
Locate&Edit: Energy-based Text Editing for
Efficient, Flexible, and Faithful Controlled Text Generation

Anonymous ACL submission

Abstract

Recent approaches to controlled text generation001
(CTG) often involve manipulating the weights002
or logits of base language models (LMs) at de-003
coding time. However, these methods are inap-004
plicable to latest black-box LMs and ineffective005
at preserving the core semantics of the base006
LM’s original generations. In this work, we007
propose Locate&Edit(L&E), an efficient and008
flexible energy-based approach to CTG, which009
edits text outputs from a base LM using off-the-010
shelf energy models. Given text outputs from011
the base LM, L&E first locates spans that are012
most relevant to constraints (e.g., toxicity) uti-013
lizing energy models, and then edits these spans014
by replacing them with more suitable alterna-015
tives. Importantly, our method is compatible016
with black-box LMs, as it requires only the017
text outputs. Also, since L&E doesn’t mandate018
specific architecture for its component mod-019
els, it can work with a diverse combination of020
available off-the-shelf models. Moreover, L&E021
preserves the base LM’s original generations,022
by selectively modifying constraint-related as-023
pects of the texts and leaving others unchanged.024
These targeted edits also ensure that L&E oper-025
ates efficiently. Our experiments confirm that026
L&E achieves superior semantic preservation027
of the base LM generations and speed, while028
simultaneously obtaining competitive or im-029
proved constraint satisfaction. Furthermore,030
we analyze how the granularity of energy distri-031
bution impacts CTG performance and find that032
fine-grained, regression-based energy models033
improve constraint satisfaction, compared to034
conventional binary classifier energy models.035

1 Introduction036

With advancements in neural language models037

(LM) and their widespread adoption in real-world038

applications, controlled text generation (CTG) —039

the task of generating texts that satisfy specific040

constraints, e.g., non-toxicity, style, and sentiment041

— has become increasingly important. Previous042

Figure 1: Illustration of Locate&Edit (L&E). The text
generated by an unconstrained LM is refined by locating
relevant spans, generating candidate replacements, and
reranking. L&E can control black-box LMs as L&E solely
requires their text outputs. Furthermore, individual com-
ponents of L&E, such as energy models(fi) and MLM,
are trained in an isolated manner, independent of base
LM and other components, allowing plug-and-play of
off-the-shelf models.

CTG research has transitioned from training-based 043

methods that directly train base LMs1 (Gururan- 044

gan et al., 2020;Keskar et al., 2019) to decoding- 045

time methods that leverage smaller external models 046

to manipulate larger base LMs (Dathathri et al., 047

2020;Krause et al., 2021; Yang and Klein, 2021; 048

Liu et al., 2021; Kim et al., 2023; Liu et al., 2023; 049

Qin et al., 2022; Kumar et al., 2022). While 050

decoding-time methods avoid the need to access the 051

full weights of the base LM, they are not entirely 052

suitable for black-box LMs as they require hidden 053

states(Dathathri et al., 2020), step-wise logits for 054

the entire vocabulary (Yang and Klein, 2021; Kim 055

et al., 2023; Liu et al., 2023; Liu et al., 2021; Qin 056

et al., 2022), or embeddings(Kumar et al., 2022) 057

of the base LM. Many methods also necessitate 058

specific architectures for external models, such as 059

sharing the same vocabulary as the base LM. 060

In this paper, we propose Locate&Edit(L&E), 061

1Base LM refers to the language model used for text gen-
eration in CTG tasks.
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an efficient and flexible energy-based approach to062

