
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING ON ONE MODE: ADDRESSING MULTI-
MODALITY IN OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) seeks to learn optimal policies from static
datasets without interacting with the environment. A common challenge is handling
multi-modal action distributions, where multiple behaviours are represented in
the data. Existing methods often assume unimodal behaviour policies, leading to
suboptimal performance when this assumption is violated. We propose Weighted
Imitation Learning on One Mode (LOM), a novel approach that focuses on learning
from a single, promising mode of the behaviour policy. By using a Gaussian
mixture model to identify modes and selecting the best mode based on expected
returns, LOM avoids the pitfalls of averaging over conflicting actions. Theoretically,
we show that LOM improves performance while maintaining simplicity in policy
learning. Empirically, LOM outperforms existing methods on standard D4RL
benchmarks and demonstrates its effectiveness in complex, multi-modal scenarios.

1 INTRODUCTION

Offline reinforcement learning (RL) enables policy learning from static datasets, without active
environment interaction, making it ideal for high-stakes applications like autonomous driving and
robot manipulation (Levine et al., 2020; Ma et al., 2022; Wang et al., 2024a). A key challenge in offline
RL is managing the discrepancy between the learned policy and the behaviour policy that generated
the dataset. Small discrepancies can hinder policy improvement, while large discrepancies push the
learned policy into uncharted areas, causing significant extrapolation errors and poor generalisation
(Fujimoto et al., 2019; Yang et al., 2023). Addressing these challenges, existing research has proposed
various solutions. Conservative approaches penalise actions that stray into out-of-distribution (OOD)
regions (Yu et al., 2020; Kumar et al., 2020), while others regularise the policy by minimising its
divergence from the behaviour policy, ensuring better fidelity to the dataset (Fujimoto & Gu, 2021;
Wu et al., 2019). Another solution is weighted imitation learning, which aims to replicate actions
from the dataset through supervised learning techniques (Mao et al., 2023; Peng et al., 2019).

Many real-world datasets introduce an additional challenge: multi-modal action distributions (Wang
et al., 2024b; Chen et al., 2022; Zhou et al., 2020). These datasets are common in practice because
they often integrate data from diverse sources, such as multiple policies, human demonstrations, or
distinct exploration strategies. This diversity arises naturally in domains where the same task can be
approached in various ways, leading to states with multiple valid but potentially conflicting actions.
For instance, in autonomous driving, different driving styles — conservative versus aggressive —
may lead to different but equally valid ways of navigating a road. Similarly, in robotic manipulation,
an object can be grasped in various ways depending on the robot’s approach, the object’s position, and
environmental constraints. This multi-modality is not an exception but rather a frequent occurrence
in complex, real-world decision-making tasks, as systems often integrate experience from various
sources to handle different scenarios. Thus, it becomes crucial to model and manage these multi-
modal action distributions effectively.

Most offline RL approaches implicitly assume a unimodal action distributions, which can force
policies to converge toward an average action that may not exist in the dataset, leading to degraded
performance. This limitation is particularly evident in scenarios where policies fail to capture complex
multi-modal distributions, instead collapsing into suboptimal or invalid averages, as studied byCai
et al. (2023); Wang et al. (2024b); Yang et al. (2022b) and illustrated in Appendix A. Recent work
has attempted to address this by modelling the full multi-modal action distribution using expressive
generative models such as GANs, VAEs, and diffusion models (Zhou et al., 2020; Chen et al., 2022;
Wang et al., 2023). However, these models often overcomplicate the learning process by capturing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the entire action distribution, which is unnecessary when only a subset of the modes is relevant for
optimal decision-making.

We propose a simpler yet effective approach: Weighted Imitation Learning on One Mode (LOM). Our
insight is that learning from a single mode — the one with the highest expected return — is sufficient
to generate optimal actions. Instead of modeling the full multi-modal distribution, LOM identifies
and focuses on the most promising mode for each state.

Figure 1: The three steps of LOM. (1) Learn a
network producing the parameters of a GMM
to model the behaviour policy. (2) Evaluate
each mode via the expected return of its ac-
tions and the select the optimal mode ϕ1. (3)
Sample actions from ϕ1 for weighted imita-
tion learning.

LOM operates through three key steps (illustrated
in Figure 1). First, it models the behaviour policy
as a Gaussian mixture model (GMM), capturing the
inherent multi-modality in the action space. Each
mode in the GMM represents a distinct cluster of
actions associated with a state. Second, a novel hyper
Q-function is introduced to evaluate the expected re-
turn of each mode, enabling the dynamic selection of
the most advantageous one. Finally, LOM performs
weighted imitation learning on the actions from the
selected mode, ensuring that the learned policy fo-
cuses on the most beneficial actions while retaining
the simplicity of unimodal policies. This targeted,
mode-specific learning strategy simplifies the policy
learning process while maintaining or even enhancing
performance in multi-modal scenarios. By dynami-
cally selecting the optimal mode for each state, LOM
achieves robust results with reduced complexity.

This paper has four key contributions: (1) we propose
LOM, a novel weighted imitation learning method
designed to address the multi-modality problem in of-
fline RL; (2) we introduce hyper Q-functions and
hyper-policies for evaluating and selecting action
modes; (3) we provide theoretical guarantees of con-
sistent performance improvements over both the be-
haviour policy and the optimal action mode; and
(4) we empirically demonstrate that LOM outper-
forms state-of-the-art (SOTA) offline RL methods
across various benchmarks, particularly in multi-
modal datasets.

2 RELATED WORK

Offline RL The primary challenge in offline RL lies in managing the distribution shift between the
behaviour policy, which generated the offline dataset, and the learned policy. This shift can cause
the learned policy to produce actions that are not well-represented in the offline dataset, leading to
inaccurate value function estimations and degraded performance (Levine et al., 2020; Fujimoto et al.,
2019). To mitigate the risks associated with OOD actions, one approach involves using conservative
value functions, which penalise actions that deviate from the behaviour policy (Fujimoto et al., 2019;
Kumar et al., 2020; Bai et al., 2022; Sun et al., 2022; An et al., 2021). Another strategy focuses on
regularising the learned policy to ensure its proximity to the behaviour policy. This regularisation can
be measured using metrics such as mean squared error (MSE) (Beeson & Montana, 2024; Fujimoto
& Gu, 2021) or more sophisticated metrics like the Wasserstein distance, Jensen-Shannon divergence
(Yang et al., 2022b; Wu et al., 2019), and weighted MSE (Ma et al., 2024). These methods aim to
keep the learned policy within a safer, well-understood operational space, reducing the likelihood
of selecting OOD actions. For a comprehensive review of value penalties and policy regularisation
techniques, we refer readers to (Wu et al., 2019). In contrast to these approaches, LOM tackles the
distribution shift problem by focusing on a single, optimal mode of the behaviour policy, thereby
reducing the risk of OOD actions while still allowing for significant policy improvement.

