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ABSTRACT

Self-attention and transformers have been widely used in deep learning. Recent
efforts have been devoted to incorporating transformer blocks into different types
of neural architectures, including those with convolutions, leading to various vi-
sual transformers for computer vision tasks. In this paper, we propose a novel and
compact transformer block, Transformer with Differentiable Channel Selection, or
DCS-Transformer. DCS-Transformer features channel selection in the computa-
tion of the attention weights and the input/output features of the MLP in the trans-
former block. Our DCS-Transformer is compatible with many popular and com-
pact transformer networks, such as MobileViT and EfficientViT, and it reduces the
FLOPs of the visual transformers while maintaining or even improving the predic-
tion accuracy. In the experiments, we replace all the transformer blocks in Mobile-
ViT and EfficientViT with DCS-Transformer blocks, leading to DCS-Transformer
networks with different backbones. The DCS-Transformer is motivated by reduc-
tion of Information Bottleneck, and a novel variational upper bound for the IB
loss which can be optimized by SGD is derived and incorporated into the training
loss of the network with DCS-Transformer. Extensive results on image classifi-
cation and object detection evidence that DCS-Transformer renders compact and
efficient visual transformers with comparable or much better prediction accuracy
than the original visual transformers. The code of DCS-Transformer is available
at https://anonymous.4open.science/r/IB-DCS-ViT-273C/.

1 INTRODUCTION

Building upon the success of Transformer in natural language processing (Vaswani et al., 2017),
visual transformers have demonstrated remarkable performance compared to state-of-the-art Convo-
lution Neural Networks (CNNs) across a wide range of computer vision tasks, including image clas-
sification (Yuan et al., 2021; Dosovitskiy et al., 2021a), object detection (Liu et al., 2021; Zhu et al.,
2021), image restoration (Liang et al., 2021), and semantic segmentation (Cai et al., 2023). However,
the achievements of visual transformers are accompanied by heavy computational costs (Dosovit-
skiy et al., 2021a; Touvron et al., 2021), making their deployment impractical under resource-limited
scenarios. The aforementioned limitations have spurred recent research endeavors aimed at devel-
oping efficient visual transformers. Several approaches have been explored, including incorporation
of convolution layers into visual transformers and Neural Architecture Search (NAS), to design effi-
cient transformer architectures, and pruning redundant weights in the transformer networks. In this
paper, we study the problem of compressing visual transformers by channel selection.

Channel selection is an effective method for pruning large-weight convolutional neural networks
(CNNs) (Han et al., 2015; Zhou et al., 2020; Sun et al., 2021). In addition to reducing the com-
putation cost of network architecture, adaptively selecting informative channels is also shown to be
beneficial for representation learning (He et al., 2021; Han et al., 2021). Models can extract and re-
tain essential visual information while discarding noise or irrelevant features by focusing on the most
relevant channels selected for different input images. Recent works in selecting informative chan-
nels for visual transformers (Zheng et al., 2022; Chen et al., 2021b; Yu et al., 2022a) have already
proven to be effective in compressing the size of the networks. However, existing works usually
select fixed channels in the linear layers of transformer blocks (Yu et al., 2022b; Fang et al., 2023).
In addition, they neglect the importance of selecting informative channels for calculating the affinity
between their visual tokens, which is the pivotal component in aggregating global information.
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Motivation. A typical transformer block can be written as Output = MLP
(
σ(QK⊤)× V

)
where

Q,K, V ∈ RN×D denote the query, key, and value respectively with N being the number of tokens
and D being the input channel number. σ(·) is an operator, such as Softmax, which generates the
attention weights or affinity between the tokens. We refer to W = σ(QK⊤) ∈ RN×N as the
affinity matrix between the tokens. MLP (multi-layer perceptron network) generates the output
features of the transformer block. There are D channels in the input and output features of the
MLP, and D is also the channel of the attention outputs. Due to the fact that the MLP accounts for a
considerable amount of FLOPs in a transformer block, the size and FLOPs of a transformer block can
be significantly reduced by reducing the channels of the attention outputs from D to a much smaller
D̃. Our goal is to prune the attention output channels while maintaining and even improving
the prediction accuracy of the original transformer. However, directly reducing the channels
attention outputs, even by carefully designed methods, would adversely affect the performance of
the model. In this paper, we propose to maintain or even improve the prediction accuracy of a visual
transformer with pruned attention outputs channels by computing a more informative affinity matrix
W through selecting informative channels in the query Q and the key V . That is, only selected
columns of Q, which correspond to the same selected rows of K⊤, are used to compute the affinity
matrix W = σ(QK⊤), which is refered to as channel selection for attention weights and illustrated
in Figure 1a. We note that the attention outputs, which are also the input features to the MLP, is
W × V , and every input feature to the MLP is an aggregation of the rows of the value V using the
attention weights in W . As a result, pruning the channels of W×V amounts to pruning the channels
of V in the weighted aggregation. If the affinity W is more informative, it is expected that a smaller
number of features (rows) in V contribute to such weighted aggregation, and the adverse effect of
channel selection on the prediction accuracy of the transformer network is limited. Importantly, with
a very informative affinity W , every input feature of the MLP is obtained by aggregation of the most
relevant features (rows) in V , which can even boost the performance of visual transformers after
channel selection or pruning of the attention outputs.

The idea of channel selection for the attention weights can be viewed from the perspective of In-
formation Bottleneck (IB). Let X be the input training features, X̃ be the learned features by the
network, and Y be the ground truth training labels for a classification task. The principle of IB
is maximizing the mutual information between X̃ and Y while minimizing the mutual informa-
tion between X̃ and X . That is, IB encourages the network to learn features more correlated with
the class labels while reducing their correlation with the input. Extensive empirical and theoreti-
cal works have evidenced that models respecting the IB principle enjoys compelling generalization.
With channel selection for the attention weights, every feature in the attention outputs aggregates
less features of the value V , so the attention outputs are less correlated with the training images so
the IB principle is better adhered. This is reflected in Table 5 in Section C.2 of the supplementary,
where a model for ablation study with channel selection for attention weights, DCS-Arch1 w/o IB
Loss, enjoys less IB loss and higher top-1 accuracy than the vanilla transformer, MobileViT-S. It
is noted that the model, DCS-Arch1 w/o IB Loss, only uses the regular cross-entropy loss in the
retraining step, and smaller IB loss indicates that the IB principle is better respected. In order to fur-
ther decrease the IB loss, we propose an Information Bottleneck (IB) inspired channel selection for
the attention weights W where the learned attention weights can be more informative by explicitly
optimizing the IB loss for visual transformers. Our model termed “DCS-MobileViT-S” in Table 5
is the visual transformer with the IB loss optimized, so that more informative attention weights are
learned featuring even smaller IB loss and even higher top-1 accuracy. Figure 4 and Figure 5 in
the supplementary illustrate the visualization results by Grad-CAM and the attention weights pro-
duced by the proposed DCS-Transformer with channel selection in attention weights, evidencing
that the channel selection inspired by the IB principle leads to more informative attention weights
for learning semantic concepts.

