency
disturbances [25]. However, since σ2 in the above formula is unknown, we will define a series of
wavelet functions at different scales for feature filtering. Here, we use the heat kernel as a low-pass
filter:

ϕσ2
j ,cj

(X) = exp

(
− 1

2σ2
j

||X − cj ||2
)
, (8)

where cj is the center of the j-th kernel, σ2
j represents the width of the kernel. By setting a series

of different heat kernel widths σ2 = [σ2
1 , σ

2
2 , · · · ]⊤, defining a series of learnable diagonal matrices

g = [g1, g2, · · · ]⊤ and learnable centers C = [c1, c2, · · · ]⊤, we can define a wavelet neural network
to extract the features of X̂ from Y :

Hk+1
:,i = δ

∑
j

ϕσ2
j ,cj

gjϕ
−1
σ2
j ,cj

Hk
:,j

 , (9)

where δ(·) is the activation function, H0 := Y , and X̂ = HK . Here K is the total number of layers
and k ∈ {0, 1, · · · ,K − 1}. As ϕ is the heat kernel, i.e. ϕ−1(x) = ϕ(−x)), we could simply Eq. (9)
to be:

Hk+1
:,i = δ

∑
j

ϕσ2
j ,cj

gjϕ−σ2
j ,cj

Hk
:,j

 . (10)

Eq. (10) avoids directly calculating the inverse of the function and improves calculation efficiency.

3.3 Controlled Knowledge Updating

In the previous section, we derive the core features of the original knowledge. In this section, our goal
is to integrate the new knowledge into the LoRA module. The new knowledge can be categorized
into two parts: one that does not overlap with the original knowledge, and the other that requires
updates due to the outdated nature of the original knowledge. The latter is the primary focus, as it
may lead to slight changes in the core features. However, these changes should not alter the overall
impact of the original knowledge.

To achieve this goal, we constrain the update of parameters while learning new knowledge through
an MLP:

Ok+1 = MLP
(
Hk+1

)
= δ′

(
ωk+1Hk+1 + bk+1

)
,

(11)

where OK is the updated matrix A′ or B′, δ′(·) is the activation function, ωk ∈ Ω and bk ∈ B
are learnable paramters. Defining LoRA-based LLM with pre-trained parameters W and LoRA
parameters ∆W as AW ,∆W (·), then the loss function is defined as follows:

Loss = MSE (AW ,∆W ′ (Q) , G )

+λ1||θ1||aa + λ2||θ2||bb,
(12)

where ∆W ′ = A′ × B′ ⊤ is parameters of the updated LoRA, G is the ground truth in the
new dataset, Q is the input query correspondingly, λ1 and λ2 are two regularization hyperpa-
rameters, θ1 := {g,C}, θ2 := {Ω,B} are the learnable parameters in the model, a and b
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are tworegularization orders which satisfies a ≥ b. By ensuring that the regularization order
for the knowledge retention module’s parameters is at least as high as that used for the knowl-
edge update module’s regularization term, we can minimize the adjustments made to the reten-
tion model’s parameters. This, in turn, enhances the overall generalization ability of the model.

3.4 Training Procedure
In this subsection, we introduce the training pro-
cess of DEAL, as shown in Algorithm 1: We
begin by locating and obtaining the low-rank ma-
trices A and B in LoRA (lines 1–3). Next, we
apply wavelet kernel-based neural networks to
extract the core features of historical knowledge
from A and B (line 5). Then, another neural net-
work is introduced to superimpose features from
new knowledge onto these core features, result-
ing in a newly constructed low-rank matrix A′

or B′ (lines 6–11). Using this updated low-rank
matrix, we recalculate the LoRA parameters to
obtain the fine-tuned model. By calculating the
loss with regularization terms and performing
back-propagation, we ensure that the model can
learn new knowledge while preserving historical
features in a controlled manner (lines 13–15).

