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ABSTRACT

Preference-based feedback is important for many applications in reinforcement
learning where direct evaluation of a reward function is not feasible. A notable
recent example arises in reinforcement learning from human feedback (RLHF) on
large language models. For many applications of RLHF, the cost of acquiring the
human feedback can be substantial. In this work, we take advantage of the fact
that one can often choose contexts at which to obtain human feedback in order to
most efficiently identify a good policy, and formalize this as an active contextual
dueling bandit problem. We give an upper-confidence-bound style algorithm for
this problem and prove a polynomial worst-case regret bound. We then provide
empirical confirmation in a synthetic setting that our approach outperforms exist-
ing methods. After, we extend the setting and methodology for practical use in
RLHF training of large language models. Here, our method is able to reach better
performance with fewer samples of human preferences than multiple baselines on
three real-world datasets.

1 INTRODUCTION

The alignment of foundation models with user preferences has gained unprecedented importance
due to the widespread utilization of large language models (LLMs). The established pipeline for
alignment in LLMs, as outlined in Stiennon et al. (2020) and Ouyang et al. (2022), comprises two
essential steps given a pretrained LLM. First, in the Supervised Fine-Tuning (SFT) phase, the LLM
undergoes fine-tuning via supervised learning with examples demonstrating the desired behavior.
In the second step, Reinforcement Learning from Human Feedback (RLHF), a policy generates
multiple completions for each conversation prefix (prompt) in a training set; users then give ordinal
preferences amongst the set of completions for a particular prompt. These preferences are used to
train a ‘reward model’ via a ranking loss like the Bradley-Terry-Luce (BTL) model (Bradley & Terry,
1952). Finally, the policy is trained, typically via Proximal Policy Optimization (PPO) (Schulman
et al., 2017), to optimize the reward model while not moving too far from the SFT-trained policy.

As these models continue to scale and their areas of application broaden, the number of roles for
which we need to align them increases as does the overall scale of human-generated training data
requirements. Data annotation for preference-based learning is already a substantial cost for com-
panies that train LLMs. This cost is likely to grow alongside the industry. This is especially acute
for LLMs in specialized areas, where the cost of expert feedback can be substantially higher.

In this work, we take advantage of the fact that we control which prompts and completions we
provide to human labelers in order to make efficient use of their efforts. Drawing on recent advance-
ments in active exploration for reinforcement learning (Li et al., 2023) and in black-box optimization
(Xu et al., 2020), we introduce a method for assessing the value of collecting preferences on specific
datapoints that is both prospective and task-focused. First, we formalize this setting as a dueling
contextual bandit problem and design an efficient algorithm that offers polynomial worst-case sam-
ple complexity guarantees regarding the policy’s performance. Next, we extend these ideas to a
more real-world setting: choosing datapoints for the training of LLM assistants. Here, we build
atop recent work (Rafailov et al., 2023), which allows us to apply active data selection to an RLHF
process using a supervised objective and single model. We evaluate the method on three datasets:
the Stanford Human Preferences dataset (Ethayarajh et al., 2022), the Anthropic Helpful-Harmless
dataset (Bai et al., 2022), and a third dataset (which we contribute to the literature) that extends an
existing dataset of Jeopardy! questions and answers to evaluate the ability of an alignment method
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to avoid hallucinations. We find that our algorithm can boost performance by over 10% on the pref-
erence datasets when performing RLHF with a modest human-feedback sample budget, and that our
method is best at avoiding hallucinations on our Jeopardy! dataset.

2 RELATED WORK

Learning from Comparative Feedback Reinforcement learning from comparative human feed-
back has been studied for more than a decade, including work by Fürnkranz et al. (2012), Akour
(2014) and, notably, Christiano et al. (2017), which enabled sample-efficient collection of human
feedback for deep reinforcement learning (RL) by training a reward model as the RL target. In the
Atari test case, where naive deep RL would have necessitated thousands of hours of gameplay, they
accomplished superior performance with just 5,500 or several hours of human queries.

Many recent approaches have demonstrated the effectiveness of using human feedback to enhance
stylistic continuation (Ziegler et al., 2019), text summarization (Stiennon et al., 2020), translation
(Kreutzer et al., 2018), semantic parsing (Lawrence & Riezler, 2018), review generation (Cho et al.,
2018), and evidence extraction (Perez et al., 2019). In particular, the work by Bai et al. (2022) places
focus on improving model reliability and robustness by incorporating human feedback to gauge the
helpfulness or harmfulness of its responses. However, while effective, the integration of human
feedback comes with substantial costs. For example, Stiennon et al. (2020) achieved substantial en-
hancements over baseline methods but required the generation of summaries for 123,169 posts from
the TL;DR dataset, a task performed by a large team of labelers from crowdsourcing platforms. This
heavy-resource requirement is reflected in state-of-the-art work. Ouyang et al. (2022) emphasizes
RLHF to improve alignment of the GPT-3 model across aspects such as toxicity, hallucinations,
moral opinion, and overall quality. Here, the team enlisted the efforts of 40 labelers and worked
with a dataset comprising over 100,000 examples labeled by humans.

Dueling Bandits The bandit literature has also explored the effectiveness of comparative
feedback—for example, in the “dueling bandit” setting—while considering the cost of acquiring
such information. This was first studied by Yue et al. (2012) in settings where comparative infor-
mation is relatively easy to extract but absolute rewards (i.e., direct queries) are ill-defined and have
no absolute scale. Later, Bengs et al. (2021) surveyed methods used in the online learning setting,
where the trade off with cost of information is most acute, including those used in the online contex-
tual dueling bandit setting by Dudı́k et al. (2015). These constraints motivate a kernelized approach
that can incorporate the nonlinearities in the models used in practice.

Active Contextual Bandit Optimization When there exist distinct phases of learning and then
deployment, an agent can often take steps for improved sample efficiency. For example, in a contex-
tual bandit setting, Char et al. (2019) consider the problem where at test time the goal is to perform
well on average across a context distribution, while during the learning phase the goal is to choose
both contexts and actions for best performance at test-time. The authors proposed a multi-task ver-
sion of Thompson sampling during the training phase, which yields provable regret bounds. We
extend this setting from cardinal to ordinal rewards as is appropriate for comparative feedback.

