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Abstract

This paper focuses on the optimization of overparameterized, non-convex low-rank
matrix sensing (LRMS)—an essential component in contemporary statistics and
machine learning. Recent years have witnessed significant breakthroughs in first-
order methods, such as gradient descent, for tackling this non-convex optimization
problem. However, the presence of numerous saddle points often prolongs the time
required for gradient descent to overcome these obstacles. Moreover, overparame-
terization can markedly decelerate gradient descent methods, transitioning its con-
vergence rate from linear to sub-linear. In this paper, we introduce an approximated
Gauss-Newton (AGN) method for tackling the non-convex LRMS problem. No-
tably, AGN incurs a computational cost comparable to gradient descent per iteration
but converges much faster without being slowed down by saddle points. We prove
that, despite the non-convexity of the objective function, AGN achieves Q-linear
convergence from random initialization to the global optimal solution. The global
Q-linear convergence of AGN represents a substantial enhancement over the conver-
gence of the existing methods for the overparameterized non-convex LRMS. The
code for this paper is available at https://github.com/hsijiaxidian/AGN.

1 Introduction

Matrix sensing aims to recover an unknown low-rank matrix M ∈ Rn×n from its linear measurement
b = A(M). Here each elements bi is defined as bi = ⟨Ai,M⟩, with i = 1, · · · ,m, and A(·) is a
nearly isometric linear operator. It holds significance not only in practical applications but also in the
realm of non-convex optimization [1–6]. As the problem often involves finding the optimal solution
of a non-convex minimization problem

min
U∈Rn×d,V ∈Rn×d

f(U, V ) :=
1

2
∥A(UV ⊤)− b∥2F , (1)

where rank(M) = r ≪ n, of particular interest is the overparameterized case where d > r. The
objective function f(U, V ) to be minimized is non-convex, non-smooth3 and meanwhile lacks

∗Part of this work was completed while Xixi Jia was a research fellow in the Department of Applied
Mathematics at The Hong Kong Polytechnic University.

†Corresponding author.
3The non-smoothness pertains to (U, V ), as the magnitudes of these matrices can be highly unbalanced.
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coercivity, presenting significant challenges in solving the optimization problem. Since the objective
function exhibits certain key characteristics akin to the loss function of deep neural networks, problem
(1) stands as a cornerstone in the study of more challenging non-convex problems, such as those
encountered in deep learning [7–10]. For further discussions, please refer to [11].

Recent years have witnessed significant progress in the study of this non-convex optimization problem.

(a) Progress on gradient descent algorithms. Existing works such as [12–16] demonstrate that the
non-convex objective function f(U, V ) possesses benign loss landscape, wherein all local minima
are global, and concurrently, the Hessian exhibits negative eigenvalues at saddle points, allowing
perturbed gradient descent algorithms to effectively escape them. To handle the non-smooth problem,
prior studies [2, 12, 14, 17] introduce a regularization term 1

8∥U
⊤U − V ⊤V ∥2F to the objective

function. This regularization ensures balance between the norms of U and V .

Very recently, Ye and Du [18] make a breakthrough on low-rank matrix factorization (LRMF), a
specific setting of the problem (1) (d = r,m → ∞), and prove that gradient descent, without
perturbation and without the balance regularization on the objective function, converges at an R-
linear rate to the global optimal solution of the non-convex problem from random initialization.
Meanwhile, Stöger and Soltanolkotabi [19] study the global convergence of gradient descent for
overparameterized (d > r) low-rank matrix sensing. However, overparameterization can significantly
slow down gradient descent from achieving linear convergence to sub-linear rates, as analyzed in
[15, 20]. Furthermore, Xiong et al. [20] proves that imbalanced initialization can expedite the
convergence of gradient descent from sub-linear to linear rate. Nevertheless, gradient descent still
requires a considerable amount of time to navigate away from saddle points, as discussed in Section
4. Additionally, the convergence rate of gradient descent is heavily reliant on the condition number of
the matrix M , rendering it inefficient for solving ill-conditioned non-convex optimization problems.

Table 1: Comparisons of iteration complexity, with
κ as the condition number of the n × n matrix.
“init.” denotes initialization.

Algorithm init. iteration complexity
GD [20] random κ11 log(κ2/n) + κ10 log(κ6/ε)

PrecGD [15] spectral log(1/ε)
ScaledGD(λ)[21] random log κ · log(κn) + log(1/ε)

AGN random log(1/ε)

(b) Progress on advanced algorithms. Given
these deficiencies of first-order gradient meth-
ods, it is intriguing and crucial to investigate
how computationally efficient higher-order al-
gorithms, behave on this non-convex problem.
Previously, Liu et al. [22] introduces a Gauss-
Newton type method for symmetric LRMF (with
d = r), and proved that Gauss-Newton method
converges Q-linearly fast to a critical point of the non-convex optimization problem. Recently,
Zilber and Nadle [23] prove that the Gauss-Newton method enjoys local quadratic convergence if the
initialization lies within a small basin of attraction of the global optimal solution. All these works
only guarantee local convergence and neglect the influence of saddle points on the convergence.
Global convergence of the Gauss-Newton method remains ambiguous. Yue et al. [24] proves that the
Newton method with cubic regularization converges quadratically fast from random initialization.
However, their results are only applicable for symmetric MS with d = r, and the computational cost
of Newton method in [24] for LRMS is very high. Lee and Stöger [25] prove that for rank-one matrix
sensing, alternating least square method converges to the global optimal solution at a linear rate from
random initialization. However, it is uncertain whether the results of [25] are applicable to the r > 1
case as well as the challenging overparameterized scenario (d > r).

Another line of work deals with the deficiencies of gradient descent by incorporating preconditioning
matrices into the gradient direction, as demonstrated by [15, 26, 27, 21, 28]. Tanner and Wei [26]
introduce a scaled alternating steepest descent method with diminishing step size and provides
asymptotic convergence. Tong et al. [27] introduces ScaledGD and proves that, given a spectral
initialization, ScaledGD converges at a linear rate to the global optimal solution of problem (1).
Additionally, the convergence rate is independent of the condition number of M . The works in [15]
and [21] focus on the symmetric matrix sensing, extending the ScaledGD to the overparameterized
case by introducing a damping factor λ to control the singularity of the preconditioning matrix.
However, the damping factor λ can decelerate the ScaledGD from escaping the saddle regions and
the global iteration complexity becomes log κ · log(κn) + log(1/ε) as given in Table 1.

Our contributions. In this paper, we focus on the general model (1) which covers both symmetric
matrix sensing (M is symmetric and positive semi-definite) and asymmetric matrix sensing (M is
rectangular matrix), particularly with d > r. Building upon the insights from [23, 25, 26], we use
an approximated Gauss-Newton (AGN) method for solving the non-convex optimization problem
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(1). Notably, in each iteration, AGN performs computations akin to gradient descent, yet it exhibits
a Q-linear convergence rate towards the global optimal solution from random initialization, with
global iteration complexity log(1/ε) as shown in Table 1 AGN. Moreover, the Q-linear factor is
independent of the condition number ofM . Under certain conditions on the sensing operator A(·), we
can prove super-linear convergence of the AGN. This distinctive convergence property substantially
enhances outcomes compared to existing methods in achieving global convergence, as shown in Table
1. Additionally, as a byproduct result, we establish that the prevailing preconditioned gradient descent
methods are analogous to the Levenberg–Marquardt method within the Gauss-Newton framework.

To conclude, the contributions of this paper are as follows. First, we reformulate the symmetric and
asymmetric matrix sensing in a unified way, based on which we design an approximated Gauss-
Newton (AGN) method. We show that the existing preconditioned gradient descent algorithms,
ScaledGD(λ) and PrecGD in [15, 21] respectively, correspond to a certain type of the Gauss-Newton
method. Then we analyze the behavior of GD, Scaled(λ)/PrecGD and AGN at ε-neighborhood of the
saddle points. The saddle point analysis shows that AGN is not attracted to saddle points, unlike GD
and PrecGD. Specifically, GD and Scaled(λ)/PrecGD achieve an objective function decrease of o(ε),
while AGN achieves a significantly larger, ε-independent decrease Θ(1). Finally, we prove the global
Q-linear convergence of AGN for overparameterized non-convex LRMS. This significantly improves
over algorithms like ScaledGD(λ) and PrecGD, which achieve R-linear convergence but are hindered
by saddle regions.

This paper is organized in the following ways. Section 2 provides an overview of related works.
Section 3 outlines our AGN method for both symmetric MS and asymmetric MS, and explores the
connections between AGN and Scaled(λ)/PrecGD. Section 4 provides insights into the behavior of
GD, ScaledGD, and AGN in the vicinity of saddle points. Section 5 outlines the main convergence
result with a proof sketch, Section 6 presents experimental results, and Section 7 concludes the paper.

2 Related work

2.1 Overparameterization in matrix sensing and beyond
Overparameterization significantly impacts the optimization of both the non-convex low-rank matrix
recovery problem [9, 15, 19, 29–31] and deep learning [32–35]. Specifically, [15, 29] analyzed that
overparamterization can eliminate the spurious local minima of the non-convex low-rank matrix
recovery problem. Meanwhile, since the exact rank parameter r is not predetermined, in real-world
applications one often relies on a moderately higher rank d > r, as elaborated in [21]. Geyer et
al. [36] study the solution uniqueness in the overparamterized low-rank matrix sensing. Additional
works examining overparameterized low-rank models include, but are not limited to [37–39].

2.2 Preconditioned/Scaled gradient descent
Preconditioned/Scaled gradient descent (ScaledGD) aims to enhance convergence by adjusting the
gradient direction using preconditioning matrices, as specified in [15, 26, 27, 21, 28, 40]. It resolves
the non-convex optimization problem (1) by the following iteration{

Ut+1 = Ut − η∇Uf(Ut, Vt)(V
⊤
t Vt)

−1,

Vt+1 = Vt − η∇V f(Ut, Vt)(U
⊤
t Ut)

−1,
(2)

which corresponds to the methods in [27, 28, 40] for r = d. The author in [26] updates U and V in
an alternating manner. If U = V and d > r, then the iteration becomes ScaledGD(λ)/PrecGD

Ut+1 = Ut − η∇Uf(Ut, Ut)(U
⊤
t Ut + λtI)

−1, (3)
where λt > 0 can be either constant or time-varying, and the iteration corresponds to the methods in
[15, 21]. ScaledGD(λ) [21] and PrecGD [15] have been shown to achieve linear convergence to the
global optimal solution, whether in a local context or in a global context. However, the parameter λt
can degrade the global convergence, as shown in Fig. (2) where PrecGD struggles to escape saddle
regions before achieving local linear convergence.