Algorithm 1 The DEAL framework
Input: Pre-trained LoRA-based LLM AW ,∆W ,

training samples D
Output: Fine-tuned model AW ,∆W ′

1: ∆W ′ ← ∆W
2: for each batch (Q,G) ∈ D do
3: Extract A,B from ∆W ′

4: for each Y ∈ {A,B} do
5: X̂ ← Eq. (10), O ← Eq. (11)
6: if Y == A then
7: A′ ← O
8: else
9: B′ ← O

10: end if
11: end for
12: ∆W ′ ← A′ ×B′⊤

13: Compute loss Loss using Eq. (12)
14: Update parameters via back-propagation
15: end for
16: return AW ,∆W ′

4 Experiments

Datasets. We evaluate DEAL on three continual learning (CL) benchmarks in a sequential task
setup, where data from previous tasks is unavailable during training on subsequent ones. These
benchmarks are designed to evaluate key challenges in continual learning, including: (i) catastrophic
forgetting in semantically related tasks, (ii) inefficient data utilization resulting from restricted access
to prior samples, and (iii) scalability across long and diverse task sequences.

(i) Same-domain tasks: We use a three-task benchmark consisting of AG News (news classification),
DBpedia (entity typing), and Yahoo Answers (question topic prediction). This setup evaluates DEAL’s
ability to mitigate catastrophic forgetting by retaining transferable knowledge across semantically
similar tasks.

(ii) Domain-shift tasks: To introduce domain variability, we augment the benchmark with Amazon
Reviews [26] for binary sentiment classification. This domain-shift setting assesses generalization
under limited data access and distributional shifts, reflecting practical constraints in real-world
continual learning.

(iii) Heterogeneous multi-task learning: We evaluate on the 15-task benchmark proposed by [27],
which spans text classification (AG News, DBpedia, Yahoo, Amazon, Yelp), GLUE tasks (MNLI,
QQP, RTE, SST-2) [28], SuperGLUE tasks (WiC, CB, COPA, MultiRC, BoolQ) [29], and IMDB [30].
This benchmark tests DEAL’s scalability and robustness across heterogeneous tasks and long task
sequences. Full details on dataset preprocessing and prompt construction are provided in Appen-
dices B.1 and E.

Baselines. We compare DEAL against three LoRA-compatible continual learning baselines:

• SeqLoRA: A naive baseline that sequentially updates a single fixed-size LoRA adapter across
tasks, without any mechanism to mitigate forgetting.

• O-LoRA [31]: A recent method that allocates task-specific adapters to orthogonal subspaces,
reducing parameter interference.

• PerTaskFT: An oracle baseline in which each task is fine-tuned using a separate LoRA adapter
without sharing. Although impractical for deployment, it serves as an upper bound on task-specific
retention.
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All baselines are evaluated under identical settings, including a fixed adapter architecture, optimization
protocol, and tokenization, to ensure fair comparison. Replay-based and non-LoRA methods are
excluded to prevent confounding effects from architectural or memory differences. Implementation
details are provided in Appendix B.2, and comparisons with broader classes of methods are reported
in Appendix G.

Implementation Details. We use two pretrained models: LLaMA 3.1-8B [32], a decoder-only
model fine-tuned on instruction-following corpora, and T5-Large-Instruct [33], an encoder-decoder
model adapted for general-purpose instruction following. All experiments are conducted on a single
NVIDIA A100 GPU. LoRA-based continual fine-tuning is applied to both models using a fixed
adapter rank, dropout, learning rate, and batch size across tasks. Gradients are masked as needed
to enforce parameter sparsity. Unless stated otherwise, hyperparameters remain consistent across
DEAL and all baselines. Full training configurations, hardware details, and random seed settings are
provided in Appendix B.2.

Evaluation Metrics. We report Average Accuracy (AA), the mean test accuracy across all tasks
after training concludes, and ROUGE-1 (R-1), which measures unigram F1 overlap between gener-
ated outputs and ground-truth labels for free-form generation tasks. Formal metric definitions and
application contexts are detailed in Appendix D. We evaluate the training and inference efficiency of
DEAL in Appendix F.