Weighted Imitation Learning Our proposed method contributes to the growing field of weighted
imitation learning, which revolves around two fundamental questions: which actions should be

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

imitated and how should these actions be weighted (Brandfonbrener et al., 2021). Most existing
methods imitate actions directly from the dataset (Peng et al., 2019; Wang et al., 2018; Nair et al.,
2021; Wang et al., 2020), while some approaches (Siegel et al., 2020; Mao et al., 2023) suggest
imitating actions from the most recent policies. These methods typically weight actions based on
their advantage, conditioned either on the behaviour policy (Peng et al., 2019; Wang et al., 2018) or
on the most recently updated policy (Nair et al., 2021; Wang et al., 2020; Siegel et al., 2020; Mao
et al., 2023). However, a key limitation of these approaches is their underlying assumption that the
imitated actions are drawn from a uni-modal Gaussian distribution, an oversimplification that often
fails in complex, real-world datasets where multi-modal distributions are common (Lynch et al., 2020;
Yang et al., 2022b). LOM addresses this limitation by forgoing the uni-modal assumption, instead
extracting a highly-rewarded Gaussian mode from the behaviour policy.

Multi-modality in Offline RL Offline RL datasets are often collected from multiple, unknown
policies, leading to states with several valid action labels, which may conflict with one another. Most
existing methods employ a uni-modal Gaussian policy, which inadequately captures the inherent
multi-modality in such datasets. To address this limitation, PLAS (Zhou et al., 2020) decodes variables
sampled from a VAE latent space, while LAPO (Chen et al., 2022) leverages advantage-weighted
latent spaces for further policy optimisation. Additionally, Yang et al. (2022b) demonstrate that
GANs can model multiple action modes, and GOPlan (Wang et al., 2024b) extends this by applying
exponentiated advantage weighting to highlight highly-rewarded modes. DAWOG (Wang et al.,
2024a) and DMPO (Osa et al., 2023) separate the state-action space and learn a conditioned Gaussian
policy or a mixture of deterministic policies to solve the regions individually. Techniques such as
normalising flows and diffusion models can also model multi-modal distributions by progressively
transforming an initial distribution into the target distribution (Wang et al., 2023; Akimov et al.,
2022). However, these techniques are computationally intensive, making their inference processes
inefficient. Beyond direct policy improvements, approaches like TD3+RKL (Cai et al., 2023) exploit
the mode-seeking property of reverse KL-divergence to narrow action coverage, while BAW (Yang
et al., 2022a) filters actions with values in the leftmost quantile. Despite these advances, most methods
attempt to capture or model the entire multi-modal distribution, leading to increased complexity. In
contrast, LOM simplifies the learning process by extracting and focusing on a single, optimal mode
from the behaviour policy, effectively addressing the multi-modality challenge without the need to
model the entire distribution.

3 PRELIMINARIES

To lay the foundation for our method, we first introduce the Markov Decision Process (MDP) and the
concept of weighted imitation learning. An MDP is defined by the tuple M = ⟨S,A,P, r, γ⟩, where
S is the state space, A the action space, and P the transition dynamics. The function r represents the
reward, and γ is the discount factor. The objective in RL is to learn a policy π that maximises the
expected discounted return:

J(π) = Eτ∼pπ

[
T∑
t=0

γtr(st, at)

]
,

where τ = {s0, a0, . . . , sT , aT } is a trajectory sampled under policy π. The state-action value
function Qπ(st, at) represents the expected return starting from state st, taking action at, and
following π thereafter:

Qπ(st, at) = Est+1,at+1,···∼π

[
T∑
l=t

γlr(sl, al)

]
. (1)

The value function is defined as V π(st) = Eat∼π(·|st)Qπ(st, at), and the advantage function is
Aπ(st, at) = Qπ(st, at)− V π(st).

In offline RL, the agent learns exclusively from a fixed dataset D collected by one or more behaviour
policies, denoted as πb, without further interaction with the environment (Levine et al., 2020). Our
approach is based on weighted imitation learning, where the objective is to optimize

J(π) = argmax
π

Es∼dπb
,a∼πb(·|s)

[
exp

(
1

β
Aπb(s, a)

)
log π(a | s)

]
,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where β is a hyper-parameter. This formulation encourages learning a policy π that imitates actions
from D, weighted by the exponentiated advantage of the behaviour policy πb, thereby implicitly
constraining the KL-divergence between π and πb (Wang et al., 2018). Recent works have extended
this approach by imitating actions from the current learned policy (Siegel et al., 2020; Mao et al.,
2023), or weighting actions based on the advantage conditioned on the current policy (Nair et al.,
2021; Wang et al., 2020).

4 METHOD

In this section, we present the LOM method, specifically designed for offline RL with heterogeneous
datasets. We begin by modelling the behaviour policy using a Gaussian Mixture Model (GMM)
to capture the inherent multi-modality. Following this, we formalise the problem using a hyper-
Markov decision process (H-MDP), where a hyper-policy dynamically selects the most promising
mode for each state based on expected returns. Next, we propose a hyper Q-function to evaluate
the hyper-policy and introduce a greedy hyper-policy for mode selection at each step for weighted
imitation learning. Finally, we prove that the resulting policy of our LOM method outperforms both
the behaviour policy and a greedy policy.

4.1 MULTI-MODAL BEHAVIOURAL POLICY

To address the challenge of multi-modal action distributions in offline RL, we model the behaviour
policy as a Gaussian Mixture Model (GMM). GMMs are flexible in representing complex distributions
and can approximate any density function with sufficient components (McLachlan & Basford, 1988),
making them well-suited for capturing the heterogeneous nature of offline datasets that often arise
from multiple policies or exploration strategies. The behaviour policy πb(a | s) is expressed as:

πb(a | s) =
M∑
i=1

αi(s)ϕi(a | s), (2)

where αi(s) represents the mixing coefficients for each mode i, and ϕi(a | s) denotes the Gaussian
component for mode i at state s. Each mode captures a distinct cluster of actions associated with
the state. By using a GMM, our model captures the diverse modes present in real-world offline RL
datasets, where multiple valid strategies may coexist for the same task. This approach preserves the
richness of the original data while avoiding the limitations of unimodal policy approximations.

4.2 HYPER-MARKOV DECISION PROCESS

To extend the traditional MDP framework introduced in Section 3 and formulate the offline RL
problem with a multi-modal behaviour policy, we introduce the Hyper-Markov Decision Process
(H-MDP). The H-MDP accounts for multiple policy modes, extending the standard MDP to a higher
level of abstraction. Formally, the H-MDP is defined as MH = ⟨S,A,P, r, γ,Ω,AH ,PH , rH⟩,
where S, A, P , r, and γ retain their standard meanings from the MDP. The novel components
introduced are: Ω = {ϕ1, . . . , ϕM}, representing the Gaussian modes, and the hyper-action space
AH = {1, . . . ,M}, which indexes these modes.

The transition dynamics PH conditioned on the hyper-action ut ∈ AH and the reward function rH
for ut are defined as:

PH(st+1 | st, ut) = Eat∼ϕut (a|st)P(st+1 | st, at),

rH(st, ut) = Eat∼ϕut (a|st)r(st, at).