2.3 Gauss-Newton method
The Gauss-Newton (GN) method is a widely recognized approach for nonlinear least-square

min
x∈Rn

ψ(x) =
1

2
∥ϕ(x)∥22, (4)
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where ϕ : Rn → Rm is a nonlinear, twice continuously differentiable function. In each iteration t,
GN aims to solve least-squares of the linear approximation of ϕ(x) at point xt [41]

xt+1 = xt + η∆t,where ∆t = arg min
∆∈Rn

ψ̂(x) =
1

2
∥ϕ(xt) + J(xt)∆∥22, (5)

where J(xt) = ϕ′(xt) is the Jacobian of the nonlinear function ϕ(·) at xt, and η > 0 is the step-
length. η = 1 corresponds to the GN method, η < 1 corresponds to the damped Gauss-Newton
method. The ∆t is calculated by ∆t = −[J(xt)

⊤J(xt)]
−1J(xt)

⊤ϕ(xt), and J(xt)
⊤J(xt) is an

approximation of the Hessian H(xt) = J(xt)
⊤J(xt) +

∑n
i=1 ϕi(xt)ϕ

′′
i (xt) if the second-order

term is small. The GN method generally has a local convergence guarantee, indicating its effectiveness
primarily within the vicinity of a solution [22, 23, 41]. When applied to the LRMS problem (1), we
will show in Section 3.3 that the AGN method is closely related to the ScaledGD(λ)/PrecGD method.

3 Proposed method
In this section, we begin by unifying the formulation of both symmetric matrix sensing (where
U = V and M is positive semi-definite) and asymmetric matrix sensing problems. Based on the
corresponding nonlinear least-squares problem, we introduce our approximated Gauss-Newton (AGN)
method. Then we prove that the proposed AGN is a descent method. Furthermore, when addressing
symmetric matrix sensing, we explore two distinct parameterization settings and demonstrate that
employing an asymmetric parameterization can significantly enhance convergence. At last, we give
some discussions on the relation between ScaledGD(λ)/PrecGD and the proposed AGN method.

3.1 Approximated-Gauss-Newton (AGN) method for LRMS
We unify the formulation of symmetric and asymmetric LRMS into a single, simplified expression:

min
X∈R2n×d

ψ(X) :=
1

2
∥A(PXX⊤Q)− b∥22, (6)

where P = [I 0] ∈ Rn×2n, Q =

[
0
I

]
∈ R2n×n and I ∈ Rn×n is the identity matrix. The

case X =

[
U
V

]
corresponds to asymmetric matrix sensing, X =

[
U
U

]
corresponds to symmetric

matrix sensing with U ∈ Rn×n and V ∈ Rn×n. The function ψ(X) can be further rewritten as
ψ(X) = 1

2∥ϕ(X)∥22, where ϕ(X) = A(PXX⊤Q) − b. For simplicity in notation, we denote
B(X,Y ) = A(PXY ⊤Q). By employing the Gauss-Newton framework as presented in Section 2.3,
one can update the variable as Xt+1 = Xt + η∆(Xt) where

∆(Xt) = arg min
∆∈R2n×d

1

2
∥B(∆, Xt) + B(Xt,∆) + B(Xt, Xt)− b∥22. (7)

However, as the Jacobian of the linear operator in the l2-norm of Eq. (7) tends to be singular in our
overparameterized setting (d > r), the Gauss-Newton method cannot be directly applied and one may
consult for the Levenberg–Marquardt method. In this work, however, unlike the Levenberg–Marquardt
method, we resolve the problem in Eq. (7) using the Gauss–Seidel method, whose advantages over
the Levenberg–Marquardt method will be discussed in Section 3.3. Specifically, we update Xt by

Xt+ 1
2
= Xt + η∆(Xt), ∆(Xt) = arg min

∆∈R2n×d

1

2
∥B(∆, Xt) + B(Xt, Xt)− b∥22,

Xt+1 = Xt+ 1
2
+ η∆(Xt+ 1

2
), ∆(Xt+ 1

2
) = arg min

∆∈R2n×d

1

2
∥B(Xt+ 1

2
,∆) + B(Xt+ 1

2
, Xt+ 1

2
)− b∥22.

(8)
The sub-problems in Eq. (8) are quadratic minimization problems that can generally be solved very
easily. In our matrix sensing problem, leveraging the RIP condition, we can approximate ∆(Xt) by

∆̂(Xt) = arg+ min
∆∈R2n×d

1

2
∥B̂(∆, Xt)−A∗(B(Xt, Xt)− b)∥2F ,

∆̂(Xt+ 1
2
) = arg+ min

∆∈R2n×d

1

2
∥B̂(Xt+ 1

2
,∆)−A∗(B(Xt+ 1

2
, Xt+ 1

2
)− b)∥2F ,

(9)
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where B̂(∆, Xt) = P∆X⊤
t Q and B̂(Xt+ 1

2
,∆) = PXt+ 1

2
∆⊤Q, arg+ denotes the minimum norm

solution as
∆̂(Xt) = P †A∗(B(Xt, Xt)− b)Q⊤Xt(X

⊤
t QQ

⊤X⊤
t )†,

∆̂(Xt+ 1
2
) = Q⊤†[A∗(B(Xt+ 1

2
, Xt+ 1

2
)− b)]⊤PXt+ 1

2
(X⊤

t+ 1
2
PP⊤Xt+ 1

2
)†,

(10)

which is a natural choice for degenerate least squares problem. † denotes the Moore-Penrose-Pseudo
inverse, and P † = P⊤, Q⊤† = Q in our context. Then the AGN becomes 4

Xt+ 1
2
= Xt − η∆̂(Xt), Xt+1 = Xt+ 1

2
− η∆̂(Xt+ 1

2
). (11)

The specifics of the AGN method are presented in Algorithm 1 in Appendix. We demonstrate that the
solution in Eq. (10) renders the AGN in Eq. (11) with a constant step-size η > 0 as a descent method.
Lemma 1. (Descent lemma) For asymmetric matrix sensing, as long as 0 < η ≤ 2/(1 + δ) and the
Assumption 1 is satisfied, then there exists positive constant ℓ = (2η − (1 + δ)η2)/2 such that

ψ(Xt+ 1
2
) ≤ ψ(Xt)− ℓ∥B̂(∆̂(Xt), Xt)∥2F ,

ψ(Xt+1) ≤ ψ(Xt+ 1
2
)− ℓ∥B̂(Xt+ 1

2
, ∆̂(Xt+ 1

2
))∥2F .

(12)

Lemma 1 suggests that AGN with a constant step-size is indeed a descent method for the overparame-
terized LRMS. In Section 5, we will prove that AGN converges globally at Q-linear rate.

The AGN method can be used not only for asymmetric MS but also for symmetric MS, as Eq. (6)
offers a unified formulation for MS. While the application of AGN on symmetric MS will differ
slightly from the asymmetric case.

3.2 Symmetric matrix sensing

Now we consider symmetric matrix sensing, which is a special case of model (6) and the matrix
M ∈ Rn×n is symmetric positive semi-definite (PSD). There are two different ways to deal with the
symmetric case, depending on whether we constrain X ∈ C (symmetric parameterization), where

C =

{
Z|Z =

[
U
U

]
, U ∈ Rn×d

}
⊂ R2n×d or X ∈ R2n×d (asymmetric parameterization).

Setting 1: Symmetric parameterization. In this case, the optimization variable X ∈ C such that
B(X,X⊤) = A(UU⊤) for matrix U ∈ Rn×d and B̂(∆, Xt) = [B̂(Xt,∆)]⊤, thus the subproblems
in Eq. (9) become

∆̃(Xt) = argmin
∆∈C

1

2
∥B̂(∆, Xt)−A∗(B(Xt, Xt)− b)∥2F , (13)

where Xt ∈ C. The optimal solution to the problem in Eq. (13) is provided by the following lemma.

Lemma 2. Let ∆̂(Xt) be the optimal solution of problem (9), then the optimal solution of problem

(13) is ∆̃(Xt) =

[
P ∆̂(Xt)

P ∆̂(Xt)

]
.

However, we find that if we constrain the search space to C and use the update ∆̃(Xt), the AGN
with a constant step-size η may not qualify as a descent method for our over-parameterized LRMS.

Specifically, let Xt+1 = Xt − η∆̃(Xt), where Xt, ∆̃(Xt) ∈ C and assume Xt =

[
Ut

Ut

]
, we have

ψ(Xt+1) =
1

2
∥B(Xt, Xt)− ηB(Xt, ∆̃(Xt))− ηB(∆̃(Xt), Xt) + η2B(∆̃(Xt), ∆̃(Xt))− b∥22

= ψ(Xt) + η2∥B(Xt, ∆̃(Xt))∥22 − η∥B̂(Xt, ∆̃(Xt))∥2F +
η4

2
∥B(∆̃(Xt), ∆̃(Xt))∥22

− η3
〈
B(∆̃(Xt), Xt),B(∆̃(Xt), ∆̃(Xt))

〉
+ η2

〈
B(Xt, Xt),B(∆̃(Xt), ∆̃(Xt))

〉
.

(14)
4The specific update is provided in Appendix Eq. (32), Eq. (33) and Eq. (34).

5



Note that the term ∥B(Xt, ∆̃(Xt))∥22 ≤ (1 + δ)∥Et∥2F , ∥B̂(Xt, ∆̃(Xt))∥2F ≤ ∥Et∥2F are all bounded
and are closely related to ψ(Xt), and Et = A∗(A(UtU

⊤
t ) − b). While the higher-order term w.r.t.