4.1 Main Results

Table 1 summarizes the continual learning performance of all methods on the three benchmark suites:
the 3-task Text Classification (TC), the 4-task Standard CL benchmark, and the 15-task Large-Scale
benchmark.

Across all tasks and model backbones, our proposed method, DEAL, consistently outperforms
both SeqLoRA and O-LoRA, and achieves performance comparable to the oracle upper bound
(PERTASKFT) in terms of average accuracy (AA) and ROUGE-1 F1 (R-1). On the 4-task benchmark
with T5-Large, DEAL achieves 78.5% Average Accuracy (AA) and 82.5% ROUGE-1 (R-1), com-
pared to 44.6%/44.6% for SeqLoRA and 71.2%/73.3% for O-LoRA. These improvements stem from
DEAL’s ability to balance knowledge retention and transfer more effectively. SeqLoRA lacks mecha-
nisms for preserving prior knowledge, leading to severe forgetting. O-LoRA mitigates forgetting via
orthogonal subspace constraints but limits beneficial cross-task transfer. In contrast, DEAL integrates
shared LoRA modules with dual-branch adapters and stability-aware regularization, enabling robust
adaptation while preserving task-specific information.

Table 1: Continual learning performance across three benchmarks.
Method 3-Task (TC) 4-Task (Standard) 15-Task (Large)

AA R-1 AA R-1 AA R-1

T5 + SeqLoRA 52.4 52.8 44.6 44.6 42.1 44.0
T5 + O-LoRA 85.2 87.1 71.2 73.3 70.8 80.3
T5 + PerTaskFT 90.3 91.7 70.0 73.0 76.5 78.2
T5 + DEAL(ours) 87.7 89.3 78.5 82.5 73.9 79.1

LLaMA + SeqLoRA 54.1 55.9 47.6 54.8 45.2 53.2
LLaMA + O-LoRA 86.4 88.1 75.3 80.8 73.2 77.4
LLaMA + PerTaskFT 88.2 90.0 77.5 79.4 77.1 82.5
LLaMA + DEAL(ours) 88.9 90.2 78.9 81.3 74.6 78.9

Note. Bold indicates the statistically significant improvements
(i.e., two-sided t-test with p < 0.05) over the best baseline.

Notably, DEAL approaches the performance of the oracle baseline, PerTaskFT, which fine-tunes
each task independently without parameter sharing. On the 3-task benchmark with T5-Large,
DEAL achieves 87.7% AA, closely matching the 90.3% attained by PerTaskFT. This near-oracle
performance is achieved with significantly lower computational overhead. By leveraging modular
adapters and regularized updates, DEAL retains task-discriminative signals while benefiting from
shared representations, offering a scalable and efficient alternative to task-isolated fine-tuning.
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Figure 2: DEAL ablations: (a) adapter update strategy, (b) task-order robustness on the 4-task
benchmark, (c) LoRA-rank sensitivity on the 3-task benchmark.

The advantages of DEAL become increasingly prominent as task complexity grows. On the 15-task
benchmark with LLaMA-3.1-8B, DEAL achieves 74.6% AA, outperforming SeqLoRA by more
than 29 percentage points and surpassing O-LoRA as well. In long-horizon continual learning
settings, catastrophic forgetting compounds across tasks. DEAL mitigates this degradation through
regularization-guided updates and flexible routing, demonstrating strong scalability and robustness to
extended task sequences.

5 Ablation Studies

We conduct ablation experiments to assess the contribution of five core components in DEAL: (i)
adapter update strategy, (ii) task-order robustness, (iii) LoRA rank Figure 2, (iv) the kernel function
(Table 3), and (v) the regularization strength (Table 4). Unless otherwise specified, all experiments
use the T5-Large backbone with fixed random seeds and data orderings.

