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ABSTRACT

Training machine learning models robust to distribution shifts is critical for real-world
applications. Some robust training algorithms (e.g., Group DRO) specialize to group
shifts and require group information on all training points. Other methods (e.g., CVaR
DRO) that do not need group annotations can be overly conservative, since they naively
upweight high loss points which may form a contrived set that does not correspond to
any meaningful group in the real world (e.g., when the high loss points are randomly
mislabeled training points). In this work, we address limitations in prior approaches by
assuming a more nuanced form of group shift: conditioned on the label, we assume that
the true group function (indicator over group) is simple. For example, we may expect that
group shifts occur along low bitrate features (e.g., image background, lighting). Thus, we
aim to learn a model that maintains high accuracy on simple group functions realized by
these low bitrate features, that need not spend valuable model capacity achieving high ac-
curacy on contrived groups of examples. Based on this, we consider the two-player game
formulation of DRO where the adversary’s capacity is bitrate-constrained. Our resulting
practical algorithm, Bitrate-Constrained DRO (BR-DRO), does not require group infor-
mation on training samples yet matches the performance of Group DRO on datasets that
have training group annotations and that of CVaR DRO on long-tailed distributions. Our
theoretical analysis reveals that in some settings BR-DRO objective can provably yield
statistically efficient and less conservative solutions than unconstrained CVaR DRO.

1 INTRODUCTION

Machine learning models may perform poorly when tested on distributions that differ from the training
distribution. A common form of distribution shift is group shift, where the source and target differ only in
the marginal distribution over finite groups or sub-populations, with no change in group conditionals (Oren
et al., 2019; Duchi et al., 2019) (e.g., when the groups are defined by spurious correlations and the target
distribution upsamples the group where the correlation is absent Sagawa et al. (2019)).

Prior works consider various approaches to address group shift. One solution is to ensure robustness to
worst case shifts using distributionally robust optimization (DRO) (Bagnell, 2005; Ben-Tal et al., 2013;
Duchi et al., 2016), which considers a two-player game where a learner minimizes risk on distributions
chosen by an adversary from a predefined uncertainty set. As the adversary is only constrained to propose
distributions that lie within an f-divergence based uncertainty set, DRO often yields overly conservative
(pessimistic) solutions (Hu et al., 2018) and can suffer from statistical challenges (Duchi et al., 2019). This
is mainly because DRO upweights high loss points that may not form a meaningful group in the real world,
and may even be contrived if the high loss points simply correspond to randomly mislabeled examples
in the training set. Methods like Group DRO (Sagawa et al., 2019) avoid overly pessimistic solutions
by assuming knowledge of group membership for each training example. However, these group-based
methods provide no guarantees on shifts that deviate from the predefined groups (e.g., when there is a
new group), and are not applicable to problems that lack group knowledge. In this work, we therefore
ask: Can we train non-pessimistic robust models without access to group information on training samples?

We address this question by considering a more nuanced assumption on the structure of the underlying
groups. We assume that, conditioned on the label, group boundaries are realized by high-level features that
depend on a small set of underlying factors (e.g., background color, brightness). This leads to simpler group
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Figure 1: Bitrate-Constrained DRO: A method that assumes group shifts along low-bitrate features, and restricts the
adversary appropriately so that the solution found is less pessimistic and more robust to unknown group shifts. Our
method is also robust to training noise. (Left) In Waterbirds (Wah et al., 2011), the spurious feature background is a
large margin simple feature that separates the majority and minority points in each class. (Right) Prior works (Levy et al.,
2020; Liu et al., 2021) that upweight arbitrary points with high losses force the model to memorize noisy mislabeled
points while our method is robust to noise and only upweights the true minority group without any knowledge of its
identity (see Section 6.2).

functions with large margin and simple decision boundaries between groups (Figure 1 (left)). Invoking
the principle of minimum description length (Grünwald, 2007), restricting our adversary to functions
that satisfy this assumption corresponds to a bitrate constraint. In DRO, the adversary upweights points
with higher losses under the current learner, which in practice often correspond to examples that belong
to a rare group, contain complex patterns, or are mislabeled (Carlini et al., 2019; Toneva et al., 2018).
Restricting the adversary’s capacity prevents it from upweighting individual hard or mislabeled examples
(as they cannot be identified with simple features), and biases it towards identifying erroneous data points
misclassified by simple features. This also complements the failure mode of neural networks trained with
stochastic gradient descent (SGD) that rely on simple spurious features which correctly classify points
in the majority group but may fail on minority groups (Blodgett et al., 2016).

The main contribution of this paper is Bitrate-Constrained DRO (BR-DRO), a supervised learning procedure
that provides robustness to distribution shifts along groups realized by simple functions. Despite not using
group information on training examples, we demonstrate that BR-DRO can match the performance of
methods requiring them. We also find that BR-DRO is more successful in identifying true minority
training points, compared to unconstrained DRO. This indicates that not optimizing for performance
on contrived worst-case shifts can reduce the pessimism inherent in DRO. It further validates: (i) our
assumption on the simple nature of group shift; and (ii) that our bitrate constraint meaningfully structures the
uncertainty set to be robust to such shifts. As a consequence of the constraint, we also find that BR-DRO is
robust to random noise in the training data (Song et al., 2022), since it cannot form “groups” entirely based on
randomly mislabeled points with low bitrate features. This is in contrast with existing methods that use the
learner’s training error to up-weight arbitrary sets of difficult training points (e.g., Liu et al., 2021; Levy et al.,
2020), which we show are highly susceptible to label noise (see Figure 1 (right)). Finally, we theoretically
analyze our approach—characterizing how the degree of constraint on the adversary can effect worst risk
estimation and excess risk (pessimism) bounds, as well as convergence rates for specific online solvers.

