
Sequential Dexterity: Chaining Dexterous Policies
for Long-Horizon Manipulation

Yuanpei Chen∗, Chen Wang∗, Li Fei-Fei, C. Karen Liu

Stanford University

Abstract: Many real-world manipulation tasks consist of a series of subtasks that
are significantly different from one another. Such long-horizon, complex tasks
highlight the potential of dexterous hands, which possess adaptability and versatility,
capable of seamlessly transitioning between different modes of functionality
without the need for re-grasping or external tools. However, the challenges arise due
to the high-dimensional action space of dexterous hand and complex compositional
dynamics of the long-horizon tasks. We present Sequential Dexterity, a general
system based on reinforcement learning (RL) that chains multiple dexterous policies
for achieving long-horizon task goals. The core of the system is a transition fea-
sibility function that progressively finetunes the sub-policies for enhancing chaining
success rate, while also enables autonomous policy-switching for recovery from
failures and bypassing redundant stages. Despite being trained only in simulation
with a few task objects, our system demonstrates generalization capability to novel
object shapes and is able to zero-shot transfer to a real-world robot equipped with
a dexterous hand. Code and videos are available at sequential-dexterity.github.io.

Keywords: Dexterous Manipulation, Long-Horizon Manipulation, Reinforcement
Learning

6HDUFK 2ULHQW *UDVS ,QVHUW

6HTXHQWLDO�GH[WHURXV�PDQLSXODWLRQ
,QLWLDO�VWDWH *RDO

Figure 1: We present Sequential Dexterity, a system that learns to chain multiple versatile dexterous
manipulation motions for tackling long-horizon tasks (e.g., building a block structure from a pile of
blocks), which is able to zero-shot transfer to the real world.

1 Introduction
Many real-world manipulation tasks consist of a sequence of smaller but drastically different subtasks.
For example, in the task of Lego structure building (Fig.1), the task involves searching within a box
to locate a specific block piece. Once found, the piece is then oriented and grasped firmly in hand,
setting it up for the final insertion at the goal location. Such a task demands a flexible and versatile

*Equal contribution. Correspondence to Chen Wang <chenwj@stanford.edu>

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://sequential-dexterity.github.io


manipulator to adapt and switch between different modes of functionality seamlessly, avoiding
re-grasping or use of external tools. Furthermore, it requires a long-horizon plan that considers the
temporal context and functional relationship between the subtasks in order to successfully execute
the entire sequence of tasks. These requirements motivate the use of dexterous hand, which has the
potential to reach human-level dexterity by utilizing various hand configurations and their inherent
capabilities. However, fully utilizing dexterous hands to achieve long-horizon, versatile tasks remains
an outstanding challenge, calling for innovative solutions.

Recent developments in dexterous manipulation have made significant strides in areas such as
object grasping [1–3] and in-hand manipulation [4–9]. However, these works primarily investigate
single-stage skills, overlooking the potential of sequencing multiple dexterous policies for long-horizon
tasks. A naive way to chain multiple dexterous policies together is to simply execute a single-stage skill
one after the other. While the simple strategy works in some scenarios [10–12], a subtask in general can
easily fail when encountering a starting state it has never seen during training. Regularizing the state
space between neighboring skills can mitigate this out-of-distribution issue [13, 14], but long-horizon
dexterous manipulation requires a comprehensive optimization of the entire skill chain, due to the
complex coordination between non-adjacent tasks. For instance, as depicted in Fig. 1, the robot needs
to strategize in advance when orienting the block, aiming for an optimal object pose that facilitates
not only the immediate subsequent grasping but also the insertion task in the later stage of the task.

This paper proposes a new method to effectively chain multiple high-dimensional manipulation policies
via a combination of regularization and optimization. We introduce a bi-directional process consisting
of a forward initialization process and a backward fine-tuning process. The forward initialization
process models the end-state distribution of each sub-policy, which defines the initial state distribution
for the subsequent policy. The forward initialization process associates the preceding policy with
the subsequent one by injecting a bias in the initial state distribution of the subsequent policy during
training. Conversely, we also introduce a backward fine-tuning mechanism to associate the subsequent
policy with the preceding one. We define a Transition Feasibility Function which learns to identify
initial states from which the subsequent policy can succeed its task. The transition feasibility function
is used to fine-tune the preceding policy, serving as an auxiliary reward signal. With the backward
fine-tuning process, the transition feasibility function effectively backpropagates the long-term goals
to influence the earlier policies via its learning objectives, thereby enabling global optimization across
the entire skill chain. Once the policies are trained and deployed, the transition feasibility functions can
be repurposed to serve as stage identifiers that determine the appropriate timing for policy switching
and which subsequent policy to switch to. The transition feasibility function substantially improves
the robustness of task execution and increases the success rate. Our experimental results demonstrate
that the bi-directional optimization process notably enhances the performance of chaining multiple
dexterous manipulation policies, which can further zero-shot transfer to a real-world robot arm
equipped with a dexterous hand to tackle challenging long-horizon dexterous manipulation tasks.

In summary, the primary contributions of this work encompass:

• The first to explore policy chaining for long-horizon dexterous manipulation.
• A general bi-directional optimization framework that effectively chains multiple dexterous

skills for long-horizon dexterous manipulation.
• Our framework exhibits state-of-the-art results in multi-stage dexterous manipulation tasks

and facilitates zero-shot transfer to a real-world dexterous robot system.

2 Related Work
Dexterous manipulation. Dexterous manipulation represents a long-standing area of research
in robotics [15–19]. With its high degree of freedom, a dexterous hand can execute a variety of
manipulation skills [1–7, 9, 20–24]. Traditional algorithms have typically addressed these challenges
by leveraging trajectory optimization founded on analytical dynamics modeling [17–19]. These
techniques pose simplification over the active contacts between the hand and objects, limiting their
effectiveness in more complex tasks. Conversely, deep reinforcement learning have exhibited the
capacity to learn dexterous skills without assumptions for simplification [7, 8, 23]. Despite their

2



�D���%XLOGLQJ�%ORFNV��6LP�DQG�5HDO� �E���7RRO�3RVLWLRQLQJ

6WHS����*UDVS,QLWLDO�VWDWH 6WHS����2ULHQW

2XUV

%DVHOLQH

:ULVW�FDPHUD

7RS�GRZQ�FDPHUD

Figure 2: Overview of the environment setups. (a) Workspace of Building Blocks task in simulation
and real-world. (b) The setup of the Tool Positioning task. Initially, the tool is placed on the table in a
random pose, and the dexterous hand needs to grasp the tool and re-orient it to a ready-to-use pose. The
comparison results illustrate how the way of grasping directly influences subsequent orientation.

notable flexibility in learning dexterous primitives, these methods predominantly focus on singular
manipulation tasks such as object re-orientation [5, 6, 25–27] or isolated skills for reset-free learning
system [28]. Our work prioritizes the chaining of multiple dexterous primitives, which incorporates
the skill feasibility into a comprehensive learning framework for long-horizon dexterous manipulation.
Long-horizon robot manipulation. Training a robot to perform long-horizon manipulation tasks
from scratch is challenging, primarily due to the cumulative propagation of errors throughout the
task execution process. Established methods tackle these tasks by breaking them down into simpler,
reusable subtasks [29]. Typically, these algorithms comprise a set of low-level sub-policies, which
can be obtained through various means, such as unsupervised exploration [30–34], learning from
demonstration [35–39] and pre-defined measures [11, 40–44]. Despite their distinct merits, these works
do not address the specific challenge of long-horizon manipulation in the context of dexterous hands.
This challenge largely stems from the compounded complexity produced by the extensive state space of
a hand coupled with the extended scope of long-horizon tasks. Therefore, even when provided with high-
level plans, ensuring a seamless transition between dexterous policies remains a formidable challenge.
Skill-chaining. Prior policy-chaining methods focus on updating each sub-task policy to encompass
the terminal states of the preceding policy [10, 13]. However, given the high degree of freedom
characteristic of a hand, the terminal state space undergoes limitless expansion, thereby complicating
effective training. Closely related to our work is Lee et al. [14], wherein a discriminator is learned
to regulate the expansion of the terminal state space. Nevertheless, its uni-directional training
process restricts optimization to adjacent skills only, disregarding the influence of long-term goals
on early non-adjacent policies. In contrast, our bi-directional training mechanism enables the
backpropagation of the long-term goal reward to optimize the entire policy chain. Our concept
of backward fine-tuning draws significant inspiration from goal-regression planning in classical
symbolic planning literatures [45] (also known as pre-image backchaining [46–50]). However, these
works assume access to a set of pre-defined motion primitives, which is hard to obtain in dexterous
manipulation setups. Our work focuses on the learning and chaining of a sequence of dexterous
policies from scratch, targeting the accomplishment of long-horizon task objectives.