In Li et al. (2023), the agent queries contexts where the value function is most uncertain and acts op-
timistically. Combined with least-squares value iteration, this method leads to provable polynomial-
sample convergence in the worst-case error of the value function estimate in reinforcement learning
in general, and as a corollary the setting from Char et al. (2019) as a special case. This sets the
foundation that we will adapt to the comparative feedback setting.

In the realm of flactive contextual bandits that make use of kernels, previous research has ex-
plored various aspects, including robust objectives (Bogunovic et al., 2018), distributional robust-
ness (Kirschner et al., 2020; Ramesh et al., 2023), multi-agent learning and mixed strategies (Sessa
et al., 2019; 2020). However, to our knowledge, none of the methods proposed in these prior studies
can be directly employed in our specific dueling setting.

We also include related work on uncertainty estimation in large language models in Sec. F.

3 PROBLEM SETTING

In this paper, we consider a dueling variant of what we denote the active contextual bandit problem
introduced in Char et al. (2019) that we refer to as ACDB for short. An instance of this problem
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“Choose optimistically!”

(1)  Select context x (2)  Select actions a, aʼ (3)  Human feedback

(4)  Update dataset:  D ← D ∪ {x, a, a ,̓ w}

“Maximize  uncertainty!” Is a ≻ aʼ ?

e.g.  a, aʼ  are responses e.g.  x  is a prompt

w

Figure 1: Illustration of the active contextual dueling bandit setting, and its application to sample-efficient
RLHF in large language models.

is defined by a tuple (X ,A, f) where X denotes the context space, A denotes the action space and
f : X × A × A → [0, 1] is a preference function so that f(x, a, a′) denotes the probability that
the action a is preferred to the action a′ when the underlying context is x. We also define a domain
D = X × A. We will design algorithms that operate under the following interaction protocol,
which occurs for T time steps. During each time step t ∈ [T ], the agent selects a context xt ∈ X
and a pair of actions at, a

′
t ∈ A and observes a binary random variable wt ∼ Bern(f(xt, at, a

′
t))

which equals one if at is preferred to a′t and zero otherwise.

We assume that the preference function takes the following form,

f(x, a, a′) = ρ (r(x, a)− r(x, a′)) , (1)

where ρ : R → [0, 1] is the link function and r : D → R is the unknown reward function. Common
link functions include the logistic function, which leads to the Bradley-Terry-Luce (BTL) model
(Bradley & Terry, 1952) as well as the Gaussian CDF (Thurstone, 1927). We also place some
additional assumptions on the reward function for our theoretical analysis in the kernelized setting.

Our objective within this protocol is to design algorithms that are able to quickly identify policies
with a small suboptimality gap. We define the suboptimality gap of a learner’s policy π : X → A as

SubOpt(π) = sup
x∈X

(
sup
a∈A

r(x, a)− r(x, π(x))

)
. (2)

We remark that this notion of suboptimality (considered in Char et al. (2019) and Li et al. (2023))
is stronger than usual notions that look at the expected suboptimality of the final policy when the
contexts are sampled from some known distribution. In contrast, the form of suboptimality we
consider here looks at the worst-case context for each policy. For the kernelized and LLM settings
we address below, we will make explicit the instantiation of this problem setting.

4 ACTIVE EXPLORATION IN THE KERNELIZED SETTING

In this section, we describe our first contribution—a theoretically principled algorithm for the ACDB
problem—and provide formal guarantees on its performance. In order to provide such guarantees,
we must first instantiate our general problem setup by making assumptions on the preference func-
tion f (from Eq. (1)). In particular, we need to specify a class of functions that contain the true
unknown reward function. This choice is subtle as we need to balance the trade-off between the
expressiveness of our function class with theoretical tractability. Motivated by its theoretical pop-
ularity and empirical success, we choose this function class to be a Reproducing Kernel Hilbert
Space. While this choice of function class is common in the literature, we take a slight departure
from the standard assumptions in order to more appropriately accommodate our problem setting.

The Contextual Borda Function Before going over our assumptions, we first introduce the con-
textual Borda function fr, which is core to our algorithm. The contextual Borda function generalizes
the Borda function introduced in Xu et al. (2020) for dueling-choice optimization which is defined
as the probability that a particular action a will be preferred over a random action a′ uniformly sam-
pled from the action space. We generalize this definition to the contextual setting as follows, given
as fr : D → [0, 1] where fr(x, a) = Ea′∼U(A) [f(x, a, a

′)], where U(A) is the uniform measure
over the action space. It is clear from the definition that fr and r will have the same maximizers.

We now discuss the assumptions we make. Our first assumption restricts the reward and contextual
Borda functions to be ‘smooth’ in an underlying Reproducing Kernel Hilbert Space (RKHS).
Assumption 1. Let κ : D × D → R denote a positive semi-definite kernel and let Hκ denote its
associated RKHS. We assume that ∥r∥κ , ∥fr∥κ ≤ B, where B is a known constant.
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Note that this assumption is stronger than the standard assumption, which only requires that r has
a bounded RKHS norm. It is difficult to bound the norm of fr given a bound on the norm of
r due to the generality of our setting, which allows for different link functions. We investigate
this issue numerically in Appendix C where we find that the norm of the Borda function is almost
always smaller than the norm of the reward function for samples drawn from the distribution of basis
functions used for experiments in Section 4.3.

Our second assumption relates the reward function to the contextual Borda function.
Assumption 2. Let f∗

r (x) = maxa fr(x, a) and r∗(x) = maxa r(x, a). There exists a constant L1

such that for every x ∈ X , a ∈ A we have 1
L1

(r∗(x)− r(x, a)) ≤ f∗
r (x)− fr(x, a).