CTG, which edits text outputs from a base LM us-063

ing off-the-shelf energy models. L&E begins with064

generating texts from an unconstrained base LM,065

followed by locating constraint-related spans in the066

texts using energy models and editing the spans by067

replacing tokens. For editing, we generate candi-068

date tokens from a masked language model (MLM)069

and rerank them using energy functions.070

L&E offers the following key benefits. First, be-071

cause it only requires text outputs from the base072

LM, L&E can work with even black-box LMs. Sec-073

ond, because all of its components, i.e., energy074

models and MLM, can be trained on an indepen-075

dent manner from each other or from the base LM,076

L&E supports flexible plug-and-play of off-the-shelf077

models. L&E also avoids the need to fine-tune the078

MLM for specific constraints by using separate en-079

ergy models for reranking. Third, since L&E applies080

targeted edits, it is efficient as well as more faithful081

to the base LM’s original generations than CTG082

methods that rewrite entire texts.083

We examine our method in two widely-used con-084

trolled generation tasks, toxicity avoidance and085

sentiment control, a text revision task, formality086

transfer.2 From the experiments, we validate that087

our method achieves comparable constraint-related088

control with superior speed and content preserva-089

tion of base LM outputs. In the toxicity avoidance090

task, L&E achieves one of the lowest toxicity prob-091

abilities, while preserving the content of base092

LM outputs 95.4% of the time and operating at093

the highest speed. In an ablation study, we also094

analyze the impact of granularity in the energy dis-095

tribution for its usage in CTG tasks. The results096

show that using regression-based energy models,097

trained with fine-grained labels, consistently im-098

proves controllability in CTG methods compared099

to conventional binary classifier energy models.100

The contributions of our work are as follows:101

• We propose Locate&Edit(L&E), a CTG102

framework that controls base LM output, with-103

out imposing any dependence on base LM, uti-104

lizing off-the-shelf energy models. We show105

that L&E preserves the content of the base LM106

outputs, and runs efficiently.107

• We unveil that prior CTG methods are inap-108

plicable for black-box LMs and ineffective at109

preserving the original content of base LM110

2Given its editing-based nature, we assess its performance
in text revision as well.

generations. 111

• We demonstrate that using fine-grained, con- 112

tinuous labels for training energy models im- 113

proves the controllability of CTG methods 114

compared to binarized, discrete labels. 115

2 Related Works 116

2.1 Energy-based Models 117

Energy-based models (EBMs) (Lecun et al., 2006)
are a versatile class of models that utilize an en-
ergy function (or a combination thereof) to define
a probability distribution over the input space:

qθ(x) =
exp(−Eθ(x))

Z(θ)

Here, Eθ(x) represents the energy function, which 118

computes a scalar score for the input, and Z(θ) is 119

a normalizing factor. Lower energy values corre- 120

spond to higher likelihood of input x. 121

EBMs are widely employed for image genera- 122

tion (Du and Mordatch, 2019) as well as structured 123

prediction (Belanger and McCallum, 2016). They 124

are also frequently used for controlled text genera- 125

tion(Qin et al., 2022; Mireshghallah et al., 2022), 126

as their energy functions can easily be defined to 127

measure levels of constraint satisfaction. 128

2.2 Controlled Text Generation 129

Initially, CTG research primarily involved fine- 130

tuning (Gururangan et al., 2020) or pretraining 131

LMs (Keskar et al., 2019) with domain-specific 132

data. However, due to the resource intensiveness 133

of such methods, recent works focus on decoding- 134

time methods leveraging smaller-sized class dis- 135

criminators or class-specific LMs to steer the larger 136

base LM (Dathathri et al., 2020; Krause et al., 2021; 137

Yang and Klein, 2021; Kim et al., 2023; Liu et al., 138

2023; Qin et al., 2022; Kumar et al., 2022). But 139

these methods are incompatible with latest propri- 140

etary LMs, as they control the base LM via hidden 141

states or output probabilities. On the contrary, our 142

method only utilizes the text outputs from the base 143

LMs and thus applicable to closed-source LMs. 144

Some of decoding-time methods approach CTG 145

as sampling from EBMs representing constraints 146

(Qin et al., 2022; Kumar et al., 2022; Liu et al., 147

2023; Mireshghallah et al., 2022). Similarly, our 148

work also formulates constraints with energy func- 149

tions. However, we do not directly sample from 150

EBMs and rather utilize the energy functions to 151

detect spans and rank texts. 152
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2.3 Text Editing153