3 Problem Setups
We study the task of chaining a sequence of dexterous policies to accomplish long-horizon manipulation
tasks, examples of which include Lego-like building blocks or picking up and positioning a tool to
a desired pose. These two tasks both require the use of multiple dexterous skills to complete, making
them highly suitable for studying long-horizon dexterous manipulation with skill chaining.
Constructing a structure of blocks. This long-horizon task includes four different subtasks:
searching for a block with desired dimension and color from a pile of cluttered blocks, orienting
the block to a favorable position, grasping the block, and finally inserting the block to its designated
position on the structure. This sequence of actions repeats until the structure is completed according to
the given assembly instructions. The block set, initially arranged in a random configuration, comprises

3



�D���7UDLQLQJ�LQ�6LPXODWLRQ

�E���'HSOR\PHQW�LQ�WKH�5HDO�:RUOG

)RUZDUG�
LQLWLDO�

%DFNZDUG�
ILQHWXQLQJ

)RUZDUG�LQLWLDOL]DWLRQ %DFNZDUG�ILQHWXQLQJ

6WDWH�VSDFH

(QG�VWDWH
FROOHFWLRQ

,QLWLDO�VWDWH�
VDPSOLQJ

5HZDUG6XSHUYLVHG�
OHDUQLQJ

3ROLF\�
UROORXWV ,QLWLDO�

VWDWH
3ROLF\�ILQHWXQLQJ6XP�

UHZDUG
7UDQVLWLRQ�

)HDVLELOLW\�)XQFWLRQ

3ROLF\�UROORXWV 3ROLF\�WUDLQLQJ

6HDUFK 2ULHQW *UDVS ,QVHUW

2ULHQW *UDVS ,QVHUW

5*%�'�
FDPHUD

�'�REM�SRVH

3URSULRFHSWLRQ

0RWRU�WDFWLOH 3ROLF\�VHOHFWLRQ�

��+]
3'�FRQWURO

)RUZDUG�
LQLWLDO�

%DFNZDUG�
ILQHWXQLQJ

)RUZDUG�
LQLWLDO�

%DFNZDUG�
ILQHWXQLQJ

Figure 3: Overview of Sequential Dexterity. (a) A bi-directional optimization scheme consists of a
forward initialization process and a backward fine-tuning mechanism based on the transition feasibility
function. (b) The learned system is able to zero-shot transfer to the real world. The transition feasibility
function serves as a policy-switching identifier to select the most appropriate policy to execute.

eight distinct types (different shapes, masses and colors), totaling 72 blocks. We operate under the
assumption of having access to an assembly manual that outlines the sequence and desired positioning
of each block piece on the board. The environment provides the robot with two RGB-D camera
views—one from a top-down camera over the box and the other from the wrist-mounted camera (as
is shown in Fig. 2(a)). No other sensors are used in either simulation or the real world. More details
of the definition of the sub-task are introduced in Sec. 4.4 and Sec. 5.1.
Tool positioning. This task involves two subtasks: grasping a tool with a long handle (e.g., hammer,
spatula) from a table and in-hand orienting it to a ready-to-use pose (e.g., make the flat side of the
hammerhead face the nail, as is shown in Fig. 2(b)). The environment provides the robot with the
6D pose of the target tool. For more details on the task setups, please refer to Appendix. F.

4 Sequential Dexterity
We propose a bi-directional optimization process to tackle long-horizon dexterous manipulation
tasks. Our approach contains three main components: (1) Training dexterous sub-policies (Sec. 4.1),
(2) Chaining sub-policies through fine-tuning (Sec. 4.2), (3) Improving system robustness through
automatic policy-switching (Sec. 4.3).

4.1 Learning dexterous sub-policies
Training a dexterous manipulation policy from scratch for solving long-horizon tasks, like building
a block tower (Fig. 1), is significantly challenging given the high degree of freedom associated with
a dexterous hand (evidenced by the result of RL-scratch in Tab. 1 and Tab. 2). As such, we first
decompose a long-horizon task into a K-step sequence of sub-tasks G=(g1,g2,...,gK) and train each
sub-policy πi with Proximal Policy Optimization (PPO) [51] algorithm. We formulate each sub-task as
a Markov Decision Process (MDP)M=(SSS,AAA,π,T ,R,γ,ρ), with state spaceSSS, action spaceAAA, policy
of the agent π, transition distribution T (st+1|st,at) (st ∈SSS, at ∈AAA), reward function R, discount
factor γ∈ (0,1), and initial state distribution ρ. The policy π outputs a distribution of motor actions
at based on the current state inputs st. The goal is to train the policy π to maximize the sum of rewards
Eπ[

∑T−1
t=0 γtrt] (rt=R(st,at,st+1)) in an episode with T time steps.

However, due to the large state space of a dexterous hand, it is difficult to accurately sample the
potential initial states for training individual sub-policies. Take the insertion task as an example (Fig. 3

4



sub-policy π4), randomly sampling the initial hand configuration and object’s in-hand pose does not
assure a physically stable grasp. However, we provide a critical observation that the successful end
state of prior sub-task πi−1 inherently provides plausible initial states for πi to start with. Similar
observation is find in [7]. Inspired by this, we propose a forward initialization training scheme (Fig. 3
(a)). Given a long-horizon task G=(g1,g2,...,gK), our framework sequentially trains the sub-policies
according to the task’s chronological order. After training each sub-policy πi, we start policy rollouts
and collect a set of successful terminal states {siT }, which is later used as the initial state distribution
ρi+1 for training the succeeding policy πi+1. Such forward training method ensures the validity
of the initial states and makes the learning of dexterous policies effective. More details of training
sub-policies can be found in Sec. 4.4.

4.2 Policy chaining with transition feasibility function
Chaining multiple policies using forward initialization alone may not guarantee success since the
previous policy πi−1 might reach a termination state that its successor πi cannot solve. This issue arises
because the preceding policy πi−1 does not take into account whether the end states are feasible for
the subsequent policy πi to succeed. To address this challenge, it is crucial to convey the feasibility of
the following policy πi in reverse to its predecessor πi−1, enabling the latter to optimize toward states
that πi can handle. Based on this hypothesis, we propose a backward policy fine-tuning mechanism
with a transition feasibility function (Fig. 3 (b)).