At each time step, the agent selects a Gaussian mode u based on a hyper-policy ζ, which maps states
to a probability distribution over modes, ζ(u | s) : S ×AH → [0, 1]. The hyper-policy determines
the likelihood of selecting each mode in a given state. The agent then selects an action a according to
the Gaussian distribution ϕu(a | s). Consequently, the action follows a composite policy πζ , which
corresponds to the hyper-policy ζ and can be expressed as:

πζ(a | s) =
∑
u∈AH

ζ(u | s)ϕu(a | s), (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In the H-MDP, the agent’s objective is to learn a hyper-policy ζ that maximises the expected discounted
return:

J(ζ) = Eτ∼pζ

[
T∑
t=0

γtrH(st, ut)

]
, (4)

where pζ is the distribution of state-mode trajectories τ = (st, ut, st+1, ut+1, . . .) induced by
following the hyper-policy ζ.

4.3 HYPER Q-FUNCTION

To evaluate the quality of selecting a mode u in a given state s, we define the hyper Q-function
QζH(s, u). This function quantifies the expected return when choosing mode u at state s and
subsequently following the hyper-policy ζ. Formally, the hyper Q-function is defined as:

QζH(s, u) = Est+1,ut+1,···∼ζ

[
T∑
t=0

γtrH(st, ut) | s0 = s, u0 = u

]
. (5)

This expectation is taken over future states and modes encountered while following the hyper-policy
ζ after selecting mode u in state s. The term rH(st, ut) denotes the expected reward for selecting
mode ut in state st, with γ being the discount factor.

Proposition 1. The hyper Q-function can be linked to the standard value function Qπ(s, a) via:

QζH(s, u) = Ea∼ϕu(·|s) [Q
πζ (s, a)] . (6)

The proof can be found in the Appendix B.1.

This proposition establishes a critical relationship between the hyper Q-function and the standard
Q-function. It shows that the expected return for selecting mode u (i.e., the hyper-action) is equivalent
to the expected value of actions sampled from the Gaussian component ϕu(a | s), evaluated under the
composite policy πζ . This result is particularly important when dealing with multi-modal behaviour
policies, as it allows the agent to effectively compare and evaluate different modes u based on their
associated action distributions ϕu(a | s).

4.4 MODE SELECTION

Since the hyper Q-function evaluates the expected return after selecting mode u at a state, we
now propose a greedy hyper-policy that improves upon the behaviour policy by selecting the most
advantageous mode at each state based on the hyper Q-function.

In correspondence with the multi-modal behaviour policy πb defined in Eq. 2, we introduce the
behavioural hyper-policy, denoted as ζb, which reflects the mode-selection strategy implicit in the
behaviour policy that generated the offline dataset. Specifically, ζb(u | s) = αu(s), where αu(s) is
the mixing coefficient for the u-th Gaussian component in the GMM at state s. This formulation
establishes the connection between the original behaviour policy πb and the H-MDP framework,
allowing us to represent the behaviour policy in terms of mode selection.

To improve upon the behavioural hyper-policy ζb, we define a greedy hyper-policy ζg , which selects
the mode that maximises the hyper Q-function QζbH (s, u) for each state:

ζg(s) = arg max
u∈AH

QζbH (s, u). (7)

This greedy hyper-policy ensures that the agent selects the mode with the highest expected return at
each state, thereby improving the overall policy performance relative to the behaviour policy.

Theorem 1. The composite policy induced by the greedy hyper-policy improves upon the behaviour
policy:

V πζg (s) ≥ V πb(s), ∀s ∈ S. (8)
The proof can be found in Appendix B.2.

This improvement property guaranteed by Theorem 1 forms the foundation of our LOM algorithm.
It ensures that by systematically selecting modes with the highest expected return at each state, the
agent’s composite policy will, over time, perform at least as well as the original behaviour policy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.5 WEIGHTED IMITATION LEARNING ON ONE MODE

Based on the greedy hyper-policy ζg , we obtain the corresponding greedy policy πζg , which, according
to Theorem 1, is not worse than πb. However, rather than simply imitating πζg , we apply weighted
imitation learning to further improve the policy. Specifically, we aim to find a policy π that maximises
the expected improvement η(π) = J(π)−J(πζg). The expected improvement η(π) can be expressed
in terms of the advantage Aπζg (s, a) (Kakade & Langford, 2002; Schulman et al., 2015): η(π) =
Es∼dπ(·),a∼π(·|s)[A

πζg (s, a)]. However, in offline RL, state samples from the distribution dπ(s) are
unavailable. Instead, we approximate the expected improvement by using an estimate η̂ (Kakade
& Langford, 2002): η̂(π) = Es∼dπζg

(·),a∼π(·|s)[A
πζg (s, a)]. This approximation provides a good

estimate of η(π) if π and πζg are close in terms of KL-divergence (Schulman et al., 2015). As a
result, we can formulate the following constrained policy optimisation problem:

J(π) = argmax
π

∑
s

dπζg
(s)

∑
a

π(a | s)Aπζg (s, a),

s.t.
∑
s

dπζg
(s)DKL(π(· | s)||πζg (· | s)) ≤ ϵ.

(9)

Solving the corresponding Lagrangian leads to the optimal policy π∗: π∗(a | s) = 1
Z(s)πζg (a |

s) exp
(

1
βA

πζg (s, a)
)

. We then learn a policy by minimising the KL-divergence to this optimal
policy, resulting in the weighted imitation learning objective:

J(π) = argmin
π

Es∼dπb
(·)[DKL(π

∗(· | s)||π(· | s))] (10)

= argmax
π

Es∼dπb
(·),a∼πζg (·|s)

[
exp

(
1

β
Aπζg (s, a)

)
log π(a | s)

]
. (11)

In this framework, the actions to be imitated are sampled from πζg , a uni-modal Gaussian policy,
thereby addressing the multi-modality issue. Furthermore, actions within this mode are weighted
according to their advantage, encouraging the policy to concentrate on the highly-rewarded actions.
As shown in Theorem 2, the policy learned by LOM has a theoretical advantage over both πζg and
the original behaviour policy πb.

Theorem 2. The LOM algorithm learns a policy πL that is at least as good as both the composite
policy induced by the greedy hyper-policy πζg and the behaviour policy πb. Specifically, for all states
s ∈ S:

V πL(s) ≥ V πζg (s) ≥ V πb(s). (12)
The proof is provided in Appendix B.3.

This theorem implies that our method introduces a novel two-step improvement process. LOM
achieves further policy improvement compared to one-step algorithms while requiring less off-policy
evaluation than multi-step algorithms (Brandfonbrener et al., 2021).

Theorem 3. The LOM algorithm learns a policy πL, whose improvement upon the composite policy
induced by the greedy hyper-policy πζg is bounded. For all s ∈ S, we have

V πL(s)− V πζg (s) ≥ 1

1− γ
η̂(πL)−

Amax

1− γ

√
1

2
DKL(dπL

||dπζg
), (13)

where Amax = maxs,a |Aπζg (s, a)|. The proof is provided in Appendix B.4.

The bound shows that the learned policy πL is guaranteed to perform at least as well as the baseline
policy πζg , with the performance improvement quantified by the maximal advantage and reduced by
a penalty term proportional to the divergence in their state visitation distributions — emphasizing
that maximising advantage while minimising divergence leads to better performance.