L&E is related to unsupervised text editing methods154

used in style transfer. These methods first iden-155

tify attribute markers, i.e., parts of text where an156

attribute is most strongly expressed, using lexicon-157

based methods (Dale et al., 2021; Li et al., 2018)158

or model-based techniques (Reid and Zhong, 2021;159

Li et al., 2022; Malmi et al., 2020; Hallinan et al.,160

2023), and revise these parts to align with the161

target attribute. For editing, prior work either162

use attribute-specific LMs to rewrite the identified163

spans (Li et al., 2018; Reid and Zhong, 2021; Halli-164

nan et al., 2023) or use an attribute-aware MLM to165

infill the deleted spans (Wu et al., 2019; Dale et al.,166

2021; Malmi et al., 2020; Li et al., 2022). L&E167

is similar to the latter approach but, unlike prior168

work, does not need special training for MLMs. We169

simply combine off-the-shelf MLM with reranking170

from energy models to ensure final edits satisfy171

constraints.172

3 Methods173

3.1 Preliminary174

We aim to generate a text sequence y, optionally175

given an input sequence x, that satisfies a set of176

constraints, each represented by an energy function177

fi(y) where the input is the text y and the output178

is a scalar. Each fi(y) decreases as y satisfies the179

corresponding constraint. A constraint is consid-180

ered satisfied if its corresponding energy is below181

a threshold, i.e., fi(y) < ϵi, where ϵi is a prede-182

fined threshold. We also define an overall energy183

function that encapsulates all constraints following184

Product of Experts framework (Hinton, 1999):185

E(y) =
∑

i
wi · fi(y) (1)186

where wi is the weight assigned to each constraint.3187

In implementation, we define an energy function188

as:189

fi(y) = − log σ(gθ(i|y)) (2)190

where gθ(i|y) denotes a regression model that mea-191

sures the degree to which y satisfies the constraint192

i.4 If σ(gθ(i|y)) is instead implemented as a binary193

classifier, we can interpret fi(y) as logP (i|y).194

Unlike previous works (Kumar et al., 2022; Liu195

et al., 2023), we do not assume that fi(y) shares196

3Throughout the paper, we refer to the fi(y)’s as compo-
nent energy functions and E(y) as the overall energy function.

4We apply σ(·) to scale g to [0, 1] range. Although this
scaling is not necessary, we apply it to attain similar range of
values as when using binary classifiers.

the same vocabulary with each other or with the 197

base LM. This flexibility allows for plug-and-play 198

compatibility with diverse off-the-shelf models. 199

3.2 Overall algorithm: Locate&Edit 200

L&E can be formulated as editing of the base 201

LM output y(0) until obtaining y∗ that satisfies 202

fi(y
∗) < ϵi for all (or part of) constraints. As 203

illustrated in Alg. 1, L&E iterates its two main steps 204

until either all constraints are satisfied or a maxi- 205

mum number of iterations is reached: 206

• Locate step: identify phrases in an input that 207

most contribute to constraint violations 208

• Edit step: replace tokens in the phrases with 209

alternatives that better satisfy the constraints 210

Because of its iterative nature, L&E can handle 211

scenarios requiring minimal edits as well as those 212

necessitating more extensive updates. 213

3.3 Details on Locate step 214

We find spans in y that contribute most to the deter- 215

mination of fi∗(y), where i∗ refers to the constraint 216

of primary interest. Inspired by Li et al., 2022, we 217

calculate the gradient norm values of each token 218

in y5 and locate tokens with above-average values. 219

Using the within-sequence average as a cutoff al- 220

lows the number of identified tokens to vary with 221

the overall sequence length and the distribution of 222

gradient norms.6 Moreover, we perform a post- 223

processing step to include all tokens in partially 224

identified words (e.g., if "mor" in "moron" is iden- 225

tified, we also include "on"). 226

Other than using gradient norm, we also experi- 227

ment with a locating method that utilizes the at- 228

tention weights of tokens and compare the per- 229

formance. For more detailed description of the 230

attention-based method and the ablation study, 231

please refer to Appendix I. 232

3.4 Details on Edit step 233

We first predict token-level candidates to replace 234

each identified token and then select the best com- 235

bination of these candidates as the final output. 236

3.4.1 Token-level candidate generation 237

We mask all located tokens and use a masked lan- 238

guage model (MLM) to predict candidate tokens 239

5The gradient norm of a token in y is defined as the L2
norm of the gradient of fi∗(y) with respect to the token em-
bedding.

6In practice, to avoid identifying an excessively large por-
tion of text, we limit our selection to the lesser of 2/3 of the
sequence length or a predetermined number m of tokens.
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to fill the masks. Then we select top k tokens with240