Learning transition feasibility function. The feasibility of a given state for a policy can be
described as the policy’s ability to succeed in the end when starting from that state. We formalize
this concept by creating a function that maps the transition state si0∈ρi (which is equivalent to si−1

T )
to the expected sum of reward within the sub-task execution, Eπi [

∑T−1
t=0 rt]. We name this function,

F : S 7→ R, the Transition Feasibility Function. However, a single state si−1
T is not sufficient to

differentiate the performance of πi. In particular, the velocity of object from the previous sub-task may
be critical to the performance of πi, which cannot be captured by si−1

T alone. As a result, the transition
feasibility function takes a sequence of observation states si−1

[T−10:T ] (10 steps in our experiments) as
input and employs a multi-head attention network [52] to extract suitable temporal information for
learning the F . The final learning objective of the transition feasibility function F i for sub-policy πi is:

Li=∥F i(s[T−10:T ])−Eπi [

T−1∑
t=0

rt]∥2 (1)

Backward policy fine-tuning. Once F i is trained, we can fine-tune the prior policy πi−1, by
incorporating F i as an auxiliary reward component. The fine-tuning starts with updating the second-to-
the-last sub-task policyπK−1 and sequentially moves backward, refining each preceding policy until the
first oneπ1 is updated. In each fine-tuning step, we utilizeF i as an additional reward, combined with the
original sub-task reward Ri−1, to fine-tune policy πi−1. The final policy fine-tuning reward function is:

Ri−1′(st,at,st+1;F
i)=λ1R

i−1(st,at,st+1)+λ2F
i(s[T−10:T ]), (2)

where λ1 and λ2 are the weighting factors. Once πi−1 has been refined, we execute policy rollouts
to gather data, which maps from the initial state si−2

[T−10:T ] to the accumulated reward Eπi−1 [
∑T−1

t=0 rt]

received by the policy πi−1 at the terminal state si−1
T . This data helps to construct a new transition feasi-

bility function F i−1, which is further used to fine-tune the preceding policy πi−2. The implementation
pseudocode of the bi-directional forward and backward training process is illustrated in Appendix. A.

4.3 Policy switching with transition feasibility function
A key challenge in chaining multiple dexterous policies is to determine when to switch to the next
policy and what should be the next policy to execute. Prior works approach this issue by establishing
a predetermined execution horizon for a policy, transitioning abruptly to the subsequent policy once
the maximum step count is attained [10, 14, 53–55]. The pre-scheduled policy transitions worked
in some scenarios, but they are not suitable for dexterous manipulation that involves non-prehensile

5



Figure 4: Examples of policy-switching with transition feasibility function. Each example contains an
image from the wrist-mount camera (left) and its corresponding feasibility score ci outputted by the
transition feasibility function (right). We highlight the target block in the image for better visualization.
The policy-switching process visits each sub-policy in reverse order. The first sub-policy with a
feasibility score ci>1.0 is selected for execution.

maneuvers and in-hand manipulation. For instance, if a robot is reorienting an object in-hand, a
premature policy switch before the object is stabilized could result in task failure. The key to tackling
this issue is to automatically figure out the appropriate switch time such that the transition state will
lead to success of next policy. The transition feasibility function provides exactly the information we
need for identifying the switch timing. As such, during execution, we repurpose our trained transition
feasibility functions as a policy-switching identifier. At each time step, the transition feasibility
function of the next sub-policy will output a feasibility score ci+1

t =F i+1(s[t−10:t])/h
i+1, where hi+1

is a threshold hyperparameter defined based on the reward of successful task executions. The ideal
time of policy switching can then be defined as the moment when ci+1

t >1.

Simply executing sub-policies sequentially may not guarantee successful task execution since the robot
sometimes needs to recover using a previous policy and sometimes needs to bypass a future policy if
the sub-task has already been achieved. Thus, effective policy switching requires the robot to not only
consider the current policy and its successor, but also the entire skill chain. To achieve this, we group
the learned transition feasibility function (F 2,F 3...,FK) as a stage estimator. At each policy-switching
step, we calculate the feasibility score from the final transition feasibility function of the entire task
cKt =FK(s[t−10:t])/h

K , sequentially moving backward. The sub-policy, for which the first feasibility
score cit>1, is considered the next policy for execution. If none of the feasibility scores satisfy, the
robot will restart from the beginning of the entire task. Leveraging the learned transition feasibility
function in this manner enhances the robot’s robustness against unexpected failures during policy
execution, while also allowing it to bypass redundant stages, thus promoting efficient task execution.

4.4 Implementation details
RL reward. Training sub-policies require pre-defined sub-task rewards {Ri}Ki=1. Establishing such
rewards can be complex as the appropriate sub-goals that would most contribute to the overall task
accomplishment may not be readily apparent. However, we pose a critical finding that the backward
fine-tuning mechanism can transmit the goal of the entire task to each sub-task. For instance, the
transition feasibility function of the inserting policy informs the grasping policy about the in-hand
object pose that would be most beneficial for the insertion. Furthermore, such backward transmission
can influence all preceding sub-policies, enabling the entire policy chain to optimize for the overall
task goal. This mechanism alleviates the burden of reward shaping and allows us to use standard
sub-task rewards that are agnostic to the final task goal for training sub-policies. For instance, the
sub-task reward of grasping is defined as whether the target object has been lifted. The specifics of
how the object is held in hand are automatically managed during the backward fine-tuning process.
The detailed descriptions of each sub-task reward are documented in the Appendix. D.

State-action space. The state space for the sub-policies is built around the perspective of the hand.
It integrates proprioception and motor tactile [56, 57] information from the 16-degree-of-freedom
Allegro Hand as well as the target object’s 6D pose in the reference frame of the wrist-mounted camera.
During simulation-based sub-policy training, we augment this state space with additional information,

6



Trained Unseen
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 ALL

RL-scratch 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Curriculum RL 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

V-Chain [34] 0.15±0.02 0.09±0.04 0.11±0.04 0.10±0.04 0.08±0.02 0.08±0.03 0.03±0.02 0.04±0.02 0.08±0.02

Policy-Seq [10] 0.20±0.04 0.14±0.02 0.15±0.03 0.23±0.03 0.15±0.03 0.17±0.00 0.16±0.01 0.12±0.02 0.16±0.02

T-STAR [14] 0.19±0.04 0.18±0.02 0.11±0.01 0.27±0.02 0.17±0.04 0.25±0.02 0.26±0.03 0.10±0.03 0.19±0.03

Ours w/o temporal 0.47±0.06 0.44±0.07 0.43±0.00 0.49±0.04 0.40±0.04 0.51±0.04 0.18±0.01 0.16±0.03 0.38±0.04

Ours 0.61±0.03 0.55±0.01 0.52±0.03 0.63±0.03 0.51±0.06 0.53±0.06 0.22±0.02 0.16±0.01 0.46±0.03

Table 1: Results for the Building Blocks task

such as the velocity of each hand joint and the target object. In real-world deployments, these states
are abstracted via policy distillation [6, 7, 58]. The action space of our system includes 16-dimensional
hand joints and 3D wrist translation of the robot arm. To concentrate the sub-policy learning on critical
aspects of the manipulation task, when the target’s (either object or goal location) relative pose to the
wrist camera is detected more than 5 centimeters from the hand, we employ a motion-planning-based
operational space controller (OSC [59]) to move the end-effector to a position 5 centimeters above
the target. More details of the state-action space are introduced in Appendix. C.

5 Experiments
5.1 Experiment setups

T-STAR

Ours

(a). Effect of policy-switching (b). Object poses with high feasibility score for Grasp

Figure 5: (a) Performance improvement of Ours
given 0/1/2/3 maximum policy-switching times.
(b) Visualization of object poses with high feasi-
bility score for the Grasp sub-policy in Building
Blocks task. The x, y, and z axes are the roll, yaw,
and pitch of the object, respectively. In Ours, each
point in the diagram represents a pose that is re-
garded as feasible by the transition feasibility func-
tion (ci>1.0). For T-STAR, we use the poses that
are judged as successful by its discriminator.

Environment setups. The environment is ini-
tialized with a Franka Emika robot arm equipped
with an Allegro Hand as the end-effector. In the
Building Block task, we placed a box of blocks
(eight categories, in total 72 pieces) and a building
board on the table. For the tool positioning task,
a long-handled tool is placed on the table. The
control frequency is 60 Hz for both the robot arm
and the hand. The real-world hardware mirrors
the simulation setups. We coordinate the use of
top-down and wrist-mount cameras to access the
6D pose and segmentation mask of the object in
the real-world: we use the top-down camera once
at the beginning, use the wrist-mount camera once
at the beginning of each maneuver in orienting,
and use the wrist-mount camera continuously in
searching, grasping and inserting; More details
of the environment setups are in Appendix. F.