5 PRACTICAL ALGORITHM

In this section, we present the practical implementation of the LOM algorithm. First, we model
the multi-modal behaviour policy using a mixture density network, as described in Section 5.1. In
Section 5.2, we outline the mode selection process, which involves learning the hyper Q-function for
the behavioural hyper-policy. This hyper Q-function is then used to derive the greedy hyper-policy ζg
and the corresponding greedy policy πζg , which selects a single mode. Finally, in Section 5.3, we
describe how to learn a policy through weighted imitation learning on the selected mode.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Weighted imitation learning on one mode (LOM).
Initialise: A MDN behaviour policy πρ with parameter ρ, a target policy πθ with parameter θ, a value function

Qψ with parameter ψ and its slowly-updated copy blueQψ− , a behaviour hyper Q-function Qϕ with
parameter ϕ and its slowly-updated copy Qϕ− ; an offline dataset D.

1: # Learn the MDN behaviour policy.
2: for i = 1, ..., IM do
3: Update ρ by minimising L(ρ) = E(st,at)∼D[log πρ(at | st)]. ▷ Eq. 15.
4: end for
5: for i = 1, . . . , IG do
6: Sample transitions τ = {st, at, rt, st+1, at+1} ∼ D.
7: # Learn the value function.
8: Update ψ by minimising L(ψ) = Eτ [(Qψ(st, at)− (rt + γQψ−(st+1, at+1))

2]. ▷ Eq. 16
9: # Learn behavioural hyper Q-function.

10: Update ϕ by minimising L(ϕ) = Est∼D,u∼Uniform(AH)[(Qϕ(st, u)− Ea′t∼ϕu(·|s) [Qψ(st, a
′
t)])

2]
11: # Learn the target policy.
12: Select the optimal mode u = argmaxu∈{1,...,M}Qϕ(st, u)
13: Sample action from the optimal mode ât ∼ ϕu(st)
14: Get the mean of the mode āt = ϕuµ(st) ▷ The mean of the mode
15: Estimate the advantage A(st, ât) = Qψ(st, ât)−Qψ(st, āt)
16: Update θ by minimising L(θ) = −Est,ât [exp(A(st, ât)) log πθ(ât | st)]. ▷ Eq. 18
17: # Update the target networks.
18: if i mode update_delay = 0 then
19: ϕ− ← ρϕ− + (1− ρ)ϕ
20: ψ− ← ρψ− + (1− ρ)ψ
21: end if
22: end for

5.1 BEHAVIOUR POLICY MODELLING

At the start of the LOM algorithm, we model the behaviour policy using a mixture density network
(MDN) (Bishop, 1994). The MDN receives a state s and represents the resulting action distribution
with a GMM, including its mixing coefficients, locations, and scales. We index the Gaussian
components as the hyper-actions, ranging from 1 to M .

In the algorithm, we learn a neural network πρ(a | s) parameterised by ρ to estimate the behaviour
policy. The network produces the parameters {zµi , zσi , zα

i}Mi=1, which are used to estimate the
probability density function for each policy mode:

ϕi(a | s) = 1√
2πσi(s)

exp

(
−||a− µi(s)||2

2σi(s)2

)
, (14)

where µi(s) = zµi , and σi(s) = exp(zσi). The mixing coefficient αi(s) is processed through a
softmax function: αi(s) = exp(zα

i

)/
∑M
j=1 exp(z

αj

). The parameters of the network are updated
by minimising the negative log-likelihood:

L(ρ) = −E(s,a)∼D [log πρ(a | s)] . (15)

LOM trains the MDN until convergence, after which the parameter ρ is fixed for the remainder of the
algorithm.

5.2 HYPER Q-FUNCTION LEARNING

We learn the hyper Q-function of the behavioural hyper-policy based on Proposition 1. Specifically,
we first learn a Q-function, Qπb , of the behaviour policy, and then estimate its expectation over
actions sampled from mode u. We instantiate Qπb with a neural network Qψ parameterised by ψ and
updated to minimising the TD error:

L(ψ) = E(st,at,rt,st+1,at+1)∼D
[
(Qψ(st, at)− (rt + γQψ−(st+1, at+1)))

2
]
. (16)

where Qψ− is a slowly updated copy of Qψ. Following Proposition 1, we learn QζbH , a hyper
Q-function of the behavioural hyper-policy, which is denoted as Qϕ parameterised by ϕ. The
optimisation objective of learning Qϕ is:

L(ϕ) = Est∼D,u∼Uniform(AH)

[
(Qϕ(st, u)− Eat∼ϕu(·|s) [Qψ(st, at)])

2
]
. (17)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Averaged normalised scores on D4RL benchmarks over 4 random seeds. 0 represents the
performance of a random policy and 100 represents the performance of an expert policy. Standard
deviations are provided as subscripts for multi-modal handling algorithms. The highest mean are
highlighted in bold.

DatasetDatasetDataset EnvEnvEnv OneStepOneStepOneStep AWACAWACAWAC CQLCQLCQL TD3BCTD3BCTD3BC LAPOLAPOLAPO DMPODMPODMPO WCGANWCGANWCGAN WCVAEWCVAEWCVAE LOMLOMLOM

halfcheetah 50.4 47.9 47.0 48.3 45.9±0.3 47.5±0.4 48.2±1.3 50.5±1.1 51.051.051.0±0.7

medium hopper 87.5 59.8 53.0 59.3 51.6±3.2 71.2±6.5 78.6±2.4 89.089.089.0±2.0 87.2±2.8

walker2d 84.8 83.1 73.3 83.7 80.7±0.8 79.4±4.7 82.4±1.7 85.0±1.5 85.185.185.1±0.7

halfcheetah 42.7 44.8 45.5 44.6 44.7±0.3 45.2±0.8 42.3±4.2 45.0±0.9 48.848.848.8±0.7

medium-replay hopper 98.5 69.8 88.7 60.9 58.6±3.8 89.2±8.1 90.3±3.1 99.0±2.1 99.299.299.2±1.1

walker2d 61.7 78.1 81.8 81.8 71.7±5.2 82.1±3.8 72.6±4.0 74.0±3.1 84.884.884.8±1.0

halfcheetah 75.1 64.9 75.6 90.7 93.0±1.0 91.1±3.4 76.5±3.1 80.0±1.7 92.792.792.7±1.3

medium-expert hopper 108.6 100.1 105.6 98.0 105.2±4.7 78.4±19.0 110.0±2.4 109.0±1.6 110.1110.1110.1±1.4

walker2d 111.3 110.0 107.9 110.1± 111.1±0.2 109.9±0.4 99.7±1.0 111.0±0.7 111.3111.3111.3±0.8

halfcheetah 88.2 81.7 96.3 96.7 95.9±0.2 97.097.097.0±1.0 90.7±1.7 89.0±0.8 95.2±0.4

expert hopper 106.9 109.5 96.5 107.8 106.7±3.6 93.6±15.1 107.3±1.8 108.0±1.3 111.0111.0111.0±0.8

walker2d 110.7 110.1 108.5 110.2 112.2112.2112.2±0.1 111.4±0.3 109.3±1.4 111.0±1.4 109.3±1.1

halfcheetah 64.7 66.6 73.6 71.7 74.2±1.3 71.4±1.2 64.2±3.1 66.0±3.4 76.676.676.6±1.2

full-replay hopper 69.8 100.1 98.2 76.8 100.0±3.3 101.5±5.9 80.2±5.3 86.5±4.4 102.0102.0102.0±2.7

walker2d 67.1 78.3 92.7 90.2 96.2±2.8 95.4±1.8 53.0±5.4 72.0±3.7 97.997.997.9±0.9

With this hyper Q-function, we get a greedy hyper-policy ζg(s) = argmaxu∈AH
Qϕ(s, u). Corre-

sponding to ζg(s), we get the greedy policy with one mode, πζg (a | s) = ϕζg(s)(a | s).