the highest probabilities for each masked location.241

We use MLMs because they consider bidirec-242

tional context. Our preliminary study shows that243

candidates generated based solely on the left con-244

text are often incompatible with the right context.245

Additionally, we mask all identified tokens simulta-246

neously to prevent the MLM from being influenced247

by unmasked tokens; our preliminary study indi-248

cates that the MLM suggests toxic candidates when249

some toxic tokens in the original input text remain250

unmasked.251

3.4.2 Reranking252

We generate hypothesis texts by combining token-253

level candidates with the original text and then find254

the best hypothesis. We explore two approaches255

for this process.256

Exhaustive Search This approach considers all257

possible combinations of token-level candidates.258

Since we locate up to m tokens and generate k259

candidates for each token, we yield a set H of at260

most km hypotheses. We then evaluate the hypothe-261

ses with our energy functions and select the best262

hypothesis according to the following criteria:263

• Select one with the lowest fluency energy264

while satisfying all other constraints:265

y(iter) = argmin
h∈H

ffluency(h)266

subject to fi(h) < ϵi ∀i ̸= fluency (3)267

• If no hypothesis satisfies all other constraints,268

select one with the lowest overall energy:269

y(iter) = argmin
h∈H

E(h) (4)270

Beam Search Since evaluating km hypotheses271

becomes infeasible as k or m increases, we propose272

a beam search-based method that approximates273

Exhaustive Search. Although otherwise the same,274

our method differs from conventional beam search275

in that it expands partial hypotheses only at the276

identified locations. If a location is not identified,277

the method simply appends the original token at278

that location to the running partial hypotheses. To279

evaluate and determine which b partial hypotheses280

to keep, we use either ffluency alone or the overall281

energy function E(y). After decoding is completed,282

we conduct a final reranking and choose the best283

output as in Exhaustive Search. Depending on284

the energy function used during beam search, we285

define two variants of this method, Beam Search286

(ffluency → E) and Beam Search (E → E).7 287

3.5 Details on training energy functions 288

In L&E, energy functions are used to rank texts by 289

their degree of constraint satisfaction. Therefore, 290

we posit that finely calibrating these energy func- 291

tions is crucial and investigate better methods for 292

their training. 293

Specifically, unlike previous approaches that 294

train energy functions as binary classifiers, we pro- 295

pose training them as regressors using continuous, 296

real-valued labels. Upon reviewing training data 297

from previous studies, we find that many datasets 298

used for training energy functions contain raw la- 299

bels that are continuous but were binarized.8 By 300

leveraging these raw labels without binarization, 301

we utilize these datasets for our purpose. For our 302

training objective, we adopt cross-entropy between 303

true continuous scores s(y), normalized to range 304

[0, 1], and the model-generated scores σ(gθ(i|y)): 305

H(s|σ(gθ(i|y))) = −
∑

s(y) · σ(gθ(i|y)). Unlike 306

binary cross-entropy loss, this objective provides 307

a more nuanced training signal to the model, en- 308

couraging it to closely align with the continuously 309

varying score rather than to predict either 0 and 1. 310

4 Experiments and Results 311

We conduct experiments on two controlled genera- 312

tion task and one text revision task. 313

4.1 Experiment Settings 314

4.1.1 Toxicity Avoidance 315

In this task, the goal is to generate non-toxic texts 316

when provided with toxicity-inducing prompts. 317

We use 250 prompts sampled from RealToxici- 318

tyPrompts (Gehman et al., 2020) and generate 10 319

different continuations for each prompt. The se- 320

quence length for each generation is sampled ran- 321

domly between 20 and 40. We also truncate any 322

unfinished sentences, to ensure only complete sen- 323

tences are evaluated. 324

Energy functions for this task in- 325

clude fnontoxic(y) and ffluency(y), where 326

fnontoxic(y) = − log σ(gθ(nontoxic|y)) and 327

ffluency(y) = − logPξ(y) (5) 328

7Both variants conduct final reranking using all energy
functions, hence they include→ E in their names.

8For instance, in the raw Jigsaw Toxicity Classification
dataset(cjadams et al., 2019), the label represents the propor-
tion of annotators who labeled the text as toxic.
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Constraint Sat. Fluency Diversity Content Preserv. Speed

Avg. Max.
Toxicity ↓

Toxicity
Prob. ↓ PPL ↓ (∆) CoLA ↑ Dist-3 ↑ Rep-3 ↓ FBERT (Base) ↑

(% outputs ≥ 0.5 ↑) Toks/s ↑

GPT2-L(Base LM) 0.37 0.32 39.03 (0.0) 0.79 0.87 0.00 1.00 (100) -

MuCoLa 0.26 0.12 170.76 (131.8) 0.78 0.85 0.02 0.13 (7.24) 0.51
Mix&Match 0.07 0.02 28.75 (10.3) 0.95 0.84 0.00 0.05 (0.52) 0.33
BOLT 0.23 0.11 8.90 (30.1) 0.96 0.89 0.00 0.03 (0.32) 25.15
Locate&Edit 0.25 0.08 45.65 (6.7) 0.78 0.87 0.00 0.92 (95.44) 28.67

Table 1: Results on toxicity avoidance. The best results are in bold and the second best are underlined. Note that our
method preserves the semantics of the base LM outputs (while controlling the toxicity) 13x more frequently than
MuCoLa, 183x than Mix&Match, and 298x than BOLT.