∆̃(Xt)

∥B(∆̃(Xt), ∆̃(Xt))∥22 = ∥A(EtUt(U
⊤
t Ut)

−2U⊤
t E⊤

t )∥22
≥ (1− δ)∥EtUt(U

⊤
t Ut)

− 1
2 (U⊤

t Ut)
−1(U⊤

t Ut)
− 1

2U⊤
t E⊤

t ∥2F
(15)

can be extremely large such that ψ(Xt+1) ≥ ψ(Xt), as ∥EtUt(U
⊤
t Ut)

− 1
2 ∥2F ≤ ∥Et∥2F is bounded

while U⊤
t Ut tends to be singular in the over-parametrized case. Therefore, one cannot guarantee that

the AGN method decreases with a constant step-size η, as illustrated by Fig. 3 AGNsym in Section 6.
How should we approach the symmetric matrix sensing problem using AGN? One possible strategy
is to relax the constraint X ∈ C to a larger search space X ∈ R2n×d.

Setting 2: Asymmetric parameterization. Despite M being a symmetric PSD matrix, one can still
consider problem (6) with X ∈ R2n×d instead of X ∈ C. Denote by X∗ and X∗

c the optimal solution
with X∗ ∈ R2n×d and X∗

c ∈ C respectively, then it is easy to verify that PX∗X∗⊤Q = PX∗
cX

∗⊤
c Q

for symmetric matrix sensing. Therefore, one can readily apply AGN using Algorithm 1 to solve
problem (6) with M being a symmetric PSD matrix. We will achieve the same convergence guarantee
as in the case of asymmetric matrix sensing.

Remark 1. The symmetric MS discussed in setting 1 is a specific instance of problem (6), involving
significantly fewer intrinsic variables compared to the asymmetric case discussed in setting 2, the
search space C resides in a lower dimensional subspace of R2n×d. Meanwhile, one can also explore
the optimal solution for the symmetric MS within the expanded space R2n×d while maintaining the
same minimum objective function value, as demonstrated in setting 2. These two approaches lead
to significantly different optimization paths. From the above analysis, it is evident that different
optimization paths demonstrate distinct decreasing properties in our over-parameterized LRMS
problem. If we confine the optimization variable to C, then the AGN with a constant step-size may not
function as a descent method5. If we extend the optimization variable to the entire R2n×d, we have a
larger search space from which we can find a solution path that guarantees a significant decrease in
the objective function. In Section 5, we will prove that in this case, AGN converges Q-linearly fast.
These observations suggest that expanding the search space for a given optimization problem can
lead to more efficient methods.

3.3 Comparisons with related works

Of particular relevance to this work are ScaledGD(λ) [21] and PrecGD [15], which focus on over-
parameterized symmetric low-rank matrix sensing. While these preconditioned gradient descent
methods are not easily applicable to the general asymmetric matrix sensing problem, as we will discuss
in the appendix Section A.1.3. In this section, we demonstrate that these preconditioned gradient
descent methods are instances of the Levenberg–Marquardt method (specifically, the Gauss-Newton
method for singular least square problems) applied to the symmetric low-rank matrix sensing problem.
However, the Levenberg–Marquardt method is a more general approach than the preconditioned
gradient descent method, particularly for nonlinear least square problems.

Since ScaledGD(λ) [21] and PrecGD [15] consider over-parameterized symmetric matrix sens-
ing, we constraint X ∈ C where C is defined in Section 3.2. It can be easily verified that the
ScaledGD(λ)/PrecGD for problem (6) corresponds to

Xt+1 = Xt − η∆(Xt, λ),

∆̂(Xt, λ) = argmin
∆∈C

1

2
∥B̂(∆, Xt)−A∗(B(Xt, Xt)− b)∥2F + λ∥∆∥2F .

(16)

It is apparent from Eq. (16) that λ constrains the magnitude of the update ∆(Xt, λ) to be small
compared to Eq. (13), thus ensuring that the preconditioned gradient descent method exhibits
monotonically decreasing behavior, as analyzed in [42] and [21]. The Lemma 6 in [42] ensures that
PrecGD is a descent method, as summarized by the following corollary

5One can employ a line search algorithm to ensure the decrease in the objective function value. Nevertheless,
line search will slow-down the convergence and is not the primary focus of this paper.
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Corollary 1. For symmetric matrix sensing, there exists positive constant ℓX,λ such that as long as
0 < η ≤ 2/ℓX,λ, the iteration given by Eq. (16) satisfies

ψ(Xt+1) ≤ ψ(Xt)−
ℓX,λ

2
∥B̂(∆̂(Xt, λ), Xt)∥2F , (17)

where ℓX,λ = (1 + δ)

[
4 + 2∥B̂(Xt,Xt)−M∥F+4∥B̂(∆̂(Xt,λ),Xt)∥F

σmin(X⊤
t Xt)+λ

+
(

∥B̂(∆̂(Xt,λ),Xt)∥F

σmin(X⊤
t Xt)+λ

)2
]

.

Similar to the Lemma 1 of our AGN method, the value ∥B̂(∆̂(Xt, λ), Xt)∥2F plays very important
role for the convergence of ScaledGD(λ)/PrecGD. While we observe that the parameter λ can notably
impede the progress of ScaledGD(λ)/PrecGD in escaping the saddle point, as illustrated in Fig. 2
and discussed in Section 6. In Section 4, we will prove that when Xt is ε-close to the saddle points,
∥B̂(∆̂(Xt, λ), Xt)∥2F will be as small as o(ε), which explains why ScaledGD(λ)/PrecGD converges
slowly near saddle points. While in contrast, even if Xt is ε-close to the saddle points, the value
∥B̂(∆̂(Xt), Xt)∥2F in Eq. (12) is almost independent of ε, thus, saddle points cannot impede the
convergence of the AGN method, which is also demonstrated in the left subfigure of Fig. 2.

4 Saddle point analysis on the population risk

Saddle points are special critical points in non-convex optimization problem, contributing significantly
to the global convergence analysis of gradient-based algorithms in non-convex optimization. Past
researches [18] has demonstrated that gradient descent may encounter difficulties in navigating away
from saddle points, while our empirical findings in Section 5 demonstrate that the proposed AGN
does not experience slowdowns caused by saddle points. Therefore, it’s quite intriguing and crucial
to understand the behaviors of gradient descent and AGN in the vicinity of saddle points. To this end,
we study the saddle points of the population risk of the problem (6).

The population risk6 associated with the objective function in Eq. (6) corresponds to the following
non-convex matrix factorization problem:

min
X∈R2n×d

1

2
∥PXX⊤Q−M∥22. (18)

The objective function corresponds to g(U, V ) = 1
2∥UV

⊤ −M∥2F , U ∈ Rn×d, V ∈ Rn×d which
plays very important role in the saddle point analysis of Eq. (6). The saddle point of the non-convex
objective g(U, V ) is denoted by (Us, Vs) ∈ S, where the set S is defined as follows:

S =
{
(Us, Vs)|UsV

⊤
s = ΦM(Σ)Ψ⊤,M = ΦΣΨ⊤,M ∈ M/I

}
, (19)

where M = ΦΣΨ⊤ is the SVD of the matrix M and Φ ∈ Rn×r,Ψ ∈ Rn×r,Σ ∈ Rr×r, M is the set
of mask operator7 and I is the identity operator.

Note that the gradient norm ∥∇g∥2F is intricately linked to the reduction of the objective function for
gradient descent method. In our approach, the values ∥B̂(∆̂(Xt), Xt)∥2F and ∥B̂(Xt, ∆̂(Xt))∥2F in
Eq. (12), which correspond to ∥∇Ug(V

⊤V )−
1
2 ∥2F and ∥∇V g(U

⊤U)−
1
2 ∥2F respectively, are directly

tied to the reduction observed in the AGN method. Correspondingly for symmetric matrix sensing,
the values ∥B̂(∆̂(Xt, λ), Xt)∥2F in Eq. (17), which corresponds to ∥∇Ug(U

⊤U + λI)−
1
2 ∥2F , is

related to the reduction of the non-convex objective by SclaedGD [21] and PrecGD [15]. Now, we
present the following theorem to describe the behavior of gradient descent, ScaledGD(λ)/PrecGD
and AGN in the vicinity of saddle points, by quantifying the values associated with their reductions
in objective functions. For simplicity, we consider here rank(M) = 1.

Theorem 1. Assume that M is rank-1, the point (Û , V̂ ) with Û = Us + εNu, V̂ = Vs + εNv is
at the vicinity of the saddle point (Us, Vs) ∈ S and ε is sufficiently small, Nu and Nv are random
Gaussian matrices that follow a standard normal distribution. Then with high probability we have
the following results

(GD) ∥∇g∥2F = o(ε)es + o(ε2), (20)

6The population risk of problem (6) corresponds m → ∞ in Eq. (1) and Eq. (6).
7M(·) : Rr×r → Rr×r is a mask operator which maps the element Xi,j of its input X into zero or Xi,j .
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(AGN)

{
∥∇gÛ (V̂

⊤V̂ )−
1
2 ∥2F = Θ(1)es + o(ε2),

∥∇gV̂ (Û
⊤Û)−

1
2 ∥2F = Θ(1)es + o(ε2),

(21)

where es = ∥UsV
⊤
s −M∥2F . Furthermore, by constraining M to be positive semi-definite and

Û = V̂ , Us = Vs (for symmetric matrix sensing), for bounded constant c > 0, we have

(ScaledGD(λ)) ∥∇gÛ (Û
⊤Û + λI)−

1
2 ∥2F = Θ

(
ε2

ε2 + λ/c

)
es + o(ε2). (22)
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Figure 1: Illustration of the gradient norm for GD,
PrecGD, and the proposed AGN, with the right subfig-
ure showing a zoomed-in region of the left for iterations
from 100 to 500.