Baseline methods. We compare our approach with the following baselines: 1) RL-scratch is vanilla
PPO algorithm [51] learns the task from scratch. 2) Curriculum RL follows a procedure training
strategy to expand from the first skill to the entire task. 3) V-Chain [34] combines skill-chaining with
the value function from the PPO policy. 4) Policy-Seq [10] focuses on the forward initiation process in
skill-chaining. 5) T-STAR [14] incorporates a discriminator to regularize the terminal states.

5.2 Results

Bi-directional optimization framework is key for chaining multiple dexterous policies. In Tab. 1
and Tab. 2, our approach learned with bi-directional optimization (Ours and Ours w/o temporal) outper-
forms prior uni-directional skill-chaining methods (V-Chain, Policy-Seq and T-STAR) significantly,
with more than 20% improvement in task success rate in two long-horizon tasks. We further analyze
what really matters for successful policy chaining. We visualize the transition feasibility score of the
grasping sub-policy (T-STAR’s result is calculated from its discriminator) in Fig. 5(b). We found our
approach with backward fine-tuning scheme correctly transits the goal of the succeeding inserting skill
to prior grasping and encourages the policy to grasp the block when its studs face up, which facilitates

7



Trained Unseen
Hammer Spatula Spoon ALL

RL-scratch 0.17±0.05 0.06±0.03 0.10±0.01 0.11±0.03

Curriculum RL 0.29±0.02 0.17±0.01 0.16±0.08 0.21±0.04

Policy-Seq [10] 0.43±0.01 0.29±0.06 0.24±0.04 0.32±0.02

T-STAR [14] 0.47±0.01 0.40±0.03 0.26±0.04 0.37±0.03

Ours w/o temp. 0.77±0.03 0.54±0.07 0.40±0.04 0.57±0.05

Ours 0.81±0.01 0.57±0.04 0.43±0.08 0.60±0.04

Table 2: Results for the tool positioning task

Single
Block 1

Single
Block 4

Double
Block 1

RL-scratch 0/10 0/10 0/10
Policy-Seq [34] 0/10 2/10 0/10
T-STAR [14] 3/15 5/18 0/13
Ours 12/20 10/20 5/15

Table 3: Real world results in the Building
Blocks task. Single/Double refers to building
one single block or stacking two blocks.

the insertion. T-STAR with the uni-directional learning process, however, suggests many states where
the block’s studs are facing horizontally, thereby bringing challenges for subsequent insertion.
Transition feasibility function significantly improves performance of long-horizon dexterous
manipulation. In Tab. 1 and Tab. 2, the models learned with the transition feasibility function (Ours
and Ours w/o temporal) outperforms the one using the PPO-trained value function (V-chain) for more
than 30% in task success rate. This result implies that the value function of PPO policy fails to model
the feasibility of subsequent policy, which further affects policy chaining results.
Temporal inputs facilitate handling high-dimensional state spaces, particularly for dexterous
manipulation. In Tab. 1, by training the transition feasibility function to extract temporal information
from a sequence of history states, Ours exceeds Ours w/o temporal for 8% in task success rate. This
result highlights the importance of extracting velocity and temporal information for chaining dexterous
policies that contain dynamic finger motions.
Ability to switch sub-policy autonomously is essential for succeeding long-horizon tasks. Fig.
5(a) illustrates the performance improvement of enabling automatic policy-switching. Only with a
maximum allowance of three switching times, Ours can improve more than 30% in task success rate.
This result concludes that it is crucial to have the capability of switching forward and backward by
leveraging the transition feasibility function of each sub-policy. Such policy-switching ability further
contributes to our real-world results in Tab. 3, which allows the policy to handle a challenging 8-step
long-horizon task (Double Block 1) with more than 30% task success rate (10 maximum switching
times for all methods in the real-world experiments). Please refer to the website for more results.
Real-world results. In Tab. 3 real-world experiments, our approach has more than 30% success
rate improvements compared to prior methods. This result is consistent with the results in simulation.
Ours has a 33% success rate in building a double-block structure, while the other baselines have a 0%
success rate. This result highlights the ability of our model when tackling long-horizon dexterous
manipulation tasks. For more details of the real-world setups, please refer to Appendix. B.

6 Limitations
There are several limitations of our work. First, we encounter difficulties in simulating a contact-rich
insertion process which necessitates an additional manually designed pressing motion to completely
insert the blocks during real-world deployment. Second, the motor tactile does not yield a significant
improvement in performance, as observed in Appendix Tab. 8. Our future research could explore the
potential of sensor-based tactile signals for contact-rich tasks, as proposed in [60, 61, 20, 24, 27].

7 Conclusion
We present Sequential Dexterity, a system developed for tackling long-horizon dexterous manipulation
tasks. Our system leverages a bi-directional optimization process to chain multiple dexterous policies
learned with deep reinforcement learning. At the core of our system is the Transition Feasibility
Function, a pivotal component facilitating a gradual fine-tuning of sub-policies and enabling dynamic
policy switching, thereby significantly increasing the success rate of policy chaining. Our system has
the capability to zero-shot transfer to a real-world dexterous robot, exhibiting generalization across
novel object shapes. Our bi-directional optimization framework also has the potential to be a general
skill chaining method beyond dexterous manipulation. Potential applications including chaining skills
for bimanual robots.

8



Acknowledgments

This research was supported by National Science Foundation NSF-FRR-2153854, NSF-NRI-2024247,
NSF-CCRI-2120095 and Stanford Institute for Human-Centered Artificial Intelligence, SUHAI. In
the real-world experiment, the controller of the Franka Emika Panda arm is developed based on
Deoxys [62] and the Allegro hand is controlled through zmq [2]. We would also like to thank Ruocheng
Wang, Wenlong Huang, Yunzhi Zhang and Albert Wu for providing feedback on the paper.

References
[1] Z. Q. Chen, K. Van Wyk, Y.-W. Chao, W. Yang, A. Mousavian, A. Gupta, and D. Fox. Learning

robust real-world dexterous grasping policies via implicit shape augmentation. arXiv preprint
arXiv:2210.13638, 2022.

[2] A. Wu, M. Guo, and C. K. Liu. Learning diverse and physically feasible dexterous grasps with
generative model and bilevel optimization. arXiv preprint arXiv:2207.00195, 2022.

[3] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang. Dexpoint: Generalizable point cloud
reinforcement learning for sim-to-real dexterous manipulation. In Conference on Robot Learning,
pages 594–605. PMLR, 2023.

[4] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. The International
Journal of Robotics Research, 39(1):3–20, 2020.

[5] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,
K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand
manipulation from simulation to reality. arXiv preprint arXiv:2210.13702, 2022.

[6] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal. Visual dexterity: In-hand
dexterous manipulation from depth. arXiv preprint arXiv:2211.11744, 2022.

[7] T. Chen, J. Xu, and P. Agrawal. A system for general in-hand object re-orientation. Conference
on Robot Learning, 2021.

[8] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang. Solving rubik’s cube with a robot hand. CoRR, abs/1910.07113,
2019.

[9] S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto. Dexterous imitation made easy: A learning-
based framework for efficient dexterous manipulation. arXiv preprint arXiv:2203.13251, 2022.

[10] A. Clegg, W. Yu, J. Tan, C. K. Liu, and G. Turk. Learning to dress: Synthesizing human dressing
motion via deep reinforcement learning. ACM Transactions on Graphics (TOG), 37(6):1–10,
2018.