Adapter Update Strategy. We evaluate three adapter update strategies: updating only Adapter
A, updating only Adapter B, and updating both jointly. Joint updates achieve the highest post-task
Average Accuracy (AA) of 75.6%, exceeding single-branch updates by 2.8—5.4 percentage points.
Across multiple runs, updating only Adapter A consistently outperforms updating only Adapter B.
This result reflects the continual learning setting: Adapter A governs global projection directions
that capture generalizable semantic patterns and reasoning structures, whereas Adapter B primarily
encodes task-specific features. Joint training of both adapters therefore enables the most effective
integration of broad knowledge transfer with task specialization.

Task-Order Robustness. To simulate non-stationary task arrivals, we evaluate three random
permutations of the 4-task sequence, following the setup in O-LoRA [31]. This experiment aims to
examine how sensitive DEAL is to variations in task order—a crucial factor in realistic continual
learning, where the order of tasks is typically unpredictable. Across the three permutations, the
average accuracy (AA) ranges narrowly from 73.1% to 75.6%, reflecting a fluctuation of less than
three percentage points. This low variance demonstrates that DEAL maintains stable performance
regardless of task order, indicating strong robustness and adaptability to dynamic, non-stationary
learning environments. The specific task permutations used are detailed in Table 2.

Table 2: Task sequences used for continual learning evaluations.
Order Task Sequence

1 DBpedia → Amazon → Yahoo → AG News
2 DBpedia → Amazon → AG News → Yahoo
3 Yahoo → Amazon → AG News → DBpedia

LoRA Rank. Using the 3-task benchmark, we vary the LoRA rank across 4, 8, 16, 32. Accuracy
improves significantly from rank 4 to rank 8 (71.5% to 84.3%), then saturates (84.5% at rank 16,
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84.6% at rank 32). These results suggest that a compact rank-8 configuration captures most of the
task-specific variation while offering strong efficiency in both memory and computation.

Kernel Functions. To further support the selection of the heat kernel, we compared it against
two alternatives— f(x) = xe−x and quadratic splines—with results summarized in Table 3. All
three kernels achieve comparable accuracy, indicating that the model’s representational capacity is
relatively insensitive to the specific kernel choice. The heat kernel’s primary advantage lies in its
computational efficiency: it consistently yields orders-of-magnitude reductions in runtime.

This improvement stems from its inverse-free update rule (Eq. (10)), which avoids expensive matrix
inversions while maintaining numerical stability. These results demonstrate that the heat kernel offers
a favorable trade-off between simplicity and efficiency, supporting its adoption as the default kernel
throughout our experiments.

Table 3: Comparison of different kernel functions.
Kernel Function Average Accuracy (%) Training Time (ms/sample)

f(x) = xe−x 78.4 1759
Quadratic Splines 78.3 1291
Heat Kernel (Ours) 78.5 56

Table 4: Grid search over asymmetric regular-
ization weights (a, b).

a b AA (%)
1 1 74.8
5 1 83.9
10 2 85.5
10 5 84.1
20 2 82.7

Note. Bold indicates statistically significant im-
provements (i.e., , two-sided t-test with p < 0.05)
over the best baseline.

Regularization. We conduct a grid search over reg-
ularization weights (a, b), where a regulates the reten-
tion branch (wavelet-based) and b governs the adap-
tation branch (MLP-based). The search ranges over
a ∈ 1, 5, 10, 20 and b ∈ 1, 2, 5, capturing a vari-
ety of retention-to-adaptation penalty combinations.
This ablation aims to identify the optimal trade-off
between preserving prior knowledge and facilitating
new task adaptation.

As summarized in Table 4, the best performance is
obtained with (a = 10, b = 2), reaching an after-
task accuracy (AA) of 85.5%. This configuration
outperforms both low-penalty settings (e.g., (1, 1))
and heavier regularization schemes (e.g., (10, 5) or (20, 2)). These results suggest that appropriately
tuning the balance between the retention and adaptation branches is critical: a moderately stronger
emphasis on knowledge retention improves stability, while maintaining flexibility in the adapta-
tion pathway supports effective learning of new tasks. Notably, this balance mitigates forgetting
without hindering new knowledge acquisition, highlighting the importance of carefully calibrated
regularization in continual learning.