This assumption implies that differences in r will cause a similar magnitude of difference in fr. In
fact, when the link function ρ(·) is Lipschitz continuous, it is sufficient for its Lipschitz constant
to be at least 1/L1 for this condition to hold. We note that this assumption holds for the two most
commonly used link functions, the logistic function (Bradley & Terry, 1952) and the Gaussian CDF
(Thurstone, 1927).

4.1 METHODS

At a high level, our approach reduces the dueling feedback problem to contextual optimization over
a single action via the contextual Borda function introduced above. Once reduced appropriately, we
apply techniques adapted from recent work on active exploration in reinforcement learning to con-
struct a sampling rule and policy selection rule which allows us to output a policy with provably low
sub-optimality. Broadly, our sampling rule samples contexts at which there is maximum uncertainty
over the Borda ‘value function’ and then compares the optimistic action with an action sampled
uniformly from the action set.

Estimating the Contextual Borda Function By design, we can estimate the contextual Borda
function using preference data {xt, at, a

′
t, wt} by selecting xt, at in an arbitrary fashion and

sampling a′t uniformly at random. For low dimensional settings, our algorithm first estimates the
contextual Borda function using standard kernelized ridge regression (KRR) (Rasmussen et al.,
2006)—we refer the reader to Appendix A for an explicit description of this regression procedure.
In Section 5, we explore modifications of our methods for higher-dimensional settings, such as in
the case of LLMs. One key feature of KRR is that it provides both an estimate of the contextual
Borda function after t observations, µt(x, a), as well as uncertainty quantification of the predictions.
Indeed, under Assumptions 1 and 2 we can show that |fr(x, a) − µt(x, a)| ≤ βσt(x, a) for an
appropriately chosen β and σt(x, a) (see Lemma 2).

Selecting Contexts and Actions Our sampling rule builds on top of the one established in Li et al.
(2023)—put simply, the rule is to sample the state with the maximum uncertainty over the value
function and then act optimistically. We now present our algorithm which shows how to extend
these ideas to the dueling setting via the contextual Borda function fr.

For now, we assume that there is a known bonus term β
(r)
t for all t. We can then define upper and

lower confidence bounds f t
r(x, a) = µt(x, a)+β

(r)
t σt(x, a) and f t

r(x, a) = µt(x, a)−β
(r)
t σt(x, a).

Our rule is to select a context

xt ∈ argmax
x∈X

(
max
a∈A

f t
r(x, a)−max

a∈A
f t
r(x, a)

)
. (3)

Here, we are choosing a context that maximizes the difference between the optimistic ‘value func-
tion’ and the pessimistic ‘value function’ (both of which require a maximization over actions to
compute). We then optimistically choose an action

at ∈ argmax
a∈A

f t
r(xt, a). (4)

After repeating this process T times, we output a pessimistic policy against the tightest lower bound
we can find, which is the maximizer of all our lower bounds through the optimization process. Put
formally, we return π̂T : X → A such that

π̂T (x) ∈ argmax
a∈A

max
t≤T

f t
r(x, a). (5)
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Algorithm 1 AE-Borda

1: Input: kernel function κ(·, ·), exploration parameters β(r)
t , number of inital data n0

2: Let Dn0 = {xi, ai, a
′
i, wi}n0

i=1 for xi, ai, a
′
i drawn uniformly at random.

3: for t = n0 + 1, . . . , T do
4: Compute µt(·, ·), σt(·, ·) using KRR.
5: Choose xt according to Eq. (3).
6: Choose at according to Eq. (4), draw a′t ∼ U(A), and draw wt ∼ Bern(f(xt, at, a

′
t)).

7: Let Dt = Dt−1 ∪ {(xt, at, a
′
t, wt)}.

8: end for
9: Output a final policy π̂T according to Eq. (5).

From these pieces we construct the full active exploration algorithm, AE-Borda, which we present
in Algorithm 1.
4.2 ANALYSIS

Before proceeding with our algorithm’s formal guarantees, we first introduce the maximal-
information gain which plays an important role in our results. The maximum information gain
over t rounds, denoted Φt, is defined as

Φt = max
A⊂X×A:|A|=t

I(rA + ϵA; rA), (6)

where rA = [r(x)]x∈A , ϵA ∼ N(0, η2I), and I(X;Y ) = H(X) − H(X|Y ) is the mutual infor-
mation. With this definition, we are now ready to state our result.
Theorem 1. Suppose we run Algorithm 1 with

β
(r)
t = 2B +

√
2Φt + 1 + log

(
2

δ

)
, (7)

then, with probability at least 1− δ, we have that

SubOpt(π̂T ) ≤ O

(
L1√
T

(
B +ΦT

√
log

1

δ

))
. (8)

Proof Sketch. At a high-level, the proof of this result is as follows. First, we use standard results
on KRR to show that our choice of β(r) guarantees that our confidence bands contain fr(x, a) with
high probability simultaneously for all t and x, a ∈ X ×A. Next, we use Assumption 2 to show that
the suboptimality of the pessimistic policy induced by our estimated contextual Borda function is
small whenever we are able to estimate the contextual Borda function well. Finally, we conclude the
proof by showing that our sampling rule indeed allows us to estimate the contextual Borda function
well. The full proof can be found in Appendix 1.

Concrete Performance Bounds. To more concretely understand the performance of our al-
gorithm, we instantiate our results for two commonly studied kernels: the linear and squared-
exponential. For both of these settings, the scaling of the information gain is well known (see
for example Srinivas et al. (2010)). In the linear setting, we have that ΦT = O(d log T ) leading
to a bound of O

(
L1√
T
(d log T )

)
. For squared exponential kernels we have ΦT = O

(
log(T )d+1

)
leading to a suboptimality bound of O

(
L1√
T

(
log(T )d+1

))
.

When compared to existing results for dueling bandits (Xu et al., 2020) as well as standard bandits
(Chowdhury & Gopalan, 2017), we see that our suboptimality bounds match, thus showing that our
algorithm is able to achieve the same performance under a stronger performance metric.