[11] Y. Lee, S.-H. Sun, S. Somasundaram, E. S. Hu, and J. J. Lim. Composing complex skills by
learning transition policies. In International Conference on Learning Representations, 2019.

[12] X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine. Mcp: Learning composable
hierarchical control with multiplicative compositional policies. Advances in Neural Information
Processing Systems, 32, 2019.

[13] G. Konidaris and A. Barto. Skill discovery in continuous reinforcement learning domains using
skill chaining. Advances in neural information processing systems, 22, 2009.

[14] Y. Lee, J. J. Lim, A. Anandkumar, and Y. Zhu. Adversarial skill chaining for long-horizon robot
manipulation via terminal state regularization. arXiv preprint arXiv:2111.07999, 2021.

9



[15] J. K. Salisbury and J. J. Craig. Articulated hands: Force control and kinematic issues. The
International journal of Robotics research, 1(1):4–17, 1982.

[16] M. T. Mason and J. K. Salisbury Jr. Robot hands and the mechanics of manipulation. 1985.

[17] I. Mordatch, Z. Popović, and E. Todorov. Contact-invariant optimization for hand manipulation.
In Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, pages
137–144, 2012.

[18] Y. Bai and C. K. Liu. Dexterous manipulation using both palm and fingers. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 1560–1565. IEEE, 2014.

[19] V. Kumar, Y. Tassa, T. Erez, and E. Todorov. Real-time behaviour synthesis for dynamic hand-
manipulation. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 6808–6815. IEEE, 2014.

[20] Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang. Rotating without seeing: Towards in-hand
dexterity through touch. arXiv preprint arXiv:2303.10880, 2023.

[21] A. Sivakumar, K. Shaw, and D. Pathak. Robotic telekinesis: Learning a robotic hand imitator by
watching humans on youtube. arXiv preprint arXiv:2202.10448, 2022.

[22] K. Zakka, L. Smith, N. Gileadi, T. Howell, X. B. Peng, S. Singh, Y. Tassa, P. Florence, A. Zeng,
and P. Abbeel. Robopianist: A benchmark for high-dimensional robot control. arXiv preprint
arXiv:2304.04150, 2023.

[23] Y. Chen, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu, S. McAleer, H. Dong, S.-C. Zhu, and Y. Yang.
Towards human-level bimanual dexterous manipulation with reinforcement learning. Advances
in Neural Information Processing Systems, 35:5150–5163, 2022.

[24] I. Guzey, B. Evans, S. Chintala, and L. Pinto. Dexterity from touch: Self-supervised pre-training
of tactile representations with robotic play. arXiv preprint arXiv:2303.12076, 2023.

[25] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik. In-Hand Object Rotation via Rapid Motor
Adaptation. In Conference on Robot Learning (CoRL), 2022.

[26] W. Huang, I. Mordatch, P. Abbeel, and D. Pathak. Generalization in dexterous manipulation via
geometry-aware multi-task learning. arXiv preprint arXiv:2111.03062, 2021.

[27] G. Khandate, S. Shang, E. T. Chang, T. L. Saidi, J. Adams, and M. Ciocarlie. Sampling-based
Exploration for Reinforcement Learning of Dexterous Manipulation. In Proceedings of Robotics:
Science and Systems, Daegu, Republic of Korea, July 2023. doi:10.15607/RSS.2023.XIX.020.

[28] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-free
reinforcement learning via multi-task learning: Learning dexterous manipulation behaviors
without human intervention. In ICRA, pages 6664–6671. IEEE, 2021.

[29] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[30] J. Schmidhuber. Towards compositional learning with dynamic neural networks. Inst. für
Informatik, 1990.

[31] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
conference on artificial intelligence, volume 31, 2017.

[32] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
Advances in neural information processing systems, 31, 2018.

[33] A. Levy, G. Konidaris, R. Platt, and K. Saenko. Learning multi-level hierarchies with hindsight.
arXiv preprint arXiv:1712.00948, 2017.

10

http://dx.doi.org/10.15607/RSS.2023.XIX.020


[34] V. C. Kumar, S. Ha, and C. K. Liu. Expanding motor skills using relay networks. In Conference
on Robot Learning, pages 744–756. PMLR, 2018.

[35] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning from demonstration by
constructing skill trees. The International Journal of Robotics Research, 31(3):360–375, 2012.

[36] T. Kipf, Y. Li, H. Dai, V. Zambaldi, A. Sanchez-Gonzalez, E. Grefenstette, P. Kohli, and
P. Battaglia. Compile: Compositional imitation learning and execution. In International
Conference on Machine Learning, pages 3418–3428. PMLR, 2019.

[37] Y. Lu, Y. Shen, S. Zhou, A. Courville, J. B. Tenenbaum, and C. Gan. Learning task decomposition
with ordered memory policy network. arXiv preprint arXiv:2103.10972, 2021.

[38] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,
K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022.

[39] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:
Long-horizon imitation learning by watching human play. arXiv preprint arXiv:2302.12422,
2023.

[40] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural
information processing systems, 29, 2016.

[41] J. Oh, S. Singh, H. Lee, and P. Kohli. Zero-shot task generalization with multi-task deep
reinforcement learning. In International Conference on Machine Learning, pages 2661–2670.
PMLR, 2017.

[42] J. Merel, A. Ahuja, V. Pham, S. Tunyasuvunakool, S. Liu, D. Tirumala, N. Heess, and G. Wayne.
Hierarchical visuomotor control of humanoids. arXiv preprint arXiv:1811.09656, 2018.

[43] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz, and
T. Funkhouser. Tidybot: Personalized robot assistance with large language models. arXiv
preprint arXiv:2305.05658, 2023.

[44] C. Wang, D. Xu, and L. Fei-Fei. Generalizable task planning through representation pretraining.
IEEE Robotics and Automation Letters, 7(3):8299–8306, 2022.

[45] R. Waldinger. Achieving several goals simultaneously. In Readings in artificial intelligence,
pages 250–271. Elsevier, 1981.

[46] T. Lozano-Perez, M. T. Mason, and R. H. Taylor. Automatic synthesis of fine-motion strategies
for robots. The International Journal of Robotics Research, 3(1):3–24, 1984.

[47] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task and motion planning in the now. In 2011
IEEE International Conference on Robotics and Automation, pages 1470–1477. IEEE, 2011.

[48] L. P. Kaelbling and T. Lozano-Pérez. Pre-image backchaining in belief space for mobile manipu-
lation. In Robotics Research: The 15th International Symposium ISRR, pages 383–400. Springer,
2017.

[49] D. Xu, R. Martı́n-Martı́n, D.-A. Huang, Y. Zhu, S. Savarese, and L. F. Fei-Fei. Regression
planning networks. Advances in Neural Information Processing Systems, 32, 2019.

[50] C. Agia, T. Migimatsu, J. Wu, and J. Bohg. Stap: Sequencing task-agnostic policies. arXiv
preprint arXiv:2210.12250, 2022.

[51] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

11



[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. In NIPS, pages 5998–6008, 2017.

[53] E. Rosete-Beas, O. Mees, G. Kalweit, J. Boedecker, and W. Burgard. Latent plans for task-
agnostic offline reinforcement learning. In Conference on Robot Learning, pages 1838–1849.
PMLR, 2023.

[54] Z. Su, O. Kroemer, G. E. Loeb, G. S. Sukhatme, and S. Schaal. Learning to switch between
sensorimotor primitives using multimodal haptic signals. In SAB, volume 9825 of Lecture Notes
in Computer Science, pages 170–182. Springer, 2016.

[55] O. Kroemer, C. Daniel, G. Neumann, H. van Hoof, and J. Peters. Towards learning hierarchical
skills for multi-phase manipulation tasks. In ICRA, pages 1503–1510. IEEE, 2015.

[56] L. Sievers, J. Pitz, and B. Bäuml. Learning purely tactile in-hand manipulation with a torque-
controlled hand. In 2022 International Conference on Robotics and Automation (ICRA), pages
2745–2751. IEEE, 2022.