6 Related Work

Continual Learning for Large Language Models Continual learning (CL) with large language
models (LLMs) presents a fundamental challenge: acquiring new knowledge without catastrophic
forgetting, while ensuring efficiency and adaptability. Existing approaches largely fall into three
categories: memory-based, regularization-based, and subspace isolation-based methods.

Memory-based approaches, such as experience replay (ER) [34], mitigate forgetting by revisiting
buffered past data. However, these methods raise concerns about scalability and data privacy, limiting
their practicality in real-world LLM deployments. Regularization-based methods constrain parameter
updates to preserve previously learned knowledge. For instance, CLoRA [8] introduces angular regu-
larization between task-specific LoRA adapters. While computationally lightweight, such approaches
often under perform on dissimilar tasks due to overly restrictive adaptation dynamics. Subspace-based
techniques offer a memory-free alternative by decoupling task representations. O-LoRA [31], for
example, updates LoRA parameters within orthogonal subspaces of prior tasks, effectively reducing
representational interference. However, it faces two key limitations: (i) orthogonality is enforced only
in first-order gradient space, overlooking higher-order interactions; and (ii) all subspace directions
are treated uniformly, with no prioritization of semantically meaningful components. The TRACE
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benchmark [35] further highlights trade-offs in CL for LLMs: while full-parameter fine-tuning yields
high per-task accuracy, it suffers from severe forgetting; in contrast, naive LoRA tuning preserves
general capabilities but degrades instruction-following performance.

In contrast to prior work, our method introduces structural regularization and selective routing,
aligning task-specific updates with semantically salient directions while preserving cross-task gener-
alization. This design promotes transferability and robustness without relying on external memory or
imposing rigid parameter constraints.

Parameter-Efficient Tuning Parameter efficient tuning (PET) approaches, such as adapters [36–
38], prompt tuning [39, 40], and LoRA [6, 41], reduce training cost by updating only a small subset
of model parameters. Several extensions of LoRA have been proposed to improve adaptability
and representational capacity. ReLoRA[42] enables high-rank representations by scheduling low-
rank updates across training phases. FLORA[43] employs stochastic resampling to approximate
richer adaptation structures with low memory overhead. To support knowledge transfer across tasks,
modular PET strategies have also been developed. LoraHub[44] assembles reusable task-specific
adapters that can be composed dynamically. MOLE[45] treats multiple LoRA modules as experts
and selects among them using a learned gating mechanism.

In contrast to prior work that focuses on isolated improvements in capacity or flexibility, we propose
a wavelet regularized continual tuning framework that jointly addresses knowledge retention and
adaptive transfer. Our method sustains performance across evolving tasks without relying on data
replay, while incurring minimal computational overhead.

7 Conclusion

We present DEAL, a continual learning framework that integrates instruction-guided fine-tuning
with lightweight adapter updates and structured regularization. Built on a LoRA-style architecture,
DEAL enables scalable, interference-resistant learning across sequential tasks while maintaining
strong performance on diverse benchmarks. Extensive experiments highlight three core advantages:

• Reduced Forgetting. DEAL employs regularized low-rank updates to preserve task-relevant
subspaces, mitigating catastrophic forgetting without relying on explicit memory buffers.

• Efficient Adaptation. Shared LoRA components serve as inductive priors, accelerating conver-
gence and supporting efficient generalization in low-resource scenarios.

• Scalability. By introducing only a small number of task-specific parameters, DEAL scales effec-
tively to long task sequences and large LLM backbones such as LLaMA-3.1-8B.