1.1 CONTRIBUTIONS

The contributions of this paper are presented as follows.

First, we present a novel and compact transformer block termed Transformer with Differentiable
Channel Selection, or DCS-Transformer. Using our proposed channel selection in both the com-
putation for attention weights and the features of the MLP, DCS-Transformer blocks automatically
select channels in queries and keys to compute more informative attention weights inspired by the
IB principle. DCS-Transformer blocks can be used to replace all the transformer blocks in many
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popular visual transformers, rendering compact visual transformers with comparable or even better
performance. The effectiveness of DCS-Transformer is evidenced by replacing all the transformer
blocks with DCS-Transformer blocks in two visual transformers which are already compact, Mo-
bileViT (Mehta & Rastegari, 2022) and EfficientViT (Cai et al., 2023), for image classification and
object detection tasks.

Second, our research is among the first few works which directly incorporate the IB loss, which
is I(X̃) − I(X̃, Y ) where I(·, ·) denotes mutual information, into the existing training loss of a
transformer network, so that the IB loss can be optimized in an end-to-end manner. In order to
achieve this goal, we present a new theoretical result about a novel variational upper bound for the
IB loss which can be optimized by standard SGD algorithms. Experimental results demonstrate that
the IB loss of the visual transformer can be reduced by optimizing the composite loss formed by
our variational upper bound for the IB loss and the regular cross-entropy loss, and the transformer
network trained with such variational upper bound exhibits stronger generalization. Our variational
upper bound for the IB loss is of independent interest beyond this work, and we expect that it can be
broadly applied to other neural architectures so as to improve their performance by the IB principle.

We remark that as shown in Table 5 of the supplementary, channel selection in either the attention
weights or the attention output without optimizing the IB loss can already reduce the IB loss. By
explicitly optimizing the IB loss using its variational upper bound, network with DCS-Transformer
enjoys smaller IB loss, higher classification accuracy and less FLOPs.

This paper is organized as follows. The related works in efficient visual transformers and com-
pression of visual transformers are discussed in Section 2. The formulation of DCS-Transformer is
detailed in Section 3. The effectiveness of DCS-Transformer is demonstrated in Section 4 for image
classification and object detection tasks, by replacing all the transformer blocks of MobileViT and
EfficientViT with DCS-Transformer blocks. We conclude the paper in Section 5.

2 RELATED WORKS

2.1 EFFICIENT VISUAL TRANSFORMERS

Recently, visual transformer models have emerged as a popular alternative to convolutional neural
networks (CNNs) in computer vision tasks, such as image classification (Dosovitskiy et al., 2021b;
Liu et al., 2021), object detection (Carion et al., 2020; Zhu et al., 2021), and image restoration (Liang
et al., 2021; Wang et al., 2022a). Albeit the great performance of visual transformers, they usually
suffer from high computation costs due to the quadratic complexity of point-wise attention mod-
ules as well as a large number of Multi-Layer Perception (MLP) encoding layers. To reduce the
computation cost of visual transformer models, many recent works (Zhu et al., 2021; Yuan et al.,
2021) have been proposed using different methodologies, mainly by employing sparse mechanisms
to design efficient attention modules and optimizing the network architecture of the transformer
models. In order to design compact network architecture of transformer models, another series of
works (Cai et al., 2023; Mehta & Rastegari, 2022; Yuan et al., 2021) introduce convolutions into the
network architecture of visual transformers. For instance, MobileViT (Mehta & Rastegari, 2022) in-
troduces a hybrid architecture that combines lightweight MobileNet convolution blocks (MBConv)
and MHSA modules. MobileViT places the convolution blocks at early stages in its architecture
to extract low-level features while placing MHSA in late stages to achieve global representation
learning. In addition, several works leverage Neural Architecture Search (NAS) (Chen et al., 2021a;
Gong et al., 2022) to design efficient visual transformers. Other works also attempt to enhance
the performance of efficient visual transformers by incorporating knowledge distillation into their
training (Graham et al., 2021; Radosavovic et al., 2020; Gong et al., 2022).

2.2 COMPRESSING VISUAL TRANSFORMERS

Recent studies have also investigated compressing existing visual transformers to reduce their com-
putation cost. Current compression methods for visual transformers usually fall into three categories:
(1) Channel Pruning, which prune redundant heads and channels in ViT Blocks (Chen et al., 2021b;
Chavan et al., 2022; Zheng et al., 2022). (2) Block Pruning, which drops redundant transformer
blocks in transformer networks (Yu et al., 2022b;a). (3) Token Pruning, which only keeps informa-
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tive tokens as the inputs for transformer blocks (Rao et al., 2021; Kong et al., 2022; Bolya et al.,
2023; Wang et al., 2022b).

In this paper, we focus on channel selection for compression of visual transformers, and we propose
to prune the channels of the MLP features or the attention outputs in all the transformer blocks
in a visual transformer. In order to achieve comparable or even better prediction accuracy than
the original visual transformer, channel selection is also performed in the computation of attention
weights inspired by the IB principle so as to generate more informative attention weights, so that the
adverse effect of channel reduction in the MLP features is compensated.

2.3 RELATED WORKS ABOUT INFORMATION BOTTLENECK

(Saxe et al., 2019) first discusses existing information bottleneck theories of deep learning. By
building the connection of the compression phase of training in existing information bottleneck
theories with the neural nonlinearity, they prove that the compression phase of training is not related
to the excellent generalization performance of deep networks. (Lai et al., 2021) proposes to learn
probabilistic maps in a spatial attention module that reduces the mutual information between the
masked representation and the input while increasing the mutual information between the masked
representation and the task label. (Zhou et al., 2022) proves that self-attention can be written as
an iterative optimization step of the Information Bottleneck objective. Next, they show that self-
attention can promote the robustness of neural networks through improved mid-level representations.
They further propose a family of fully attentional networks (FANs) that take advantage of such
merits of self-attention.

