
A Comprehensive Study on Large-Scale Graph
Training: Benchmarking and Rethinking

Keyu Duan1, Zirui Liu2, Peihao Wang3, Wenqing Zheng3,
Kaixiong Zhou2, Tianlong Chen3, Xia Hu2, Zhangyang Wang3

1National University of Singapore, 2Rice University, 3University of Texas at Austin
{k.duan}@u.nus.edu; {zl105,Kaixiong.Zhou,xia.hu}@rice.edu;
{peihaowang,w.zheng,tianlong.chen,atlaswang}@utexas.edu

Abstract

Large-scale graph training is a notoriously challenging problem for graph neural
networks (GNNs). Due to the nature of evolving graph structures into the training
process, vanilla GNNs usually fail to scale up, limited by the GPU memory space.
Up to now, though numerous scalable GNN architectures have been proposed,
we still lack a comprehensive survey and fair benchmark of this reservoir to find
the rationale for designing scalable GNNs. To this end, we first systematically
formulate the representative methods of large-scale graph training into several
branches and further establish a fair and consistent benchmark for them by a
greedy hyperparameter searching. In addition, regarding efficiency, we theoreti-
cally evaluate the time and space complexity of various branches and empirically
compare them w.r.t GPU memory usage, throughput, and convergence. Further-
more, We analyze the pros and cons for various branches of scalable GNNs and
then present a new ensembling training manner, named EnGCN, to address the
existing issues. Remarkably, our proposed method has achieved new state-of-
the-art (SOTA) performance on large-scale datasets. Our code is available at
https://github.com/VITA-Group/Large_Scale_GCN_Benchmarking.

1 Introduction
The Graph Neural Networks (GNNs) have shown great prosperity in recent years [1–4], and have
dominated a variety of applications, including recommender systems [5–7], social network analysis [8–
10], scientific topological structure prediction (e.g. cellular function prediction [11, 12], molecular
structure prediction [13, 14], and chemical compound retrieval [15]), and scalable point cloud
segmentation [16, 17], etc. Although the message passing (MP) strategy provides GNNs’ superior
performance, the nature of evolving massive topological structures prevents MP-based GNNs [18–
20, 1, 2, 4, 21, 22] from scaling to industrial-grade graph applications. Specifically, as MP requires
nodes aggregating information from their neighbors, the integral graph structures are inevitably
preserved during forward and backward propagation, thus occupying considerable running memory
and time. For example [6], training a GNN-based recommendation system over 7.5 billion items
requires three days on a 16-GPU cluster (384 GB memory in total).

To facilitate understanding, a unified formulation of MP with K layers is presented as follows:

X(K) = A(K�1)�

✓
A(K�2)�

�
· · ·�(A(0)X(0)W(0)) · · ·

�
W(K�2)

◆
W(K�1), (1)

where � is an activation function (e.g. ReLU) and A(l) is the weighted adjacency matrix at the l-th
layer. As in Equ. (1), the key bottleneck of vanilla MP lies on A(l)X(l). For the memory usage, the
entire sparse adjacency matrix is supposed to be stored in one GPU. As the number of nodes grows,
it is quite challenging for a single GPU to afford the message passing over the full graph.

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://github.com/VITA-Group/Large_Scale_GCN_Benchmarking

Up to now, massive efforts have been made to mitigate the aforementioned issue and scale up
GNNs [23, 24, 3, 25–30]. Most of them focus on approximating the iterative full-batch MP to reduce
the memory consumption for training within one single GPU. It is worth noting that we target at
the algorithmic scope and do not extend to scalable infrastructure topics like distributed training
with multiple GPUs [31, 32] and quantization [33]. Briefly, the previous works encompass two
branches: Sampling-based and Decoupling-based. Namely, the former methods [3, 25, 24, 23, 34–36]
perform batch training that utilizes sampled subgraphs as a small batch to approximate the full-batch
MP so that the memory consumption is considerably reduced. The latter follows the principle of
performing propagation (A(l)X(l)) and prediction (X(l)W(l)) separately, either precomputing the
propagation [27, 28, 19, 37, 31] or post-processing with label propagation [29, 38]. Despite the
prosperity of scalable GNNs, there are still plights under-explored: we lack a systematic study of the
reservoir from the perspective of effectiveness and efficiency, without which it is unachievable to tell
the rationale of the designing philosophy for large-scale graph learning in practice.

To this end, we first establish a consistent benchmark and provide a systematic study for large-scale
graph training for both Sampling-based methods (Sec. 2.1) and Decoupling-based methods (Sec. 2.2).
For each branch, we conduct a thorough investigation of the design strategy and implementation details
of typical methods. Then, we carefully examine the sensitive hyperparameters and unify them in one
“sweet spot” set by a linear greedy hyperparameter (HP) search (Sec. 3), i.e., iteratively searching
the optimal value for an HP while fixing the others. For all concerned methods, the performance
comparison is conducted on representative datasets of different scales, varying from about 80, 000
nodes to 2, 400, 000, including Flickr [24], Reddit [3], and ogbn-products [11]. This step is a crucial
precondition on our way to the ultimate as the configuration inconsistency significantly prohibits
a fair comparison as well as the following analysis. Besides, regarding efficiency, we theoretically
present the time and space complexities for the various branches, and empirically evaluate them on
GPU memory usage, throughput, and convergence (Sec. 4). In addition to the benchmark, we further
present a new ensembling training manner EnGCN (Sec. 5) to address the existing issues mentioned in
our benchmark analysis (Sec. 5.1). Notably, via organically integrating with self-label-enhancement
(SLE) [29], EnGCN achieves the new state-of-the-art (SOTA) on multiple large-scale datasets.