4.3 EXPERIMENTS IN THE KERNELIZED SETTING

In order to assess the validity of our theory we have conducted synthetic experiments that al-
low us to come as close as possible to the theoretical setting and empirically confirm our results.
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To do so, we implemented the regression using the BernoulliGP model provided by GPyTorch
(Gardner et al., 2018). We use a Matérn kernel with automatic relevance detection with hyper-
parameters fit via maximum a posteriori optimized by the Adam algorithm (Kingma & Ba, 2014).
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Figure 2: Performance of all methods
across 10 random functions r with 1D
Context and 1D action. The top plot
shows the median regret across con-
texts and the bottom shows the maxi-
mum. Error bands show one standard
error.

We tested on distributions of synthetic reward functions
generated by sampling a random linear combination of
Random Fourier Features (Rahimi & Recht, 2007) derived
from a squared exponential kernel. For each sampled reward
function r, we used the Bradley-Terry model where p(w = 1 |
a, a′, x) = 1

1+exp(r(x,a′)−r(x,a)) to generate comparison data.
For each trial we uniformly sampled n0 = 25 datapoints and
then selected data to observe until T = 500 total datapoints
had been collected according to one of three methods:

• AE-Borda: our method, as described in Section 4.1.
• Uniform-Borda: uniform sampling of both contexts and

actions.
• UCB-Borda: uniform sampling of contexts, along with

UCB actions as in AE-Borda.

This last method reduces to the method presented in Xu et al.
(2020) when naively generalized to the contextual setting. All
methods have the same test-time behavior of executing the
action found by optimizing the pessimistic Borda function
estimate for the test context. By optimizing the ground-truth
reward function we were able to approximate the optimal
policy and therefore estimate the regret of our policy against
it. We give an example of the progression of our method for
1D context and 1D actions in Figure 3 as well as a comparison
against Uniform-Borda and UCB-Borda in Figure 2. One can
see that AE-Borda performs best both on median regret and
on the maximum regret, which was the metric of interest in our theoretical analysis.

It is clear in Figure 3 that the method is quickly able to concentrate samples in regions that could
plausibly be the optimum and it is similarly clear that the peaks in the acquisition function over
contexts are sensible given the mean and uncertainty estimates of fr. We give a set of results
showing the progression of AE-Borda in Section D.

5 SCALING ACTIVE EXPLORATION TO LARGE LANGUAGE MODELS

In order to adapt our method to the case where X and A are both large spaces of sequences as is
common in natural language processing, we must address a few limitations of the AE-Borda method
presented in Section 4.1:

• The contextual Borda function fr as defined above is unsuitable for an action space that is
extremely large and where most actions are obviously bad (a uniformly sampled sequence of
tokens is trivially distinguishable from natural language).

• Neural network training proceeds in batches and it would be highly inefficient to label and train
on a single example at a time.

• The uncertainty estimation tools in sequence modeling are more limited than those for explicitly
kernelized models, especially due to the memory constraints in training LLMs.

We address these issues through a handful of modifications to our method as we specialize it to the
LLM case. Though these modifications mean that we lose the theoretical guarantees in the previous
section, we assert that given the rates of convergence associated with kernelized approximations of
neural net architectures, we are not giving up strong guarantees in this setting. In particular, we
modify the selection rule given in Eq. (3) to avoid having to use the Borda function, we naı̈vely do
batched subset selection for our training minibatches, and we estimate the uncertainty of our policy
using dropout for uncertainty estimation (Gal & Ghahramani, 2016). In this section, we build atop
the foundation presented in Rafailov et al. (2023), which avoids training a separate reward model;
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Figure 3: From left: the ground truth contextual Borda function fr (the red line is the optimal policy), the
mean of our posterior estimate of fr (the red line is the best policy estimate), the uncertainty function σt, and
the value function maxa f

t
r . In the middle two plots, red dots are queries where wt = 0 and green are where

wt = 1. We plot the value function with confidence intervals in blue on right as well as the value function
uncertainty from Eq. (3) in orange. For a full version of this Figure, see Fig. D.

this is primarily due to the fact that we prefer to select datapoints based on the estimated uncertainty
of the model used for decision making rather than any proxy.

Direct Preference Optimization Direct Preference Optimization (DPO) (Rafailov et al., 2023)
avoids training a separate reward model based on preferences by instead training the policy directly
on pairwise comparison using a loss that optimizes an equivalent objective despite functionally
behaving like classification. As with PPO (Schulman et al., 2017), this loss depends on a reference
policy, which we take to be the policy derived from the supervised fine-tuning step, πSFT. The loss is
defined as LDPO(πθ;πSFT) = −E(x,a,a′,w)∼D

[
log ρ

(
γ(2w − 1)

(
log πθ(a|x)

πSFT(a|x) − log πθ(a
′|x)

πSFT(a′|x

))]
.

The derivation in Rafailov et al. (2023) also shows that optimizing this objective is equivalent to
training a PPO policy with reward function

r(x, a) = γ log
πr(a | x)
πSFT(a | x)

+ γ logZ(x), (9)

where γ is the hyperparameter of PPO scaling the KL penalty, Z(x) is a partition function, and πr

is the policy which optimizes the PPO objective.

An Acquisition Function for DPO We observe as in the original paper that πr is precisely the
probability distribution which DPO is estimating. Therefore, the uncertainty estimates for our DPO
policy are uncertainty estimates for πr and we can use them to give an approximate confidence in-
terval for r (r and r). Concretely, we need to address the autoregressive nature of x and a in our
case. We will assume a consists of ordered tokens ti and that log π(a | x) =

∑
ti∈a log π(ti |

x, t1, . . . , ti−1). In our method, we employ dropout for uncertainty quantification. Specifically, the
m dropout masks dj are integrated into the function π(ti | x, t1, . . . , ti−1, dj). During inference,
we perform autoregressive Monte Carlo sampling with dropout enabled, resulting in an ensemble
of predictions with a mean µ(ti | x, t1, . . . , ti−1) =

1
m

∑
j∈[m] log π(ti | x, t1, . . . , ti−1, dj). The

standard deviation σ(ti | x, t1, . . . , ti−1) =
√

1
m−1

∑
j∈[m] (log π(ti | x, t1, . . . , ti−1, dj))