Theorem 1 indicates that when the opti-
mization variable (Û , V̂ ) is ε-close to the
saddle point of the non-convex objective
function g(Û , V̂ ), the norm of the gradi-
ent ∥∇g∥2F at (Û , V̂ ) becomes as small as
o(ε). Hence, the convergence of gradient
descent will be relatively slow, as shown
in Fig. 2. Moreover, in Eq. (22), the
value of λ/c is typically much larger than
ε. Consequently, the reduction achieved by
ScaledGD(λ)/PrecGD for symmetric ma-
trix sensing is nearly identical to that of
gradient descent o(ε). In contrast, even if
(Û , V̂ ) is ε-close to the saddle point, the reduction in the non-convex objective achieved by AGN in
Eq. (21) is as significant as Θ(1)es + o(ε), where Θ(1)es is larger than ε and is not dependent on
ε, thus ensuring that AGN achieves a substantial decrease in the objective function near the saddle
points. We also plot the gradient norm of GD, PrecGD and AGN in Fig. 1 for solving problem (6). It
can be seen from Fig. 1 that the gradient norm of AGN decreases linearly to zero. While the gradient
norm of PrecGD suffers from ups and downs before it is smaller than about 1× 10−7. This indicates
that PrecGD is attracted to saddle points but can quickly escape, depending on the value of λ as per
Eq. (22). It becomes more challenging for GD to quickly escape all saddle points, which is due to Eq.
(20). As shown in Fig. 1, GD’s iterations encounter multiple saddle points before reaching the global
minimum.

5 Global convergence analysis
We first recall the celebrated Restricted Isometry Property (RIP) [43], then we make some mild
assumptions on the restricted isometry constant and the initialization of the variable X0.

5.1 Assumptions and main result
Assumption 1. The operator A(·) satisfies the rank-r + 1 RIP with constant δr+1 := δ. Further
more, there exist a sufficiently small constant cδ > 0 and a sufficient large Cδ > 0 such that

δ ≤ cδr
−1/2κ−Cδ , (23)

where κ is the condition number of the matrix M .
Assumption 2. Let X0 ∈ R2n×d be random Gaussian with elements sampled from N (0, σ) with
σ ≤ c0∥Σ∥2/n for small c0 and the step size 0 < η ≤ 2/(1 + δ).

Now we present our main result, which characterizes the global Q-linear convergence of the proposed
AGN for the over-parameterized, non-convex, low-rank matrix sensing problem.
Theorem 2 (Global Q-linear convergence). Under the Assumption 1 and Assumption 2. Let ψ∗ be
the global minimal value of ψ(X) in Eq. (6) and Xt,∀t > 0 is generated by Algorithm 1, then there
exists constants 1 ≥ τ > 0 such that

ψ(Xt+1)− ψ∗ ≤ cq[ψ(Xt)− ψ∗],∀t > 0, (24)

where cq = (1− ℓ̂ 1−δ
1+δ τ) < 1 and ℓ̂ = 2η − (1 + δ)η2. Meanwhile, if δ = 0, η = 1, cq becomes 0.

Theorem 2 echoes the observation in the left subfigure of Fig. 2 that AGN converges rapidly from
random initialization and does not become trapped in saddle regions. The convergence result of AGN
differs significantly from existing methods like ScaledGD(λ) [21], PrecGD [15] and GD [19, 20],
both empirically and theoretically. In the next section, we will present the sketch of our proof.
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5.2 Proof sketch
The global Q-linear convergence of the AGN method relies on two conditions: monotonically
decreasing (Lemma 1) and decrease dominant (Lemma 3). The monotonically decreasing condition
ensures that the objective function decreases in each iteration, while the decrease dominant condition
guarantees that the decrease in the function value is significantly larger than the distance between the
current function value and the global minimum.
Lemma 3 (Decrease dominant). Under Assumption 1 and 2, let Xt be updated by AGN method in
Algorithm 1, then there exist τ1t , τ

2
t and constant τ with 1 ≥ max{τ1t , τ2t } ≥ min{τ1t , τ2t } ≥ τ > 0

such that
∥B̂(∆̂(Xt), Xt)∥2F ≥ 1− δ

1 + δ
τ1t [ψ(Xt)− ψ∗],

∥B̂(Xt+ 1
2
, ∆̂(Xt+ 1

2
))∥2F ≥ 1− δ

1 + δ
τ2t [ψ(Xt+ 1

2
)− ψ∗],

(25)

where ∆̂(Xt) and ∆̂(Xt+ 1
2
) is from Eq. (10).

Note that the linear operator A(·) and the l2-norm is unitarily invariant, therefore for simplicity we
consider M to be a diagonal matrix Σ ∈ Rn×n with r nonzero elements on the diagonal. Specifically
one can simply write Σ = Φ⊤MΨ where M = ΦΣΨ⊤ is the SVD of matrix M , as analyzed

in [18] and [20]. Let Xt =

[
Ut

Vt

]
, then ∥B̂(∆̂(Xt), Xt)∥2F = ∥A∗(A(UtV

⊤
t − Σ))VtV

†
t ∥2F and

correspondingly ψ(Xt) − ψ∗ = 1
2∥A(UtV

⊤
t − Σ)∥22. According to the following Lemma 4 and

the RIP condition in Definition 1, to guarantee the inequality in Eq. (25), we need to ensure that
∥(UtV

⊤
t − Σ)VtV

†
t ∥2F ≥ τ1∥UtV

⊤
t − Σ∥2F as presented by Lemma 5.

Lemma 4. Assume that the operator A(·) satisfies the RIP condition in Definition 1 and Assumption
1 with constant δ, for any U, V ∈ Rn×d, Σ ∈ Rn×n and Z ∈ Rn×n, then we have that

∥A∗A(UV ⊤ − Σ)Z∥F ≥ (1− δ)∥(UV ⊤ − Σ)Z∥F . (26)

Lemma 5. Under Assumptions 1 and 2, if Xt,∀t > 0 is generated by the AGN method in Algorithm

1 and let Xt =

[
Ut

Vt

]
, then there exist constant τ , τ1t , τ

2
t with max{τ1t , τ2t } ≥ min{τ1t , τ2t } ≥ τ > 0

such that ∥(UtV
⊤
t − Σ)VtV

†
t ∥2F ≥ τ1t ∥UtV

⊤
t − Σ∥2F ,

∥(VtU⊤
t+ 1

2
− Σ)Ut+ 1

2
U†
t+ 1

2

∥2F ≥ τ2t ∥Ut+ 1
2
V ⊤
t − Σ∥2F .

(27)

Theorem 2 can be proven readily by combining all of these lemmas. Please refer to the Appendix for
a more detailed proof.

6 Numerical experiments
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Figure 2: Comparison of convergence for PrecGD,
GD, and AGN across various condition numbers,
with the right subfigure extending the left by iterat-
ing from 300 to 1000.

In this section, we conduct experiments to
demonstrate the effectiveness of the proposed
AGN method for solving the over-parameterized
non-convex matrix sensing problem. We set
the ground truth matrix M = U∗ΣV ∗⊤, with
U∗ ∈ Rn×r, V ∗ ∈ Rn×r random orthogonal
matrices and Σ is a diagonal matrix with condi-
tion number κ. We set n = 100, r = 5, d = 3r
and the number of sensing matrices m = 50nr.
All experiments were conducted using MAT-
LAB on a MacBook Pro with a 2.4 GHz quad-
core Intel Core i5 CPU and 8 GB of memory.

Comparison with representative methods.
We compare AGN with GD [20] and PrecGD [15] on asymmetric over-parameterized matrix sensing.
All the competing methods are initialized with random Gaussian matrix with zero mean the variance
1/n. We plot the training curves of the competing methods in Fig. 2, where the relative error is
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defined by ∥UtV
⊤
t −M∗∥F /∥M∗∥F . GD’s slow convergence is evident as it struggles to escape

saddle points, as shown in the saddle regions of Fig. 2. Meanwhile, GD’s final convergence rate
depends on the condition number κ. Fig. 2 further shows that PrecGD’s final convergence rate is
independent of κ, though it still progresses slowly in saddle regions. In contrast, the relative error
of AGN decreases rapidly, and its convergence remains unaffected by saddle points, consistent with
Theorem 2.

Table 2: Comparison of computational time for
methods on matrices with varying dimensions n,
measured in seconds. Here, a+ indicates time
significantly exceeds a seconds.

Algorithm 100× 100 500× 500
κ = 10 κ = 50 κ = 10 κ = 50

GD [20] 500+ 500+ 5000+ 5000+
PrecGD [15] 87.12 94.53 1979.45 1921.83

ScaledGD(λ)[21] 55.87 69.07 1218.83 1258.71
AGN(ours) 27.24 25.52 617.58 632.24

Meanwhile, we compare the computational time
of GD [20], PrecGD [15], ScaledGD(λ) [21],
and the proposed AGN on matrices of varying
dimensions n×n under different condition num-
ber κ in Table 2. It can be seen from Table 2 that
AGN is significantly faster than the competing
methods, particularly PrecGD and ScaledGD(λ),
while vanilla gradient descent converges much
more slowly.

Asymmetric vs. symmetric parameterization
of the symmetric MS. We also conduct experiments to illustrate the differences between symmetric
and asymmetric parameterization in symmetric matrix sensing, as discussed in subsection 3.2. As
analyzed in section 3.2 setting 1, the matrix U⊤

t Ut tends to be singular in over-parameterized matrix
sensing, causing ∥B(∆̃(Xt), ∆̃(Xt))∥22 to become extremely large, leading to ψ(Xt+1) ≥ ψ(Xt), as
shown in Eq. (14). Thus, we cannot guarantee that AGN in symmetric parameterization is a reliable
descent method, as demonstrated by AGNsym in Fig. 3. However, with asymmetric parameterization,
as outlined in subsection 3.2 setting 2, we can ensure the linear convergence of the AGN method,
also illustrated by AGNasym in Fig. 3.

7 Conclusion
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Figure 3: Convergence of AGN un-
der Sym. and Asym. parameteriza-
tion of symmetric LRMS.

In this paper, we present an approximated Gauss-Newton
(AGN) method for overparameterized non-convex low-rank
matrix sensing problem. We demonstrate the close relation-
ship between existing methods like ScaledGD(λ) and PrecGD,
and the Levenberg–Marquardt method, which is a variant of
the Gauss-Newton method. Through saddle point analysis, we
partially explain why gradient descent, Scaled(λ)/PrecGD may
be slowed down by saddle points, whereas the proposed AGN
achieves fast convergence. Finally, we prove that the proposed
AGN achieves Q-linear convergence from random Gauss initial-
ization for the non-convex optimization problem. Our findings
highlight the efficacy of (approximate) second-order methods in
non-convex optimization, particularly for structured problems
like non-convex matrix sensing. Moreover, our results can be
extended to more complex challenges, such as optimizing deep
neural networks.