. The definition of ffluency is common for all tasks.329

For fnontoxic, we fine-tune a RoBERTa-base (Liu330

et al., 2019) on the Jigsaw Unintended Bias in331

Toxicity Classification Kaggle Challenge (cjadams332

et al., 2019) dataset, which contains news com-333

ments annotated with toxicity scores indicating the334

proportion of annotators labeling the text as toxic.335

4.1.2 Sentiment Controlled Generation336

This task evaluates how well each method gener-337

ates texts of desired sentiment, when given neutral338

prompts. We use 15 prompts from Dathathri et al.339

(2020) and generate 20 samples per prompt for340

each target sentiment, for each sequence length of341

12, 20, and 50. We generate texts for two target342

sentiments: positive and negative.343

We use fpos_sent (or fneg_sent depending on the344

target sentiment) and ffluency for energy functions:345

fpos_sent = − log σ(gθ(positive|y))346

fneg_sent = − log σ(gθ(negative|y))347

For fpos_sent and fneg_sent, we fine-tune a348

RoBERTa-base (Liu et al., 2019) on the reviews349

subset of Yelp Dataset9, which comprises review350

texts and corresponding star ratings. We assume351

larger values indicate positive sentiment.352

4.1.3 Formality Transfer353

As a text revision task, this task focuses on convert-354

ing the formality of texts. We conduct experiments355

for both informal → formal and formal → infor-356

mal transfer, using the entertainment and music357

domain subset of the GYAFC (Rao and Tetreault,358

2018) dataset. The test set includes 1416 and 1028359

sentences, respectively, for each transfer direction.360

For energy functions, we use fformal (or361

finformal if the target style is informal) and362

9We obtain the data from https://www.yelp.com/
dataset.

ffluency where: 363

fformal = − log σ(gθ(formal|y)) 364

finformal = − log σ(gθ(informal|y)) 365

For fformal and finformal, we fine-tune a 366

RoBERTa-base (Liu et al., 2019) on the an- 367

swers subset from the dataset used in Pavlick and 368

Tetreault (2016) (PT16), which include texts and 369

corresponding formality scores rated by multiple 370

annotators and averaged. 371

4.1.4 Common Settings 372

• We use GPT2-L (Radford et al., 2019) as the 373

base LM and RoBERTa-base (Liu et al., 2019) 374

as the off-the-shelf MLM. For ffluency, we 375

use GPT2-L as the causal LM, although it can 376

be different from the base LM. 377

• For all experiments except the ablation study 378

in Section 4.4.3, we employ the Beam (E → 379

E) reranking variant. 380

• All experiments are conducted on either an 381

NVIDIA RTX 3090 or A6000. Experiments 382

in the same table utilize consistent hardware. 383

• Hyperparameters, as outlined in Algorithm 1 384

and reported in Appendix D.2, are manually 385

tuned and optimized minimally. 386

• The reported metrics are from a single run. 387

4.2 Baselines 388

Below is a list of baselines: 389

• Base LM outputs or Source Text: Uncon- 390

trolled outputs from the base LM for toxicity 391

avoidance and sentiment control. Source texts 392

for formality transfer. 393

• Target Text: Ground truth target texts only 394

provided for formality transfer. Provides an 395

upper bound of performance. 396

• MuCoLa (Kumar et al., 2022): A non- 397

autoregressive energy-based CTG method that 398

5
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uses gradient-based inference by tuning the399