2 Formulations For Large-scale Graph Training Paradigms
2.1 Sampling-based Methods
Given the formulation of Equ. (1), sampling-based paradigm seeks the optimal way to perform batch
training, such that each batch will meet the memory constraint of a single GPU for message passing.
For completeness, we restate the unified formulation of sampling-based methods as follows:

X(k)
B0

= eA(k�1)
B1

�

✓
eA(k�2)

B2
�
�
· · ·�(eA(0)

BK
X(0)

BK
W(0)) · · ·

�
W(K�2)

◆
W(K�1), (2)

where Bl is the set of sampled nodes for the l-th layer, and eA(l) is the adjacency matrix for the
l-th layer sampled from the full graph. Given the local view of GNN — one node’s representation
is only related to its neighbors — a straightforward way for unbiased batch training would be
Bl+1 = N (Bl), where N denotes the set of neighbors. B0 is randomly sampled according to the
uniform distribution. Notably, this batch training style could achieve SOTA performance but also
suffers from the “neighbor explosion” problem, where the time consumption and memory usage
grow exponentially with the GNN depth, causing significant memory and time overhead. To mitigate
this, a number of sampling-based methods were proposed. The key difference among them is how
{B0, . . . ,BK�1,BK} are sampled. Given a large-scale graph G = (V, E), there are three categories
of widely-used sampling strategies:

Node-wise Sampling [3] Bl+1 =
S

v2Bl
{u | u ⇠ Q · PN (v)}, where P is a sampling distribution;

N (v) is the sampling space, i.e., the 1-hop neighbors of v; and Q denotes the number of samples.
The representative node-wise sampling method is:

? GraphSAGE [3]: In GraphSAGE, P is the uniform distribution.

Compared with the aforementioned naive batch training, the node-wise sampling [3] alleviates the
"node explosion" problem by fixing the number of sampled neighbors Q for each node. It thus
reduces the space complexity from DK to QK , where D is the averaged node degree. However, as
Q is not far less than D in order of magnitude, such mitigation is moderate, which is empirically
validated by our empirical results in Sec. 3 and Sec. 4.

2

Layer-wise Sampling [25, 26]. Bl+1 = {u | u ⇠ Q · PN (Bl)}, where N (Bl) =
S

v2Bl
N (v)

denotes the union of 1-hop neighbors of all nodes in Bl. We introduce a couple of layer-wise
sampling methods as follows.

? FastGCN [25]: The sampling distribution P is designed regarding the node degree, where the
probability for node u of being sampled is p(u) / ||Â(u, :)||2.

? LADIES [26]: More recently, based on FastGCN, Zou et.al. [26] propose LADIES that extends the
sampling space from N (Bl) to N (Bl) [Bl by adding the self-loops.

Notably, Compared with the node-wise sampling, the layer-wise sampling essentially solves the
“neighbor explosion” problem by fixing the number of overall sampled nodes in a layer to Q. However,
the layer-wisely induced adjacency matrix is usually sparser than the others, which accounts for its
sub-optimal performance in practice.

Subgraph-wise Sampling [23, 24]. BK = BK�1 = · · · = B0 = {u | u ⇠ Q · PG}. In the
subgraph-wise sampling, all layers share the same subgraph induced from the entire graph G based on
a specific sampling strategy PG , such that the sampled nodes are confined in the subgraph. Typically,
this sampling strategy has two representative works:

? ClusterGCN [23]: ClusterGCN first partitions the entire graph into clusters based on some graph
partition algorithms, e.g. METIS [39], and then select several clusters to form a batch.

? GraphSAINT [24]: GraphSAINT samples a subset of nodes based on sampling strategy PG and
then induces the corresponding subgraph as a batch. The commonly-used sampling strategies include:
(i) node sampler: P(u) = ||eA:,u||

2, (ii) edge sampler: P(u, v) = 1
deg(u) +

1
deg(v) , and (iii) random

walk sampler. They are illustrated in Appendix A1.1.

2.2 Decoupling-based Methods
Training GNNs with full-batch message passing at each epoch is not plausible. In this section, we
summarize another line of scalable GNNs which decouple the message passing from GPU training
to CPUs. Specifically, the message passing is conducted only once at CPUs accompanied by large
accessible memory. Depending on the processing order, there are two typical ways to decouple these
two operations: (i) pre-processing and (ii) post-processing.

Pre-processing: MP precomputating [27–29]. Recalling Equ. (1), without loss of generalization,
we assume that A(k�1) = A(k�2) = · · ·A(0) = A, i.e. the topological structure for the entire
graph remains the same during forward propagation, meeting most of the cases. To decouple the two
operations, message passing (AX) and feature transformation (XW), we can first pre-compute the
propagated node representations and then train a neural network for the downstream task based on
these fused representations:

Xl = AlX| {z }
precomputing

, X̄ = ⇢(X,X1, · · · ,XK), Y = f✓(X̄)| {z }
end-to-end training on a GPU

, (3)

where Xl can be regarded as the node representation aggregating l-hop neighborhood information; K
is the largest propagation hop; ⇢(·) is a function that combines the aggregated features from different
hops; and f✓(·) is a feature mapping function parameterized by ✓. We summarize three existing
pre-computing schemes as follows.

? SGC [27]: SGC leverages the node representations aggregated with k hops and feeds the resultant
features to a full-connected layer. We can formulate this scheme by letting ⇢(·) select the last element
XK and f✓(·) be a linear layer with readout activation: Y = �(XK⇥).