Limitations: While the AGN method converges quickly and is efficient for low-rank matrix sensing
problems, it may be less effective than gradient descent for general problems without low-rank
structure due to the need to solve a least-squares problem for the Gauss-Newton direction. Future
work will explore approximate methods, like the conjugate gradient, to address this. Additionally, our
current saddle point analysis focuses on a simple non-convex LRMS case with a zero RIP constant,
which we will generalize to more complex scenarios with larger RIP constants.
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A Appendix / supplemental material

A.1 Preliminaries and more details

A.1.1 The definition of RIP

Definition 1 (Restricted Isometry Property). The linear operator A(·) is said to satisfy rank-r RIP
with a constant δr ∈ [0, 1) if for all matrices M of rank at most r the following condition holds

(1− δr)∥M∥2F ≤ ∥A(M)∥22 ≤ (1 + δr)∥M∥2F . (28)

A.1.2 The main AGN algorithm

Algorithm 1: AGN for matrix sensing
Data: A(·), b, η and the random Gauss initialization X0, t = 0.
Result: The estimated solution X and the low-rank matrix M̂ = PXX⊤Q.
while not end do

t = t+ 1;
Update the approximated Gauss-Newton direction by Eq. (10);
Update Xt and Xt+ 1

2
by Eq. (11);

end

A.1.3 ScaledGD(λ)/PrecGD for LRMS problem (6)

Directly applying the ScaledGD(λ)/PrecGD methods in [21] and [15] respectively to problem (6)
will lead to the following iterative update as

Xk+1 = Xk − η∇ψ(Xt)(X
⊤
t Xt + λtI)

−1, (29)

where λt can be either constant or time-varying. Note that in our LRMS problem (6), Xt =

[
Ut

Vt

]
,

therefore the update in Eq. (29) becomes

Ut+1 = Ut − ηA∗A(UtV
⊤
t − Σ)Vt(U

⊤
t Ut + V ⊤

t Vt + λtI)
−1, (30)

and
Vt+1 = Vt − η[A∗A(UtV

⊤
t − Σ)]⊤Ut(U

⊤
t Ut + V ⊤

t Vt + λtI)
−1, (31)

which leads to quite different method compared to our AGN with iterations in Ut and Vt given by
the following Eq. (33) and Eq. (34). Meanwhile, as shown in Fig. 4, using Eq. (29) for our LRMS
(denoted by PrecGD) results in slower convergence compared to our AGN method, and moreover the
convergence rate is dependent on the condition number of M as κ(M). In contrast, the proposed
AGN converges very quickly, and its convergence rate is independent of the condition number κ(M).

A.1.4 Some detailed derivations.

Before presenting the proof, we first provide additional details regarding the update described in

Eq. (11). Specifically, let Xt =

[
Ut

Vt

]
, with Ut =

[
Ût

Jt

]
and Vt =

[
V̂t
Kt

]
where Ût, V̂t ∈ Rr×d and

Jt,Kt ∈ R(n−r)×d. Since Σ =

[
Σr 0
0 0

]
with Σr ∈ Rr×r, Thus, the update in Eq. (11) can be

succinctly expressed as

Xt+ 1
2
= Xt − η∆̂(Xt) =

[
Ut+1

Vt

]
, Xt+1 = Xt+ 1

2
− η∆̂(Xt+ 1

2
) =

[
Ut+1

Vt+1

]
, (32)

with Ut+1 and Vt+1 given by

Ut+1 = Ut − ηA∗A(UtV
⊤
t − Σ)Vt(V

⊤
t Vt)

†, (33)
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Figure 4: Convergence of AGN and the method by using Eq. (29) (denoted by PrecGD) for LRMS
with different condition numbers on matrix M .

and
Vt+1 = Vt − η[A∗A(Ut+1V

⊤
t − Σ)]⊤Ut+1(U

⊤
t+1Ut+1)

†, (34)

and correspondingly

∆̂(Xt) =

[
A∗A(UtV

⊤
t − Σ)Vt(V

⊤
t Vt)

†

0

]
, (35)

∆̂(Xt+ 1
2
) =

[
0

[A∗A(Ut+1V
⊤
t − Σ)]⊤Ut+1(U

⊤
t+1Ut+1)

†

]
. (36)

In consequence, we have

∥B̂(∆̂(Xt), Xt)∥2F = A∗A(UtV
⊤
t − Σ)Vt(V

⊤
t Vt)

†V ⊤
t , (37)

and
∥B̂(Xt+ 1

2
, ∆̂(Xt+ 1

2
))∥2F = Ut+1(U

⊤
t+1Ut+1)

†U⊤
t+1A∗A(Ut+1V

⊤
t − Σ). (38)

Further more, we can reformulate Ut+1 and Vt+1 as

Ut+1 = Ut − ηA∗A(UtV
⊤
t − Σ)Vt(V

⊤
t Vt)

†

= Ut − η(UtV
⊤
t − Σ)Vt(V

⊤
t Vt)

† + η(I −A∗A)(UtV
⊤
t − Σ)Vt(V

⊤
t Vt)

†

= (1− η)

[
Ût

Jt

]
+ η

[
Σr 0
0 0

] [
V̂t
Kt

](
V̂ ⊤
t V̂t +K⊤

t Kt

)†

+ η(I −A∗A)

([
ÛtV̂

⊤
t − Σr ÛtK

⊤
t

JtV̂
⊤
t JtK

⊤
t

])[
V̂t
Kt

](
V̂ ⊤
t V̂t +K⊤

t Kt

)†

= (1− η)

[
Ût

Jt

]
+ η

[
ΣrV̂t

(
V̂ ⊤
t V̂t +K⊤

t Kt

)†

0

]

+ η(I −A∗A)

([
ÛtV̂

⊤
t − Σr ÛtK

⊤
t

JtV̂
⊤
t JtK

⊤
t

])[
V̂t
Kt

](
V̂ ⊤
t V̂t +K⊤

t Kt

)†
,

(39)

and

Vt+1 = Vt − η[A∗A(Ut+1V
⊤
t − Σ)]⊤Ut+1(U

⊤
t+1Ut+1)

†

= (1− η)

[
V̂t
Kt

]
+ η

[
ΣrÛt+1

(
Û⊤
t+1Ût+1 + J⊤

t+1Jt+1

)†

0

]

+ η(I −A∗A)

[
V̂tÛ

⊤
t+1 − Σr V̂tJt+1Ût+1

KtÛ
⊤
t+1 KtJ

⊤
t+1

] [
Ût+1

Jt+1

](
Û⊤
t+1Ût+1 + J⊤

t+1Jt+1

)†
.

(40)
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We denote [
EUt

EJt

]
= (I −A∗A)

([
ÛtV̂

⊤
t − Σr ÛtK

⊤
t

JtV̂
⊤
t JtK

⊤
t

])[
V̂t
Kt

](
V̂ ⊤
t V̂t +K⊤

t Kt

)†
, (41)

and[
EVt

EKt

]
= (I −A∗A)

[
V̂tÛ

⊤
t+1 − Σr V̂tJt+1Ût+1

KtÛ
⊤
t+1 KtJ

⊤
t+1

] [
Ût+1

Jt+1

](
Û⊤
t+1Ût+1 + J⊤

t+1Jt+1

)†
. (42)

Then it follows

Ût+1 = (1− η)Ût + ηΣrV̂t

(
V̂ ⊤
t V̂t +K⊤

t Kt

)†
+ ηEUt

, (43)

similarly

V̂t+1 = (1− η)V̂t + ηΣrÛ
⊤
t+1

(
Û⊤
t+1Ût+1 + J⊤

t+1Jt+1

)†
+ ηEVt

, (44)

and
Jt+1 = (1− η)Jt + ηEJt

,

Kt+1 = (1− η)Kt + ηEKt .
(45)

Under the Assumption 1, there exits small δ1 ≪ 1 such that ∥EJt
∥F ≤ δ1∥Jt∥F and ∥EKt

∥F ≤
δ1∥Kt∥F , as long as Cδ in Assumption 1 is large enough and cδ is small enough. Therefore we can
guarantee that

∥JtK⊤
t ∥F ≤ (1− η + δ1η)

2t∥J0K⊤
0 ∥F . (46)

Meanwhile, we have

Ut+1V
⊤
t = (1− η)

[
Ût

Jt

] [
V̂ ⊤
t ,K

⊤
t

]
+ η

[
ΣrV̂t

(
V̂ ⊤
t V̂t +K⊤

t Kt

)†

0

] [
V̂ ⊤
t ,K

⊤
t

]
+ η

[
EUt

EJt

] [
V̂ ⊤
t ,K

⊤
t

]
,

(47)

which indicates that

Ût+1V̂
⊤
t+1 − Σr = (1− η)2(ÛtV̂

⊤
t − Σr) + η

[
Ût+1

(
Û⊤
t+1Ût+1 + J⊤

t+1Jt+1

)†
Û⊤
t+1 − I

]
Σr

+ ηÛt+1E
⊤
Vt

+ (1− η)ηΣr

[
V̂t

(
V̂ ⊤
t V̂t +K⊤

t Kt

)†
V̂ ⊤
t − I

]
+ (1− η)ηEUt V̂

⊤
t .

(48)

A.2 Proofs of the lemmas

A.2.1 Proof of Lemma 1

Proof. According to Eq. (9), we know that

ψ(Xt+ 1
2
) =

1

2
∥B(Xt+ 1

2
, Xt+ 1

2
)− b∥22

=
1

2
∥B(Xt, Xt)− ηB(Xt, ∆̂(Xt))− ηB(∆̂(Xt), Xt) + η2B(∆̂(Xt), ∆̂(Xt))− b∥22

=
1

2
∥ηB(∆̂(Xt), Xt)− (B(Xt, Xt)− b)∥22

=
1

2
∥B(Xt, Xt)− b∥22 +

η2

2
∥B(∆̂(Xt), Xt)∥22 − η⟨B(∆̂(Xt), Xt),B(Xt, Xt)− b⟩.