5.3 POLICY LEARNING

Finally, we learn the policy πθ by optimising the objective:

J(θ) = argmax
π

Es∼D,a∼πζg (·|s)

[
expclip(

1

β
Aπζg (s, a)) log πθ(a | s)

]
, (18)

where β is a hyper-parameter, expclip(·) is the exponential function with a clipped range (0, C],
where C is a positive number for numerical stability. We estimate the advantage using: Aπζg (s, a) ≈
Qψ(s, a)− Ea∼πζg (·|s)[Qψ(s, a)], where we use the Q-function conditioned on the behaviour policy
πb rather than πζg in order to reduce extrapolation error and computational complexity as well. Further,
we employ the approach used in (Mao et al., 2023) to replace the expectation over a ∼ πζg (· | s)
with the Q-value of the mean action of the Gaussian policy πζg to reduce computation.

Implementation details and the pseudocode can be found in Algorithm 1. The algorithm starts with
training a MDN to model the behaviour policy, and then iteratively update the hyper Q-function Qϕ,
the value function Qψ and the target policy πθ. The code has been open sourced 1.

6 EXPERIMENTAL RESULTS

We aim to answer the following questions: (1) How does LOM compare to SOTA offline RL
algorithms, particularly those handling multi-modality? (2) Can performance improvements be
attributed to learning on one mode? (3) How does the number of Gaussian components affect LOM’s
performance?

6.1 LOM ACHIEVES SOTA PERFORMANCE IN D4RL BENCHMARK

We evaluate LOM on three MuJoCo locomotion tasks from the D4RL benchmark (Fu et al., 2020):
halfcheetah, hopper, and walker2d. Each environment contains five dataset types: (i) medium — 1M
samples from a policy trained to approximately one-third of expert performance; (ii) medium-replay
— the replay buffer of a policy trained to match the performance of the medium agent (0.2M for
halfcheetah, 0.4M for hopper, 0.3M for walker2d); (iii) medium-expert — a 50-50 split of medium
and expert data (just under 2M samples); (iv) expert — 1M samples from a fully trained SAC policy
(Haarnoja et al., 2018); and (v) full-replay — 1M samples from the final replay buffer of an expert
policy. Notably, the medium-replay and full-replay datasets are highly multi-modal, as states may
have multiple action labels from different policies.

Table 1 shows the benchmark results of our method against SOTA offline algorithms: OneStep
(Brandfonbrener et al., 2021), AWAC (Nair et al., 2021), CQL (Kumar et al., 2020), and TD3BC

1Anonymous repository: https://anonymous.4open.science/r/LOM-C89E

8

https://anonymous.4open.science/r/LOM-C89E

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Environment (b) BC (c) MDN (M=4) (d) AWAC (e) LOM (M=4)

Figure 2: Comparative study in the FetchReach task with highly multi-modal datasets. (a) The
FetchReach robot is tasked with reaching one of four specified goals using an expert dataset. The
robot arm receives a reward of 2 for reaching the goal in the first quadrant and 1 for reaching any of
the other three goals. The dataset contains actions directed toward all four goals, with conflicting
directions. (b) Action distribution learned by behaviour cloning using a unimodal Gaussian policy
model. (c) Action distribution learned by MDN using a GMM policy model. (d) Action distribution
learned by AWAC, which applies weighted imitation learning over the entire action distribution using
a unimodal Gaussian policy. (e) Action distribution learned by LOM.

(Fujimoto & Gu, 2021). We also include four algorithms designed for handling multi-modality:
LAPO (Chen et al., 2022), deterministic mixture policy optimisation (DMPO) (Osa et al., 2023),
weighted conditioned GAN (WCGAN), and weighted conditioned VAE (WCVAE) (Wang et al.,
2024b). The experimental results are shown in Table 1, where the baselines’ results are mainly
sourced from Mao et al. (2023) or reproduced using their official implementations. The results
demonstrate that LOM outperforms the baseline algorithms in 12 out of 15 tasks. In tasks with
multi-modal datasets, LOM surpasses all the baselines, and achieves a performance improvement
ranging from 0.2% to 7.9% over the SOTA results.

6.2 LEARNING ON ONE MODE DRIVES IMPROVEMENTS

To explore the source of LOM’s improvements, we design three tasks with highly multi-modal
datasets: FetchReach, FetchPush, and FetchPickAndPlace. In FetchReach, as shown in Figure 2a, the
objective is to control a robotic arm to reach one of four specified positions, symmetrically distributed
on the xy-plane. The robot receives a reward of 2 for reaching the position in the first quadrant, 1
for reaching any of the other positions, and 0 otherwise. In FetchPush and FetchPickAndPlace, the
robot is tasked with moving a cube to one of four positions on a desk, with the same reward structure.
Each dataset contains 4× 106 transitions collected by an expert policy. Given a state and four goals
in different quadrants, the dataset contains four trajectories corresponding to each goal, making the
datasets highly multi-modal.

We compare LOM with behaviour cloning (BC), AWAC, and MDN, introduced in Section 5.1.
Specifically, BC and MDN imitate the behaviour policy using a unimodal Gaussian policy and a
multi-modal Gaussian policy, respectively. AWAC applies weighted imitation learning to imitate
the behaviour policy across all modes (Nair et al., 2021). LOM, however, distinguishes multiple
behaviour modes using MDN and focuses on learning from the best mode. Table 2 shows that LOM
outperforms the baseline algorithms by an average of 53%.

In Figure 2, we further investigate the behaviour of different policies. Given a state, the multi-modal
dataset contains four actions, each targeting distinct goals in separate quadrants. Figure 2b shows that
BC learns an averaged action distribution. Figure 2c demonstrates that MDN effectively reconstructs
the action distribution, allowing LOM to select the highest-rewarding mode. Figure 2d shows that
while AWAC can learn the best mode (in the first quadrant), it tends to generate OOD actions.
In contrast, Figure 2e illustrates that LOM imitates actions from the best single mode, filtering
out suboptimal actions and focusing on highly-rewarding ones. These experiments demonstrate
that learning on one mode effectively improves policy performance by concentrating on the most
rewarding actions.

Table 2: Average scores on the tasks with extremely multi-modal datasets.