? SIGN [28]: SIGN concatenates features from different hops and then fuse them as the final node
representation via a linear layer. To be more specific, ⇢(·) is defined as X̄ =

⇥
X X1

· · · XK
⇤
⌦,

where ⌦ is a transformation matrix, and f✓(·) is defined as a linear readout layer Y = �(X̄⇥).

? SAGN [29]: SAGN adopts attention mechanism to combine feature representations from K hops:
X̄ =

PK
l=1 T

lXl, where Tl is a diagonal matrix whose diagonal corresponds to the attention
weight for each node of k-hop information. The attention weight for the i-th node is calculated by
T k
i = softmaxK(LeakyReLU(uTXi+vTXk

j)), where the subscripts slices the data matrices along
the row. The feature mapping function is implemented by an MLP block with a skip connection to
initial features: Y = MLP✓(X̄+X⇥r).

3

Post-processing: Label Propagation. The label propagation algorithms [40–44, 38, 45] diffuse
labels in the graph and make predictions based on the diffused labels. It is a classical family of graph
algorithms for transductive learning, where the nodes for testing are used in the training procedure.
The label propagation can be written in a unified form as follows:

Y(l) = ↵AY(l�1) + (1� ↵)G. (4)

The diffusion procedure iterates the formula above with l for multiple times to guarantee convergence.
It requires two sets of inputs: (i) the stack of the label embeddings of all nodes, denoted as Y(0)

2

RN⇥c, where c is the number of classes. In our implementation, the Y(0) is the output of a trained
MLP model [38]. (ii) the diffusion embedding, denoted as G 2 RN⇥c that propagate themselves
across the edges in the graph. Depending on how the diffusion embeddings of unlabeled nodes are
computed, two types of G are summarized as follows:

? Zeros [40]: Gi,: =

(
Ŷi,: � ↵AY(k)

i,: , i 2 Ttrain

0, otherwise
, where Ttrain denotes the training set and Ŷ is

the stack of true labels. For zeros, Y(0) = G.

? Residual [38]: Gi,: =

(
Ŷi, vi 2 Ttrain

Ẑi, otherwise
, where Ẑ = Z + Ê. Z is the predictions of a trained

simple neural network, e.g. MLP, and Ê is an residual error matrix, which is optimized iteratively for
multiple times by Et+1 = (1� ↵)E+ ↵AE(t), where E = Z� Ŷ and E(0) = E.

2.3 More Related Works
Model-agnostic Tricks. Besides the training methods as introduced above, there are some model-
agnostic tricks that have been empirically confirmed to be effective for boosting large-scale graph
training. Although those add-ons cannot be included into our benchmarking analysis, it is of equal
importance to introduce them for completeness. Here we briefly introduce two representative ones:

? Self-Label-Enhanced (SLE) [29]: SLE includes two individual tricks, self training and label

augmentation. Here we use T denoting the training set. For self training, the unlabeled nodes with
high confidence (larger than a pre-defined threshold) are added to T after a certain number of training
epochs. For label augmentation, it trains an additional model �(·). The forward propagation can be
formulated as out = �(ÂkYT). out is added to the main model to make the final prediction.

? GIANT [46]: In general, node features are usually pre-embed with graph-agnostic language models,
such as word2vec [47] and BERT [48]. Recently, Chien et.al. propose a graph-related node feature
extraction framework (GIANT), which embeds the raw texts to numerical features by taking advantage
of graph structures, to help boost the performance of GNNs for the downstream tasks.

Memory-based GNN Training. Focus on mitigating the “Neighbor Explosion” problem of full-
batch training as introduced, memory-based GNNs [49, 50] try to save the GPU memory with
different techniques while including all neighbor nodes into computing during the message passing.
GAS [49] incorporates historical embeddings [34] to provably maintain the expressive power of
full-batch GNN. VQ-GNN [50] utilizes vector quantization to scale convolutional-based GNN and
resemble the performance of full-batch message passing by learning an additional quantized feature
matrix and a corresponding low-rank adjacent matrix.

3 Benchmarking Over Effectiveness

3.1 Implementation Details

We test numerous large-scale graph training methods with a greedy hyperparameter (HP) search
to find their sweet spot and the best performance for a fair comparison. The search space is de-
fined in Table 1. The access and statistics of all used datasets are introduced in Appendix A3.1.
Particularly, for label propagation, we select two representative algorithms: Huang et.al. [38], the
residual diffusion type, and Zhu et.al. [40], the zeros type. The number of propagation is the max-
imum iteration k. The aggregation ratio is ↵ as in Equ. (4), and the number of MLP layers is the
number of MLP layers that precedes the label propagation module following Huang et.al. [38].

4

Table 1: The search space of hyperparameters for bench-
marked methods.

Category Hyperparameter (Abbr.) Candidates

Sampling &
Precomputing

Learning rate (LR) {1e� 2⇤, 1e� 3, 1e� 4}
Weight Decay (WD) {1e� 4⇤, 2e� 4, 4e� 4}
Dropout Rate (DP) {0.1, 0.2⇤, 0.5, 0.7}
Training Epochs (#E) {20, 30, 40, 50⇤}
Hidden Dimension (HD) 128⇤, 256, 512
layers (#L) {2⇤, 4, 6}
Batch sizea (BS) {1000⇤, 2000, 5000}

LP

Diffusion Type (DT) { residual⇤, zeros }
Propagations (#Prop) { 2, 20⇤, 50 }
Aggregation Ratio (AR) { 0.5, 0.75⇤, 0.9, 0.99 }
Adj. Norm (Adj.) { D�1A, AD�1, D�1/2AD�1/2⇤ }
Auto Scale (AS) { True

⇤, False }
MLP Layers (#ML) { 2⇤, 3, 4 }

⇤ marks the default value
a we do not search batch size for precomputing based methods since
they do not follow a sample-training style.