2 RELATED WORK

Prior works in robust ML (e.g., Li et al., 2018; Lipton et al., 2018; Goodfellow et al., 2014) address various
forms of adversarial or structured shifts. We specifically review prior work on robustness to group shifts.
While those based on DRO optimize for worst-case shifts in an explicit uncertainty set, the robust set is
implicit for some others, with most using some form of importance weighting.

Distributionally robust optimization (DRO). DRO methods generally optimize for worst-case
performance on joint (x,y) distributions that lie in an f-divergence ball (uncertainty set) around the training
distribution (Ben-Tal et al., 2013; Rahimian & Mehrotra, 2019; Bertsimas et al., 2018; Blanchet & Murthy,
2019; Miyato et al., 2018; Duchi et al., 2016; Duchi & Namkoong, 2021). Hu et al. (2018) highlights that
the conservative nature of DRO may lead to degenerate solutions when the unrestricted adversary uniformly
upweights all misclassified points. Sagawa et al. (2019) proposes to address this by limiting the adversary
to shifts that only differ in marginals over predefined groups. However, in addition to it being difficult
to obtain this information, Kearns et al. (2018) raise “gerrymandering” concerns with notions of robustness
that fix a small number of groups apriori. While they propose a solution that looks at exponentially many
subgroups defined over protected attributes, our method does not assume access to such attributes and
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aims to be fair on them as long as they are realized by simple functions. Finally, Zhai et al. (2021) avoid
conservative solutions by solving the DRO objective over randomized predictors learned through boosting.
We consider deterministic and over-parameterized learners and instead constrain the adversary’s class.

Constraining the DRO uncertainty set. In the marginal DRO setting, Duchi et al. (2019) limit the adver-
sary via easier-to-control reproducing kernel hilbert spaces (RKHS) or bounded Hölder continuous functions
(Liu & Ziebart, 2014; Wen et al., 2014). While this reduces the statistical error in worst risk estimation, the
size of the uncertainty set (scales with the data) remains too large to avoid cases where an adversary can re-
weight mislabeled and hard examples from the majority set (Carlini et al., 2019). In contrast, we restrict the
adversary even for large datasets where the estimation error would be low, as this would reduce excess risk
when we only care about robustness to rare sub-populations defined by simple functions. Additionally, while
their analysis and method prefers the adversary’s objective to have a strong dual, we show empirical results
on real-world datasets and generalization bounds where the adversary’s objective is not necessarily convex.

Robustness to group shifts without demographics. Recent works (Sohoni et al., 2020; Creager et al., 2021;
Bao & Barzilay, 2022) that aim to achieve group robustness without access to group labels employ various
heuristics where the robust set is implicit while others require data from multiple domains (Arjovsky et al.,
2019; Yao et al., 2022) or ability to query test samples (Lee et al., 2022). Liu et al. (2021) use training losses
for a heavily regularized model trained with empirical risk minimization (ERM) to directly identify minority
data points with higher losses and re-train on the dataset that up-weights the identified set. Nam et al. (2020)
take a similar approach. Other methods (Idrissi et al., 2022) propose simple baselines that subsample the
majority class in the absence of group demographics and the majority group in its presence. Hashimoto et al.
(2018) find DRO over a �2-divergence ball can reduce the otherwise increasing disparity of per-group risks
in a dynamical system. Since it does not use features to upweight points (like BR-DRO) it is vulnerable
to label noise. Same can be said about some other works (e.g., Liu et al. (2021); Nam et al. (2020)).

Importance weighting in deep learning. Finally, numerous works (Duchi et al., 2016; Levy et al., 2020;
Lipton et al., 2018; Oren et al., 2019) enforce robustness by re-weighting losses on individual data points.
Recent investigations (Soudry et al., 2018; Byrd & Lipton, 2019; Lu et al., 2022) reveal that such objectives
have little impact on the learned solution in interpolation regimes. One way to avoid this pitfall is to train
with heavily regularized models (Sagawa et al., 2019; 2020) and employ early stopping. Another way
is to subsample certain points, as opposed to up-weighting (Idrissi et al., 2022). In this work, we use both
techniques while training our objective and the baselines, ensuring that the regularized class is robust to
shifts under misspecification (Wen et al., 2014).

3 PRELIMINARIES

We introduce the notation we use in the rest of the paper and describe the DRO problem. In the following
section, we will formalize our assumptions on the nature of the shift before introducing our optimization
objective and algorithm.