2 across
this ensemble serves as an approximation for the model’s epistemic uncertainty. This technique al-
lows us to capture uncertainty in a computation and memory efficient manner without compromising
model performance. Given these estimates, we can compute our upper and lower bounds as follows:

r(x, a) =
∑
ti∈a

µ(ti | x, t1, . . . , ti−1) + βσ(ti | x, t1, . . . , ti−1)− log πSFT(a | x), (10)

r(x, a) =
∑
ti∈a

µ(ti | x, t1, . . . , ti−1)− βσ(ti | x, t1, . . . , ti−1)− log πSFT(a | x), (11)

for an uncertainty parameter β > 0. In the previous section, we chose contexts according to Eq. (3).
Here, we define an acquisition function using a similar quantity:

α(x) = max
a∈A(x)

r(x, a)− max
a∈A(x)

r(x, a). (12)
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Algorithm 2 AE-DPO
1: Input: Reference policy πSFT, exploration parameter β, policy constraint weight γ, batch size

b, number of iterations N
2: for t = n0 + 1, . . . , N do
3: Draw an unlabeled batch Bu = {(xi, ai, a

′
i)} ∼ D.

4: Evaluate α(xi) and let Bl be a batch of the top-b elements of Bu by α value.
5: Collect labels ri and add them to Bl.
6: Update the policy πθ (initialized from the ref.) using a gradient step against LDPO using Bl.
7: end for
8: Output πθ

In this equation, α(x) is the uncertainty of the state-value function according to x. In choosing the
states where the potential for error in the value achieved is largest, the agent can learn to behave well
in those places. This criterion is similar to that in Li et al. (2023) and provides similar guarantees
to ours for max-regret in the active contextual bandit setting. In situations like ours where we are
using fixed offline datasets, we set A(x) in Eq. (12) to the set of available responses for a particular
action; otherwise, we use A(x) = A.

An algorithm for active RLHF From here, we use the acquisition function in Eq. (12) in order
to choose points that are maximally informative. We must do this in batches in order to respect the
constraints of training large models. We address this in the naive fashion, pulling a larger batch of
some size, evaluating α and then choosing the top-b elements in order to address this criterion. We
refer to our full procedure as AE-DPO, and give a description in Algorithm 2.
5.1 EXPERIMENTS USING LLMS

In order to evaluate whether our method is able to improve the selection of datapoints in RLHF, we
conduct a set of experiments in which we train LLMs on three datasets using one of four methods.
The goal of our empirical study is to see whether improving the data selection strategy causes the
downstream policy to perform better on a given training task. In order to isolate the effect of the
data selection method, we vary the selection method while largely holding our model and training
procedure consistent. In all the experiments in this section, we compare four methods: DPOAE,
the method we presented in Section 5; USDPO, which chooses x that maximize variance of the log
probabilities of completions; DPO, the method from Rafailov et al. (2023), selecting batches uni-
formly at random; and SFT, which continues supervised learning with uniformly selected batches.
In our training pipeline, we first train a baseline model with a Llama-7B (Touvron et al., 2023) archi-
tecture using supervised fine-tuning (SFT) on a 40% split of data. We add a dropout layer before the
penultimate linear layer for our uncertainty estimation mechanism and fine tune with dropout active.
Next, we train using each of the four methods for 30000 samples, evaluating every 2048 samples—
each time using our initial SFT trained model as a starting point. We give additional information on
our experimental procedures in Section H.

We evaluate these methods on three different datasets. The first two, the Anthropic Helpful-Harmless
(HH) dataset (Bai et al., 2022) and the Stanford Human Preferences (SHP) dataset (Ethayarajh
et al., 2022), are taken from the literature. HH contains examples of two kinds: situations where an
assistant needs to be helpful to a user asking a reasonable question and situations where an assistant
should prioritize being harmless as the user is requesting a harmful action. All completions in HH
are machine-generated. SHP is a dataset of Reddit posts with comments in 18 different categories
and therefore consists of a broader range of human-generated text, but doesn’t have the inherent
tradeoff of HH. We evaluate policies trained on both of these by checking the rate at which the
policy produces answers which are preferred to the chosen completion for the prompt in the dataset.

For the completions generated from the HH and SHP prompts, we use GPT-3.5 (Brown et al., 2020)
to generate winners amongst comparisons between the preferred choices given in the dataset. We
give the prompts we use for evaluation in Section G. In Figure 2, we see that for the completions
in the later part of our training run, AE-DPO performs best among the methods and outperforms
US-DPO as well as the other baselines that sample uniformly. We believe this to be due to our
acquisition function α, which accounts for the structure of the decision making problem in choosing
which point to query. We do find our results to be noisy—due to the computational expense of these
trials (which we elaborate on in Section I), we were not able to run each experimental baseline for a
large number of seeds to further reduce uncertainty in our results.
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Figure 4: From left: smoothed win rates against preferred choices in dataset of samples generated from each
policy at end of RLHF training runs across the final four evaluations, and all seeds, on the HH (first) and
SHP (second) datasets. In the latter two plots, we force each policy to generate a (non-null) answer, and then,
conditional on the answer being correct (fourth) or incorrect (third), plot the rate at which each policy abstains.

We also introduce a new Jeopardy! dataset that includes a preference structure that captures some
of the structure of the game while addressing the question of LLM hallucination. We augment
a dataset consisting of 217,000 Jeopardy! questions and answers from HuggingFace (Wolf et al.,
2023) with a plausible incorrect answer, using GPT-3.5. As in the game show, where points are
deducted for an incorrect response, we enforce during training that a correct answer is preferred to
an abstention (the empty string) and both of these should be preferred to the incorrect answer. We
found that our models do not learn to provide correct answers at a higher rate through a small amount
of DPO training or additional SFT beyond what is required for them to answer the questions. This
is unsurprising as trivia is intended not to generalize easily; in other words, it’s difficult to imagine
learning that the third US president was Jefferson given training examples of the first two. Instead,
we evaluate policies for this dataset on the rate at which they abstain for questions (“null rate”) where
they counterfactually would have been correct vs where they would have been incorrect. Ideally, the
policy learned would always abstain where it would have been incorrect and never abstain where it
would have been correct. Naturally, this is an important goal in the alignment of LLMs and we hope
to provide a straightforward benchmark for this effort. We include an additional exhibit where we
use the factual nature of this dataset to begin to evaluate the dropout-based uncertainty estimation
techniques we use in appendix J.