Limited by space, we select five rep-
resentative approaches that covers all
branches as we introduced, including
GraphSAGE [3], LADIES [26], Clus-
terGCN [23], SAGN [29], and C&S [38].
We illustrate the selected results in Fig. 1
and the results of other methods in Fig. A5.
For each subplot, from left to right, each
column denotes the search results for one
HP. Once one HP was searched, its value
will be fixed to the best results for the
rest HP searching. Iteratively, we obtain
the best performance in the last column.
For convenience and clarity, we list the
searched optimal hyperparameter settings of all test methods in Table A5.

3.2 Experimental Observations

Figure 1: The greedy hyperparameter searching results for selected representative methods. The
x-axis denotes the searched HPs, where the abbreviations are consistent with Table 1.

Obs. 1. Sampling-based methods are more sensitive to the hyperparameters related to MP.
According to Fig. 1, in comparison with precomputing, all sampling-based methods are non-sensitive
to hyperparameters (HPs) that are related to the feature transformation matrices, including weight
decay, dropout, and hidden dimension; but particularly sensitive to the MP-related HPs, including the
number of layers and batch size. For model depth, sampling-based methods generally achieve the
sweet spots when the number of layers is confined to shallow and suffers from the oversmoothing

problem [51–55] as the GNN models go deeper. However, this issue is moderately mitigated in
decoupling-based methods as the model depth does not align with the number of MP hop.

Obs. 2. Sampling-based methods’ performance is nearly positive-correlated with the training
batch size. According to the results of the last column of all sampling-based methods, the perfor-
mance of the layer-wise and subgraph-wise sampling methods is roughly proportional to the batch
size. Expectedly, the model performance could further increase as the batch size grows till the upper
bound of full-batch training because more links can be preserved. Particularly, in our experiment,
we set the number of sampled neighbors of node-wise sampling to a large threshold such that the
performance of GraphSAGE can be regarded as full-batch training’s. It can be easily found that the
performance of sampling-based methods is inferior to full-batching training (GraphSAGE), further
proving our conjecture that the missing links by sampling are non-trivial.

Obs. 3. Precomputing-based methods generally perform better on larger datasets. As show in
Fig. 1 and Fig. A5, C&S (label propagation) outperforms the full-batch training (GraphSAGE as
introduced in Obs. 2) on the largest dataset ogb-products by a large margin of 4.5%, although both
two branches have on-par performance on smaller datasets. Remarkably, our searched results for
GraphSAGE and LP on ogbn-products also reached better performance, compared with the ones on
the OGB leaderboard 1. Noticing that GraphSAGE encounters the out-of-memory (OOM)2 runtime

1https://ogb.stanford.edu/docs/leader_nodeprop/
2We rerun it on a GPU with larger memory and the accuracy is 80.56%

5

https://ogb.stanford.edu/docs/leader_nodeprop/

error with increasing depth, the observation partially indicates that, limited by model depth and
neighbor explosion problem, it is possibly not powerful for extremely large-scale graphs to learn
expressive representations.

4 Benchmarking Over Efficiency
4.1 Time And Space Complexity

In this section, we present another benchmark regarding the efficiency of scalable graph training
methods. Firstly, we briefly summarize a general complexity analysis in Table 2. For sampling-based

methods, we note that the time complexity is for training GNNs by iterating over the whole graph.
The time complexity O(L||A||0D + LND2) consists of two parts. The first part L||A||0D is from
the Sparse-Dense Matrix Multiplication,i.e., AX. The second part LND2 is from the normal Dense-
Dense Matrix Multiplication, i.e., (AX)W. Regarding the space complexity, we need to store the
activations of each layer in memory, which has a O(bLD) space complexity. Note that we ignore the
memory usage of model weights and the optimizer here since they are negligible compared to the
activations. For decoupling-based methods, the training paradigm is simplified as MLPs, and thus the
complexity is the same as the traditional mini-batch training. We do not include label propagation in
our analysis since it can be trained totally on CPUs.

4.2 Throughput And Memory Usage

Table 2: The time and space complexity for training GNNs
with sampling-based and decoupling-based methods, where b
is the averaged number of nodes in the sampled subgraph and
r is the averaged number of neighbors of each node. Here
we do not consider the complexity of pre-processing sice it
can be done in CPUs.

Category Time Complexity Space Complexity

Node-wise Sampling [3] O(rLND2) O(brLD)
Layer-wise Sampling [28, 26] O(rLND2) O(brLD)
Subgraph-wise Sampling [23, 24] O(L||A||0D + LND2) O(bLD)
Precomputing [27–29] O(LND2) O(bLD)

Implementation Details To fairly
benchmark the training speed and
memory usage for large-scale graph
training methods, we empirically eval-
uate the throughputs and actual mem-
ory for various methods during the
training procedure. Here “Through-
put” measures how many times can
we complete the training steps within
a second. Note that we omit the label
propagation methods since it is not
trained by backward propagation. We provide our implementation details for computing the through-
put and memory usage in section A3.2. We report the hardware throughput and activation usage in
Table 3. We summarize three main observations.