Notation. With covariates X ⇢Rd and labels Y, the given source P and unknown true target Q0 are
measures over the measurable space (X ⇥Y,⌃) and have densities p and q0 respectively (w.r.t. base
measure µ). The learner’s choice is a hypothesis h :X 7!Y in class H⇢L

2(P), and the adversary’s action
in standard DRO is a target distribution Q in set QP, :={Q :Q⌧P,Df(Q||P)}. Here, Df is the
f-divergence between Q and P for a convex function f

1 with f(1)=0. An equivalent action space for
the adversary is the set of re-weighting functions:

WP,={w :X⇥Y 7!R :w is measurable underP,EP [w]=1,EPf(w)} (1)

For a convex loss function l : Y⇥Y 7! R+, we denote l(h) as the function over (x,y) that evaluates
l(h(x),y), and use l0�1 to denote the loss function (h(x) 6=y). Given either distribution Q2QP,, or
a re-weighting function w2WP,, the risk of a learner h is:

R(h,Q)=EQ [l(h)] R(h,w)=E(x,y)⇠P [l(h(x),y)·w(x,y)]=hl(h),wiP (2)

Note the overload of notation for R(h,·). If the adversary is stochastic it picks a mixed action �2�(WP,),
which is the set of all distributions over WP,. Whenever it is clear, we drop P,.

Unconstrained DRO (Ben-Tal et al., 2013). This is a min-max optimization problem understood as a
two-player game, where the learner chooses a hypothesis, to minimize risk on the worst distribution that

1For e.g., KL(Q ||P) can be derived with f(x)=xlogx and for Total Variation f(x)= |x�1|/2.
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the adversary can choose from its set. Formally, this is given by Equation 3. The first equivalence is clear
from the definitions and for the second since R(h,Q) is linear in Q, the supremum over �(WP,) is a
Dirac delta over the best weighting in WP,. In the next section, we will see how a bitrate-constrained
adversary can only pick certain actions from �(WP,).

inf
h2H

sup
Q2QP,

R(h,Q) ⌘ inf
h2H

sup
w2WP,

R(h,w) ⌘ inf
h2H

sup
�2�(WP,)

Ew⇠�[R(h,w)] (3)

Group Shift. While the DRO framework in Section 3 is broad and addresses any unstructured shift,
we focus on the specific case of group shift. First, for a given pair of measures P,Q we define what
we mean by the group structure GP,Q (Definition 3.1). Intuitively, it is a set of sub-populations along
which the distribution shifts, defined in a way that makes them uniquely identifiable. For e.g., in the
Waterbirds dataset (Figure 1), there are four groups given by combinations of (label, background).
Corollary 3.2 follows immediately from the definition of GP,Q. Using this definition, the standard group
shift assumption (Sagawa et al., 2019) can be formally re-stated as Assumption 3.3.
Definition 3.1 (group structure GP,Q). For Q⌧ P the group structure GP,Q={Gk}Kk=1 is the smallest
finite set of disjoint groups {Gk}Kk=1 s.t. Q([K

k=1Gk)=1 and 8k (i) Gk 2 ⌃, Q(Gk) > 0 and (ii)
p(x,y |Gk)=q(x,y |Gk)>0a.e. in µ. If such a structure exists then GP,Q is well defined.
Corollary 3.2 (uniqueness of GP,Q). 8P,Q, the structure G(P,Q) is unique if it is well defined.
Assumption 3.3 (standard group shift). There exists a well-defined group structure GP,Q0 s.t. target Q0

differs from P only in terms of marginal probabilities over all G2GP,Q0 .

4 BITRATE-CONSTRAINED DRO

We begin with a note on the expressivity of the adversary in Unconstrained DRO and formally introduce
the assumption we make on the nature of shift. Then, we build intuition for why unconstrained adversaries
fail but restricted ones do better under our assumption. Finally, we state our main objective and discuss
a specific instance of it.

How expressive is unconstrained adversary? Note that the set WP, includes all measurable functions
(under P ) such that the re-weighted distribution is bounded in f-divergence (by ). While prior
works (Shafieezadeh Abadeh et al., 2015; Duchi et al., 2016) shrink  to construct confidence intervals,
this only controls the total mass that can be moved between measurable sets G1,G2 2⌃, but does not
restrict the choice of G1 and G2 itself. As noted by Hu et al. (2018), such an adversary is highly expressive,
and optimizing for the worst case only leads to the solution of empirical risk minimization (ERM) under
l0�1 loss. Thus, we can conclude that DRO recovers degenerate solutions because the worst target in
WP, lies far from the subspace of naturally occurring targets. Since it is hard to precisely characterize
natural targets we make a nuanced assumption: the target Q0 only upsamples those rare subpopulations
that are misclassified by simple features. We state this formally in Assumption 4.2 after we define the
bitrate-constrained function class W(�) in Definition 4.1.
Definition 4.1. A function class W(�) is bitrate-constrained if there exists a data independent prior ⇡,
s.t. W(�)={E[�] : �2�(W),KL(� ||⇡)�}.
Assumption 4.2 (simple group shift). Target Q0 satisfies Assumption 3.3 (group shift) w.r.t. source P .
Additionally, For some prior ⇡ and a small �⇤, the re-weighting function q0/p lies in a bitrate-constrained
class W(�⇤). In other words, for every group G2G(P,Q0), 9wG2W(�⇤) s.t. ((x,y)2G)=wG a.e..
We refer to such a G as a simple group that is realized in W(�⇤).

Under the principle of minimum description length (Grünwald, 2007) any deviation from the prior (i.e.,
KL(� ||⇡)) increases the description length of the encoding �2�(W), thus we refer to W(�) as being
bitrate-constrained in the sense that it contains functions (means of distributions) that can be described
with a limited number of bits given the prior ⇡. See Appendix A.3 for an example of a bitrate-constrained
class of functions. Next we present arguments for why identifiability of simple (satisfy Assumption 4.2)
minority groups can be critical for robustness.