embeddings of text outputs.400

• Mix&Match (Mireshghallah et al., 2022):401

A non-autoregressive energy-based CTG402

method that utilizes Gibbs-Metropolis-403

Hastings sampling using a MLM for404

candidate generation and energy model(s) for405

accept/reject decisions.406

• BOLT (Liu et al., 2023): An auto-regressive407

energy-based CTG method that introduces bi-408

ases added to the LM output logits and up-409

dates the biases with gradients of the energy410

function to control the outputs.411

For a fair comparison of content preservation412

rates and to adapt each method for the formal-413

ity transfer task, we have modified MuCoLa and414

Mix&Match to initialize with the base LM outputs415

or the source texts instead of random values. How-416

ever, BOLT, being an autoregressive method, could417

not be similarly adapted. Therefore, we use BOLT418

in it original implementation and exclude it from419

our formality transfer experiment.420

4.3 Evaluation421

We evaluate each method based on five different422

aspects: constraint satisfaction, fluency, diversity,423

speed, and content preservation.424

• Constraint satisfaction: For toxicity avoid-425

ance task, we measure Average (Max) Toxi-426

city, the average (maximum) toxicity value427

among generations (for each prompt), and428

Toxic Probability, the empirical probabil-429

ity of generating toxic generation. Toxicity430

is measured by Perspective API10. For senti-431

ment control task, we measure Positive (or432

Negative) Probability, the empirical proba-433

bility of generating texts with the target senti-434

ment. We use siebert/sentiment-roberta-large-435

english model from huggingface11 as our ex-436

ternal classifier. For Formality Transfer task,437

we measure Formal (or Informal) Proba-438

bility, the empirical probability of generat-439

ing texts of the desired style (either formal440

or informal). We use cointegrated/roberta-441

base-formality model from huggingface for442

our external classifier.443

• Fluency: We measure PPL, the average per-444

plexity of GPT2-XL(Radford et al., 2019)445

on the generated texts, along with ∆ PPL,446

10https://perspectiveapi.com/
11https://huggingface.co/

the absolute difference between the origi- 447

nal or source text PPL and the method’s 448

PPL.12. We also measure CoLA accuracy, 449

the empirical probability of generating texts 450

that are linguistically acceptable according to 451

CoLA dataset(Warstadt et al., 2019). We use 452

textattack/roberta-base-CoLA from hugging- 453

face as our classifier. 454

• Diversity: We measure Distinct-3, the aver- 455

age portion of distinct trigrams in generations 456

(Li et al., 2016) for each prompt, and Rep-3, 457

the empirical probability of generating texts 458

with more than three consecutive repeated to- 459

kens, an indication of neural text degeneration 460

(Holtzman et al., 2020). 461

• Speed: We measure Toks/s, the number of 462

tokens decoded per second. 463

• Content Preservation13: We mea- 464

sure FBERT (Base), the average F1 465

BERTscore(Zhang et al., 2020) between the 466

generated texts and the base LM outputs 467

or source texts, and % outputs ≥ 0.5, the 468

portion of texts with FBERT (Base) ≥ 0.5. 469

4.4 Results and Analysis 470

4.4.1 Main Results 471

Toxicity Avoidance As indicated in Table 1, L&E 472

demonstrates the ability to significantly reduce tox- 473

icity while preserving the semantics of the base LM 474

(GPT2-L) outputs. Additionally, our method ex- 475

hibits the highest processing speed among the com- 476

pared approaches. Mix&Match and BOLT both 477

achieve competitive constraint satisfaction, fluency, 478

and diversity but fall drastically short in content 479

preservation, with only 13 and 8 out of 2500 gen- 480

erations achieving FBERT (Base) ≥ 0.5. This 481

highlights the challenge of simultaneously control- 482

ling for constraints and preserving the base LM 483

outputs. MuCoLa, while better than the other two 484

methods, still shows much lower content preserva- 485

tion compared to L&E. Additionally, both MuCoLa 486

and Mix&Match are slow, decoding less than one 487

token per second. 488

Sentiment Control In the sentiment control task 489

12We use ∆ PPL as an additional metric because lower PPL
does not always indicate better fluency, i.e. low perplexity
also co-occur with high repetitions and overuse of frequent
words (Welleck et al., 2020). Low ∆ PPL indicates that the
method preserves the level of fluency of the base LM or the
human-written source texts.

13High content preservation along with high constraint sat-
isfaction indicates the method is conducting efficient control
over original texts.
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Constraint Sat. Fluency Diversity Content Preserv. Speed

Bidir. ↑ →Pos. ↑ →Neg. ↑ PPL ↓ (∆) CoLA ↑ Dist-3 ↑ Rep-3 ↓ FBERT (Base) ↑
(% outputs ≥ 0.5 ↑) Toks/s ↑

GPT2-L(Base LM) 0.50 0.64 0.36 18.52 (0.0) 0.84 0.86 0.00 1.00 (100) -

MuCoLa 0.89 0.92 0.86 32.99 (14.47) 0.58 0.69 0.08 0.26 (30.50) 0.51
Mix&Match 0.90 0.94 0.86 58.53 (40.01) 0.90 0.86 0.00 0.53 (60.11) 0.14
BOLT 0.76 0.90 0.62 8.61 (9.90) 0.96 0.81 0.00 0.03 (0.06) 30.44
Locate&Edit 0.73 0.82 0.65 37.37 (18.85) 0.62 0.86 0.00 0.61 (62.39) 15.15

Table 2: Results on sentiment control. Note that our method preserves the semantics of the base LM outputs (while
controlling the sentiment) 2x more frequent than MuCoLa and 1000x than BOLT. BOLT has only 1 out of 1800
examples that preserves the contents of original base LM outputs.

Constraint Sat. Fluency Diversity Content Preserv. Speed

→ Form. ↑ PPL ↓ (∆) CoLA ↑ Dist-3 ↑ Rep-3 ↓ FBERT (Base) ↑
(% outputs ≥ 0.5 ↑) Toks/s ↑

Source Text 0.07 205.39 (0.0) 0.75 0.78 0.00 1.00 (100) -
Target Text 0.95 80.96 (124.43) 0.92 0.78 0.00 0.72 (87.6) -

MuCoLa 0.98 50.35 (155.04) 0.64 0.77 0.02 -13.33 (0.0) 0.49
Mix&Match 0.02 403.74 (198.35) 0.68 0.81 0.00 0.67 (81.1) 0.45
Mix&Match (w/ RoBERTa) 0.78 225.81 (20.42) 0.91 0.78 0.00 0.42 (33.5) 0.42
Locate&Edit 0.80 50.82 (154.57) 0.93 0.79 0.00 0.31 (22.0) 11.15

Table 3: Results on formality transfer from informal to formal style. Although Mix&Match methods attain the
highest content preservation, it directly uses BERTscore as one of energy functions. We expect this gap can narrow
as we incorporate BERTscore into the energy functions.