Table 3: The memory usage of activations and the hardware throughput (higher is better). The
hardware here is an RTX 3090 GPU.

Flickr Reddit ogbn-products
Act

Mem. (MB)
Throughput
(iteration/s)

Act
Mem. (MB)

Throughput
(iteration/s)

Act
Mem. (MB)

Throughput
(iteration/s)

GraphSAGE 230.63 65.96 687.21 27.62 415.94 37.69
ClusterGCN 18.45 171.46 20.84 79.91 10.62 156.01
GraphSAINT 16.51 151.77 21.25 70.68 10.95 143.51

FastGCN 19.77 226.93 22.53 87.94 11.54 93.05
LADIES 33.26 195.34 43.21 116.46 20.33 93.47

SGC 0.01 115.02 0.02 89.91 0.01 267.31
SIGN 16.99 96.20 16.38 75.33 16.21 208.52
SAGN 72.94 55.28 72.37 43.45 71.81 80.04

Obs. 4. GraphSAGE is significantly slower and occupies more memory compared to other
baselines. This is partially because of the large neighbor sampling threshold we set and inherently
owing to its neighborhood explosion. Namely, to compute the loss for a single node, it requires the
neighbors’ embeddings at the down-streaming layer recursively. Please refer to Sec. 2.1 for details.

Obs. 5. SGC does not occupy any activation memory. As shown in Table 3, SGC only occupies
about 0.01 MB actual memory during training. This is because SGC only has one linear layer and
the activation is exactly the input feature matrix, which has been stored in memory. Thus, it is not
accounted towards the activation memory.

Obs. 6. In general, the speed of decoupling-based methods is comparable to sampling-based
methods. Besides the scale of sparse adjacency matrix, the feature set size is also crucial for

6

occupying memory. Although precomputing-based methods avoid storing the graph structures in a
GPU, they may take advantage of multi-hop features, where the corresponding memory is multiplied
many times.

4.3 Convergence Analysis

Figure 2: The empirical results of convergence for sampling-based methods (real line) and
precomputing-based methods (dash line).
For convergence analysis, we test all benchmarked methods on Flickr, Reddit, and ogbn-products.
The training loss and validation accuracy (val_acc) are shown in Fig. 2. Based on the empirical
results, we summarize the main observation as follows:

Obs. 7. In general, precomputing-based methods have faster and more stable convergence
than sampling-based methods. This is because sampling-based methods usually incur a variance
among batches that poses unstable and slow convergence [35]. However, precomputing-based
methods mitigate this by moving message passing from backward propagation to the precomputing
stage.

5 EnGCN: Rethinking Graph Convolutional Networks With Ensembling

5.1 An Empirical Summary: Pros And Cons

Based on our benchmark results in section 3 and 4, we summarize the advantages (marked as Pros)
and constraints (marked as Cons) for different branches as follows. Besides the summary, we also
provide a joint comparison of effectiveness and efficiency for various methods in Appendix A2.2.

? Sampling-based: (Pros) Sampling subgraphs into GPU training allows them taking advantage of
numerous graph convolution layers, such as GCN [1], GraphSAGE [3], and GIN [4], and this is
flexible for them to design specific architecture for different downstream tasks, e.g. node classification
and graph classification. (Cons) As aforementioned, sampling-based methods suffers from link

sparsity [24] (section 3) and unstable and low convergence (section 4) problems, both of which
prevent sampling-based methods from achieving SOTA performance.

? Precomputing-based: (Pros) Decoupling message passing from GPU training to CPU precomputing
allows precomputing-based methods utilize a mixture of feature transformation units (e.g. attention
mechanism and MLP) to train in a well-studied manner. This guarantees stable and fast convergence
(section 4). Particularly, integrating with the add-ons like SLE [29] and GIANT [46], precomputing-
based methods achieve SOTA performance on large-scale open graph benchmark (ogb) [11] datasets.
(Cons) In general, precomputing-based methods at least occupy a CPU memory space of O(LNd),
where L is the number of layers; N is the number of nodes; and d is the dimension of input features.
In comparison, it is L times as large as the others, which is not affordable for extremely large-scale
graphs. For example, containing about 111 million nodes, the largest ogb dataset, ogbn-papers100M,
requires approximately 57 Gigabytes (GB) to store the initial feature matrix, given the data type is
float and the dimension of features is 128. As the number of layers increases, the required CPU
memory space will grow proportionally to an unaffordable number.

7

? Label Propagation: (Pros) As a traditional branch of graph learning algorithm, label propagation
is a simple but effective add-on as a post-processing trick nowadays. Because of its mode-agnostic
nature, it can be simply attached to the end of any graph representation learning algorithm to boost
the final prediction. (Cons) Label propagation has many additional sensitive hyperparameters as we
introduced in Table 1 and is specifically designed for the node classification task.