Limitations and Future Directions. While DEAL demonstrates strong performance in diverse
continual learning scenarios, it currently assumes a fixed task order and static model capacity.
Promising directions include lightweight rehearsal mechanisms, dynamic capacity allocation, and
enhancing forward transfer through meta-regularization. Addressing robustness under ambiguous
task boundaries remains an open challenge.
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Appendix

A Supplementary Algorithmic Analysis

A.1 Notation

Let X ∈ Rnx×r be a matrix of rank rx. Its singular value decomposition (SVD) is:

X = UxΣxV
⊤
x

= [Ux1 Ux2]

[
Σx1 0
0 0

] [
V ⊤

x1

V ⊤
x2

]
. (13)

Here, Ux1 ∈ Rnx×rx and V x1 ∈ Rr×rx correspond to the principal subspace, while Ux2 and V x2

span the orthogonal complement.

A.2 Proof of Theorem 1

Consider a perturbation D ∈ Rnx×r, and define:

Y = X +D. (14)

We decompose D via projection onto the column spaces of V x1 and V x2:

Y = X +D
(
V x1V

⊤
x1 + V x2V

⊤
x2

)
= (XV x1 +DV x1)V

⊤
x1 + (DV x2)V

⊤
x2.

(15)

Denoting SVDs of each term:

XV x1 +DV x1 = P 1S1Q
⊤
1 (16)

DV x2 = P 2S2Q
⊤
2 , (17)

with P⊤
1 P 2 = 0, we can express Y as:

Y = [P 1 P 2]

[
S1 0
0 S2

] [
Q⊤

1 V
⊤
x1

Q⊤
2 V

⊤
x2

]
. (18)

This constitutes the SVD of Y , and the basis P 1 generally differs from Ux1 due to perturbation.
This completes the proof.

B Experimental Setup

B.1 Datasets

Table 5 summarizes all datasets used across the continual learning benchmarks. These datasets
were also employed in O-LoRA [31], where each is framed as a classification task using a unified
instruction-based text-to-text format.
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Table 5: Overview of datasets used in experiments.
# Dataset Source Task Type Evaluation Metric

1 AG News CL Benchmark Topic Classification Accuracy
2 DBpedia CL Benchmark Entity Typing Accuracy
3 Yahoo CL Benchmark Topic Classification Accuracy
4 Amazon CL Benchmark Sentiment Analysis Accuracy
5 MNLI GLUE Natural Language Inference Accuracy
6 QQP GLUE Paraphrase Detection Accuracy
7 RTE GLUE Natural Language Inference Accuracy
8 SST-2 GLUE Sentiment Analysis Accuracy
9 WiC SuperGLUE Word Sense Disambiguation Accuracy
10 CB SuperGLUE Natural Language Inference Accuracy
11 COPA SuperGLUE Causal Reasoning Accuracy
12 BoolQ SuperGLUE Boolean QA Accuracy
13 MultiRC SuperGLUE Multi-hop QA Accuracy
14 IMDB External Sentiment Analysis Accuracy

B.2 Implementation Details

We implement DEAL using the Hugging Face Transformers library and perform training with FP16
mixed precision on a single NVIDIA A100 GPU. Unless otherwise stated, we adopt a consistent
experimental setup across both LLaMA-3.1 and T5-large backbones, tailored for low-resource,
instruction-driven continual learning. All models are trained with adapter-based fine-tuning using
LoRA, where we set the rank r = 32 for LLaMA and r = 16 for T5, selected based on backbone
capacity. Optimization is performed using AdamW with a constant learning rate scheduler. Regu-
larization is enforced via ℓp-norm constraints on adapter weights and MLP modules, with details
provided in Table 6.