In contrast with most existing works that model the IB principle implicitly, our work directly opti-
mizes the IB loss by adding its variational upper bound to the training loss of a neural network and
optimizing the joint loss by standard SGD algorithms. In this manner, any neural network designed
for classification tasks can enjoy potential improvement by the IB principle through the separable
variational upper bound for the IB loss.
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Figure 1: (a) A DCS-Transformer block is illustrated in (a), and (b) illustrates the architecture of
MobileViT by replacing each transformer block in MobileViT with a DCS-Transformer block.

3 FORMULATION

In this section, we present two types of channel selection in our DCS-Transformer, which are (1)
channel selection for attention weights that renders more informative attention weights or affinity be-
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tween tokens; (2) channel selection for attention outputs which prunes the channels of the MLP fea-
tures so as to reduce the FLOPs of the transformer block. We then present the novel variational upper
bound for the IB loss, and introduce the training algorithm of the network with DCS-Transformer
and the variational upper bound.

3.1 CHANNEL SELECTION FOR ATTENTION WEIGHTS

Given the input patch embeddings x ∈ RN×D, where N is the number of visual tokens and D is the
token dimension, visual transformer blocks first obtain the query Q ∈ RN×D, key K ∈ RN×D, and
value V ∈ RN×D for the multi-head self-attention module with linear layers. The attention weights
are then calculated by the dot-product between Q and K. Let xi denote the i-th row of x. The (i, j)-
th entry of the attention weight matrix QK⊤ is the correlation between the feature xi and xj . We aim
to select informative channels for the computation of the attention weights. To achieve this goal, we
maintain a binary decision mask M ∈ {0, 1}N×D, where its (i, d)-th element Mid = 1 indicates
the d-th channel of feature xi is selected. As a result, the attention weights or the affinity matrix W
is computed by W = σ

(
(Q⊙M)(K ⊙M)⊤

)
, where σ is the Softmax operator on each row of the

input features and ⊙ indicates elementwise product. To optimize the discrete binary decision mask
with gradient descent, we adopt simplified binary Gumbel-Softmax (Verelst & Tuytelaars, 2020)
to relax M ∈ {0, 1}N×D into its approximation in the continuous domain M̂ ∈ (0, 1)N×D. The

approximated soft decision mask can be computed by M̂id = σ
(

θid+ϵ
(1)
id −ϵ

(2)
id

τ

)
, where M̂id is the

(i, d)-th element of M̂. ϵ(1)id and ϵ
(2)
id are Gumbel noise for the approximation. τ is the temperature,

and σ(·) is the Sigmoid function. θ ∈ RN×D is the sampling parameter. In this work, we obtain
θ by applying a linear layer on x so that the soft decision mask is dependent on the input features
of the transformer block. Inspired by the straight-through estimator (Verelst & Tuytelaars, 2020;
Bengio et al., 2013), we directly set M = M̂ in the backward pass. In the forward pass, the binary
decision mask is computed by Mid = 1 if M̂id > 0.5, and 0 otherwise. During inference, the
Gumbel noise ϵ(1)id and ϵ

(2)
id are set to 0. Using the Gumbel-Softmax above, the informative channels

for the attention weights computation are selected in a differentiable manner.

3.2 CHANNEL SELECTION FOR ATTENTION OUTPUTS

After applying the multi-head self-attention on the input patch embedding x, we obtain the attention
outputs z ∈ RN×D. Our DCS-transformer block then applies MLP layers to the attention outputs.
The MLP layers in visual transformer blocks are usually computationally expensive. To improve
the efficiency of the DCS-transformer, we propose to prune the channels in the attention outputs
so that the computation cost of MLP layers can be reduced. Similar to the channel selection for
attention weights, we maintain a decision mask gi ∈ {0, 1}D, where gi = 1 indicates that the i-th
channel is selected, and 0 otherwise. Thus, the informative channels can be selected by multiplying
g by each row of the attention output. To optimize the binary decision mask with gradient descent,
we replace g with Gumbel Softmax weights in the continuous domain, which is computed by ĝi =

σ
(

αi+ϵ
(1)
i −ϵ

(2)
i

τ

)
, where ϵ

(1)
i and ϵ

(2)
i are Gumbel noise. τ is the temperature. α ∈ RD is the

sampling parameter. We define α as the architecture parameters of the DCS-Transformer block
that can be optimized by gradient descent during the differentiable search process. By gradually
decreasing the temperature τ in the search process, αi will be optimized such that gi will approach
1 or 0. Note that since the MLP layers in visual transformers have the same input and output
dimensions, so we multiply the decision mask g with both the input and output features of the
MLP layers. After the search is finished, we apply the gather operation on the attention outputs
from the selected channels. The dimension of the input and output features of the MLP layers
are then changed to D̃ =

∑D
i=1 gi. The architecture and the two types of channel selection are

illustrated in Figure 1a. Our DCS-Transformer block is compatible with most visual transformers,
and Figure 1b illustrates the architecture of DCS-MobileViT, which is obtained by replacing each
transformer block in MobileViT with a DCS-Transformer block. In a similar manner, we can have
DCS-X, where X stands for a visual transformer. For example, the details about DCS-EfficientViT
are introduced in Appendix A.
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3.3 VARIATIONAL UPPER BOUND FOR THE IB LOSS

Given the training data {Xi, yi}ni=1 where xi is the i-the input training feature and yi is the cor-
responding class label, we first specify how to compute the IB loss, IB(W) = I(X̃(W), X) −
I(X̃(W), Y ), where W is the weights of a neural network, X is a random variable representing the
input feature, which takes values in {Xi}ni=1, X̃(W) is a random variable representing the learned

feature which takes values in
{
X̃i(W)

}n

i=1
with X̃i(W) being the i-th learned feature by the net-

work. Y is a random variable representing the class label, which takes values in {yi}ni=1. After

performing K-means clustering on
{
X̃i(W)

}n

i=1
and {Xi}ni=1, we have the clusters {Ca}Aa=1 and

{Cb}Bb=1 for the learned features and the input features respectively. Here we set A = B = C

where C is the number of classes. We also abbreviate X̃(W) as X̃ for simplicity of the notations.