Neural networks can perform poorly on simple minorities. For a fixed target Q0, let’s say there
exists two groups: Gmin and Gmaj 2G(P,Q0) such that P(Gmin)⌧P(Gmaj). By Assumption 4.2, both
Gmin and Gmaj are simple (realized in W(�⇤)), and are thus separated by some simple feature. The
learner’s class H is usually a class of overparameterized neural networks. When trained with stochastic
gradient descent (SGD), these are biased towards learning simple features that classify a majority of the

4



Published as a conference paper at ICLR 2023

data (Shah et al., 2020; Soudry et al., 2018). Thus, if the simple feature separating Gmin and Gmaj itself
correlates with the label y on Gmaj, then neural networks would fit on this feature. This is precisely the
case in the Waterbirds example, where the groups are defined by whether the simple feature background
correlates with the label (Figure 1). Thus our assumption on the nature of shift complements the nature
of neural networks perform poorly on simple minorities.

The bitrate constraint helps identify simple unfair minorities in G(P,Q0). Any method that aims
to be robust on Q0 must up-weight data points from Gmin but without knowing its identity. Since the
unconstrained adversary upsamples any group of data points with high loss and low probability, it cannot
distinguish between a rare group that is realized by simple functions in W(�⇤) and a rare group of
examples that share no feature in common or may even be mislabeled. On the other hand, the group of
mislabeled examples cannot be separated from the rest by functions in W(�⇤). Thus, a bitrate constraint
adversary can only identify simple groups and upsamples those that incur high losses – possibly due to
the simplicity bias of neural networks.

BR-DRO objective. According to Assumption 4.2, there cannot exist a target Q0 such that minority
Gmin2G(P,Q0) is not realized in bitrate constrained class W(�⇤). Thus, by constraining our adversary
to a class W(�) (for some � that is user defined), we can possibly evade issues emerging from optimizing
for performance on mislabeled or hard examples, even if they were rare. This gives us the objective in
Equation 4 where the equalities hold from the linearity of h·,·i and Definition 4.1.

inf
h2H

sup
�2�(W)

KL(� ||⇡)�

Ew⇠�R(h,w) = inf
h2H

sup
�2�(W)

KL(� ||⇡)�

hl(h),E�[w]iP = inf
h2H

sup
w2W(�)

R(h,w) (4)

BR-DRO in practice. We parameterize the learner ✓h2⇥h and adversary ✓w2⇥w as neural networks2.
In practice, we implement the adversary either as a one hidden layer variational information bottleneck
(VIB) (Alemi et al., 2016), where the Kullback-Leibler (KL) constraint on the latent variable z (output of
VIB’s hidden layer) directly constrains the bitrate; or as an l2 norm constrained linear layer. The objective
for the VIB (l2) version is obtained by setting �vib 6=0 (�l2 6=0) in Equation 5 below. See Appendix A.2
for details. Note that the objective in Equation 5 is no longer convex-concave and can have multiple local
equilibria or stationary points (Mangoubi & Vishnoi, 2021). The adversary’s objective also does not have a
strong dual that can be solved through conic programs—a standard practice in DRO literature (Namkoong
& Duchi, 2016). Thus, we provide an algorithm where both learner and adversary optimize BR-DRO

iteratively through stochastic gradient ascent/descent (Algorithm 1 in Appendix A.1).
min

✓h2⇥h

hl(✓h),✓⇤

wiP s.t. ✓⇤

w=argmax
✓w2⇥w

Ladv(✓w;✓h,�vib,�l2,⌘) (5)

Ladv(✓w;✓h,�vib,�l2,⌘)=hl(✓h)�⌘,✓wiP��vibEPKL(p(z |x;✓w) ||N (0,Id))��l2k✓wk22
Training. For each example, the adversary takes as input: (i) the last layer output of the current learner’s
feature network; and (ii) the input label. The adversary then outputs a weight (in [0,1]). The idea of
applying the adversary directly on the learner’s features (instead of the original input) is based on recent
literature (Rosenfeld et al., 2022; Kirichenko et al., 2022) that suggests re-training the prediction head
is sufficient for robustness to shifts. The adversary tries to maximize weights on examples with value
�⌘ (hyperparameter) and minimize on others. For the learner, in addition to the example it takes as input
the adversary assigned weight for that example from the previous round and uses it to reweigh its loss
in a minibatch. Both players are updated in a round (Algorithm 1).

5 THEORETICAL ANALYSIS

The main objective of our analysis of BR-DRO is to show how adding a bitrate constraint on the
adversary can: (i) give us tighter statistical estimates of the worst risk; and (ii) control the pessimism (excess
risk) of the learned solution. First, we provide worst risk generalization guarantees using the PAC-Bayes
framework (Catoni, 2007), along with a result for kernel adversary. Then, we provide convergence rates
and pessimism guarantees for the solution found by our online solver for a specific instance of W(�) For
both these, we analyze the constrained form of the conditional value at risk (CVaR) DRO objective (Levy
et al., 2020) below.