5.2 Motivation and Related Works

To address the above constraints of sampling-based methods and precomputing-based methods, let
us first recap the full-batch message passing in Equ. (1). We reformulate it into a more general form:

X(k) = �(k�1)

✓
A�(k�2)

�
· · ·A�(0)(AX(0))

�◆
,

where �(i) denotes the feature mapping model for the i-th layer. To make the message passing
scalable, following the rationale of decoupling, we propose a different training scheme from precom-
puting: Instead of end-to-end training, we sequentially train the �s in a layer-wise manner. In this
way, no precomputing is required and thus the corresponding constraint of CPU memory occupation
is essentially mitigated. To elaborate on this, we present the layer-wise training manner:

X(l) = AX(l�1)
| {z }

Message passing on CPUs

, Z(l) = �(l)(X(l))| {z }
forword propagation

, r�(l) = rL(Z(l),Y)| {z }
backward propagtion

. (5)

From layer 0 to k, we do message passing once and then train �(l) in batches for epochs. Finally, one
can simply use the output of model � as the prediction. Besides, from the perspective of ensembling,
the models � can be naturally viewed as a set of weak learners trained on multiple views of the input
X. As a result, it is compatible to use ensembling to boost the final predictions, such as majority
voting. In addition, Based on our empirical results, this training manner is capable of achieving SOTA
methods on relatively small datasets without exhaustive finetuning. To further boost the performance,
we organically integrate SLE, which has achieved new SOTA performance on several representative

datasets. We name this model EnGCN (Ensembling GCN).

Related Works. Interestingly, the layer-wise training manner and majority voting are naturally
consistent with the boosting algorithms, where we sequentially train weak learners with instance
reweighting and make the final prediction by majority voting. In the scope of graph representation
learning, AdaGCN [56] first applies adaboosting [57, 58] to address the oversmoothing problem of
deep GCNs. Though focusing on different topics, AdaGCN has a similar training scheme as ours.
Therefore, we implement a scalable version for it, which is included as a SOTA baseline in our
experiment. In addition, AdaClusterGCN [59] proposed an adaboosting application that ensembles
weak learners trained on different clusters.

5.3 Methodology
Considering a large-scale graph G = (A,X,y), where A is the adjacent matrix, X is the node
features, and y is the true labels. Respectively, Ttrain, Tval and Ttest denotes the training, validation,
and test set. Let X(l) and Y(l) denotes the embeddings of node features and labels at the l-th layer,
respectively. We use ỹ(l) and eT (l)

train denoting the pseudo labels, pseudo training set for self training
at layer l.

Initialization. we initialise several important matrices and vectors:

X(0) = X, Y(0)
i,: =

⇢
one_hot(yi), i 2 Ttrain

0, otherwise
, eT (0)

train = Ttrain, ỹ(0)
i =

(
yi, i 2 eTtrain
0, otherwise

Layer-wise Training. From 0 to k, we follow a layer-wise training manner, where each training
stage contains three phases: pre-processing, training, and post-processing. For layer l, the three
phases are introduced as follows.

Pre-processing. For pre-processing, we precompute X(l) and Y(l) in CPUs as follows:

X(l) = ÂX(l�1), Y(l) = ÂY(l�1), (6)

where Ã is symmetrically normalized [1]. Note that pre-processing is skipped when l = 0.

8

Training. We solely train two simple models till convergence, which empirically takes dozens of
epochs on real-world datasets. The forward propagation is:

out(l) = ⌦(X(l),Y(l)) = �(X(l)) + (Y(l)), (7)

where � and are two MLP models that are shared through all layers. Specifically, when l = 0,
the forward propagation is reduced to out(0) = �(X(0)) where is not evolved. This is because
the initialized Y(0) contains many zero vectors and will pose the overfitting problem. For backward
propagation, we compute the training loss using the pseudo labels ỹ(l) instead of y(l).

post-processing. After obtaining the trained models, we save the state of them as ⌦(l) = (�(l), (l))
for ensembling. Furthermore, self training is used to enhance the training set. Following Sun
et.al. [29], the pseudo labels and pseudo training masks are updated as follows.

eT (l+1)
train = eT (l)

train[{i |max
c

(⌧(out(l)i)) � ↵}, ỹ(l+1)
i =

(
yi, i 2 Ttrain

c, else if max
c

(⌧(out(l)i)) � ↵
, (8)

where ⌧ is the softmax function.

Inference With Majority Voting. After k layers, we have obtained a series of weak learners
{⌦(l)

| 0  l  k}. The final prediction of node n is made by weighted majority voting [58]:

ŷn = argmax
c

kX

l=0

✓
z(l)n �

1

d

dX

i=1

(z(l)n,i)

◆
, (9)

where z(l) = log_softmax(out(l)n).

5.4 Empirical Analysis

Experiment Settings. Consistent with our effectiveness benchmark, we test our proposed EnGCN

on Flickr, Reddit, and ogbn-products. A similar hyperparameter (HP) search was conducted to find
its suitable HP setting. The search space is provided in Appendix A2.3. For the baselines, we directly
use all benchmark results from section 3, where the SOTA performance has been achieved.

Main Experiment. As shown in Table 4, EnGCN outperforms the sampling-based and decoupling-

based methods on multi-scale datasets. For Flickr and Reddit, EnGCN outperforms the baselines
by a large margin. Remarkably, EnGCN has achieved new SOTA performance on ogbn-products,
outperforming C&S by 2.88% and the SOTA model (GIANT-XRT+SAGN+MCR+C&S) in the ogb
leaderboard by 1.26%. In addition to the comparison experiment, we also conduct a couple of ablation
studies to provide more insights into EnGCN in Appendix A2.4.