Then we define the probability that X̃i belongs to cluster Ca as Pr
[
X̃ ∈ a

]
= 1

n

n∑
i=1

ϕ(X̃i, a) with

ϕ(X̃i, a) =
exp

(
−∥X̃i−Ca∥2

2

)
∑A

a=1 exp
(
−∥X̃i−Ca∥2

2

) . Similarly, we define the probability that Xi belongs to cluster

Cb as Pr [X ∈ b] = 1
n

n∑
i=1

ϕ(Xi, b). Moreover, we have the joint probabilities Pr
[
X̃ ∈ a,X ∈ b

]
=

1
n

n∑
i=1

ϕ(X̃i, a)ϕ(Xi, b) and Pr
[
X̃ ∈ a, Y = y

]
= 1

n

n∑
i=1

ϕ(X̃i, a)1I{yi=y} where 1I{} is an indicator

function. As a result, we can compute the mutual information I(X̃,X) and I(X̃, Y ) by

I(X̃,X) =

A∑
a=1

B∑
b=1

Pr
[
X̃ ∈ a,X ∈ b

]
log

Pr
[
X̃ ∈ a,X ∈ b

]
Pr

[
X̃ ∈ a

]
Pr [X ∈ b]

,

I(X̃, Y ) =

A∑
a=1

C∑
y=1

Pr
[
X̃ ∈ a, Y = y

]
log

Pr
[
X̃ ∈ a, Y = y

]
Pr

[
X̃ ∈ a

]
Pr [Y = y]

,

and then compute the IB loss IB(W). Given a variational distribution Q(X̃ ∈ a|Y = y) for
y ∈ {1, . . . C} and a ∈ {1, . . . A}, the following theorem gives a variational upper bound, IBB(W),
for the IB loss IB(W).
Theorem 3.1.

IB(W) ≤ IBB(W) :=
1

n

n∑
i=1

A∑
a=1

B∑
b=1

ϕ(X̃i, a)ϕ(Xi, b) log ϕ(Xi, b)

− 1

n

n∑
i=1

A∑
a=1

C∑
y=1

ϕ(X̃i, a)1I{yi=y} logQ(X̃ ∈ a|Y = y) (1)

The proof of this theorem follows by applying Lemma F.1 and Lemma F.2 in Section F of the sup-
plementary. We remark that IBB(W) is ready to be optimized by standard SGD algorithms because
it is separable and expressed as the summation of losses on individual training points. Algorithm 1
describes the training process of a neural network with DCS-Transformer blocks where IBB(W)
is a term in the training loss. In order to compute IBB(W) before a new epoch starts, we need to
update the variational distribution Q(t) at the end of the previous epoch. The following functions are
needed for minibatch-based training with SGD, with the subscript j indicating the corresponding
loss on the j-th batch Bj :

IBB(t)
j (W) =

1

|Bj |

|Bj |∑
i=1

A∑
a=1

B∑
b=1

ϕ(X̃i(W), a)ϕ(Xi, b) log ϕ(Xi, b)−

1

|Bj |

|Bj |∑
i=1

A∑
a=1

C∑
y=1

ϕ(X̃i(W), a)1I{yi=y} logQ
(t−1)(X̃ ∈ a|Y = y), (2)
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L(t)
train,j(W) = CE(t)

j + ηIBB(t)
j (W), CE(t)

j =
1

|Bj |

|Bj |∑
i=1

H(Xi(W), Yi). (3)

Here CE(t)
j is the cross-entropy loss on batch Bj at epoch t. H(, ) is the cross-entropy function. η is

the balance factor for the loss of information bottleneck.

Algorithm 1 Training Algorithm with the Variational Upper Bound for IB by SGD
1: Initialize the weights of the network byW =W(0) through random initialization
2: for t← 1 to tsearch do
3: for j ← 1 to J do
4: Perform gradient descent with batch Bj using the loss L(t)

search,j(W, α) defined Section 3.4.
5: end for
6: end for
7: for t← 1 to ttrain do
8: for j ← 1 to J do
9: Update ϕ(X̃i, a) for all the clusters a ∈ {1, . . . , A} and i ∈ {1, . . . , n}.

10: if t > twarm then
11: Perform gradient descent with batch Bj using the loss L(t)

train,j(W) by Eq. (3).
12: else
13: Perform gradient descent with batch Bj using the loss CE(t)

j by Eq. (3).
14: end if
15: end for
16: Compute Q(t)(X̃ ∈ a|Y = y) by Eq. (8) in the supplementary, perform K-means clustering on{

X̃i

}n

i=1
and update the clusters {Ca}Aa=1.

17: end for
18: return The trained weightsW of the network

3.4 OPTIMIZATION IN THE SEARCH PROCESS

To obtain a compact visual transformer network with DCS-Transformer, we need to optimize both
the accuracy of the network and the inference cost (FLOPs) of the network. Therefore, the dif-
ferentiable inference cost of the network needs to be estimated and optimized during the search
phase. It is worthwhile to mention that we follow the standard techniques in neural architecture
search (Xie et al., 2019; Herrmann et al., 2020; Liu et al., 2019) in the searching process, includ-
ing channel selection by Gumbel-Softmax and entropy minimization for architecture search. We
optimize the FLOPs of the operations whose computation cost is decided by the channel selec-
tion for attention outputs in Section 3.2. For DCS-MobileViT, we estimate the FLOPs of the MLP
after the channel selection on the attention outputs and the FLOPs of the convolution block fol-
lowing the DCS-Transformer. The estimation of the FLOPs related to a single MobileViT block is
costj = 2 ·

(
2D̃2 + D̃

)
+(1+D̃) ·HWC, where j indexes the DCS-Transformer block. 2D̃2+D̃

is the FLOPs of a layer of the MLP after the channel selection on the attention outputs, and there are
two layers in the MLP. (1 +

∑D
i=1 gi) ·HWC is the FLOPs of the convolution block following the

DCS-Transformer. C is the number of filters of the convolution block. H and W are the height and
width of the input features of the DCS-Transformer block. As a result, we can calculate the infer-
ence cost objective of the network architecture by cost =

∑M
j=1 costj , where M is the number of

transformer blocks. For DCS-EfficientViT, we have costj = (2D̃2 + D̃) + (1+ D̃) ·HWC which
is detailed in Section A of the supplementary.