Bitrate-Constrained CVaR DRO. When the uncertainty set Q is defined by the set of all distri-
butions Q that have bounded likelihood i.e., kq/pk1  1/↵0, we recover the original CVaR DRO

2We use ✓h,✓w and l(✓h) to denote w(✓w;(x,y)),h(✓h;x) and l(h(✓h;x),y) respectively.
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objective (Duchi & Namkoong, 2021). The bitrate-constrained version of CVaR DRO is given in
Equation 6 (see Appendix C for derivation). Note that, slightly different from Section 3, we define W as
the set of all measurable functions w: X⇥ Y 7! [0,1], since the other convex restrictions in Equation 1 are
handled by dual variable ⌘. As in Section 4, W(�) is derived from W using Definition 4.1. In Equation 6,
if we replace the bitrate-constrained class W(�) with the unrestricted W then we recover the variational
form of unconstrained CVaR DRO in Duchi et al. (2016).

L⇤

cvar(�)= inf
h2H,⌘2R

sup
w2W(�)

R(h,⌘,w) where, R(h,⌘,w)=(1/↵0)hl(h)�⌘,wiP+⌘ (6)

Worst risk estimation bounds for BR-DRO. Since we are only given a finite sampled dataset D ⇠ P
n,

we solve the objective in Equation 6 using the empirical distribution P̂n. We denote the plug-in estimates
as ĥ�D,⌘̂

�
D. This incurs an estimation error for the true worst risk. But when we restrict our adversary

to �(W,�), for a fixed learner h we reduce the worst-case risk estimation error which scales with the
bitrate KL(· ||⇡) of the solution (deviation from prior ⇡). Expanding this argument to every learner in
H, with high probability we also reduce the estimation error for the worst risk of ĥ�D. Theorem 5.1 states
this generalization guarantee more precisely.
Theorem 5.1 (worst-case risk generalization). With probability � 1 � � over D ⇠ P

n, the worst
bitrate-constrained ↵0-CVaR risk for ĥ�D can be upper bounded by the following oracle inequality:

sup
w2W(�)

R(ĥ�
D,⌘̂�D,w) <⇠ L⇤

cvar(�)+
M
↵0

s✓
�+log

✓
1
�

◆
+(d+1)log

✓
L2n
�

◆
+logn

◆
/(2n�1),

when l(·,·) is [0,M ]-bounded, L-Lipschitz and H is parameterized by convex set ⇥⇢Rd.

Informally, Theorem 5.1 tells us that bitrate-constraint � gracefully controls the estimation error
O(

p
(�+C(H))/n) (where C(H) is a complexity measure) if we know that Assumption 4.2 is satisfied.

While this only tells us that our estimator is consistent with Op(1/
p
n), the estimate may itself be con-

verging to a degenerate predictor, i.e., L⇤

cvar(�) may be very high. For example, if the adversary can cleanly
separate mislabeled points even after the bitrate constraint, then presumably these noisy points with high
losses would be the ones mainly contributing to the worst risk, and up-weighting these points would result
in a learner that has memorized noise. Thus, it becomes equally important for us to analyze the excess risk
(or the pessimism) for the learned solution. Since this is hard to study for any arbitrary bitrate-constrained
class W(�), we shall do so for the specific class of reproducing kernel Hilbert space (RKHS) functions.

Special case of bounded RKHS. Let us assume there exists a prior ⇧ such that W(�) in Definition 4.1
is given by an RKHS induced by Mercer kernel k : X ⇥X 7! R, s.t. the eigenvalues of the kernel
operator decay polynomially, i.e., µj <⇠ j

�2/� (� < 2). Then, if we solve for ĥ�D,⌘̂
�
D by doing kernel

ridge regression over norm bounded (kfkW(�)B1) smooth functions f then we can control: (i) the
pessimism of the learned solution; and (ii) the generalization error (Theorem 5.2). Formally, we refer
to pessimism for estimates ĥ�D,⌘̂

�
D as excess risk defined as:

excess risk := sup
w2W(�)

|inf
h,⌘

R(h,⌘,w)�R(ĥ�
D,⌘̂�D,w)|. (7)

Theorem 5.2 (bounded RKHS). For l,H in Theorem 5.1, and for W(�) described above 9�0 s.t. for
all sufficiently bitrate-constrained W(�) i.e., ��0, w.h.p. 1 � � worst risk generalization error is
O
�
(1/n)

�
log(1/�)+(d+1)log(nB��

L
�/2)

��
and the excess risk is O(B) for ĥ�D,⌘̂

�
D above.

Thus, in the setting described above we have shown how bitrate-constraints given indirectly by �,R can
control both the pessimism and statistical estimation errors. Here, we directly analyzed the estimates
ĥ
�
D,⌘̂

�
D but did not describe the specific algorithm used to solve the objective in Equation 6 with P̂n. Now,

we look at an iterative online algorithm to solve the same objective and see how bitrate-constraints can
also influence convergence rates in this setting.