Table 6: Hyperparameter settings for DEAL on LLaMA-3.1 and T5-large.
Hyperparameter LLaMA-3.1 T5-large
LoRA Rank r 32 16
Learning Rate 1e-5 1e-5
Batch Size 8 4
Gradient Accum. Steps 4 2
Epochs 1 1
Max Source Length 512 512
Max Target Length 50 50
Generation Max Length 50 50
Warmup Steps 0 0
Dropout – –
Optimizer AdamW AdamW
Scheduler Type constant constant
Regularization λ1 0.01 0.01
Regularization λ2 0.001 0.001
∥θ∥5 Norm Reg. ✓ ✓
∥MLP∥2 Norm Reg. ✓ ✓
LoRA Modules q_proj, v_proj q, v
Task Type CausalLM Seq2SeqLM

We set λ1 = 0.01 to constrain the ℓ5-norm of adapter parameters θ, and λ2 = 0.001 to regularize
the ℓ2-norm of task-specific MLP weights, when applicable. All experiments are conducted for one
epoch over instruction-based task mixtures, without early stopping or checkpointing unless explicitly
mentioned.
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C Case Study Examples

Case 1: DBpedia Classification Task

Prompt:
You are a smart AI evaluator. Given an input paragraph and three model outputs (Base Model,
Adapter after DBpedia, Adapter after DBpedia→Amazon), judge which output(s) correctly
classify the paragraph according to the true label.
Question:
What is the topic of the following paragraph? Choose one from the options below.
["Company", "Educational Institution", "Artist", "Athlete", "Office Holder", "Mean of Transportation",
"Building", "Natural Place", "Village", "Animal", "Plant", "Album", "Film", "Written Work"]

Input (DBpedia sample)
Label: Office Holder
Text: Raimundas Palaitis (born 23 October 1957) is a Lithuanian politician. He was Minister
of the Interior from 2008 to 2012.
Base Model: Building
Adapter after DBpedia: Office Holder
Adapter after DBpedia→Amazon: Office Holder

Expected Answer:
The base model incorrectly predicted “Building,” which is unrelated to the paragraph. In
contrast, both adapters correctly predicted “Office Holder,” indicating that they effectively
learned the DBpedia task and that the second adapter retained this knowledge even after
subsequent training on the Amazon task

Case 2: Amazon Sentiment Task

Prompt:
Given an input review and three model outputs, decide whether the sentiment is classified
correctly and briefly explain why.
Question:
What is the sentiment of the following review? Choose one from
["very negative", "negative", "neutral", "positive", "very positive"]

Input (Amazon sample)
Label: very negative
Text: I don’t understand how they can advertise that this humidifier can work up to 12 hours.
It runs out of water so fast. I have to get up in the middle of the night and refill it. I would say
it works well for about 2 hours. So, while it is inexpensive, you get what you pay for.
Base Model: neutral
Adapter after DBpedia: neutral
Adapter after DBpedia→Amazon: very negative

Expected Answer:
Both the base model and the first adapter misclassified the review as "neutral". Only the
adapter further fine-tuned on Amazon data predicted the correct label, “very negative,”
demonstrating its ability to acquire new task knowledge that the earlier models failed to
capture.

Figure 3: Two case studies demonstrating continual learning and knowledge retention across classifi-
cation tasks.
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D Evaluation Metrics

We adopt the following standard metrics for continual learning evaluation:

• Average Accuracy (AA): Measures the average test accuracy across all tasks after the final task is
learned:

AA =
1

T

T∑
i=1

ai,T ,

where ai,T is the test accuracy on task i after training on task T .
• ROUGE-1 (R-1): Used for generative label decoding, computed as the unigram F1 between model

output and reference:

R−1 =
2 · P ·R
P +R

, P =
|y ∩ y⋆|

|y|
, R =

|y ∩ y⋆|
|y⋆|

.

E Instruction Prompts

We adopt the task-specific instruction prompts introduced in O-LoRA [31], as summarized in Table 7.

Table 7: Instruction prompts provided to the model for each task.
Task Prompt

NLI What is the logical relationship between "sentence 1" and "sentence 2"? Choose
one from the options.

QQP Do "sentence 1" and "sentence 2" express the same meaning? Choose one from
the options.