BC MDN AWAC WCGAN WCVAE LOM

FetchReach 14.3±3.4 17.1±2.3 32.4±0.2 42.3±3.1 40.8±2.1 47.247.247.2±3.1

FetchPush 11.8±0.9 18.9±4.7 26.8±1.4 41.2±3.7 41.8±2.4 44.344.344.3±2.7

FetchPick 3.6±0.8 8.1±1.3 22.7±2.3 29.2±2.8 30.5±2.1 34.234.234.2±3.6

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) M=2 (b) M=4 (c) M=10 (d) M=20 (e) M=50

Figure 4: Action modes learned by MDN with varying numbers of mixtures. Red dots represent
samples from the highest-reward mode. The original actions are clustered around (1, 1), (1,−1),
(−1,−1), and (−1, 1) but do not extend beyond these points. In (d) and (e), the red dots collapse
into a single point in the first quadrant due to the small standard deviation of the mode.

6.3 EFFECT OF THE NUMBER OF GAUSSIAN COMPONENTS

We analyse the influence of the number M of Gaussian components in the LOM algorithm. The
results, shown in Figure 4, are based on the multi-modal FetchReach environment. The figure
illustrates the decomposition of action modes using blue contours, while red dots represent the actions
imitated by LOM. When M is too large (Figure 4d and 4e), the standard deviation of the imitated
Gaussian mode becomes excessively small, leading to overly narrow the domains of action learning.
Conversely, smaller values of M results in modes with a large standard deviation (Figure 4a), causing
LOM to capture actions outside the dataset and imitate OOD actions. This highlights the need to
investigate LOM’s sensitivity to this hyper-parameter.

Figure 3: Normalised scores for varying numbers of Gaussian
components in the medium replay and full replay datasets.

Figure 3 compares LOM across M =
{1, 5, 10, 15, 20} in the medium-
replay and full-replay datasets from
the D4RL benchmark. The per-
formance generally improves as the
number of mixture components in-
creases, particularly in the medium-
replay dataset, where larger M val-
ues lead to continuous performance
gains. However, in the full-replay
datasets, performance increases only
up to M = 10. This indicates that
while increasing the number of com-
ponents benefits performance, there
may be diminishing returns beyond a certain threshold. Our experiments suggest that M primarily
influences the domain of the imitated actions, and improvements can be achieved with a moderate,
though not highly specific, value of M .

7 CONCLUSIONS AND DISCUSSIONS

In this paper, we introduced LOM, a novel offline RL method specifically designed to tackle the
challenge of multi-modality in offline RL datasets. Unlike existing methods that aim to model the
entire action distribution, LOM focuses on imitating the highest-rewarded action mode. Through
extensive experiments, we demonstrated that LOM achieves SOTA performance, and we attributed
these improvements to the central idea of learning on one mode, which simplifies the learning process
while maintaining robust performance.

We observed that the hyper Q-function satisfies a Bellman-like equation, opening the possibility
for learning it through Bellman updates. However, one challenge that emerged is the difficulty
in accurately estimating the Bellman target for the hyper Q-function, as it requires computing the
expectation over all possible hyper-actions, which may lead to extrapolation errors. Exploring a
deterministic hyper-policy is a promising future direction to mitigate this issue, potentially simplifying
the estimation process and further improving performance. Furthermore, the hyperparameter M
in LOM is intrinsically linked to the multi-modality present in the dataset. This parameter can be
estimated using statistical techniques like bump hunting (Friedman & Fisher, 1999) and peak finding
(Du et al., 2006), eliminating the need for fine-tuning. However, a key challenge lies in the fact
that each state corresponds to a distinct multi-modal action distribution, making it computationally
intensive to identify and count the modes for every individual state.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dmitry Akimov, Vladislav Kurenkov, Alexander Nikulin, Denis Tarasov, and Sergey Kolesnikov.
Let offline RL flow: Training conservative agents in the latent space of normalizing flows. In 3rd
Offline RL Workshop: Offline RL as a Launchpad, 2022.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified Q-ensemble. In Advances in Neural Information Processing
Systems, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhao-
ran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In
International Conference on Learning Representations, 2022.

Alex Beeson and Giovanni Montana. Balancing policy constraint and ensemble size in uncertainty-
based offline reinforcement learning. Machine Learning, 113(1):443–488, Jan 2024. ISSN
1573-0565.

Christopher M. Bishop. Mixture density networks. Technical report, Aston University, Birmingham,
1994.

David Brandfonbrener, William F Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL without
off-policy evaluation. In Advances in Neural Information Processing Systems, 2021.

Yuanying Cai, Chuheng Zhang, Li Zhao, Wei Shen, Xuyun Zhang, Lei Song, Jiang Bian, Tao Qin,
and Tie-Yan Liu. TD3 with reverse KL regularizer for offline reinforcement learning from mixed
datasets. In IEEE International Conference on Data Mining, 2023.

Xi Chen, Ali Ghadirzadeh, Tianhe Yu, Jianhao Wang, Alex Yuan Gao, Wenzhe Li, Liang Bin, Chelsea
Finn, and Chongjie Zhang. LAPO: Latent-variable advantage-weighted policy optimization for
offline reinforcement learning. In Advances in Neural Information Processing Systems, 2022.

Pan Du, Warren A. Kibbe, and Simon M. Lin. Improved peak detection in mass spectrum by
incorporating continuous wavelet transform-based pattern matching. Bioinformatics, 22(17):
2059–2065, 07 2006. ISSN 1367-4803.

Jerome H. Friedman and Nicholas I. Fisher. Bump hunting in high-dimensional data. Statistics and
Computing, 9(2):123–143, Apr 1999. ISSN 1573-1375.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning, 2002.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems, 2020.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on Robot Learning, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chengzhong Ma, Deyu Yang, Tianyu Wu, Zeyang Liu, Houxue Yang, Xingyu Chen, Xuguang
Lan, and Nanning Zheng. Improving offline reinforcement learning with in-sample advantage
regularization for robot manipulation. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–13, 2024.

Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned
reinforcement learning via f-advantage regression. In Advances in Neural Information Processing
Systems, 2022.

Yixiu Mao, Hongchang Zhang, Chen Chen, Yi Xu, and Xiangyang Ji. Supported trust region
optimization for offline reinforcement learning. In International Conference on Machine Learning,
2023.

Geoffrey J McLachlan and Kaye E Basford. Mixture models: Inference and applications to clustering,
volume 38. M. Dekker New York, 1988.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. AWAC: Accelerating online
reinforcement learning with offline datasets, 2021.

Takayuki Osa, Akinobu Hayashi, Pranav Deo, Naoki Morihira, and Takahide Yoshiike. Offline
reinforcement learning with mixture of deterministic policies. Transactions on Machine Learning
Research, 2023. ISSN 2835-8856.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, 2015.

Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:
Behavior modelling priors for offline reinforcement learning. In International Conference on
Learning Representations, 2020.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploit reward shifting in
value-based deep-RL: Optimistic curiosity-based exploration and conservative exploitation via
linear reward shaping. In Advances in Neural Information Processing Systems, 2022.