Convergence and excess risk analysis for an online solver. In the following, we provide an algorithm to
solve the objective in Equation 6 and analyze how bitrate-constraint impacts the solver and the solution. For
convex losses, the min-max objective in Equation 6 has a unique solution and this matches the unique Nash
equilibrium for the generic online algorithm (game) we describe (Lemma 5.3). The algorithm is as follows:
Consider a two-player zero-sum game where the learner uses a no-regret strategy to first play h2H,⌘2R
to minimize Ew⇠�R(h,⌘,w). Then, the adversary plays follow the regularized leader (FTRL) strategy
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Waterbirds CelebA CivilComments
Method Avg WG Avg WG Avg WG

ERM 97.1 (0.1) 71.0 (0.4) 95.4 (0.2) 46.9 (1.0) 92.3 (0.2) 57.2 (0.9)
LfF (Nam et al., 2020) 90.7 (0.2) 77.6 (0.5) 85.3 (0.2) 77.4 (0.7) 92.4 (0.1) 58.9 (1.1)

RWY (Idrissi et al., 2022) 93.7 (0.3) 85.8 (0.5) 84.9 (0.2) 80.4 (0.3) 91.7 (0.2) 67.7 (0.7)
JTT (Liu et al., 2021) 93.2 (0.2) 86.6 (0.4) 87.6 (0.2) 81.3 (0.5) 90.8 (0.3) 69.4 (0.8)

CVaR DRO (Levy et al., 2020) 96.3 (0.2) 75.5 (0.4) 82.2 (0.3) 64.7 (0.6) 92.3 (0.2) 60.2 (0.8)
BR-DRO (VIB) (ours) 94.1 (0.2) 86.3 (0.3) 86.7 (0.2) 80.9 (0.4) 90.5 (0.2) 68.7 (0.9)
BR-DRO (l2) (ours) 93.8 (0.2) 86.4 (0.3) 87.7 (0.3) 80.4 (0.6) 91.0 (0.3) 68.9 (0.7)

Group DRO Sagawa et al. (2019) 93.2 (0.3) 91.1 (0.3) 92.3 (0.3) 88.4 (0.6) 88.5 (0.3) 70.0 (0.5)

Table 1: BR-DRO recovers worst group performance gap between CVaR DRO and Group DRO: On Water-
birds, CelebA and CivilComments we report test average (Avg) and test worst group (WG) accuracies for BR-DRO

and baselines. In (·) we report the standard error of the mean accuracy across five runs.

to pick distribution �2�(W(�)) to maximize the same. Our goal is to analyze the bitrate-constraint �’s
effect on the above algorithm’s convergence rate and the pessimistic nature of the solution found. For
this, we need to first characterize the bitrate-constraint class W(�). If we assume there exists a prior ⇧
such that W(�) is Vapnik-Chervenokis (VC) class of dimension O(�), then in Theorem 5.4, we see that
the iterates of our algorithm converge to the equilibrium (solution) in O(

p
�logn/T) steps. Clearly, the

degree of bitrate constraint can significantly impact the convergence rate for a generic solver that solves
the constrained DRO objective. Theorem 5.4 also bounds the excess risk (Equation 7) on P̂n.
Lemma 5.3 (Nash equilibrium). For strictly convex l(h), l(h)2 [0,M ], the objective in Equation 6 has
a unique solution which is also the Nash equilibrium of the game above when played over compact sets
H⇥[0,M ], �(W,�). We denote this equilibrium as h⇤D(�),⌘

⇤

D(�),�
⇤

D(�).
Theorem 5.4. At time step t, if the learner plays (ht, ⌘t) with no-regret and the adversary
plays �t with FTRL strategy that uses a negative entropy regularizer on � then average iterates
(h̄T , ⌘̄T , �̄T ) = (1/T)

PT
t=1(ht, ⌘t, �t) converge to the equilibrium (h⇤D(�), ⌘

⇤

D(�), �
⇤

D(�)) at rate
O(

p
�logn/T). Further the excess risk defined above is O((M/↵0)

�
1� 1

n�

�
).

6 EXPERIMENTS

Our experiments aim to evaluate the performance of BR-DRO and compare it with ERM and group shift
robustness methods that do not require group annotations for training examples. We conduct empirical
analyses along the following axes: (i) worst group performance on datasets that exhibit known spurious
correlations; (ii) robustness to random label noise in the training data; (iii) average performance on hybrid
covariate shift datasets with unspecified groups; and (iv) accuracy in identifying minority groups. See
Appendix B for additional experiments and details3.

Baselines. Since our objective is to be robust to group shifts without group annotations on training
examples, we explore baselines that either optimize for the worst minority group (CVaR DRO (Levy
et al., 2020)) or use training losses to identify specific minority points (LfF (Nam et al., 2020), JTT (Liu
et al., 2021)). Group DRO (Sagawa et al., 2019) is treated as an oracle. We also compare with the simple
re-weighting baseline (RWY) proposed by Idrissi et al. (2022).

Implementation details. We train using Resnet-50 (He et al., 2016) for all methods and datasets except
CivilComments, where we use BERT (Wolf et al., 2019). For our VIB adversary, we use a 1-hidden layer
neural network encoder and decoder (one for each label). As mentioned in Section 4, the adversary takes
as input the learner model’s features and the true label to generate weights. All implementation and design
choices for baselines were adopted directly from Liu et al. (2021); Idrissi et al. (2022). We provide model
selection methodology and other details in Appendix B.

Datasets. For experiments in the known groups and label noise settings we use: (i) Waterbirds (Wah et al.,
2011) (background is spurious), CelebA (Liu et al., 2015) (binary gender is spuriously correlated with
label “blond”); and CivilComments (WILDS) (Borkan et al., 2019) where the task is to predict “toxic”
texts and there are 16 predefined groups Koh et al. (2021). We use FMoW and Camelyon17 (Koh et al.,
2021) to test methods on datasets that do not have explicit group shifts. In FMoW the task is to predict
land use from satellite images where the training/test set comprises of data before/after 2013. Test involves
both subpopulation shifts over regions (e.g., Africa, Asia) and domain generalization over time (year).
Camelyon17 presents a domain generalization problem where the task is to detect tumor in tissue slides
from different sets of hospitals in train and test sets.