To supervise the search process, we designed a loss function incorporating cost-based regular-
ization to enable multi-objective optimization. The overall loss function for search on each
batch Bj at epoch t is formulated by L(t)

search,j(W, α) = CE(t)
j + λ · log cost(α), CE(t)

j =
1

|Bj |
∑|Bj |

i=1 H(Xi(W), Yi), where W denotes the weights in the supernet. α is the architecture pa-
rameters. λ is the hyper-parameters that control the magnitude of the cost term, which is selected
by cross-validation. In the search phase, the search loss is optimized to perform the two types of
channel selection for all the DCS-Transformer blocks. After the search phase, we use the selected

7



Under review as a conference paper at ICLR 2024

channels for both attention weights and attention outputs in a searched network and then perform
retraining on the searched network.

4 EXPERIMENTAL RESULTS

In this section, we first evaluate the performance of DCS-MobileViT and DCS-EfficientViT on the
ImageNet-1k dataset for image classification, and show that both models render better performance
than state-of-the-art networks in Section 4.1 with more compact models. In Section D, we show that
networks using DCS-MobileViT and DCS-EfficientViT as the feature extraction backbones achieve
better mAP with lower FLOPs than the competing baselines for object detection.

4.1 IMAGE CLASSIFICATION ON THE IMAGENET-1K DATASET

Implementation details about Search/Retraining. We use MobileViT-S (Mehta & Rastegari,
2022), MobileViT-XS (Mehta & Rastegari, 2022), and EfficientViT-B (Cai et al., 2023) as the back-
bones for our experiments in ImageNet classification. We replace all the transformer blocks in the
backbones with DCS-Transformer blocks. In the search phase, we sample 100 classes from Ima-
geNet (Russakovsky et al., 2015) as the training data. A cosine learning rate schedule is used in the
AdamW optimizer with parameters β1 and β2 set to 0.9 and 0.999 respectively. The learning rate is
initialized as 0.001 and then annealed to 0.0001 in 200 epochs. In each epoch, we use 70% of the
training data to optimize the network weights and 30% to optimize the architecture parameters in all
the DCS-Transformer blocks. We set the initial value of the temperature τ to 4.5 and decrease it by
a factor of 0.95 every epoch.
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Figure 2: Top-1 accuracy vs FLOPs (G) on
ImageNet-1k validation set.

Model # Params FLOPs Top-1
T2T 4.3 M 1.1 G 71.7
DeIT 5.7 M 1.2 G 72.2
PiT 10.6 M 0.7 G 72.4
CrossViT 6.9 M 1.6 G 73.4
MobileViT-XS 2.3 M 0.7 G 74.8
DCS-MobileViT-XS (Ours) 2.0 M 0.5 G 76.8
CeiT 6.4 M 1.2 G 76.4
DeIT 10 M 2.2 G 76.6
T2T 6.9 M 1.8 G 76.5
LocalVit 7.7 M 1.5 G 76.1
ConViT 10 M 2.0 G 76.7
PiT 10.6 M 1.4 G 78.1
Mobile-Former 9.4 M 0.5 G 76.7
EViT (Liu et al., 2023) 12.4 M 0.52 G 77.1
TinyViT (Wu et al., 2022) 5.4 M 1.3 G 79.1
DeIT 22 M 4.6 G 79.8
ToMe (Bolya et al., 2023) 22 M 2.7 G 79.4
EfficientFormer (Li et al., 2022) 12.3 M 1.3 G 79.2
MobileViT-S 5.6 M 1.4 G 78.4
VTC-LFC (Wang et al., 2022b) 5.0M 1.3 G 78.0
SPViT (Kong et al., 2022) 4.9M 1.2 G 77.8
ToMe (Bolya et al., 2023) 5.6M 1.2 G 77.3
DCS-MobileViT-S (Ours) 4.8 M 1.2 G 81.0
EfficientViT-B1 [r224] (Cai et al., 2023) 9.1 M 0.52 G 79.4
EfficientViT-B1 [r288] (Cai et al., 2023) 9.1 M 0.86 G 80.4
EViT (Liu et al., 2023) 8.8 M 0.29 G 74.3
VTC-LFC (Wang et al., 2022b) 8.7M 0.76 G 79.3
SPViT (Kong et al., 2022) 8.3M 0.71 G 79.0
ToMe (Bolya et al., 2023) 9.1M 0.47 G 78.8
DCS-EfficientViT-B1 [r224] (Ours) 8.2 M 0.46 G 81.2
DCS-EfficientViT-B1 [r288] (Ours) 8.2 M 0.72 G 81.6

Table 1: Comparisons with baseline methods on
ImageNet-1k validation set.

After the search is finished, we sample the searched architecture from the supernet and perform
retraining. We defer more Details about retraining, EfficientViT with DCS-Transformer, and tuning
hyper-parameters by cross-validation to Section B of the supplementary. We select the values of
twarm and η in Algorithm 1 by cross-validation as described in Section B of the supplementary. The
validation results suggest that twarm = 90 and η = 50 work the best for all our DCS models.

Results. It can be observed from Table 1 that models with DCS-Transformer always enjoy less
FLOPs than its original visual transformer and better accuracy. For example, DCS-EfficientViT
has an accuracy improvement of almost 1% while the FLOPs is reduced from 0.54G to 0.46G
compared to the original EfficientViT. In addition, DCS-MobileViT-S has an accuracy improvement
of 1.5% compared to the original MobileViT-S, while its FLOPs is reduced from 1.4G to 1.2G. To
study how DCS impacts the attention mechanism, we show the Grad-CAM visualization examples
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in Figure 4 of the supplementary. In addition, we also visualize the attention weights computed
on several examples in Figure 5 of the supplementary. To verify the effectiveness of two channel
selection modules in DCS, we perform an ablation study in Section C.2 of the supplementary. More
experiments on ImageNet are deferred to Section C of the supplementary. The experimental results
for DCS on object detection and segmentation are presented in Section D and Section E of the
supplementary.

4.2 STUDY IN IB LOSS AND ITS EFFECT ON GENERALIZATION

Figure 3 illustrates the test loss and the IB loss during the training for DCS-MobileVit-XS, DCS-
MobileVit-S, and DCS-EfficientViT. It can be observed that the IB loss for all the models decreases
starting from the 90-th epoch after the warm-up stage, and test loss of a model with IB loss optimized
drops faster than that of the vanilla model.