(Table 2), L&E achieves the highest content preser-490

vation along with competitive constraint satisfac-491

tion rates. It is also among the fastest methods.492

BOLT achieves good controllability with the best493

fluency and speed but fails to maintain content of494

the base LM outputs, with only 1 out of 1800 gen-495

erations having FBERT (Base) ≥ 0.5. MuCoLa496

and Mix & Match have better content preservation497

than BOLT but runs extremely slowly. MuCoLa498

and Mix&Match also achieve the highest constraint499

satisfaction rates, especially for the negative target500

sentiment. However, MuCoLa’s high constraint501

satisfaction is misleading because its outputs often502

include repetition of sentiment-specific words, as503

illustrated in Table 6.504

Formality Transfer For the formality transfer505

task from informal to formal texts(Table 3)14, L&E506

achieves competitive constraint satisfaction rates507

along with high fluency, diversity, and speed. Al-508

though MuCoLa achieves higher formality accu-509

racy, it has negative FBERT (Base) indicating a510

14For formal→ informal transfer, we discover that the con-
straint satisfaction rates largely depend on the capitalization of
the texts, e.g. simply lower-casing the source texts improves
the informality score from 0.02 to 0.78. Due to this unclear
properties of the informality metric, we omit informality trans-
fer experiments in the main section and instead share them in
Table 13 in the Appendix for your reference.

complete rewrite of the sentences. 511

For Mix&Match, we discover that extremely low 512

formality score in the original implementation was 513

due to using BERT-base-uncased (Devlin et al., 514

2019)15 and experiment with another implementa- 515

tion using RoBERTa-base. Although the constraint 516

satisfaction rate indeed increases from 0.02 to 0.78 517

after switching to RoBERTa, Mix&Match, even 518

with the cased MLM, achieves slightly lower con- 519

straint satisfaction, fluency, and diversity than L&E. 520

Although it achieves higher content preservation 521

than L&E, the comparison is unfair because it di- 522

rectly uses BERTscore as one of its energy func- 523

tions. 524

4.4.2 Ablation study on training objective for 525

constraint energy model 526

We compare the impact of training energy models 527

with fine-grained signals (regression objective) ver- 528

sus coarse signals (binary classification objective) 529

on CTG performance. We conduct experiments on 530

toxicity avoidance, positive sentiment generation, 531

and informal to formal transfer, using our method 532

15Using an uncased model, the resulting texts are all lower-
case, while the formality score model tends to assign low
formality scores to sentences with all lower-case regardless of
their other traits, e.g. word choice, semantics, etc.
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Method EM Obj. Toxicity Prob. ↓ PPL↓ CoLA ↑ Dist-3 ↑ Rep-3 ↓

Locate&Edit Reg. 0.014 274.137 0.749 0.859 0.000
Clsf. 0.063 784.373 0.780 0.862 0.000

MuCoLa Reg. 0.007 13.682 0.700 0.752 0.087
Clsf. 0.045 519.215 0.714 0.737 0.125

BOLT Reg. 0.038 10.582 0.923 0.867 0.000
Clsf. 0.042 10.564 0.941 0.869 0.000

Table 4: Ablation study on the effect of energy model training objective (regression versus binary classification) on
toxicity avoidance task. Regression-based energy model consistently improves the toxic probability in the generation
results. For L&E, we report the results using Beam Search (E → E). For complete results for other reranking variants
of L&E, please refer to Table 14 in Appendix.

Constraint Sat. Fluency Diversity Contents Prsrv. Speed

Method Intermed.
Rerank

Final
Rerank k Avg. Max

Toxicity ↓ Toxic Prob. ↓ PPL ↓ CoLA ↑ Dist-3 ↑ Rep-3 ↓ FBERT (Base) ↑ Toks/s ↑ Decoding
Time(hr) ↓

Exhaustive - E 10 - - - - - - - 0.048* 340.359*
Exhaustive - E 5 0.211 0.048 226.587 0.804 0.868 0.001 83.184 1.983 7.730
Exhaustive - E 4 0.213 0.070 227.362 0.798 0.868 0.000 83.568 5.850 2.620
Exhaustive - E 3 0.220 0.060 185.643 0.788 0.868 0.001 84.234 22.929 0.668

Beam (E → E) E E 10 0.197 0.048 134.859 0.762 0.869 0.000 79.367 12.679 1.209
Beam (ffluency → E) ffluency E 10 0.214 0.064 125.384 0.752 0.869 0.000 79.356 28.669 0.535

Table 5: Ablation results on toxicity avoidance comparing reranking methods. Intermed. Rerank and Final Rarank
indicate energy functions used for the corresponding reranking in each method. *The speed metrics for Exhaustive
Search with k = 10 is estimated by measuring for the first 8 examples and extrapolating to 2500 examples.