3The code used in our experiments can be found at https://github.com/ars22/bitrate_DRO.
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majority minority

P(min) = P(noise) = 0.05, d = 10, n = 500, �core /�spu = 10
Bitrate-Constrained DRO JTT

(a) (b)

Figure 2: (Left) Visualization (2d) of noisy synthetic data and learned predictors: We plot the decision boundaries
(projected onto core and spurious features) learned by JTT and BR-DRO when the adversary is restricted to a sparse
predictor. While our method recovers the core feature the baselines memorize the minority points. (Right) BR-DRO

is robust to random label noise in training data: Across varying levels of noise fraction in training data we compare
performance of BR-DRO with ERM and methods (JTT, CVaR DRO) that naively up weight high loss points.

6.1 IS BR-DRO ROBUST TO GROUP SHIFTS WITHOUT TRAINING DATA GROUP ANNOTATIONS?

Table 1 compares the average and worst group accuracy for BR-DRO with ERM and four group shift
robustness baselines: JTT, LtF, SUBY, and CVaR DRO. First, we see that unconstrained CVaR DRO
underperforms other heuristic algorithms. This matches the observation made by Liu et al. (2021).
Next, we see that adding bitrate constraints on the adversary via a KL term or l2 penalty significantly
improves the performance of BR-DRO (VIB) or BR-DRO (l2), which now matches the best performing
baseline (JTT). Thus, we see the less conservative nature of BR-DRO allows it to recover a large portion
of the performance gap between Group DRO and CVaR DRO. Indirectly, this partially validates our
Assumption 4.2, which states that the minority group is identified by a low bitrate adversary class. In
Section 6.3 we discuss exactly what fraction of the minority group is identified, and the role played by
the strength of bitrate-constraint.

6.2 BR-DRO IS MORE ROBUST TO RANDOM LABEL NOISE

Several methods for group robustness (e.g., CVaR DRO, JTT) are based on the idea of up weighting points
with high training losses. The goal is to obtain a learner with matching performance on every (small) fraction
of points in the dataset. However, when training data has mislabeled examples, such an approach will likely
yield degenerate solutions. This is because the adversary directly upweights any example where the learner
has high loss, including datapoints with incorrect labels. Hence, even if the learner’s prediction matches the
(unknown) true label, this formulation would force the learner to memorize incorrect labelings at the expense
of learning the true underlying function. On the other hand, if the adversary is sufficiently bitrate constrained,
it cannot upweight the arbitrary set of randomly mislabeled points, as this would require it to memorize those
points. Our Assumption 4.2 also dictates that the distribution shift would not upsample such high bitrate
noisy examples. Thus, our constraint on the adversary ensures BR-DRO is robust to label noise in the
training data and our assumption on the target distribution retains its robustness to test time distribution shifts.

In Figure 2b we highlight this failure mode of unconstrained up-weighting methods in contrast to
BR-DRO. We first induce random label noise (Carlini et al., 2019) of varying degrees into the Waterbirds
and CelebA training sets. Then we run each method and compare worst group performance. In the
absence of noise we see that the performance of JTT is comparable with BR-DRO, if not slightly better
(Table 1). Thus, both BR-DRO and JTT perform reasonably well in identifying and upsampling the
simple minority group in the absence of noise. In its presence, BR-DRO significantly outperforms
JTT and other approaches on both Waterbirds and CelebA, as it only upsamples the minority examples
misclassified by simple features, ignoring the noisy examples for the reasons above. To further verify
our claims, we set up a noisily labeled synthetic dataset (see Appendix B for details). In Figure 2a we
plot training samples as well as the solutions learned by BR-DRO and and JTT on synthetic data. In
Figure 1(right) we also plot exactly which points are upweighted by BR-DRO and JTT. Using both
figures, we note that JTT mainly upweights the noisy points (in red) and memorizes them using xnoise.
Without any weights on minority, it memorizes them as well and learns component along spurious feature.
On the contrary, when we restrict the adversary with BR-DRO to be sparse (l1 penalty), it only upweights
minority samples, since no sparse predictor can separate noisy points in the data. Thus, the learner can
no longer memorize the upweighted minority and we recover the robust predictor along core feature.

6.3 WHAT FRACTION OF MINORITY IS RECOVERED BY BR-DRO?

We claim that our less pessimistic objective can more accurately recover (upsample) the true minority
group if indeed the minority group is simple (see Assumption 4.2 for our definition of simple). In this
section, we aim to verify this claim. If we treat examples in the top 10% (chosen for post hoc analysis)
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Figure 3: By considering the fraction of points upweighted by our adversary (top 10%) as the positive class we
analyze the precision and recall of this class with respect to the minority group. and do the same for JTT, random
baseline and CVaR DRO. BR-DRO achieves highest precision and matches recall with JTT asymptotically. We also
find that increasing bitrate constraint �vib helps improving precision/recall.

fraction of examples as our predicted minorities, we can check precision and recall of this decision on
the Waterbirds and CelebA datasets. Figure 3 plots these metrics at each training epoch for BR-DRO