(49)

Note that
⟨B(∆̂(Xt), Xt),B(Xt, Xt)− b⟩ = ∥B̂(∆(Xt), Xt)∥2F , (50)

and
∥B(∆̂(Xt), Xt)∥22 ≤ ϱ∥B̂(∆̂(Xt), Xt)∥2F , (51)
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where ϱ = ∥A∥22 ≤ (1 + δ) which is due to the RIP condition. Thus we have

ψ(Xt+ 1
2
) ≤ ψ(Xt)−

2η − (1 + δ)η2

2
∥B̂(∆̂(Xt), Xt)∥2F . (52)

Similarly, we can prove that

ψ(Xt+1) ≤ ψ(Xt+ 1
2
)− 2η − (1 + δ)η2

2
∥B̂(Xt+ 1

2
, ∆̂(Xt+ 1

2
))∥2F . (53)

Therefore we finish our proof.

A.2.2 Proof of the Lemma 2.

Proof. Note that the optimal solution in Eq. (13) satisfies[
I
0

]
P∆X⊤

t QQ
⊤Xt −

[
I
0

]
A∗(B(Xt, Xt)− b)Q⊤Xt = 0,∆ ∈ C. (54)

While the solution of Eq. (9) is

∆̂(Xt) =

[
I
0

]
A∗(B(Xt, Xt)− b)Q⊤Xt(X

⊤
t QQ

⊤X⊤
t )†, (55)

which satisfies [
I
0

]
P∆X⊤

t QQ
⊤Xt −

[
I
0

]
A∗(B(Xt, Xt)− b)Q⊤Xt = 0. (56)

It is easy to verify that the matrix ∆̃(Xt) =

[
P ∆̂(Xt)

P ∆̂(Xt)

]
satisfies Eq. (54), thus it is the solution of

the problem (13).

A.2.3 Proof of the Lemma 3.

Before proving the Lemma 3, we first define the angle between the column space of V U⊤ − Σ⊤ and
that of V as

cosθv :=
∥(UV ⊤ − Σ)V V †∥F

∥UV ⊤ − Σ∥F
, (57)

and similarly

cosθu :=
∥(V U⊤ − Σ)UU†∥F

∥UV ⊤ − Σ∥F
, (58)

where † stands for the pseudo-inverse. We note that the cosθu in Eq. (57) and Eq. (58) are well
defined and are equivalent to the following values.
Proposition 1. For any U, V ∈ Rn×d and Σ ∈ Rn×n, the cosθv and cosθu in Eq. (57) and Eq. (58)
have the following equivalent formulations

cosθv = max
∥Y ∥F=1

〈
UV ⊤ − Σ, Y V V †〉

∥UV ⊤ − Σ∥F ∥Y V V †∥F
, (59)

and

cosθu = max
∥Y ∥F=1

〈
V U⊤ − Σ, Y UU†〉

∥UV ⊤ − Σ∥F ∥Y UU†∥F
, (60)

where Y ∈ Rn×n.

Now we present the proof of Lemma 3.

Proof. Given the cosθv and cosθu , one can immediately writes

∥(UV ⊤ − Σ)V V †∥F = cosθv∥UV ⊤ − Σ∥F , (61)

and
∥(V U⊤ − Σ)UU†∥F = cosθu∥UV ⊤ − Σ∥F , (62)
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which indicate that the cosθv and cosθu provide estimate to the
√
τ1 and

√
τ2 in Lemma 5. Together

with the Lemma 4, Assumption 1 and Definition 1, we can establish that

∥B̂(∆̂(Xt), Xt)∥2F ≥ (1− δ)∥(UtV
⊤
t − Σ)VtV

†
t ∥2F

≥ (1− δ)cos2θv∥UtV
⊤
t − Σ∥F

≥ 1− δ

1 + δ
cos2θtv[ψ(Xt)− ψ∗].

(63)

Similarly, we have

∥B̂(Xt+ 1
2
, ∆̂(Xt+ 1

2
))∥2F ≥ 1− δ

1 + δ
cos2θt+1

u [ψ(Xt+ 1
2
)− ψ∗]. (64)

According to Lemma 5, we know that cos2θtv ≥ τ1 and cos2θtu ≥ τ2, ∀t > 0 and max{τ1, τ2} > 0.
Thus we finish the proof.

A.2.4 Proof of the Lemma 4.

Proof. We have

∥A∗A(UV ⊤ −M)Z∥F = ∥(UV ⊤ −M)Z − (I −A∗A)(UV ⊤ −M)Z∥F
≥ ∥(UV ⊤ −M)Z∥F − ∥(I −A∗A)(UV ⊤ −M)Z∥F .

(65)

According to the definition of matrix norm and the Frobenius norm, there exits matrix Y with
∥Y ∥F = 1, such that

∥(I −A∗A)(UV ⊤ −M)Z∥F = max
∥Y ∥F=1

〈
(I −A∗A)(UV ⊤ −M)Z, Y

〉
= max

∥Y ∥F=1

〈
(UV ⊤ −M)Z, (I −A∗A)(Y )

〉
≤ max

∥Y ∥F=1
∥(UV ⊤ −M)Z∥F ∥(I −A∗A)Y ∥F

≤ δ∥(UV ⊤ −M)Z∥F ,

(66)

therefore the following inequality holds

∥A∗A(UV ⊤ −M)Z∥F ≥ (1− δ)∥(UV ⊤ −M)Z∥F , (67)

which finishes our proof.
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A.2.5 Proof of the Lemma 5

Proof. Let Et = UtV
⊤
t − Σ, we have

cosθtv =
∥(UtV

⊤
t − Σ)VtV

†
t ∥F

∥Et∥F
=

∥EtVt(V
⊤
t Vt)

− 1
2 ∥F

∥Et∥F

= max
∥Y ∥F=1

〈
EtVt(V

⊤
t Vt)

− 1
2 , Y

〉
∥Et∥F

= max
∥Z(V ⊤

t Vt)
1
2 ∥F=1

〈
Et, ZV

⊤
t

〉
∥Et∥F

= max
∥ZV ⊤

t ∥F=1

〈
Et, ZV

⊤
t

〉
∥Et∥F

= max
∥ZV ⊤

t ∥F=1

〈[
ÛtV̂

⊤
t − Σr ÛtK

⊤

JtV̂
⊤
t JtK

⊤
t

]
,

[
Z1V̂

⊤
t Z1K

⊤
t

Z2V̂
⊤
t Z2K

⊤
t

]〉
∥Et∥F

= max
∥ZV ⊤

t ∥F=1

〈[
ÛtV̂

⊤
t − Σr

JtV̂
⊤
t

]
,

[
Z1V̂

⊤
t

Z2V̂
⊤
t

]〉
+

〈[
ÛtK

⊤
t

JtK
⊤
t

]
,

[
Z1K

⊤
t

Z2K
⊤
t

]〉
∥Et∥F

= max
∥ZV ⊤

t ∥F=1

〈[
ÛtV̂

⊤
t − Σr

]
, Z1V̂

⊤
t

〉
∥Et∥F

+

〈
JtV

⊤
t , Z2V

⊤
t

〉
∥Et∥F

+

〈
ÛtK

⊤
t , Z1K

⊤
t

〉
∥Et∥F

≥ max
∥ZV ⊤

t ∥F=1

〈[
ÛtV̂

⊤
t − Σr

]
, Z1V̂

⊤
t

〉
+

〈
JtV

⊤
t , Z2V

⊤
t

〉
∥Et∥F

−

∣∣∣∣∣∣
〈
ÛtK

⊤
t , Z1K

⊤
t

〉
∥Et∥F

∣∣∣∣∣∣
≥ max

∥ZV ⊤
t ∥F=1

〈[
ÛtV̂

⊤
t − Σr

]
, Z1V̂

⊤
t

〉
+

〈
JtV

⊤
t , Z2V

⊤
t

〉
∥Et∥F

− ∥Z1K
⊤
t ∥F

∥ÛtK
⊤
t ∥F

∥Et∥F

≥ ∥JtV ⊤
t ∥F

∥Et∥F
≥ ∥Vt∥Fσmin(Jt)

∥Et∥F
.

(68)

Similarly, we have

cosθtu ≥ max
∥ZU⊤

t ∥F=1

〈[
V̂tÛ

⊤
t − Σr

]
, Z1Û

⊤
t

〉
+
〈
KtU

⊤
t , Z2U

⊤
t

〉
∥Et∥F

− ∥Z1J
⊤
t ∥F

∥JtV̂ ⊤
t ∥F

∥Et∥F

≥ ∥Ut∥Fσmin(Kt)

∥Et∥F
.

(69)

To estimate the lower-bound of cosθtu and cosθtv , according to Eq. (68) and Eq. (69), we can divide the
whole iterations into two phases based on the value of σmin(Kt) and σmin(Jt). In the first phase, there
exists an iteration count T such that σmin(KT ) ≥ ζ1 and σmin(JT ) ≥ ζ1, for small ζ1 > 0. Since
A(·) satisfies the RIP condition with sufficiently small δ, we know that the EKt

, EJt
in Eq. (45) are

akin to small perturbations. Therefore the minimum singular value of Jt and Vt are decreasing under
the Assumption 2, and one can guarantee that σmin(Kt) ≥ ζ1 and σmin(Jt) ≥ ζ1, ∀t < T . Then the
value ζ1 provides lower-bound for the values of cosθtu ≥ τ1 =

dζ2
1

∥E0∥F
and cosθtv ≥ τ2 =

dζ2
1

∥E0∥F
, for

t < T . Meanwhile, according to the update in Eq. (45) and the sufficiently small RIP constant δ, we
know that σmin(Kt) and σmin(Jt) decrease linearly such that T = O(log 1

ζ1
).

In the second phase, if σmin(Kt) < ζ1 and σmin(Jt) < ζ1, for t > T , we can use the following
inequalities to lower-bound the cosθtu and cosθtv .

cosθtu ≥ max
∥ZU⊤

t ∥F=1

〈[
V̂tÛ

⊤
t − Σr

]
, Z1Û

⊤
t

〉
+

〈
KtU

⊤
t , Z2U

⊤
t

〉
∥Et∥F

− ∥Z1J
⊤
t ∥F

∥JtV̂ ⊤
t ∥F

∥Et∥F
, (70)

cosθtv ≥ max
∥ZV ⊤

t ∥F=1

〈[
ÛtV̂

⊤
t − Σr

]
, Z1V̂

⊤
t

〉
+

〈
JtV

⊤
t , Z2V

⊤
t

〉
∥Et∥F

− ∥Z1K
⊤
t ∥F

∥ÛtK
⊤
t ∥F

∥Et∥F
, (71)
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which come from Eq. (69) and Eq. (68).