(a) DCS-MobileVit-XS (b) DCS-MobileVit-S (c) DCS-EfficientViT

Figure 3: Comparison: attention weights of MobileViT-S vs. DCS-MobileViT-S. The attention
weights are from the first head in the last transformer block of MobileViT-S and DCS-MobileViT-S.

5 CONCLUSION

In this paper, we propose a novel transformer block, Transformer with Differentiable Channel Se-
lection, or DCS-Transformer. Two types of channel selection are performed in a DCS-Transformer
block, which are channel selection for attention weights and channel selection for attention outputs.
The training of a network with DCS-Transformer enjoys a reduction of IB loss, rendering com-
pact visual transformers with reduced FLOPs while enjoying comparable or even better prediction
accuracy. We demonstrate the effectiveness of DCS-Transformer by replacing all the transformer
blocks in MobileViT and EfficientViT with DCS-Transformer blocks, leading to DCS-MobileViT
and DCS-EfficientViT, respectively. Extensive experiments on image classification and object de-
tection demonstrate the effectiveness of DCS-Transformer, and its potential as a competitive choice
when designing compact and mobile visual transformers in the future research.
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A MORE DETAILS ABOUT DCS-TRANSFORMER

We introduce the details about the FLOP cost of DCS-EfficientViT. For DCS-EfficientViT, we have
costj = (2D̃2+ D̃)+(1+ D̃) ·HWC. The first term, 2D̃2+ D̃, is the FLOPs of the linear layer at
the end of the Lightweight Multi-Scale Attention block, (1+D̃)·HWC is the FLOPs of the first con-
volution layer in the MBConv block after the lightweight Multi-Scale Attention (lightweight MSA)
block. D̃ denotes the compressed input dimension of the linear layer at the end of the lightweight
MSA block. Note that D̃ is compressed from concatenated features of 3 ·D dimensions, where D is
the output dimension of the ReLU Global Attention and 3 is the number of branches in Lightweight
Multi-Scale Attention block in EfficientViT.

B MORE DETAILS ABOUT SEARCHING/RETRAINING

More Details about Retraining and EfficientViT with DCS-Transformer. In the retraining phase,
we train the searched network on ImageNet-1K. We also use AdamW optimizer and set β1 and
β2 to 0.9 and 0.999. The retraining phase takes 300 epochs, whereas the first 90 epochs are the
warm-up stage that only optimizes the cross-entropy loss. After the warm-up stage, we optimize the
overall training loss function that minimizes the cross-entropy loss and the IB loss. All the training is
performed on 4 NVIDIA V100 GPUs with an effective batch size of 512 images. Following previous
works (Cai et al., 2023), we adopt the widely used and standard data augmentation techniques,
including random scaling, random horizontal flip, and random cropping in training. The weight
decay is set to 0.01. The learning rate is increased from 0.0002 to 0.002 linearly in the first 5 epochs
and then annealed to 0.0002 using a cosine learning rate schedule in the following 300 epochs. The
inference is performed on the exponential moving average of model weights. Different from works
such as LeViT (Graham et al., 2021) and NASVIT (Gong et al., 2022), knowledge distillation is
not used in the training of DCS models. Our results are compared exclusively with baseline models
trained without knowledge distillation.

For transformer blocks in EfficientViT, we apply our method of channel selection for attention
weights, illustrated in the green box in Figure 1a, on the queries and keys for the ReLU Global
Attention in every branch of the lightweight MSA module before applying ReLu and dot-product on
them. We also apply our channel selection method for attention outputs to the features concatenated
from different scale branches and prune the number of channels in the following linear layer.

Tuning Hyper-Parameters by Cross-Validation. To decide the best balancing factor λ
for the overall search loss, η for the overall training loss, and the number of warm-
up epochs twarm, we perform 5-fold cross-validation on 10% of the training data. The
value of λ is selected from {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0, 5}. The value of
η is selected from {0.1, 0.5, 1, 5, 10, 50, 100}. The value of twarm is selected from
{0.1ttrain, 0.2ttrain, 0.3ttrain, 0.4ttrain, 0.5ttrain, 0.6ttrain}, where ttrain = 300 is the total number of train-
ing epochs. We select the values of η, λ, and twarm that lead to the smallest validation loss. It is
reveled that twarm = 90 is chosen for all the three visual transformers in our experiments.

C MORE EXPERIMENTS

We provide additional results of visual transformers with DCS-Transformer blocks which are trained
by knowledge distillation. Existing efficient visual transformers, such as NASViT (Gong et al.,
2022) and LeViT (Graham et al., 2021), incorporate knowledge distillation to improve their per-
formance. They employ the outputs of large models as supervision during their own training. In
this section, we adopt knowledge distillation in the retraining process of our models. To ensure fair
comparisons, we follow the settings in NASViT and employ EfficientNet-B5 as the teacher model
for knowledge distillation. The results are shown in Table 2, where KD denotes our models trained
with knowledge distillation. Furthermore, to compare with previous SOTA methods NASViT-A4
and NASViT-A5, we also evaluate DCS-EfficientViT on an input resolution of 288× 288, which is
denoted by r288 in the table. It is shown in the results that DCS-EfficientViT trained with both input
resolutions outperforms NASViT in terms of higher accuracy while enjoying lower FLOPs. For ex-
ample, with input resolution of 288× 288, DCS-EfficientViT has a lower FLOPs (0.72G compared
to 0.76G) while its accuracy is higher (83.1% compared to 81.8%).
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Model # Params FLOPs Top-1

EfficientViT-B1 [r224] (Cai et al., 2023) 9.1 M 0.54 G 79.4
EfficientViT-B1 [r288] (Cai et al., 2023) 9.1 M 0.86 G 80.4
EViT (Liu et al., 2023) 8.8 M 0.3 G 74.3
VTC-LFC (Wang et al., 2022b) 8.7 M 0.76G 79.3
SPViT (Kong et al., 2022) 8.3 M 0.71G 79.0
ToMe (Bolya et al., 2023) 9.1 M 0.47G 78.8
DCS-EfficientViT-B1 [r224] (Ours) 8.2 M 0.46 G 81.2
DCS-EfficientViT-B1 [r288] (Ours) 8.2 M 0.72 G 81.6
LeViT-128 (Graham et al., 2021) 9.2 M 0.41 G 78.6
LeViT-192 (Graham et al., 2021) 11.0 M 0.67 G 80.0
LeViT-256 (Graham et al., 2021) 19.0 M 1.12 G 81.6
NASViT-A2 (r224) (Gong et al., 2022) 16.5 M 0.42 G 80.5
NASViT-A3 (r256) (Gong et al., 2022) 16.5 M 0.53 G 81.0
NASViT-A4 (r288) (Gong et al., 2022) 16.5 M 0.59 G 81.4
NASViT-A5 (r288) (Gong et al., 2022) 16.5 M 0.76 G 81.8
DCS-EfficientViT-B1 [r224, KD] (Ours) 8.2 M 0.46 G 82.1
DCS-EfficientViT-B1 [r288, KD] (Ours) 8.2 M 0.72 G 83.1

Table 2: Comprehensive Comparisons on ImageNet-1k validation set.