[57] J. Pitz, L. Röstel, L. Sievers, and B. Bäuml. Dextrous tactile in-hand manipulation using a modular
reinforcement learning architecture. arXiv preprint arXiv:2303.04705, 2023.

[58] A. A. Rusu, S. G. Colmenarejo, Ç. Gülçehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih,
K. Kavukcuoglu, and R. Hadsell. Policy distillation. In ICLR (Poster), 2016.

[59] O. Khatib. A unified approach for motion and force control of robot manipulators: The operational
space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987. doi:10.1109/
JRA.1987.1087068.

[60] B. Romero, F. Veiga, and E. Adelson. Soft, round, high resolution tactile fingertip sensors
for dexterous robotic manipulation. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 4796–4802. IEEE, 2020.

[61] W. K. Do and M. Kennedy. Densetact: Optical tactile sensor for dense shape reconstruction. In
2022 International Conference on Robotics and Automation (ICRA), pages 6188–6194. IEEE,
2022.

[62] Y. Zhu, A. Joshi, P. Stone, and Y. Zhu. Viola: Imitation learning for vision-based manipulation
with object proposal priors. 6th Annual Conference on Robot Learning, 2022.

[63] H. K. Cheng and A. G. Schwing. XMem: Long-term video object segmentation with an atkinson-
shiffrin memory model. In ECCV, 2022.

[64] C. Wang, D. Xu, Y. Zhu, R. Martı́n-Martı́n, C. Lu, L. Fei-Fei, and S. Savarese. Densefusion: 6d
object pose estimation by iterative dense fusion. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3343–3352, 2019.

[65] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
robot learning, pages 1094–1100. PMLR, 2020.

[66] H. J. Charlesworth and G. Montana. Solving challenging dexterous manipulation tasks with
trajectory optimisation and reinforcement learning. In International Conference on Machine
Learning, pages 1496–1506. PMLR, 2021.

12

http://dx.doi.org/10.1109/JRA.1987.1087068
http://dx.doi.org/10.1109/JRA.1987.1087068


A Training pseudocode

Algorithm 1 SEQUENTIAL DEXTERITY: A bi-directional optimization framework for skill chaining

Require: sub-task MDPsM1,...,MK

1: Initialize sub-policies π1
θ ,...,π

K
θ , transition feasibility function F 1

ω ,...,F
K
ω , ternimal state buffers

B1I , ... ,BKI , the sum of reward buffers B1R, ... ,BKR , and the weighting factors of the backward
fine-tuning λ1 and λ2.

2: for iteration m=0,1,...,M do
3: for each sub-task i=1,...,K do
4: while until convergence of πi

θ do
5: Rollout trajectories τ=(si0,a

i
0,r

i
0,...,s

i
T ) with πi

θ

6: Update πi
θ by maximizing Eπi [

∑T−1
t=0 γtrit]

7: end while
8: end for ▷ Forward initialization
9: for each sub-task i=K,...,2 do

10: while until convergence of πi−1
θ do

11: Rollout trajectories τ i−1=(si−1
0 ,ai−1

0 ,ri−1
0 ,...,si−1

T ) with πi−1
θ

12: Sample si0 from environment or Bi−1
β

13: Rollout trajectories τ i=(si0,a
i
0,r

i
0,...,s

i
T ) with πi

θ
14: if sub-task i is complete then
15: BiT ←BiT ∪s[T−10:T ],BiR←BiR∪[

∑T−1
t=0 rit]

16: end if
17: Update F i with s[T−10:T ]∼Bi−1

T and [
∑T−1

t=0 rt]∼BiR
18: Updateπi−1

θ by maximizingEπi−1 [
∑T−1

t=0 γt(λ1R
i−1(si−1

t ,ai−1
t ,si−1

t+1)+λ2F
i
ω(s

i
[T−10:T ]))]

19: end while
20: end for ▷ Backward finetuning
21: end for

B Real-world system setups

During real-world deployment, some observations used in the simulation are hard to accurately
estimate (e.g., joint velocity, object velocity, etc.). We use the teacher-student policy distillation
framework [6, 7, 58] to abstract away these observation inputs from the policy model. In each policy
rollout, our system first uses the top-down camera view to perform a color-based segmentation to
localize the target block piece given by the manual. Then, the robot calls motion planning API to
move to the target location with OSC controller [59]. After that, our system uses the wrist camera
view to track the segmentation and 6D pose of the object with a combination of color-based initial
segmentation, Xmem segmentation tracker [63], and Densefusion pose estimator [64]. If the target
object is deeply buried (as the case in the top left corner of Fig. 4), the transition feasibility function
will inform the robot to execute the searching policy until the target appears. During the last insertion
stage, the estimated 6D object pose will guide the robot policy to adjust its finger and wrist motion
to align with the goal location as it learned in the simulation. Since simulating contact-rich insertion
is still a research challenge in graphics, after the robot has placed the block to the target location, we
perform a scripted pressing motion (spread out the entire hand and press down) on the target location
to ensure a firm insert. The output of the policy which controls the hand is low-pass filtered with an
exponential moving average (EMA) smoothing factor [6], which can also effectively reduce jittering
motions. Our results in the real-world were obtained with an EMA of 0.2, which provides a balance
between agility and stability of the motions. More details about real-world system setups and results
can be found in the Supplementary video.

13



C State Space in Simulation

C.1 Building Blocks

Searching Table.4 gives the specific information of the state space of the searching task.

Table 4: Observation space of Search task.
Index Description
0 - 23 dof position
23 - 46 dof velocity
46 - 98 fingertip pose, linear velocity, angle velocity (4 x 13)

98 - 111 hand base pose, linear velocity, angle velocity
111 - 124 object base pose, linear velocity, angle velocity
124 - 143 the actions of the last timestep
143 - 159 motor tactile
159 - 160 the number of pixels occupied by the target object mask

Orienting Table.5 gives the specific information of the state space of the orienting task.

Table 5: Observation space of Orient and Grasp task.
Index Description
0 - 23 dof position

23 - 46 dof velocity
46 - 98 fingertip pose, linear velocity, angle velocity (4 x 13)

98 - 111 hand base pose, linear velocity, angle velocity
111 - 124 object base pose, linear velocity, angle velocity
124 - 143 the actions of the last timestep
143 - 159 motor tactile

Grasping Table.5 gives the specific information of the state space of the grasping task.

Inserting Table.6 gives the specific information of the state space of the inserting task.

Table 6: Observation space of Insert task.
Index Description
0 - 23 dof position

23 - 46 dof velocity
46 - 98 fingertip pose, linear velocity, angle velocity (4 x 13)

98 - 111 hand base pose, linear velocity, angle velocity
111 - 124 object base pose, linear velocity, angle velocity
124 - 143 the actions of the last timestep
143 - 159 motor tactile
159 - 166 goal pose
166 - 169 goal position - object position
169 - 173 goal rotation - object rotation

C.2 Tool positioning

Grasping Table.5 gives the specific information of the state space of the grasping task.

In-hand Orientation Table.6 gives the specific information of the state space of the in-hand orienta-
tion task.