By Lemma 6, we know that σmin(Ût) > 0 and σmin(V̂t) > 0, for t > T . Together with Eq. (70) and
Eq. (71) we have

cosθtu ≥ ∥V̂tÛ⊤
t − Σr∥F ∥Zu

1 Û
⊤
t ∥F + ∥KtU

⊤
t ∥F ∥Zu

2U
⊤
t ∥F

∥Et∥F
− ∥Zu

1 J
⊤
t ∥F

∥JtV̂ ⊤
t ∥F

∥Et∥F
, (72)

where ∥Zu
1 Û

⊤
t ∥2F + ∥Zu

1 Jt∥2F + ∥Zu
2U

⊤
t ∥2F = 1.

cosθtv ≥ ∥ÛtV̂
⊤
t − Σr∥F ∥Zv

1 V̂
⊤
t ∥F + ∥JtV ⊤

t ∥F ∥Zv
2V

⊤
t ∥F

∥Et∥F
− ∥Zv

1K
⊤
t ∥F

∥ÛtK
⊤
t ∥F

∥E∥F
, (73)

where ∥Zv
1 V̂

⊤
t ∥2F + ∥Zv

2V
⊤∥2F + ∥Zv

1K
⊤
t ∥2F = 1. The Eq. (72) and Eq. (73) further imply that

cosθtu ≥
√
1− ∥ZuJt∥2F

∥
[
V̂tÛ

⊤
t − Σr

KtÛ
⊤
t

]
∥F

∥Et∥F
− ∥ZuJt∥F , (74)

and

cosθtv ≥
√
1− ∥ZvKt∥2F

∥
[
ÛtV̂

⊤
t − Σr

JtV̂
⊤
t

]
∥F

∥Et∥F
− ∥ZvKt∥F . (75)

Meanwhile

∥Et∥2F = ∥JtV̂ ⊤
t ∥2F + ∥ÛtK

⊤
t ∥2F + ∥ÛtV̂

⊤
t − Σr∥2F + ∥JtK⊤

t ∥2F
≤ 2

(
max{∥JtV̂ ⊤

t ∥2F , ∥ÛtK
⊤
t ∥2F }+max{∥ÛtV̂

⊤
t − Σr∥2F , ∥JtK⊤

t ∥2F }
)
.

(76)

According to Eq. (46) and Eq. (48), we know that ∥ÛtV̂
⊤
t −Σr∥2F ≥ ∥JtK⊤

t ∥2F , if ∥Û0V̂
⊤
0 −Σr∥2F ≥

∥J0K⊤
0 ∥2F which is true for random Gauss initialization with small value c0 in Assumption 2. Thus,

we have ∥Et∥2F ≤ 2
(
max{∥JtV̂ ⊤

t ∥2F , ∥ÛtK
⊤
t ∥2F }+ ∥ÛtV̂

⊤
t − Σr∥2F

)
and

max


∥
[
ÛtV̂

⊤
t − Σr

JtV̂
⊤
t

]
∥F

∥Et∥F
,

∥
[
V̂tÛ

⊤
t − Σr

KtÛ
⊤
t

]
∥F

∥Et∥F

 ≥
√
2/2. (77)

Without loss of generality, we assume ∥JtV̂ ⊤
t ∥F ≥ ∥KtÛ

⊤
t ∥F , then we consider Eq. (75), such that

cosθtv ≥
√
1− ∥ZvKt∥2F

√
2

2
− ∥ZvKt∥F . (78)

If ∥ZvKt∥F ≤ 1/3, then we can guarantee that cosθtv ≥ 1/3.

Note that σ2
min(V̂t)∥Zv∥2F ≤ ∥ZvV̂ ⊤

t ∥2F ≤ 1, then ∥Zv∥2F ≤ 1/σ2
min(V̂ ). Moreover, according to

Eq. (45) and the RIP condition with sufficiently small δ, we have ∥Kt∥2F ≤ (1− η + δ1η)
2t∥K0∥2F

for δ1 ≪ 1. In consequence,

∥ZvK⊤
t ∥2F ≤ (1− η + δ1η)

2t∥K0∥2F /σ2
min(V̂t). (79)

According to Lemma 6, one can guarantee that ∥ZvK
⊤
t ∥2F ≤ t2(1 − δ̂η)2tCv for constant Cv

and δ̂ = 1 − δ1. Meanwhile, we can select ζ1 in phase 1 to be small such that ∥ZvK⊤
t ∥2F ≤

t2(1− δ̂η)2tCv ≤ 1/3 for t > T , where T = O(log 1
ζ1
). In consequence, we can guarantee that the

max{cosθtv, cosθtu} in phase 2 is lower-bounded by a constant τs ≥ 1/3. Together with phase 1, we
conclude that by setting τ1t , τ

2
t in Eq. (27) as cosθtu and cosθtv respectively, we have that the results

in Eq. (27) hold for max{τ1t , τ2t } ≥ τ > 0.
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A.2.6 Proof of the Lemma 6

Lemma 6. Suppose that the Assumption 2 and Assumption 1 hold. Let Ût and V̂t be updated
according to Eq. (43) and (44). Then, it follows that there exist constants c̃u and c̃v such that

σr(Ût) ≥ c̃u/t, σr(V̂t) ≥ c̃v/t. (80)

Proof. Note that

Ût+1 = (1− η)Ût + ηΣrV̂t

(
V̂ ⊤
t V̂t +K⊤

t Kt

)†
+ ηEUt

= (1− η)Ût + ηΣr

(
ÛtV̂

⊤
t

)†
ÛtV̂

⊤
t V̂t

(
V̂ ⊤
t V̂t +K⊤

t Kt

)†
+ ηEUt

,

(81)

and

V̂t+1 = (1− η)V̂t + ηΣrÛt+1

(
Û⊤
t+1Ût+1 + J⊤

t+1Jt+1

)†
+ ηEVt

= (1− η)V̂t + ηΣr(V̂tÛ
⊤
t+1)

†V̂tÛ
⊤
t+1Ût+1

(
Û⊤
t+1Ût+1 + J⊤

t+1Jt+1

)†
+ ηEVt

.

(82)

Therefore we have the upper-bound of the operator norm of Ût+1 as

∥Ût+1∥2 ≤ (1− η)∥Ût∥2 + η ∥Σr

(
ÛtV̂

⊤
t

)†
∥2︸ ︷︷ ︸

τt

∥Ût∥2 ∥V̂ ⊤
t V̂t

(
V̂ ⊤
t V̂t +K⊤

t Kt

)†
∥2︸ ︷︷ ︸

νt

+η∥EUt
∥2

= (1 + η(τtνt − 1)(1 + δ2)) ∥Ût∥2 ≤ (1 + η(τt − 1)(1 + δ2)) ∥Ût∥2
≤ (1 + η|τt − 1|(1 + δ2)) ∥Ût∥2,

(83)
where δ2 is due to the RIP condition in Assumption 1 and δ2 ≪ 1 is sufficiently small. Meanwhile

∥Σr

(
ÛtV̂

⊤
t

)†
− I∥2 = ∥

(
Σr − ÛtV̂

⊤
t

)(
ÛtV̂

⊤
t

)†
∥2

≤ ∥Σr − ÛtV̂
⊤
t ∥2/σmin(ÛtV̂

⊤
t )

≤ ∥Σr − ÛtV̂
⊤
t ∥2/cξ

≤ (1− ζtη)
t

cξ
∥Σr − Û0V̂

⊤
0 ∥2,

(84)

where cξ is due to Lemma (7). The last inequality is due to that as long as min{σmin(Kt), σmin(Jt} >
ζct > 0, one can always guarantee that ∥Σr − ÛtV̂

⊤
t ∥2 ≤ (1− ζtη)

t∥Σr − Û0V̂
⊤
0 ∥2 for ζt > 0.

Therefore we have
|τt − 1| = O(c−t

γ ), (85)
with cγ ≥ 1. Together with Eq. (83) we obtain

∥Ût∥2 ≤ (1 + η(1 + δ2)c
−t
γ )∥Ût∥2 ≤

t∏
i=1

(1 + η(1 + δ2)c
−i
γ )∥Û0∥2 ≤ cut∥Û0∥2 (86)

for constant cu. Similarly, one can guarantee that

∥V̂t∥2 ≤ cvt∥V̂0∥2 (87)

for constant cv . In consequence, we obtain

σr(Ût) ≤ ∥Ût∥2 ≤ cut∥Û0∥2, σr(V̂t) ≤ ∥V̂t∥2 ≤ cvt∥V̂0∥2. (88)

According to Lemma 7, we know that the σr(ÛtV̂
⊤
t ) ≥ cξ, together with Eq. (88) we can guarantee

that
σr(Ût) ≥

cξ

tcu∥Û0∥2
, σr(V̂t) ≥

cξ

tcv∥V̂0∥2
, (89)

where we use the fact σr(Û V̂ ⊤) ≤ ∥Û∥2σr(V̂ ). Let c̃u = cξ/
(
cu∥Û0∥2

)
and c̃v = cξ/

(
cv∥V̂0∥2

)
,

we thus finish the proof.
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A.2.7 Proof of the Lemma 7

Lemma 7. Let Ût and V̂ t be updated according to Eq. (43) and Eq. (44), respectively. Then, there
exist constants cξ such that

σr(ÛtV̂
⊤
t ) ≥ cξ,∀t > 0. (90)

Proof. Note that

σr(Ût+1[Û
⊤
t+1Ût+1 + J⊤

t+1Jt+1]
†Û⊤

t+1︸ ︷︷ ︸
Pt+1

Σr) ≥ σr(Pt+1)σr(Σr), (91)

and
σr(ΣrV̂t+1[V̂

⊤
t+1V̂t+1 +K⊤

t+1Kt+1]
†V̂ ⊤

t+1︸ ︷︷ ︸
Qt+1

) ≥ σr(Qt+1)σr(Σr). (92)

According to Eq. (43) and Eq. (44), we have

Ût+1V̂
⊤
t+1 = (1− η)2ÛtV̂

⊤
t + ηÛt+1

(
Û⊤
t+1Ût+1 + J⊤

t+1Jt+1

)†
Û⊤
t+1Σr

+ ηÛt+1E
⊤
Vt

+ (1− η)ηΣrV̂t

(
V̂ ⊤
t V̂t +K⊤

t Kt

)†
V̂ ⊤
t + (1− η)ηEUt V̂

⊤
t

= (1− η)2tÛ0V̂
⊤
0 + η

t∑
i=0

(1− η)2iPt+1−iΣr + η(1− η)

t∑
i=0

(1− η)2iΣrQt−i︸ ︷︷ ︸
H

+ η

t∑
i=0

(1− η)2iÛt+1−iE
⊤
Vt−i

+ η(1− η)

t∑
i=0

(1− η)2iEUt−i V̂
⊤
t−i︸ ︷︷ ︸

Z

.