Mianchu Wang, Yue Jin, and Giovanni Montana. Goal-conditioned offline reinforcement learning
through state space partitioning. Machine Learning, 113(5):2435–2465, May 2024a. ISSN
1573-0565.

Mianchu Wang, Rui Yang, Xi Chen, Hao Sun, Meng Fang, and Giovanni Montana. GOPlan: Goal-
conditioned offline reinforcement learning by planning with learned models. Transactions on
Machine Learning Research, 2024b. ISSN 2835-8856.

Qing Wang, Jiechao Xiong, Lei Han, peng sun, Han Liu, and Tong Zhang. Exponentially weighted
imitation learning for batched historical data. In Advances in Neural Information Processing
Systems, 2018.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In International Conference on Learning Representations,
2023.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, and Nando de Freitas. Critic
regularized regression. In Advances in Neural Information Processing Systems, 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2019.

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline RL. In
International Conference on Learning Representations, 2022a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang. What is essential
for unseen goal generalization of offline goal-conditioned RL? In International Conference on
Machine Learning, 2023.

Shentao Yang, Zhendong Wang, Huangjie Zheng, Yihao Feng, and Mingyuan Zhou. A behavior
regularized implicit policy for offline reinforcement learning, 2022b.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. In Advances in Neural
Information Processing Systems, 2020.

Wenxuan Zhou, Sujay Bajracharya, and David Held. PLAS: Latent action space for offline reinforce-
ment learning. In Conference on Robot Learning, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MOTIVATING EXAMPLE

To illustrate the challenge of capturing complex multi-modal action distributions, we present a toy
example in Fig. 5. In this example, we generate a dataset where each state is associated with multiple
valid actions, simulating the multi-modal nature of real-world offline RL datasets. We evaluate
four models — Gaussian, Conditional Variational Auto-Encoder (CVAE) (Zhou et al., 2020; Chen
et al., 2022), Conditional Generative Adversarial Networks (CGAN) (Yang et al., 2022b; Wang
et al., 2024b), and Mixture Density Network (MDN) (Bishop, 1994) — on their ability to model the
multi-modal action distribution.

Subfigures 5 (a-e) show the action distributions learned by each model. Specifically, we visualise how
well each model captures distinct modes in the action space. The Gaussian model fails to separate
modes, while the CVAE, CGAN, and MDN demonstrate stronger mode separation, with the MDN
showing minimal mode overlap and the clearest boundaries between modes.

Additionally, we assess each model’s ability to capture high-reward actions. Subfigures 5 (f-j)
illustrate the models’ performance in learning positively-rewarded multi-modal action distributions.
Our results reveal that the MDN with ranked components closely adheres to in-distribution actions
and achieves superior outcomes in terms of reward, compared to the other models.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: An example of modelling the multi-modal behaviour policy in a one-step MDP. The x-axis
represents the state, and the y-axis represents the corresponding multi-modal actions. (a) shows the
action distribution from the offline dataset. (b)-(e) illustrate the action distributions learned by a
Gaussian model, a conditional VAE, a conditional GAN, and an MDN, respectively. (f) shows the
action distribution of the offline dataset with rewards, where actions in the first and third quadrants
receive a reward of 1, and others receive 0. (g)-(i) illustrate the action distributions learned by
weighted Gaussian, weighted conditional VAE, and weighted conditional GAN models, respectively.
(j) shows the action distribution learned by the top 10 of the 20 MDN components, ranked by a hyper
Q-function.

B THEORETICAL RESULTS

B.1 PROOF OF PROPOSITION 1

Proposition 1 The hyper Q-function can be linked to the standard value function Qπ(s, a) via:

QζH(s, u) = Ea∼ϕu(·|s) [Q
πζ (s, a)] . (19)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof:

QζH(s, u) =Es1,u1,···∼ζ

[
T∑
t=0

γtrH(st, ut) | s0 = s, u0 = u

]

=rH(s, u) +

T−1∑
t=0

∑
s,u

p(st+1 = s | ζ)ζ(u | s)γt+1rH(s, u)

=
∑
a

ϕu(a | s)r(s, a) +
T−1∑
t=0

∑
s

p(st+1 = s | ζ)
∑
u

ζ(u | s)γt+1
∑
a

ϕu(a | s)r(s, a)

=
∑
a

ϕu(a | s)r(s, a) +
T−1∑
t=0

∑
s

p(st+1 = s | ζ)
∑
u,a

ζ(u | s)ϕu(a | s)γt+1r(s, a)

=
∑
a

ϕu(a | s)r(s, a) +
T−1∑
t=0

∑
s,a

p(st+1 = s | ζ)πζ(a | s)γt+1r(s, a)

=
∑
a

ϕu(a | s)

[
r(s, a) +

T−1∑
t=0

∑
s,a

p(st+1 = s | ζ)πζ(a | s)γt+1r(s, a)

]

=
∑
a

ϕu(a | s)

[
r(s, a) +

T−1∑
t=0

∑
s,a

p(st+1 = s | πζ)πζ(a | s)γt+1r(s, a)

]
=Ea∼ϕu(·|s) [Q

πζ (s, a)] .
(20)

B.2 PROOF OF THEOREM 1

Theorem 1. The composite policy induced by the greedy hyper-policy policy improves upon the
behaviour policy:

V πζg (s) ≥ V πb(s), ∀s ∈ S.

Proof. Now, we prove that the improved policy πζg is uniformly as good as or better than the
behaviour policy πb.

V πζg (st) =Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[Q(st+1, at+1)]]

=Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[r(st+1, at+1)+

γEst+2,at+2∼πζg
[Qπζg (st+2, at+2)]]]

=Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[r(st+1, at+1) + · · ·+
γEst+H−1,at+H−1∼πζg

[r(st+H−1, at+H−1) + γEst+H ,at+H∼πζg
[r(st+H , at+H)]]]

≥Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[r(st+1, at+1) + · · ·+
γEst+H−1,at+H−1∼πζg

[r(st+H−1, at+H−1) + γEst+H ,at+H∼πb
[r(st+H , at+H)]]]

=Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[r(st+1, at+1) + · · ·+
γEst+H−1,at+H−1∼πζg

[Qπb(st+H−1, at+H−1)]]] (21)

≥Eat∼πζg
[r(st, at) + γEst+1,at+1∼πζg

[r(st+1, at+1) + · · ·+
γEst+H−1,at+H−1∼πb

[Qπb(st+H−1, at+H−1)]]] (22)
≥ · · ·
≥Eat∼πζg

[r(st, at) + γEst+1,at+1∼π̃b
[Qπb(st+1, at+1)]]]

≥Eat∼πb
[r(st, at) + γEst+1,at+1∼π̃b

[Qπb(st+1, at+1)]]]

=V πb(st)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The derivation from Eq. 21 to Eq. 22 is based on:

Es,a∼πζg
[Qπb(s, a)]

= Es,u∼ζgEa∼ϕu(·|s)[Q
πb(s, a)]

= EsEu∼ζg [Q
ζb
H (s, u)]

≥ EsEu∼ζb [Q
ζb
H (s, u)]

= Es,u∼ζbEa∼ϕu(·|s)[Q
πb(s, a)]

= Es,a∼πb
[Qπb(s, a)]

(23)

B.3 PROOF OF THEOREM 2
Theorem 2 LOM learns a policy πL, which is uniformly as good as or better than the improved
policy πζg and the behaviour policy πb. That is,

∀s ∈ S, V πL(s) ≥ V πζg (s) ≥ V πb(s). (24)

Proof. The proof is structured in two parts. First, we show that the LOM-learned policy πL is
at least as good as the improved policy πζg ; specifically, for all states s ∈ S, we establish that
V πL(s) ≥ V πζg (s). Second, we prove that the improved policy πζg performs no worse than the
behaviour policy πb, i.e., V πζg (s) ≥ V πb(s) for all s ∈ S.