14



Table 7: Domain randomization of all the sub-tasks.
Parameter Type Distribution Initial Range

Robot
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.7, 1.3]
Joint Lower Limit Scaling loguniform [0.0, 0.01]
Joint Upper Limit Scaling loguniform [0.0, 0.01]

Joint Stiffness Scaling loguniform [0.0, 0.01]
Joint Damping Scaling loguniform [0.0, 0.01]

Object
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.5, 1.5]
Scale Scaling uniform [0.95, 1.05]

Position Noise Additive gaussian [0.0, 0.02]
Rotation Noise Additive gaussian [0.0, 0.2]

Observation
Obs Correlated. Noise Additive gaussian [0.0, 0.001]

Obs Uncorrelated. Noise Additive gaussian [0.0, 0.002]
Action
Action Correlated Noise Additive gaussian [0.0, 0.015]

Action Uncorrelated Noise Additive gaussian [0.0, 0.05]
Environment

Gravity Additive normal [0, 0.4]

D Reward functions

D.1 Building Blocks

Searching Denote the τ is the commanded torques at each timestep, the count of individual pixels
within the target object’s segmentation mask in the top-down camera frame as P , The sum of the
distance between each fingertip and the object as

∑4
i=0fi, the action penalty as ∥a∥22, and the torque

penalty as ∥τ∥22. Finally, the rewards are given by the following specific formula:

r=λ1∗P+λ2∗min(e0−
4∑

i=0

fi,0)+λ3∗∥a∥22+λ4∗∥τ∥22 (3)

where λ1=5.0, λ2=1.0, λ3=−0.001, λ4=−0.003, and e0=0.2.

Orienting Denote the τ is the commanded torques at each timestep, the angular distance between
the current object pose and the initial pose as θ, the sum of the distance between each fingertip and the
object as

∑4
i=0fi, the action penalty as ∥a∥22, and the torque penalty as ∥τ∥22. Finally, the rewards are

given by the following specific formula:

r=λ1∗θ+λ2∗min(e0−
4∑

i=0

fi,0)+λ3∗∥a∥22+λ4∗∥τ∥22 (4)

where λ1=1.0, λ2=1.0, λ3=−0.001, λ4=−0.003, and e0=0.6.

Grasping Denote the τ is the commanded torques at each timestep, the sum of the distance between
each fingertip and the object as

∑4
i=0fi, the action penalty as ∥a∥22, and the torque penalty as ∥τ∥22.

Finally, the rewards are given by the following specific formula:

r=λ1∗exp[α0∗min(e0−
4∑

i=0

fi,0)]+λ2∗∥a∥22+λ3∗∥τ∥22 (5)

where λ1 =1.0, λ2 =−0.001, λ3 =−0.003, α0 =−5.0, and e0 =0.1. It is worth noting that in the
latter half of our grasping training, we force the hand to lift, so if the grip is unstable, the object will
drop and the reward will decrease.

15



Block 1 Block 2 Block 3 Block 4 Block 5

Block 6 Block 7 Block 8

(a) Real world (b) Simulation

Figure 6: The block model we use in simulation and real-world. (b) is the eight blocks used in our
building blocks task. The upper Block 1-5 is the training block, and the lower Block 6-8 is the unseen
block for testing.

Inserting Denote the τ is the commanded torques at each timestep, the object and goal position as xo

and xg, the angular position difference between the object and the goal as da, the sum of the distance
between each fingertip and the object as

∑4
i=0fi, the action penalty as ∥a∥22, and the torque penalty as

∥τ∥22. Finally, the rewards are given by the following specific formula:

r=λ1∗exp[−(α0∗∥xo−xg∥2+α1∗2∗arcsin(clamp(∥da∥2,0,1)))]+

λ2∗min(e0−
4∑

i=0

fi,0)+λ3∗∥a∥22+λ4∗∥τ∥22
(6)

where λ1=1.0, λ2=0.0, λ3=−0.001, λ4=−0.003, α0=20.0, α1=1.0, and e0=0.06.

D.2 Tool positioning

Grasping Denote the τ is the commanded torques at each timestep, the sum of the distance between
each fingertip and the object as

∑4
i=0fi, the action penalty as ∥a∥22, and the torque penalty as ∥τ∥22.

Finally, the rewards are given by the following specific formula:

r=λ1∗exp[α0∗min(e0−
4∑

i=0

fi,0)]+λ2∗∥a∥22+λ3∗∥τ∥22 (7)

where λ1 =1.0, λ2 =−0.001, λ3 =−0.003, α0 =−5.0, and e0 =0.1. It is worth noting that in the
latter half of our grasping training, we force the hand to lift, so if the grip is unstable, the object will
drop and the reward will decrease.

In-hand Orientation Denote the τ is the commanded torques at each timestep, the object and goal
position as xo and xg, the angular position difference between the object and the goal as da, the sum
of the distance between each fingertip and the object as

∑4
i=0fi, the action penalty as ∥a∥22, and the

torque penalty as ∥τ∥22. Finally, the rewards are given by the following specific formula:

r=λ1∗exp[−(α0∗∥xo−xg∥2+α1∗2∗arcsin(clamp(∥da∥2,0,1)))]+

λ2∗min(e0−
4∑

i=0

fi,0)+λ3∗∥a∥22+λ4∗∥τ∥22
(8)

where λ1=1.0, λ2=0.0, λ3=−0.001, λ4=−0.003, α0=20.0, α1=1.0, and e0=0.06.

D.3 Reward Construction

We use an exponential map in the grasping reward function, which is an effective reward shaping
technique used in the case to minimize the distance between fingers and object (e.g., grasping task),
introduced by [65, 66]. For the same term in the other two reward function, since the other two reward

16



functions mainly consider other objectives, we empirically find there is no need to use exponential
map in these cases. To improve the calculation efficiency, we use quaternion to represent the object
orientation. The angular position difference is then computed through the dot product between the
normalized goal quaternion and the current object’s quaternion.

E Domain Randomization

Isaac Gym provides lots of domain randomization functions for RL training. We add the randomization
for all the sub-tasks as shown in Table. 7 for each environment. we generate new randomization every
1000 simulation steps.

F Task Setups

F.1 Sub-task definition.

Here we introduce the functionalities of each sub-policy in the Building Block task: Search aims to
dig and retrieve the target block when it is buried by other blocks in the box. The initial task goal is to
make the target block’s visible surface in the wrist-view camera larger than a threshold. The transition
feasibility function finetunes the policy to a reach a state that facilitates the succeeding orientation.
Orient aims to rotate the target block. The initial task goal is to freely rotating the target block in-hand
without specific goal pose. In the backward step, the transition feasibility function finetunes the policy
to rotate the block to a pose that facilitates the succeeding grasping and insertion. Grasp aims to lift
up the target block and hold in-hand. The initial task goal is to lift up the target block for more than
30 centimeters. The transition feasibility function further finetunes the policy to grasp the block in a
way that allows the succeeding insertion to in-hand adjust the block for 90 degrees depending on the
given task goal. Insert aims to rotate the block in-hand for 90 degrees if the goal pose of the block is
vertical and adjust the robot’s wrist position with 3D delta motions to align the block with the desired
insertion location. In the real-world experiments, since the finger motor of the dexterous hand is not
strong enough to fully insert the block, we add an additional scripted pressing motion to complete the
last step of the insertion.

F.2 Building Blocks

Block model. For the building blocks task, we use the same model as Mega Bloks1 as our blocks. It is
a range of large, stackable construction blocks designed specifically for the small hands of the children.
We take eight different types of blocks (denoted as Block 1, Block 2,..., Block 8) as the models of our
block, and carefully measured the dimensions to ensure that they were the same as in the real world.
The block datasets is shown in Figure. 6. For all building block sub-tasks, we use Block 1-5 as the
training object and Block 6-8 as the unseen object for testing.

Physics in insertion between two blocks. It is difficult to simulate the realistic insertion in the
simulator, and it is easy to explode or model penetration when the two models are in frequent contact.
Therefore, we want the plug and slot between the two blocks can be inserted without frequent friction.
We reduced the diameter of all block plugs and convex decomposed them via VHACD method when
loaded into Isaac Gym. Finally, we made one block possible to insert another block through free fall to
verify the final effect.

Initialization. In simulation, we randomly sample the initial block placement above the box, allowing
them to fall and form the initial scene. In the real-world experiments, we manually shuffle the blocks’
placement in the box, with the shuffling based on the criteria that none of the task-related blocks lies
within the margin of 10 centimeters from the edges of the box. If the criteria are not satisfied, we
re-shuffle the blocks.