Model # Params FLOPs Top-1

MobileViT-S 5.6 1.6 78.4
DCS-Arch1 (w/o IB Loss) 5.6 1.6 79.4
DCS-Arch2 (w/o IB Loss) 4.8 1.2 78.2
DCS-QK-Mask (w/o IB Loss) 4.8 1.2 79.7
DCS-MobileViT-S (w/o IB Loss) 4.8 1.2 79.9
DCS-MobileViT-S 4.8 M 1.2 G 81.0

Table 3: Study on the mask mechanism of DCS MobileViT-S.

We also introduce another ablation model named DCS-QK-Mask where different binary deci-
sion masks are used in Q and K when computing the attention weights W , that is, W =
σ
(
(Q⊙M1)(K ⊙M2)

⊤) where M1 and M2 are learned separately in the search phase. As
shown in Table 3, the DCS-MobileViT still outperforms DCS-QK-Mask using MobileViT as the
backbone, and this is because different decision masks introduce unnecessary complexity in the
self-attention module.

Figure 6 illustrates the histogram of the entropy of the rows of the affinity matrices over randomly
chosen 100 validation images of ImageNet-1k for all the four heads in the last transformer block in
MobileViT-S and DCS-MobileViT-S. It can be observed that more rows of the affinity matrices for
DCS-Transformer have lower entropy, indicating that the affinity matrices in the DCS-Transformer
blocks are more informative.

C.1 VISUALIZATION RESULTS

In this section, we first apply the Grad-CAM (Selvaraju et al., 2017) visualization tool to study which
parts in the input images are responsible for the predictions of the baseline models and models.
Figure 4 shows the heatmaps of different models generated by Grad-CAM. It can be observed that
our DCS models focused more on the object for classification in the input images. In contrast, the
activation maps generated by the baseline models also have nonnegligible values in the background.

To study how DCS impacts the attention mechanism, we visualize the attention weights computed
for some specific queries in the transformer blocks in both MobilViT-S and DCS-MobileViT-S in
Figure 5.

C.2 ABLATION STUDY

In order to demonstrate the effects of the two types of channel selection, channel selection for at-
tention weights and channel selection for attention outputs described in Section 3.1 and Section 3.2
respectively, we design two ablation DCS-Transformer modules, which are DCS-Arch1 and DCS-
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Block Block 1 Block 2 Block 3

N 196 49 16
D 36 48 60
r 34.2, 34.5, 34.7, 35.2 42.1, 42.7, 43.0, 43.2 46.9, 47.7, 50.0, 51.3

Table 4: The rank r = rank((Q ⊙ M)(K ⊙ M)⊤) for all the attention heads for each DCS-
MobileViT-S block.
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Figure 4: Grad-CAM visualization results. The figures in the first row are the visualization results of
MobileViT-S, and the figures in the second row are the visualization results of DCS-MobileViT-S.

Arch2. DCS-Arch1 only has channel selection for attention weights, and DCS-Arch2 only has
channel selection for attention outputs. We replace all the transformer blocks in MobileViT-S with
one of these two ablation DCS-Transformer modules, respectively, and report their performance on
the ImageNet-1k dataset in Table 5. It can be observed that DCS-Arch2 reduces the FLOPs of the
model by pruning the channels of the MLP features at a cost of loss in accuracy. In contrast, the pro-
posed channel selection for attention weights significantly boosts the accuracy of DCS-MobileViT-S
compared to that of the original MobileViT-S by 2.6% while enjoying lower FLOPs.

Model # Params FLOPs Top-1 IB Loss

MobileViT-S 5.6 1.6 78.4 -0.00432
DCS-Arch1 (w/o IB Loss) 5.6 1.6 79.4 -0.00459
DCS-Arch2 (w/o IB Loss) 4.8 1.2 78.2 -0.00446
DCS-MobileViT-S (w/o IB Loss) 4.8 1.2 79.9 -0.00475
DCS-MobileViT-S 4.8 1.2 81.0 -0.05122

Table 5: Ablation Study of DCS MobileViT-S.

C.3 COMPARISON OF ATTENTION WEIGHTS

As explained in the introduction and Section 3.1, the channel selection for attention weights is
expected to generate a more informative affinity matrix W . It is noted that every row of the affinity
matrix W is a normalized nonnegative vector with all elements summing to 1, which represents
the affinity scores of a certain query to each key. Figure 7 illustrates the affinity matrix W of
the first head in the last transformer block of MobileViT-S and DCS-MobileViT-S trained on the
ImageNet-1k dataset, using a particular image sampled from the training data as the input. More
spiked patterns are observed for DCS-MobileViT-S, indicating that fewer keys contribute to the
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Figure 5: Visualization of attention weights. The query patch positions for all examples are marked
with red bounding boxes in the first row. We visualize the attention weights of the first head in
the first transformer block in MobileViT-S (second row) and DCS-MobileViT-S (third row). The
original input image in the shape of 256 × 256 corresponds to 16 × 16 non-overlapped patches for
self-attention, where each patch corresponds to 16× 16 pixels in the input image. We visualize the
attention weights between the query patch and all 16× 16 patches.

feature aggregation process for computing the attention outputs. As a result, channel selection on
the attention outputs has less adverse effect on the performance of the resultant model. We also
adopt entropy as a quantitative measure for the information in the affinity matrix W . We show the
average entropy of all the rows of the matrix W for the first head in the last transformer block of
MobileViT-S and DCS-MobileViT-S in Figure 7, and a lower average entropy of 1.84 compared
to 2.50 indicates that the affinity matrix in a DCS-Transformer block is more informative than its
counterpart. We also compare such average entropy of the affinity matrix over all the validation
images of ImageNet-1k for each the four heads in the last transformer block in MobileViT-S and
DCS-MobileViT-S, evidencing that DCS-Transformer renders more informative affinity: Head 1,
Baseline 2.27 vs. DCS 2.09; Head 2, Baseline 2.18 vs. DCS 2.05; Head 3, Baseline 2.33 vs. DCS
2.15; Head 4, Baseline 2.24 vs. DCS 2.08. More details about attention weights and the histograms
about the average entropy of the affinity matrix are deferred to Section C of the supplementary.