Table 4: The comparison experiment results on Flickr, Reddit, and ogbn-products

Category Baselines Flickr Reddit ogbn-products

Sampling-based

GraphSAGE [3] 53.63 ± 0.13% 96.50 ± 0.03% 80.61 ± 0.16%
FastGCN [25] 50.51 ± 0.13% 79.50 ± 1.22% 73.46 ± 0.20%
LADIES [26] 50.51 ± 0.13% 86.96 ± 0.37% 75.31 ± 0.56%
ClusterGCN [23] 51.20 ± 0.13% 95.68 ± 0.03% 78.62 ± 0.61%
GraphSAINT [24] 51.81 ± 0.17% 95.62 ± 0.05% 75.36 ± 0.34%

Decoupling-based

SGC [27] 50.35 ± 0.05% 93.51 ± 0.04% 67.48 ± 0.11%
SIGN [28] 51.60 ± 0.11% 95.95 ± 0.02% 76.85 ± 0.56%
SAGN [29] 50.07 ± 0.11% 96.48 ± 0.03% 81.21 ± 0.07%
GAMLP [30] 52.58 ± 0.12% 96.73 ± 0.03% 83,76 ± 0.19%
C&S [38] 51.24 ± 0.17% 95.33 ± 0.08% 85.11 ± 0.07%

Other SOTA Methods
AdaGCN [56] 52.97 ± 0.01% 96.05 ± 0.00% 76.41 ± 0.00%
SAGN+SLE [29]⇤ 54.60 ± 0.40% 97.10 ± 0.00% 84.28 ± 0.14%
GIANT-XRT+
SAGN+MCR+C&S [60]⇤ - - 86.73 ± 0.08%

Ours EnGCN 56.43 ± 0.21% 97.14 ± 0.03% 87.99 ± 0.04%
⇤: the results are from the original papers

The Training Efficiency and Convergence Landscape of EnGCN. For EnGCN, since all we need
to train is two simple shallow MLPs (Section 5.3), the GPU throughput and memory consumption

9

are expected to be sufficiently efficient. The remained concern is solely about the convergence of
EnGCN. Due to the nature of layer-wise training, the convergence of EnGCN is more complicated
than other end-to-end training methods. In Figure 3, we show the convergence landscape of EnGCN
and provide several interesting observations as follows.

∂ As shown in Figure 3, the train accuracy and validation accuracy generally increase layer-wisely
till convergence. Noticeably, though the training accuracy occasionally drops, the validation accuracy
still relatively remains positive. ∑ At the beginning of each layer, the accuracy changes rapidly,
indicating the remarkable distribution difference for various hops. ∏ Different datasets are sensitive
to different hops. For example, the 2-nd hop is crucial to boost the training and validation accuracy
on Flickr, while for Reddit and ogbn-products, 1-hop neighbors are more important.

Figure 3: The convergence landscape of EnGCN. All models are trained with 4 layers’ features. For
each layer-wise phase, we train the model with 70 epochs.

Figure 4: The allocated CPU memory of EnGCN
and selected baselines on Flickr.

The CPU memory consumption of EnGCN. To
confirm the low CPU memory consumption of En-
GCN, we provide a comparison experiment and il-
lustrate the results in Figure 4. The x-axis denotes
the models’ number of layers while the y-axis
records their allocated memories that are reported
by “aten::empty” of PyTorch. As shown in Fig-
ure 4, the precomputing-based methods, SIGN
and SAGN, suffer from expensive CPU memory
consumption as the model depth increases. For
sampling-based methods, since there is no need
to pre-store a large number of feature matrices,
the memory consumption increases much more
smoothly. For EnGCN, as no precomputing is re-
quired, the CPU memory consumption is considerably reduced in comparison with SIGN and SAGN,
which intuitively validates the CPU memory efficiency of EnGCN.

6 Conclusion
The scalability issue of graph convolutional networks has been a notoriously challenging research
problem. In this work, we establish a fair and consistent benchmark for large-scale graph training
w.r.t effectiveness and efficiency. We provide a unified formulation for dozens of works and further
assess them on the basis of accuracy, memory usage, throughput, and convergence. Furthermore,
provided with the comprehensive benchmark results, we rethink the scalability issue of GCNs from
the perspective of ensembling and then present an ensembling-based trainer scheme (EnGCN) that
solely needs to train a couple of simple MLPs to achieve new SOTA on multi-scale large datasets.
We hope our study on benchmarking and rethinking to help lay a solid, practical, and systematic
foundation for the scalable GCN community and provide researchers with broader and deeper insights
into large-scale graph training.

10

References
[1] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907, 2016.

[2] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv, 1(2), 2017.

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeuIPS, pages 1024–1034, 2017.

[4] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[5] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of

the 43rd International ACM SIGIR conference on research and development in Information

Retrieval, pages 639–648, 2020.

[6] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pages 974–983, 2018.

[7] Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and
Karthik Subbian. Cold brew: Distilling graph node representations with incomplete or missing
neighborhoods. arXiv preprint arXiv:2111.04840, 2021.

[8] Lei Tang and Huan Liu. Relational learning via latent social dimensions. In Proceedings of the

15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
817–826, 2009.

[9] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 1416–1424, 2018.

[10] Xiao Huang, Qingquan Song, Yuening Li, and Xia Hu. Graph recurrent networks with at-
tributed random walks. In Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 732–740, 2019.

[11] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[12] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

[13] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

[14] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in Neural Information Processing

Systems, 33, 2020.

[15] Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14(3):347–375,
2008.

[16] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9267–9276, 2019.

11

[17] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics

(tog), 38(5):1–12, 2019.

[18] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to
train deeper gcns. arXiv preprint arXiv:2006.07739, 2020.

[19] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

[20] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International Conference on Machine Learning, pages 5453–5462. PMLR, 2018.

[21] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pages 2083–2092. PMLR, 2019.

[22] Kaixiong Zhou, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, and Xia Hu. Multi-channel
graph neural networks. arXiv preprint arXiv:1912.08306, 2019.

[23] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 257–266, 2019.