As established in Wang et al. (2018), the following lemma provides a sufficient condition for proving
that one policy is no worse than another. We restate this result as the following lemma:

Lemma (from Wang et al. (2018)): Suppose two policies π and π̃ satisfy:

g(π̃(a | s)) = g(π(a | s)) + h(s,Aπ(s, a)), (25)

where g(·) is a monotonically increasing function, and h(s, ·) is monotonically increasing for any
fixed s. Then we have:

V π̃(s) ≥ V π(s), ∀s ∈ S. (26)

This means that π̃ is uniformly as good as or better than π.

Since the LOM-learned policy imitates the optimal policy π∗, we have:

π∗(a | s) = 1

Z(s)
πζg (a | s) exp

(
1

β
Aπζg (s, a)

)
, (27)

which gives:

log πL(a | s) = log
1

Z(s)
+ log πζg (a | s) + 1

β
Aπζg (s, a), (28)

where log(·) is a monotonically increasing function and log 1
Z(s) is a constant. Therefore, πL is

uniformly as good as or better than the improved policy πζg .

B.4 PROOF OF THEOREM 3
Theorem 3 The LOM algorithm learns a policy πL, whose improvement upon the composite policy
induced by the greedy hyper-policy πζg is bounded: for all s ∈ S:

V πL(s)− V πζg (s) ≥ 1

1− γ
η̂(πL)−

Amax

1− γ

√
1

2
DKL(dπL

||dπζg
), (29)

where Amax = maxs,a |Aπζg (s, a)|. The proof is provided in Appendix B.4.

Proof. Following performance difference lemma (Kakade & Langford, 2002), we have

V πL(s)− V πζg (s) =
1

1− γ
Es∼dπL

,a∼πL
[Aπζg (s, a)] . (30)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Our goal is to express the right-hand side in terms of η̂(πL), which uses dπg
rather than dπL

. To do
this, we define the discrepancy between dπL

and dπζg
as:

∆(s) = dπL
(s)− dπζg

(s). (31)
We can decompose the expectation over dπL

as:
Es∼dπL

[f(s)] = Es∼dπζg
[f(s)] + Es∼∆[f(s)], (32)

where Es∼∆[f(s)] =
∑
s∆(s)f(s).

Applying this to the expression:

V πL(s)− V πζg (s) =
1

1− γ

(
Es∼dπζg

,a∼πL
[Aπζg (s, a)] + Es∼∆,a∼πL

[Aπζg (s, a)]
)
. (33)

The first term is exactly η̂(πL) scaled by 1
1−γ . We need to bound the error term:

ϵ =
1

1− γ
Es∼∆,a∼πL

[Aπζg (s, a)] (34)

Assuming the advantage function Aπζg (s, a) is bounded:
|Aπζg (s, a)| ≤ Amax. (35)

We can then bound ϵ by

|ϵ| ≤ Amax

1− γ

∑
s

|∆(s)| = Amax

1− γ
||dπL

− dπζg
||1 =

Amax

1− γ
DTV (dπL

||dπζg
) (36)

By applying Pinsker’s inequity, we have

DTV (dπL
||dπζg

) ≤
√

1

2
DKL(dπL

||dπζg
) (37)

Finally, we have

V πL(s) ≥ V πζg (s) +
1

1− γ
η̂(πL)−

Amax

1− γ

√
1

2
DKL(dπL

||dπζg
) (38)

C FURTHER EXPERIMENTAL DETAILS

C.1 BASELINES

In the experiments discussed in Section 6, we compare LOM with other multi-modal modelling
approaches, such as WCGAN and WCVAE, in capturing complex action distributions in offline
reinforcement learning. These models are evaluated on their ability to reconstruct and learn from
the multi-modal behaviour policy in the FetchReach, FetchPush, and FetchPickAndPlace tasks, and
across various D4RL benchmarks.

Weighted Conditional GAN (WCGAN): The WCGAN learns a discriminator D and a generator
π to optimise the following adversarial objectives:

max
D

min
π

E(s,a)∼D [w(s, a) logD(s, a)] + Es∼D,a′∼π(·|s) [log(1−D(s, a′))] , (39)

where w(s, a) = expclip

(
1
βA

πb(s, a)
)

. Here, Aπb represents the advantage of the behavior policy
πb. The WCGAN aims to generate action distributions that are weighted by this advantage, prioritising
actions that yield higher returns.

Weighted Conditional VAE (WCVAE): The WCVAE learns a conditional variational autoencoder
with an encoder E and decoder D. The objective is to optimize:

max
E,D

E(s,a)∼D,z∼E(s,a) [w(s, a) logD(a | z, s)− w(s, a)DKL(E(z | s, a) ∥ p(z | s))] , (40)

where p(z | s) is the unit Gaussian prior distribution of the latent variable conditioned on s. The
weighting function w(s, a) encourages the WCVAE to focus on high-reward actions.

C.2 HYPERPARAMETERS

The hyperparameters used in LOM were largely the same for all of the experiments reported. In
Table 3, we give a list and description of them, as well as their default values. The hyperparameters
M used in Table 1 are selected from {2, 5, 10, 15, 20}.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Symbol in paper Description Default values
M Number of Gaussian components Please check Figure 3
β Advantage weights 5
C Weight clips 50
ρ Ployak averaging coefficient 0.995

update_delay Target update delay 2
πρ Gaussian mixture model [state_dim, 512, 512, 2 * ac_dim + M]
πθ Policy learned by LOM [state_dim, 512, 512, ac_dim]
Qψ Q-network [state_dim + ac_dim, 512, 512, 1]
Qϕ Behaviour hyper Q-function [state_dim + M , 512, 512, M]

Table 3: Hyperparameters used in the experiments.

18

	Introduction
	Related Work
	Preliminaries
	Method
	Multi-modal behavioural policy
	Hyper-Markov Decision Process
	Hyper Q-function
	Mode selection
	Weighted Imitation Learning on One Mode

	Practical Algorithm
	Behaviour Policy Modelling
	hyper Q-function Learning
	Policy Learning

	Experimental Results
	LOM Achieves SOTA Performance in D4RL Benchmark
	Learning on One Mode Drives Improvements
	Effect of the Number of Gaussian Components

	Conclusions and Discussions
	Motivating example
	Theoretical Results
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Further experimental details
	Baselines
	Hyperparameters