1https://www.megabrands.com/en-us/mega-bloks.

17



Figure 7: The collision meshes in the simulation.

Initial State

Goal State

Hammer Spoon (unseen) Spatula (unseen)

Figure 8: Visualization of the three tools we use in Tool Positioning task. The Hammer is use for
training and the Spoon and Spatula is only use for testing. We also show the goal pose of the tools.

Success criteria. In the Building Block task, the task success is defined as whether the target block
has been inserted on the desired pose on the LEGO board. We assume the access to a building manual
that specifies the shape and color of the target block and its desired goal pose on the board. In the Tool
Positioning task, the task success is defined as whether the tool has been lifted and held in hand in a
ready-to-use pose (e.g., hammer head facing down).

Task objects. In the Building Block task, we use the mesh model of Mega Blocks as our task objects.
It is a range of large, stackable construction blocks designed specifically for the small hands of children.
We take eight different types of blocks (denoted as Block 1, Block 2, . . . , Block 8). These blocks are
illustrated in Appendix Figure. 6. In our experiment, Block 1-5 are used as the training objects and
Block 6-8 are unseen ones for testing policy generalization. In the Tool Positioning task, the tools we
consider consists of hammer, scoop and spatula, which have different thickness over the handle and
variation of the center of mass. The hammer is used as a training object and the other two are unseen
ones for testing policy generalization.

Collision meshes. We visualize the collision mesh used in the simulation in Figure. 7. We do observe
the drop of simulation speed when loading 72 blocks, but it’s still enough for training 1024 agents
together at a speed of 5000 FPS with an NVIDIA RTX 3090 GPU. To optimize the speed, we reduce
the resolution of the convex decomposition over blocks in Search, Orient and Grasp sub-tasks. The
high-resolution blocks are only used for the training of the Insert sub-task.

18



Figure 9: Snapshots of the searching task.

Figure 10: Snapshots of the orienting task.

Figure 11: Snapshots of the grasping task.

Figure 12: Snapshots of the inserting task.

Figure 13: Snapshots of the hammer positioning.

F.3 Tool positioning

For the tool positioning task, we have a total of three tools: hammer, spatula, and spoon. We use the
hammer for training and test both in the hammer, spatula, and spoon. This long-horizon task involves
grasp a tool and re-orient it onto a pose suitable for its use. Fig.8 shows what they look like and the
initial and goal state of the each three tools.

F.4 Typical frames of all sub-tasks

For the convenience of readers, we show some typical frames of all the sub-tasks in simulation.

F.4.1 Building Blocks

We visualize the rollout of the Building Blocks task in Figure. 9, Figure. 10, Figure. 11, and Figure. 12.

F.4.2 Tool Positioning

We visualize the rollout of the Tool Positioning task in Figure. 13, Figure. 14, and Figure. 15.

19



Figure 14: Snapshots of the spoon positioning.

Figure 15: Snapshots of the spatula positioning.

Trained Unseen All

Ours w/o belief state 0.40±0.08 0.16±0.07 0.29±0.06

Ours w/o tactile 0.43±0.04 0.33±0.00 0.37±0.02

Ours w/o both 0.26±0.05 0.02±0.01 0.14±0.02

Ours 0.43±0.04 0.36±0.04 0.38±0.04

Table 8: Ablation study on the system choices in single-step Orient task

Trained Unseen
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 ALL

Ours (0-step) 0.47±0.06 0.44±0.07 0.43±0.00 0.49±0.04 0.40±0.04 0.51±0.04 0.18±0.01 0.16±0.03 0.38±0.04

Ours (5-step) 0.52±0.07 0.47±0.02 0.46±0.03 0.55±0.03 0.44±0.02 0.54±0.01 0.20±0.03 0.17±0.02 0.42±0.03

Ours (10-step) 0.61±0.03 0.55±0.01 0.52±0.03 0.63±0.03 0.51±0.06 0.53±0.06 0.22±0.02 0.16±0.01 0.46±0.03

Ours (15-step) 0.55±0.03 0.51±0.04 0.53±0.02 0.59±0.01 0.50±0.07 0.50±0.05 0.16±0.04 0.14±0.03 0.44±0.04

Table 9: Ablation study in historical frame of the transition feasibility function

G Motor tactile and belief state.
We found that motor tactile and belief state are beneficial for dexterous in-hand manipulation. Tab. 8 is
the ablation study of the design choices of our input state space. We modify the objective of the Orient
sub-task in the Building Blocks task to a pre-defined goal orientation and train each ablation method
only on this sub-policy. We find the belief state pose estimator has the highest improvement (9% in task
success rate), which highlights its effects on in-hand manipulation.

H Ablation study in historical frame of the transition feasibility function
We add an ablation study by using 0-step, 5-step, 10-step and 15-step of history states as the inputs to
the transition feasibility model, as shown in Table. 9. The task success rate gradually increases when
more history steps are used and becomes stable after 10 steps. This result indicates that 10 to 15 history
steps is ideal for the Building Block task.

I Environmental speed
Table. 10 shows the simulation FPS and wall-clock time cost of the training process for each sub-task.
All of our experiments are run with Intel i7-9700K CPU and NVIDIA RTX 3090 GPU.

J Hyperparameters of the PPO

J.1 Building Blocks

J.2 Tool Positioning

20



Building Blocks Tool Positioning
Search Orient Grasp Insert Grasp Reorient

Wall-clock time 31111±3691 15458±1381 16397±1904 21851±2791 17282±2472 14500±1831(s/10000 episode)
FPS (frame/s) 1298±154 5920±529 5504±639 14360±1834 19920±2849 20896±2638

Table 10: Mean and standard deviation of FPS (frame per second) of the sub-tasks.

Table 11: Hyperparameters of PPO in Building Blocks.
Hyperparameters Searching Orienting Grasping & Inserting
Num mini-batches 4 4 8
Num opt-epochs 5 10 2

Num episode-length 8 20 8
Hidden size [1024, 1024, 512] [1024, 1024, 512] [1024, 1024, 512]
Clip range 0.2 0.2 0.2

Max grad norm 1 1 1
Learning rate 3.e-4 3.e-4 3.e-4
Discount (γ) 0.96 0.96 0.9

GAE lambda (λ) 0.95 0.95 0.95
Init noise std 0.8 0.8 0.8
Desired kl 0.016 0.016 0.016
Ent-coef 0 0 0

Table 12: Hyperparameters of PPO in Tool Positioning.
Hyperparameters Grasping In-hand Orienting
Num mini-batches 4 4
Num opt-epochs 5 10

Num episode-length 8 20
Hidden size [1024, 1024, 512] [1024, 1024, 512]
Clip range 0.2 0.2

Max grad norm 1 1
Learning rate 3.e-4 3.e-4
Discount (γ) 0.96 0.96

GAE lambda (λ) 0.95 0.95
Init noise std 0.8 0.8
Desired kl 0.016 0.016
Ent-coef 0 0

21


	Introduction
	Related Work
	Problem Setups
	Sequential Dexterity
	Learning dexterous sub-policies
	Policy chaining with transition feasibility function
	Policy switching with transition feasibility function
	Implementation details

	Experiments
	Experiment setups
	Results

	Limitations
	Conclusion
	Training pseudocode
	Real-world system setups
	State Space in Simulation
	Building Blocks
	Tool positioning

	Reward functions
	Building Blocks
	Tool positioning
	Reward Construction

	Domain Randomization
	Task Setups
	Sub-task definition.
	Building Blocks
	Tool positioning
	Typical frames of all sub-tasks
	Building Blocks
	Tool Positioning


	Motor tactile and belief state.
	Ablation study in historical frame of the transition feasibility function
	Environmental speed
	Hyperparameters of the PPO
	Building Blocks
	Tool Positioning