SC What is the sentiment of the following passage? Choose one from the options.
TC What is the topic of the following passage? Choose one from the options.
BoolQA According to the passage, is the statement true or false? Choose one from the

options.
MultiRC Based on the passage and question, is the candidate’s answer correct? Choose

one from the options.
WiC Given a word and two sentences, is the word used with the same sense in both?

Choose one from the options.

F Training and Inference Efficiency

Training Efficiency. We measure the training throughput and GPU memory usage on the DBpedia
dataset with the T5-large backbone (Table 8).

Table 8: Training efficiency on DBpedia with T5-large.
Method Training Throughput (samples/sec) GPU Mem. Train (GB)

LoRA 31.62 20.41
DEAL 17.88 22.93

Inference Efficiency. We evaluate inference latency and GPU memory usage under the same setting
(Table 9).

Table 9: Inference efficiency on DBpedia with T5-large.
Method Inference Latency (ms/sample) GPU Mem. Infer (GB)

LoRA 71.89 3.15
DEAL 73.32 3.16

Discussion. As shown in Tables 8 and 9, DEAL incurs a ∼43% drop in training throughput and a
small increase in training GPU memory, while inference-time performance remains nearly identical to
LoRA in both latency and memory usage. Since the wavelet module is only active during training and
enables consistent performance gains (see Table 1), this overhead represents a worthwhile trade-off
for better generalization and robustness.
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G Comparison with Additional Continual Learning Methods

To provide a comprehensive evaluation, we expand our comparisons to include a wide range of
strong non-LoRA continual learning (CL) baselines. Table 10 reports the average accuracy (AA) on a
standard CL benchmark using the T5-large backbone.

Our method, DEAL, achieves the highest average accuracy while maintaining parameter efficiency. It
outperforms both rehearsal-based approaches (Replay) and regularization-based techniques (EWC,
LwF). Additionally, DEAL surpasses prompt-based strategies (L2P, ProgPrompt) and recent com-
petitive baselines (LFPT5, LB-CL), highlighting its effectiveness as a general-purpose solution for
continual learning.

Table 10: Comparison with Additional Continual Learning Methods.
Method Average Accuracy (AA)

SeqSVD 63.3
Replay 52.0
EWC 45.3
LwF 52.9
L2P 60.5
LFPT5 71.2
ProgPrompt 76.0
LB-CL 76.5
DEAL (Ours) 78.5

• SeqSVD: Learns a fixed-size SVD parameter space across sequential tasks without regular-
ization or replay.

• Replay: Rehearses past samples to prevent forgetting by storing and replaying them during
training [46].

• EWC: Mitigates forgetting by penalizing changes to important parameters estimated via
Fisher information [47].

• LwF: Preserves knowledge of past tasks through knowledge distillation without storing old
data [48].

• L2P: Introduces learnable prompts for continual learning to guide pre-trained models
effectively [49].

• LFPT5: Proposes a unified framework for lifelong few-shot learning based on prompt
tuning of T5 [50].

• ProgPrompt: Designs progressive prompts to adapt large language models for continual
learning [51].

• LB-CL: Achieves parameter-efficient continual learning by learning more but disturbing
less [52].
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and the "Main Results" paragraph in Section 1 accurately reflect
the key contributions and scope of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: A summary of the key limitations of this work is provided in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Appendix A lists all the assumptions used and provides the complete proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A comprehensive description of the experimental setup and hyperparameters
is included in Appendix B.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include detailed instructions for running the experiments, and the code is
publicly released as open source.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The dataset splits, hyperparameter configurations, and detailed experimental
setup are thoroughly documented in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We evaluate performance in Section 4.1 using three continual learning bench-
marks across different models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4 provides a clear report of the computational resources used in our
experiments.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impacts of our approach are discussed in detail in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: No datasets or models are released in this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The dataset we use is completely open source. In addition, the method
mentioned in the paper is brand new and is also the innovation of this article.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our code as open source and include detailed instructions to
facilitate its use.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The usage of LLMs is illustrated in detail in the Method and Experiments
section.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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