For the Jeopardy! dataset, we checked the probability of an empty generation and whether it was the
most likely token. We generated a nonempty sequence in order to see whether the generated answer
was correct, including as a counterfactual in the cases where the method would have abstained. We
plot this in Figure 4, where we see that the AE-DPO method is the only method that learns to abstain
from answering questions (modestly) more often when the model would have given the incorrect
answer. We also find that the standard DPO method quickly learns not to abstain. No methods
abstain more than a couple percent of the time in the case where they would have been correct. We
also plot the results for correctness in Section J, which shows that no model substantially learns new
factual information.

6 DISCUSSION

In this work, we addressed the problem of how to select contexts and actions at which to obtain
human preferences, such that the reinforcement learning agent learns most efficiently. We focus on
this problem setting in the context of reinforcement learning from human feedback in large language
models (LLMs), where collecting data from humans is expensive. This problem is particularly
meaningful because, in the future, it is likely that we need feedback from specialized humans whose
time is extremely limited and in order to provide personalization of LLMs without a prohibitive
training period. The methods developed in this work show promise in reducing these costs. We
also make a theoretical contribution where we give guarantees on worst-case regret; though our
assumptions are specific, we are optimistic about principled approaches that extend to more general
settings and guarantee safety of decision making agents. Our computational study was constrained
by the resources available—given the initial promising results of our method, we hope to scale up
our experimental campaign to greater numbers of both GPUs and RLHF steps in order to see how
our methods perform with larger computational budgets.
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A RKHS REGRESSION

At step t, we have data {(x1, a1, a
′
1, w1), . . . , (xt, at, a

′
t, wt)}. The kernel ridge regression estimate

is defined by,

µt = argmin
f∈H

t∑
i=1

(f(xi, ai)− wi)
2 + λ∥f∥2H . (13)

Denote by wt = [w1, . . . , wt]
T the vector of observations, (Kt)i,j=1,...,t = k(xi, ai, xj , aj) the

data kernel matrix, and kt(x, a) = [k(x, a, x1, a1), . . . , k(x, a, xt, at)]
T the data kernel features.

We then have

µt(x, a) = kt(x, a)
T (Kt + λ1t)

−1wt . (14)

We further have the posterior variance σt(x, a)
2 that determines the width of the confidence

intervals,

σt(x, a)
2 = k(x, a, x, a)− kt(x, a)

T (Kt + λ1t)
−1kt(x, a) . (15)

B PROOF OF THEOREM 1

In this section we will prove our main Theorem, 1. The overall strategy of the proof is to use our
Lipschitz assumption on the link function (more precisely, the relative Lipschitzness of the reward r
and the Borda function fr) in order to go to the Borda function, which we can directly model from
data. Then, we use our selection criteria as well as confidence bounds taken from Chowdhury &
Gopalan (2017) and convergence rates taken from Kandasamy et al. (2019) in order to complete the
argument. We give these cited results as lemmas in what follows.

In order to attain a particular policy performance with probability 1 − δ, we must bound the error
of the estimates given by our KRR process for a particular confidence level. In order to do so, we
adapt the result from Chowdhury & Gopalan (2017), Theorem 2.

Lemma 2. Let β(r)
t = 2||fr||κ +

√
2(Φt−1(X ×A) + 1 + log(2/δ)). Then with probability 1− δ

we have for all time t and any point (x, a) ∈ X ×A,

|µt−1(x, a)− fr(x, a)| ≤ β
(r)
t σt−1(x, a).

Proof. To prove this result, we will verify that all the conditions from Theorem 2 of Chowdhury &
Gopalan (2017) hold. Recall Assumption 1 which states that ∥fr∥κ ≤ B. Next, we observe that
since a′t ∼ U (A) (independent of everything else), we have that E [wt | Ft−1] = fr(xt, at), where
Ft = ρ

(
{(xs, as, a

′
s, ws)}ts=1

)
is the filtration generated by the past observations. Additionally,

since wt ∈ {0, 1} and xt, at are both Ft−1 measurable, we see that wt can be written as

wt = fr(xt, at) + ηt,

where ηt is Ft−1-conditionally subGaussian. Therefore, we have met all the necessary conditions,
and we can apply Theorem 2 of Chowdhury & Gopalan (2017) which gives us the desired result.

This lemma jointly bounds the modeling error over the Borda function for all time t though it intro-
duces a dependence on the RKHS norm of fr. This dependence is inherited from prior work, but we
empirically study the relationship between the RKHS norm of a particular reward function and that
of the associated Borda function in Section C.

We also adapt a result from Lemma 8 of Kandasamy et al. (2019) in order to understand the conver-
gence of our uncertainty function σt.

Lemma 3. Suppose we have n queries (qt)nt=1 taken from X ×A. Then the posterior σt satisfies∑
qt

σ2
t−1(qt) ≤

2

log(1 + η−2)
Φn(X ×A).
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Lemma 3 gives us a handle on how quickly we can expect the uncertainty function to shrink as
additional datapoints are observed.

Now that we have lemmas 2 and 3 in place, we can proceed to the proof of the main result.