C.4 COMPARISON OF ATTENTION WEIGHTS

D OBJECT DETECTION

Implementation details. We integrate ImageNet pre-trained DCS-MobileViT-XS, DCS-
MobileViT-S, and DCS-EfficientViT with the single-shot object detection backbone SSDLite (San-
dler et al., 2018). The models are evaluated on the MS-COCO dataset (Lin et al., 2014) that contains
117k training and 5k validation images. We fine-tune all pre-trained DCS-Transformer networks
with the object detection framework at an input resolution of 320×320. All models are trained with
AdamW for 200 epochs following the same settings in MobileViT (Mehta & Rastegari, 2022). With
a cosine learning rate scheduler, the learning rate is decayed from 0.0009 to 1.6e−6. We use smooth
ℓ1 for the object localization objective and cross-entropy losses for classification. The performance
is evaluated on the validation set using mAP@IoU of 0.50:0.05:0.95.
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Results. We conduct a comparative analysis of our models against alternative lightweight feature
backbones that are integrated with the SSDLite object detection framework. The results are shown in
Table 6 of the supplementary, which show that object detection performance is greatly improved by
replacing the feature backbone with models with DCS-Transformer blocks. For instance, the mAP is
improved by 1% after replacing MobilViT-S with DCS-MobilViT-S while saving 0.3G FLOPs. Fur-
thermore, with the same FLOPs SSDLite as MobilNetV3, SSDLite with DCS-EfficientViT achieves
performance improvement of 7%.
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Figure 6: Comparisons on entropy for attention weights of query tokens from all attention heads for
each of the three DCS-Transformer blocks in MobileVit-S and DCS-MobileVit-S. The results are
accumulated from 100 randomly sampled images from the validation set of ImageNet-1k.
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(a) Attention weights of MobileViT-S. The aver-
age entropy of attention weights for all queries is
2.50.
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(b) Attention weights of DCS-MobileViT-S. The
average entropy of attention weights for all
queries is 1.84.

Figure 7: Comparisons between attention weights of MobileViT-S and DCS-MobileViT-S. The at-
tention weights are from the first head in the last transformer block of MobileViT-S and DCS-
MobileViT-S.
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Feature backbone # Params. FLOPs mAP
MobileNetv3 4.9 M 1.4 G 22.0
MobileNetv2 4.3 M 1.6 G 22.1
MobileNetv1 5.1 M 2.6 G 22.2
MixNet 4.5 M 2.2 G 22.3
MNASNet 4.9 M 1.7 G 23.0
YoloV5-N (640×640) 1.9 M 4.5 G 28.0
Vidt (Song et al., 2022) 7.0 M 6.7 G 28.7
MobileViT-XS 2.7 M 1.7 G 24.8
DCS-MobileViT-XS(Ours) 2.4 M 1.5 G 25.8
MobileViT-S 5.7 M 2.4 G 27.7
DCS-MobileViT-S(Ours) 4.7 M 2.1 G 29.0
EfficientViT 9.9 M 1.5 G 28.4
DCS-EfficientViT(Ours) 9.0 M 1.4 G 29.3

Table 6: Object detection performance with SSDLite.

E INSTANCE SEGMENTATION

In this section, we evaluate the performance of DCS for the task of instance segmentation on the
COCO (Lin et al., 2014) dataset. We adopt Mask R-CNN (He et al., 2017) with Feature Pyramid
Network (FPN) as the segmentation head on top of the feature backbone of DCS-EfficientViT-B1.
We include EfficientViT-B1 (Cai et al., 2023) and EViT (Liu et al., 2023) as baselines for compar-
isons. We train our model and the baselines on the train split of the dataset and report the perfor-
mance on the validation split following (Chen et al., 2019). Both our method and the baselines are
trained for 12 epochs following the settings of 1× schedule in (Chen et al., 2019). We use AdamW
as the optimizer in the training following (Liu et al., 2023). The initial learning rate is set to 0.001
and decays with a cosine learning rate schedule. We measure and report the mean bounding box
Average Precision (mAPb) and mean mask Average Precision (mAPb) as well as bounding box Av-
erage Precision (APb) and mask Average Precision (APb) under IoU thresholds of 0.5 and 0.75. The
results are shown in Table 7. It can be observed that DCS-EfficientViT-B1 consistently improves the
performance of segmentation across various thresholds.

Methods mAPbox APb
50 APb

75 mAPm APm
50 APm

75

EViT (Liu et al., 2023) 32.8 54.4 34.5 31.0 51.2 32.2
EfficientViT-B1 (Cai et al., 2023) 33.5 55.4 34.8 31.9 52.3 32.7

DCS-EfficientViT-B1 34.8 56.3 35.3 33.2 53.1 33.3

Table 7: Instance Segmentation Results on COCO.

F PROOF OF THEOREM 3.1

Lemma F.1.

I(X̃,X) ≤ 1

n

n∑
i=1

A∑
a=1

B∑
b=1

ϕ(X̃i, a)ϕ(Xi, b) log ϕ(Xi, b)−
1

n2

n∑
i=1

n∑
j=1

B∑
b=1

ϕ(Xi, b) log ϕ(Xj , b)

(4)
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Proof. By the log sum inequality, we have
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Lemma F.2.

I(X̃, Y ) ≥ 1

n

A∑
a=1

C∑
y=1

n∑
i=1

ϕ(X̃i, a)1I{yi=y} logQ(X̃ ∈ a|Y = y) (6)
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Proof. Let Q(X̃|Y ) be a variational distribution. We have
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F.1 COMPUTATION OF Q(t)(X̃|Y )

G SEC:Q-COMPUTE

The variational distribution Q(t)(X̃|Y ) can be computed by

Q(t)(X̃ ∈ a|Y = y) = Pr
[
X̃ ∈ a|Y = y

]

=

n∑
i=1

ϕ(X̃i, a)1I{yi=y}
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1I{yi=y}

. (8)
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