(93)

Meanwhile

σr(H) ≥ η

t∑
i=0

(1− η)2iσr(Pt+1−iΣr) + η(1− η)

t∑
i=0

(1− η)2iσr(ΣrQt−i). (94)

The fact that σr(Pt+1) ≥ σr(P0) and σr(Qt+1) ≥ σr(Q0) gives to

σr(H) ≥ η (σr(P0) + (1− η)σr(Q0))σr(Σr). (95)

Moreover, according the RIP condition in Assumption 1, the following inequalities hold

∥EUt
V̂ ⊤
t ∥2 ≤ δ2∥Û0V̂

⊤
0 − ΣrV̂0(V̂

⊤
0 V̂0 +K⊤

0 K0)
†V̂ ⊤

0 ∥2 = δ2c
u
ν , (96)

and
∥Ût+1E

⊤
Vt
∥2 ≤ δ2∥Û0V̂

⊤
0 − Ût+1[Û

⊤
t+1Ût+1 + J⊤

t+1Jt+1]
†Û⊤

t+1Σr∥2 = δ2c
v
ν (97)

for sufficiently small δ2, and ∥Z∥2 ≤ 1
2−η δ2c

v
ν + 1−η

2−η δ2c
u
ν .

Since ϱ = (1− η)2t ≪ 1 and δ2 are very small, now we can lower bound the r-th singular value of
Ût+1V̂

⊤
t+1 by

σr(Ût+1V̂
⊤
t+1) ≥ σr(H)− ϱσ1(Û0V̂

⊤
0 )

≥ η (σr(P0) + (1− η)σr(Q0))σr(Σr)− ϱσ1(Û0V̂
⊤
0 )− δ2(

1

2− η
cuν +

1− η

2− η
cvν)

≥ cξ,
(98)

which is a simple result of the matrix perturbation theory and cξ > 0 is a universal constant.
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A.3 Proofs of the theorems

A.3.1 Proof of the Theroem 1

Proof. Since M is rank one matrix, we have Us = 0 ∈ Rn×d and Vs = 0 ∈ Rn×d correspondingly

Û = Us + εNu = εNu, V̂ = Vs + εNv = εNv. (99)

Note that

∥∇gÛ∥
2
F = ∥(Û V̂ ⊤ −M)Û∥2F
= ∥(UsV

⊤
s −M + εUsN

⊤
v + εNuV

⊤
s + ε2NuN

⊤
v︸ ︷︷ ︸

εZ

)(Us + εNu)∥2F

= ∥(UsU
⊤
s −M + εZ)εNu∥2F

= ∥ε(UsU
⊤
s −M)N + ε2ZNu∥2F

= o(ε)es + o(ε2).

(100)

Similarly we have ∥∇gV̂ ∥2F = o(ε)es + o(ε2) and therefore

∥∇g∥2F = ∥∇gÛ∥
2
F + ∥∇gV̂ ∥

2
F = o(ε)es + o(ε2).

Meanwhile

∥∇gÛ (V̂
⊤V̂ )−

1
2 ∥2F = ∥(Û V̂ ⊤ −M)V̂ V̂ †∥2F

= ∥(UsU
⊤
s −M + εUsN

⊤ + εNU⊤
s + ε2NN⊤︸ ︷︷ ︸

εZ

)NvN
†
v∥2F

= ∥MNvN
†
v − ε2NN⊤NvN

†
v∥2F

= ∥MNvN
†
v − ε2NN⊤∥2F .

(101)

Let VΣ̂V⊤ = NvN
†
v be the SVD of NvN

†
v , then ∥MNvN

†
v∥2F = σ2

∗∥V⊤V ∗∥2F = es∥V⊤V ∗∥2F
where M = σ∗U

∗V ∗⊤ is the SVD of the rank-1M and V is the orthogonal basis of a random Gauss
matrix Nv , then with high probability we have ∥V⊤V ∗∥2F = Θ(1). As a result, we obtain

∥∇gÛ (V̂
⊤V̂ )−

1
2 ∥2F = Θ(1)es + o(ε2). (102)

Likewise, we have
∥∇gV̂ (Û

⊤Û)−
1
2 ∥2F = Θ(1)es + o(ε2). (103)

As for the symmetric matrix sensing, we have

∥∇gÛ (Û
⊤Û + λI)−

1
2 ∥2F = ∥(Û Û⊤ −M)Û(Û⊤Û + λI)−

1
2 ∥2F

= ∥(ε2NN⊤ −M)εN(ε2N⊤N + λI)−
1
2 ∥2F

= ∥(ε2NN⊤ −M)εΦΣN (ε2Σ2
N + λI)−

1
2Ψ⊤∥2F

= ∥MεΦΣN (ε2Σ2
N + λI)−

1
2ΣNΨ⊤ − ε3NN⊤N(ε2N⊤N + λI)−

1
2 ∥2F ,

(104)
where N is random Gauss matrices that follows standard normal distribution and N = ΦΣNΨ⊤ is
the SVD of N . Note that

∥MεΦΣN (ε2Σ2
N + λI)−

1
2Ψ⊤∥2F = σ2

∗∥εU∗⊤ΦΣN (ε2Σ2
N + λI)−

1
2 ∥2F

= Θ

(
ε2

ε2 + λ/c

)
es,

(105)

where c > 0 is a bounded constant which is related to the singular value of the matrix N , thus we
have that

∥∇gÛ (Û
⊤Û + λI)−

1
2 ∥2F = Θ

(
ε2

ε2 + λ/c

)
es + o(ε2). (106)

Thus we finish our proof.
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A.3.2 Proof of the Theorem 2

Proof. According to Lemma 1, we know that

ψ(Xt+ 1
2
) ≤ ψ(Xt)− ℓ∥B̂(∆̂(Xt), Xt)∥2F ,

ψ(Xt+1) ≤ ψ(Xt+ 1
2
)− ℓ∥B̂(Xt+ 1

2
, ∆̂(Xt+ 1

2
))∥2F ,

(107)

where ℓ = (2η − (1 + δ)η2)/2. Together with Lemma 3 which shows

∥B̂(∆̂(Xt), Xt)∥2F ≥ 1− δ

1 + δ
τ1t [ψ(Xt)− ψ∗],

∥B̂(Xt+ 1
2
, ∆̂(Xt+ 1

2
))∥2F ≥ 1− δ

1 + δ
τ2t [ψ(Xt+ 1

2
)− ψ∗].

(108)

We arrived at
ψ(Xt+ 1

2
)− ψ∗ ≤ ψ(Xt)− ψ∗ − ℓ∥B̂(∆̂(Xt), Xt)∥2F

≤ (1− ℓτ1t
1− δ

1 + δ
)[ψ(Xt)− ψ∗],

(109)

and
ψ(Xt+1)− ψ∗ ≤ ψ(Xt+ 1

2
)− ψ∗ − ℓ∥B̂(Xt+ 1

2
, ∆̂(Xt+ 1

2
))∥2F

≤ (1− ℓτ2t
1− δ

1 + δ
)[ψ(Xt+ 1

2
)− ψ∗].

(110)

Thus we hve

ψ(Xt+1)− ψ∗ ≤ (1− ℓτ2t
1− δ

1 + δ
)(1− ℓτ1t

1− δ

1 + δ
)[ψ(Xt)− ψ∗]

≤ (1− ℓτ
1− δ

1 + δ
)[ψ(Xt)− ψ∗],

(111)

where τ = max{τ1t , τ2t } > 0.

Meanwhile, if the RIP constant δ = 0, which means the number of the sampling m→ ∞ and A(·)
becomes the identity operator, one can set η = 1. We know from the Eq. (33) and Eq. (34) that

ψ(Xt+1)− ψ∗ =
1

2
∥Ut+1V

⊤
t+1 −M∥2F =

1

2
∥M⊤Ut+1U

†
t+1 −M∥2F . (112)

At the same time
Ut+1V

⊤
t =MVtV

†
t . (113)

Thus M⊤Ut+1U
†
t+1 =M , which indicates that

ψ(Xt+1)− ψ∗ =
1

2
∥Ut+1V

⊤
t+1 −M∥2F ,

=
1

2
∥M⊤Ut+1U

†
t+1 −M∥2F ,

= 0[
1

2
∥M⊤UtU

†
t −M∥2F ],

= 0[ψ(Xt)− ψ∗].

(114)
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30


	Introduction
	Related work
	Overparameterization in matrix sensing and beyond
	Preconditioned/Scaled gradient descent
	Gauss-Newton method

	Proposed method
	Approximated-Gauss-Newton (AGN) method for LRMS
	Symmetric matrix sensing
	Comparisons with related works

	Saddle point analysis on the population risk
	Global convergence analysis
	Assumptions and main result
	Proof sketch

	Numerical experiments
	Conclusion
	Appendix / supplemental material
	Preliminaries and more details
	The definition of RIP
	The main AGN algorithm
	ScaledGD()/PrecGD for LRMS problem (6)
	Some detailed derivations.

	Proofs of the lemmas
	Proof of Lemma 1
	Proof of the Lemma 2.
	Proof of the Lemma 3.
	Proof of the Lemma 4.
	Proof of the Lemma 5
	Proof of the Lemma 6
	Proof of the Lemma 7

	Proofs of the theorems
	Proof of the Theroem 1
	Proof of the Theorem 2