Proof. In this proof, we condition on the event in Lemma 2 holding true. Given that occurence, we
can say the following for every x ∈ X .

max
a∈A

r(x, a)− r(x, π̂T (s))
Assumption 2

≤ L1

(
max
a∈A

fr(x, a)− fr(x, π̂T (x))

)
(16)

Lemma 2
≤ L1

(
max
a∈A

fr(x, a)−max
t∈[T ]

f t
r(x, π̂T (x))

)
(17)

Def. of π̂T= L1

(
max
a∈A

fr(x, a)−max
a∈A

max
t∈[T ]

f t
r(x, a)

)
(18)

= L1 min
t∈[T ]

(
max
a∈A

fr(x, a)−max
a∈A

f t
r(x, a)

)
(19)

Lemma 2
≤ L1 min

t∈[T ]

(
max
a∈A

f t
r(x, a)−max

a∈A
f t
r(x, a)

)
(20)

Def. of xt

≤ L1 min
t∈[T ]

(
max
a∈A

f t
r(x

t, a)−max
a∈A

f t
r(x

t, a)

)
(21)

Def. of at

≤ L1 min
t∈[T ]

(
f t
r(x

t, at)− f t
r(x

t, at)
)

(22)

≤ L1

T

T∑
t=1

(
f t
r(x

t, at)− f t
r(x

t, at)
)

(23)

=
L1

T

T∑
t=1

2β
(r)
t σt(x

t, at) (24)

β
(r)
t is increasing

≤
2L1β

(r)
T

T

√√√√( T∑
t=1

σt(xt, at)

)2

(25)

Cauchy-Schwarz
≤

2L1β
(r)
T

T

√√√√T

T∑
t=1

σ2
t (x

t, at) (26)

Lemma 3
≤

2L1β
(r)
T√
T

√
C1ΦT (27)

def of β(r)
T=

2L1√
T
(2B +

√
2(Φt−1 + 1 + log(2/δ)))

√
C1ΦT (28)

= O

(
L1√
T

(
B +ΦT

√
log

1

δ

))
. (29)

C RKHS NORMS OF r AND fr

In order to understand the dependence of our estimation bound on the RKHS norm ||fr||κ, we ran
numerical experiments on sampled reward functions. For a variety of context and action dimensions,
we sampled 1000 reward functions as in Section 4.3 and numerically approximated their RKHS
norms. We also made a Monte-Carlo estimate of the Borda function fr for each of the reward
functions sampled and numerically approximated its RKHS norm. To do this, we uniformly sample
1,000 points xi from the input space, compute the regularized kernel matrix K for this set xi, solve
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Context Dimension Action Dimension Win Rate Win Margin

0 1 0.16 -6.3
1 1 0.89 5.1
1 3 1 21.4
3 1 1 21.5
3 3 1 38.7
10 10 1 19.6

Table 1: Comparison of RKHS norms of reward functions and associated Borda functions

the KRR problem Kα = f(x) for α. Then we compute the quadratic form
√
αTKα as an estimate

of the RKHS norm.

In Table 1, we present the results of comparing the RKHS norms of 1000 reward functions and
their associated Borda functions sampled as in Section 4.3. A ‘win’ was counted when the Borda
function had smaller RKHS norm and a ‘loss’ otherwise. The win margin is the average difference
in RKHS norms of the reward and Borda functions, with a positive value when the Borda function
was of smaller norm. It is clear here that in general (though not always) the RKHS norm of the
Borda function fr for a particular reward function r is smaller than the RKHS norm of the reward
function r itself. This relationship seems to grow stronger as the input dimensionality of the reward
function grows larger.

D ADDITIONAL EXPERIMENTS FOR KERNELIZED SETTING

In Figure 5, we depict the progress of the AE-Bordamethod as it continually acquires data. One
can see that the estimated optimal policy (red, second row) converges to a function quite similar to
the ground truth (red, first row) as more data is collected. In addition, it is clear that the selection
criterion targets parts of the domain which are relevant to policy learning while avoiding obviously
bad regions. We also see in the fourth row that the uncertainty over the value function decreases
relatively smoothly across the context space, supporting the idea that our method controls max-
regret effectively.

E THE JEOPARDY! PREFERENCE DATASET

We generated a set of plausible wrong answers for the Jeopardy! dataset from Huggingface (Wolf
et al., 2023) by asking GPT-3.5 for a plausible wrong answer given the question, category, and
answer. We found that both the category and correct answer were necessary to include to direct GPT-
3.5 to generate an answer which was appropriate for the category and to prevent it from accidentally
generating a correct answer. We give the prompt used for this process in Figure 6.

F RELATED WORK ON UNCERTAINTY ESTIMATION IN LARGE LANGUAGE
MODELS

Estimating the epistemic uncertainty in large language models is still an active area of research and
there are few prior works on this topic. For example, Osband et al. (2022) augment existing models
with additional layers to model randomness, and subsequently the uncertainty. However performing
uncertainty quantification in a parallelized fashion requires a significant memory overhead. To be
more amenable to larger models, we instead use a dropout-augmented model to estimate uncertainty,
as detailed in Section 5.

G PROMPT TEMPLATES

The prompt templates for GPT-4 as the pairwise comparison evaluation judge and GPT-3.5 as the
Jeopardy! single answer correctness judge are listed in Figures 7 and 8. We maintain the standard-
ized prompts proved to be effective by Zheng et al. (2023).
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Time = 50 Time = 150 Time = 600

Figure 5: Progress of AE-Borda across 50, 150, and 600 datapoints. From the top downwards,
the charts show the ground truth function, the mean of the posterior estimate of fr, the uncertainty
function, the estimate of the value function as well as the acquisition function given in Eq. (3), and
the regret over time.
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[System]
You are an assistant coming up with plausible but incorrect answers
to Jeopardy questions (just the answer, no "what is"). Here’s an
example:\n
Q: ’For the last 8 years of his life, Galileo was under house
arrest for espousing this man’s theory’
Category: HISTORY
Correct Answer: Copernicus\n
Response: Brahe
[User]
Q: {question}
Category: {category}
Correct Answer: {answer}
Response:

Figure 6: The prompt used to collect plausible wrong answers for Jeopardy! questions.

[System]
Please act as an impartial judge and evaluate the quality of the
responses provided by two AI assistants to the user question
displayed below. You should choose the assistant that follows the
user’s instructions and answers the user’s question better. Your
evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of
their responses. Avoid any position biases and ensure that the
order in which the responses were presented does not influence your
decision. Do not allow the length of the responses to influence
your evaluation. Do not favor certain names of the assistants. Be
as objective as possible. Output your final verdict by strictly
following this format: ’A’ if assistant A is better, ’B’ if
assistant B is better, and ’C’ for a tie. Output only that
character and do not include any other characters or spaces.