[24] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931,
2019.

[25] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks
via importance sampling. arXiv preprint arXiv:1801.10247, 2018.

[26] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-
dependent importance sampling for training deep and large graph convolutional networks.
Advances in neural information processing systems, 32, 2019.

[27] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learning,
pages 6861–6871. PMLR, 2019.

[28] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. arXiv preprint

arXiv:2004.11198, 2020.

[29] Chuxiong Sun and Guoshi Wu. Scalable and adaptive graph neural networks with self-label-
enhanced training. arXiv preprint arXiv:2104.09376, 2021.

[30] Wentao Zhang, Ziqi Yin, Zeang Sheng, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang, and
Bin Cui. Graph attention multi-layer perceptron. arXiv preprint arXiv:2108.10097, 2021.

[31] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek
Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with
approximate pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 2464–2473, 2020.

[32] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos Georganas,
Alexander Heinecke, Dhiraj Kalamkar, Nesreen K Ahmed, and Sasikanth Avancha. Dist-
gnn: Scalable distributed training for large-scale graph neural networks. arXiv preprint

arXiv:2104.06700, 2021.

[33] Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural
networks training via extreme activation compression. In International Conference on Learning

Representations, 2021.

12

[34] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

[35] Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. Minimal variance
sampling with provable guarantees for fast training of graph neural networks. In Proceedings of

the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 1393–1403, 2020.

[36] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast
graph representation learning. Advances in neural information processing systems, 31, 2018.

[37] Meng Liu and Shuiwang Ji. Neighbor2seq: Deep learning on massive graphs by transforming
neighbors to sequences. arXiv preprint arXiv:2202.03341, 2022.

[38] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining
label propagation and simple models out-performs graph neural networks. arXiv preprint

arXiv:2010.13993, 2020.

[39] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

[40] Xiaojin Zhu. Semi-supervised learning with graphs. Carnegie Mellon University, 2005.

[41] Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods. IEEE

Transactions on Knowledge and Data Engineering, 20(1):55–67, 2007.

[42] Masayuki Karasuyama and Hiroshi Mamitsuka. Manifold-based similarity adaptation for label
propagation. Advances in neural information processing systems, 26:1547–1555, 2013.

[43] Chen Gong, Dacheng Tao, Wei Liu, Liu Liu, and Jie Yang. Label propagation via teaching-
to-learn and learning-to-teach. IEEE transactions on neural networks and learning systems,
28(6):1452–1465, 2016.

[44] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, and Yi Yang.
Learning to propagate labels: Transductive propagation network for few-shot learning. arXiv

preprint arXiv:1805.10002, 2018.

[45] Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label
propagation. arXiv preprint arXiv:2002.06755, 2020.

[46] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic,
and Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighborhood
prediction. arXiv preprint arXiv:2111.00064, 2021.

[47] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural information

processing systems, 26, 2013.

[48] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[49] Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In International Conference on

Machine Learning, pages 3294–3304. PMLR, 2021.

[50] Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, and Tom
Goldstein. Vq-gnn: A universal framework to scale up graph neural networks using vector
quantization. Advances in Neural Information Processing Systems, 34:6733–6746, 2021.

[51] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

13

[52] Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and
Zhangyang Wang. Bag of tricks for training deeper graph neural networks: A comprehensive
benchmark study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[53] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations, 2020.

[54] Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
graph neural networks with differentiable group normalization. Advances in Neural Information

Processing Systems, 33, 2020.

[55] Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu.
Dirichlet energy constrained learning for deep graph neural networks. Advances in Neural

Information Processing Systems, 34:21834–21846, 2021.

[56] Ke Sun, Zhanxing Zhu, and Zhouchen Lin. Adagcn: Adaboosting graph convolutional networks
into deep models. arXiv preprint arXiv:1908.05081, 2019.

[57] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting. Journal-

Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

[58] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost. Statistics and its

Interface, 2(3):349–360, 2009.

[59] Li Zheng, Jun Gao, Zhao Li, and Ji Zhang. Adaboosting clusters on graph neural networks. In
2021 IEEE International Conference on Data Mining (ICDM), pages 1523–1528. IEEE, 2021.

[60] Chenhui Zhang, Yufei He, Yukuo Cen, Zhenyu Hou, and Jie Tang. Improving the training of
graph neural networks with consistency regularization. arXiv preprint arXiv:2112.04319, 2021.

[61] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the

12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
631–636, 2006.

[62] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[63] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W Mahoney, and
Joseph E Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed
training. In International Conference on Machine Learning, 2021.

14

	Introduction
	Formulations For Large-scale Graph Training Paradigms
	Sampling-based Methods
	Decoupling-based Methods
	More Related Works

	Benchmarking Over Effectiveness
	Implementation Details
	Experimental Observations

	Benchmarking Over Efficiency
	Time And Space Complexity
	Throughput And Memory Usage
	Convergence Analysis

	EnGCN: Rethinking Graph Convolutional Networks With Ensembling
	An Empirical Summary: Pros And Cons
	Motivation and Related Works
	Methodology
	Empirical Analysis

	Conclusion
	More details of Formulations
	Representative Subgraph Sampling Schemes

	Additional Experiment Results
	Additional Hyperparameter Searching Results
	A Joint Comparison of Effectiveness and Efficiency
	The Hyperparameter Settings for EnGCN
	Ablation Study for EnGCN

	Additional Implementation Details
	Access and Statistics of Benchmark Datasets
	Implementation details of testing GPU memory and throughput

	Intended Use