(with varying �vib), JTT and CVaR DRO. Precision of the random baseline tells us the true fraction of
minority examples in the data. First we note that BR-DRO consistently performs much better on this
metric than unconstrained CVaR DRO. In fact, as we reduce strength of �vib we recover precision/recall
close to the latter. This controlled experiment shows that the bitrate constraint is helpful (and very much
needed) in practice to identify rare simple groups. In Figure 3 we observe that asymptotically, the precision
of BR-DRO is better than JTT on both datasets, while the recall is similar. Since importance weighting
has little impact in later stages with exponential tail losses (Soudry et al., 2018; Byrd & Lipton, 2019),
other losses (e.g., polytail Wang et al. (2021)) may further improve the performance of BR-DRO as it
gets better at identifying the minority classes when trained longer.

6.4 HOW DOES BR-DRO PERFORM ON MORE GENERAL COVARIATE SHIFTS?

In Table 2 we report the average test accuracies for BR-DRO and baselines on the hybrid dataset FMoW
and domain generalization dataset Camelyon17. Given its hybrid nature, on FMoW we also report
worst region accuracy. First, we note that on these datasets group shift robustness baselines do not do
better than ERM. Some are either too pessimistic (e.g., CVaR DRO), or require heavy assumptions

Method FMoW Camelyon17
Avg W-Reg Avg

ERM 53.3 (0.1) 32.4 (0.3) 70.6 (1.6)
JTT Liu et al. (2021) 52.1 (0.1) 31.8 (0.2) 66.3 (1.3)

LfF Nam et al. (2020) 49.6 (0.2) 31.0 (0.3) 65.8 (1.2)
RWY Idrissi et al. (2022) 50.8 (0.1) 30.9 (0.2) 69.9 (1.3)

Group DRO Sagawa et al. (2019) 51.9 (0.2) 30.4 (0.3) 68.5 (0.9)
CVaR DRO Levy et al. (2020) 51.5 (0.1) 31.0 (0.3) 66.8 (1.3)

BR-DRO (VIB) (ours) 52.0 (0.2) 31.8 (0.2) 70.4 (1.5)
BR-DRO (l2) (ours) 53.1 (0.1) 32.3 (0.2) 71.2 (1.0)

Table 2: Average (Avg) and worst region (W-Reg for FMoW)
test accuracies on Camelyon17 and FMoW.

(e.g., Group DRO) to be robust to domain
generalization. This is also noted by Gulrajani
& Lopez-Paz (2020). Next, we see that
BR-DRO (l2 version) does better than other
group shift baselines on both both worst
region and average datasets and matches ERM
performance on Camelyon17. One explanation
could be that even though these datasets test
models on new domains, there maybe some
latent groups defining these domains that are
simple and form a part of latent subpopulation
shift. Investigating this claim further is a
promising line of future work.

7 CONCLUSION

In this paper, we proposed a method for making machine learning models more robust. While prior
methods optimize robustness on a per-example or per-group basis, our work focuses on features. In doing
so, we avoid requiring group annotations on training samples, but also avoid the excessively conservative
solutions that might arise from CVaR DRO with fully unconstrained adversaries. Our results show that
our method avoids learning spurious features, is robust to noise in the training labels, and does better on
other forms of covariate shifts compared to prior approaches. Our theoretical analysis also highlights other
provable benefits in some settings like reduced estimation error, lower excess risk and faster convergence
rates for certain solvers.
Limitations. While our method lifts the main limitation of Group DRO (access to training group annota-
tions), it does so at the cost of increased complexity. Further, to tune hyperparameters, like prior work we
assume access to a some group annotations on validation set but also get decent performance (on some
datasets) with only a balanced validation set (see Appendix B). Adapting group shift methods to more
generic settings remains an important and open problem.
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Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-the-art
natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Improving
out-of-distribution robustness via selective augmentation. arXiv preprint arXiv:2201.00299, 2022.

Runtian Zhai, Chen Dan, Arun Suggala, J Zico Kolter, and Pradeep Ravikumar. Boosted cvar classification.
Advances in Neural Information Processing Systems, 34:21860–21871, 2021.

Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge regression. In
Conference on learning theory, pp. 592–617. PMLR, 2013.

13


	Introduction
	Related Work
	Preliminaries
	Bitrate-Constrained DRO
	Theoretical Analysis
	Experiments
	Is BR-DRO robust to group shifts without training data group annotations?
	BR-DRO is more robust to random label noise
	What fraction of minority is recovered by BR-DRO?
	How does BR-DRO perform on more general covariate shifts?

	Conclusion
	Implementing BR-DRO in practice
	BR-DRO algorithm
	BR-DRO objective in Equation 5
	Connecting bitrate-constrained wgamma to simple groups (a practical example).

	Additional empirical results and other experiment details
	Hyper-parameter tuning methodology
	Synthetic dataset details
	Degree of constraint
	Hyper-parameter details.
	Fine-grained evaluation of worst-case performance on CivilComments.
	Comparing BR-DRO with other baselines that do not assume access to group labels.

	Omitted Proofs
	Proof of Corollary 3.2
	Derivation of Bitrate-Constrained CVaR DRO in Equation 6
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Lemma 5.3
	Proof of Theorem 5.4
	Worst-case generalization risk for Group DRO