[User Question]
{question}

[The Start of Assistant A’s Answer]
{answer_a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer_b}
[The End of Assistant B’s Answer]

Figure 7: The default prompt for pairwise comparison.
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[System]
You are a judge on whether a contestant answer to Jeopardy is
correct given a correct answer. If you don’t see the correct answer
it is not correct. Answer ’Yes’ or ’No’ is sufficient. Please don’
t use any other words.

[The Start of Correct Answer]
{correct_answer}
[The End of Correct Answer]

[The Start of Contestant Answer]
{contestant_answer}
[The End of Contestant Answer]

Figure 8: The default prompt for evaluating single Jeopardy! answer.

H ADDITIONAL EXPERIMENT DETAILS

We train our initial SFT models for 1 epoch on the SHP and HH dataset and 2 epochs on the new
Jeopardy! dataset. We select the initial training period based on the amount of training after which
we obtained a validation loss which had plateaued. We also find it reasonable to add a dropout layer
before the penultimate linear layer since we find that adding a dropout layer not to negatively affect
the performance in the SFT phase. To aid in fitting the model on our GPUs, we use QLoRa (Hu et al.,
2021; Dettmers et al., 2023) with 4bit quantization for model weights and optimize using the 8-bit
Lion optimizer (Chen et al., 2023). For the methods with a reference model, we put the policy and
the reference model on two separate GPUs. Further, we use dropout probability of p = 0.05, policy
constraint weight γ = 0.1, an uncertainty bonus β = 4, a learning rate of 5 × 10−7, an unlabeled
batch size of 128, and a training batch size b of 32. We run all experiments with 3 random seeds. Our
implementation was built atop the one provided by the authors of the DPO paper (Rafailov et al.,
2023).

I EXPERIMENT RUNTIMES

Jeopardy! SHP HH
Further SFT 2 | 3 4 | 4 3 | 7
DPO 7.5 | 25 10 | 14 10 | 15
US-DPO 8 | 12 79 | 85 31 | 85
AE-DPO 9 | 12 44 | 45 18 | 53

Table 2: Runtimes (min | max) for each experiment rounded to nearest hour. Several experiments
require a significant amount of compute time to complete. Runtimes vary depending on current
loads on compute clusters.

J ADDITIONAL EXPERIMENTS WITH LLM

Here, we plot the training curves for the Jeopardy! dataset below. For Jeopardy!, we plot the
correctness of the policy over time in Figure 9. Though this is part of the goal of the agent in the
Jeopardy! dataset, note that it is not the entire optimization objective, as we show in Figure 4. Here,
it is clear that no policy is able to improve at predicting correct answers on the test set. This is
unsurprising as trivia is a difficult generalization problem.
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Figure 9: Rate of correct answers for Jeopardy! over time.

J.1 EVALUATING DROPOUT-BASED LLM UNCERTAINTY ESTIMATION

We believe that in general the estimation of uncertainty for LLMs is an important topic of research
and progress there will facilitate a more efficient and informed use of this technology. As we dis-
cussed in appendix F and section 5, we use a dropout-based uncertainty estimation technique to
inform the active exploration in this work. Over the course of this study, we considered ensembles
and epistemic networks (Osband et al., 2022) as alternative methods for estimating the uncertainty
of LLMs. However, each of these methods comes with some additional GPU memory requirement.
For epistemic networks, the additional network parameters take GPU memory, while for ensembles,
the memory is required to store multiple copies of a network or at least mutiple LoRAs. In our initial
studies we found epistemic networks and dropout to perform comparably well and therefore chose
dropout due to its smaller memory consumption and good performance. In this section, we explore
whether the uncertainties predicted by our estimates differ when the model predicts the correct, in-
correct, or null answer and whether these predictions differ in the cases when the model decides to
predict null. To do this, we evaluated the log probabilities predicted by πSFT on a test set of 20,560
Jeopardy! clues for the correct, incorrect, and null answer. We computed the sample variances over
the log probabilities σ2(a | x) =

∑
ti∈a σ

2(ti | x, t1, . . . , ti−1) and plotted their densities in fig. 10.

We see that the model predicts the highest variances for the log probabilities of incorrect answers.
We also see that the the model seems to predict especially low variances for the null token when it
decides to output it. The correct answer seems to have a lower variance when the model is willing to
predict an answer. We see that the log probabilities of incorrect answers always have a high variance,
indicating high uncertainty. We also see that the null token has a low variance when the model has
a non-null output indicating certainty that it should not abstain. The variance further drops when
it outputs null, indicating certainty about not knowing an answer. The correct answer has a lower
variance than the incorrect answer when the model does not abstain. The relative variances of these
two curves support that the model provides meaningful indications of uncertainty. Additionally, in
the case where the model abstains, even the correct answer has a high variance, indicating a high
uncertainty. We believe that these results support that the uncertainty function is at least correlated
with the model’s knowledge about the input. This offers support to the hypothesis that our estimates
of the variance are somewhat meaningful. However, we believe that this is an important research
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Figure 10: Density of σ(a | x) conditioned on correct, incorrect, and null values for a. The left hand
plot depicts the variance distributions conditional on the model outputing a non-null completion,
while the right hand is conditional on a null completion.

topic and warrants substantial further study under a variety of lenses. We hope that this work will
encourage further research in this area.

20


	Introduction
	Related Work
	Problem Setting
	Active Exploration in the Kernelized Setting
	Methods
	Analysis
	Experiments in the Kernelized setting

	Scaling Active Exploration to Large Language Models
	Experiments using LLMs

	Discussion
	RKHS Regression
	Proof of Theorem 1
	RKHS norms of r and fr
	Additional Experiments for Kernelized Setting
	The Jeopardy! preference dataset
	Related Work on Uncertainty Estimation in Large Language Models
	Prompt templates
	Additional Experiment Details
	Experiment Runtimes
	Additional Experiments with LLM
	Evaluating dropout-based LLM uncertainty estimation