and two baseline approaches for each task.533

For toxicity avoidance (Table 4) and formality534

transfer tasks (Table 16), we consistently observe535

enhanced constraint satisfaction rates when em-536

ploying regression-based objectives. The results537

vary for other metrics. This improvement is ob-538

served not only in our method but also in the base-539

line methods. Conversely, in the sentiment con-540

trol task (Table 15), energy models trained with541

binary classification objectives outperform their542

regression-based counterparts.543

We attribute this difference to the varying granu-544

larity of the training labels. Figure 2 highlights the545

fine-grained distribution of labels in the Jigsaw and546

PT16 datasets, contrasting with the more discrete547

nature of labels in the Yelp dataset. We thus con-548

clude that for regression objective to be effective,549

one must use non-integer, finely distributed labels.550

4.4.3 Ablation study on reranking methods551

We also conduct an ablation study on reranking552

methods suggested in Section 3.4.2, using the toxi-553

city avoidance task.16 As shown in Table 5, Exhaus-554

tive Search quickly becomes infeasible, reaching555

an estimated execution time of 14 days at k = 10.556

Meanwhile, Beam Search methods provide an effi-557

cient approximation to Exhaustive Search. Beam558

16All experiments are conducted on a NVIDIA RTX A6000.

Search (E → E) at k = 10 achieves similar con- 559

straint satisfaction rates with Exhaustive Search at 560

k = 5 in one-sixth of the time. Likewise, Beam 561

Search (E → ffluency) matches Exhaustive Search 562

at k = 4 in Average Max Toxicity and at k = 3 563

in Toxic Probability, at one-fifth and four-fifths of 564

the processing time, respectively. Among Beam 565

Search variants, Beam Search (E → E) achieves 566

better constraint satisfaction but is about twice as 567

slow as the other variant. Since the gap in con- 568

straint satisfaction rates is narrow, Beam Search 569

(E → ffluency) can be a viable alternative when 570

speed is prioritized over constraint satisfaction. 571

5 Conclusion 572

In this research, we introduce a CTG method 573

Locate&Edit(L&E) that frames CTG as text editing 574

of base LM outputs. L&E is compatible with black- 575

box LMs, is faithful to the content of the original 576

outputs, and efficient. In experiments on toxicity 577

avoidance, sentiment control, and formality trans- 578

fer, we confirm that L&E outperforms the baselines 579

in terms of content preservation and speed, while 580

achieving better or comparable control over con- 581

straints. We also show that regression-based energy 582

models can lead to better constraint satisfaction in 583

CTG tasks than binary classifiers. 584
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Limitations585

Our current editing method supports only "replace"586

operations and lacks the ability to perform "delete"587

or "insert" operations. This limitation reduces the588

effectiveness of our algorithm in cases where delet-589

ing a problematic word or inserting a phrase could590

better alter the attribute of a given sentence. Con-591

sequently, we plan to implement these additional592

operations in future work.593

Furthermore, our method is restricted to one-to-594

one replacements and does not support variable-595

length span replacements. Beyond implementing596

insertion and deletion operations, we plan to ex-597

plore using masked language models (MLMs) to598

generate multiple token candidates for each masked599

location. This approach aims to enhance the flexi-600

bility of our method.601
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Task Prompt Original (GPT-2) MuCoLa BOLT Locate&Edit (Ours)
Toxicity
Avoidance

via Elliot
Bigsworth: "How
about Russell

?" Stan said, "Darn them, I agree, but
they’re talking about England, and I’m
talking about English football at the
moment.

? He’s a great, great guy, and he’s a
great, great guy. He’s a great, great
guy." "How about Russell

Westbrook, who has averaged 30
points per game in each of the past two
seasons? Or Derrick Rose, who posted
a career-high 40.3 percent from 3-point
range last season?"

?" Stan said, "That’s right, I agree, but
they’re talking about English, and I’m
talking about English, at the moment.

Secondly, I am go-
ing to beat

them to death with the "Perps Go First"
mantra.

the current system. The current system
is that the person

the drum of the fact that the United
States has a huge and growing gap in
its quality of leadership. The world
is not waiting for America to become
great again; it’s waiting for America to
be

them to get to the "I-’s First" section.

Sentiment
Control
(→ Positive)

The lake was very shallow, no depth of at least
three feet, it was in an area known as
Pigeon Lake, the lake is quite shallow.
It has a very pleasant and clear blue
water. There were no objects or lights,
there

, in the middle of the water, is a water
of the water of the world. "The world is
water of the world, the world is world
of the world, the world is the world of
the world.

is a beautiful place to visit, and the
waterfalls are great for hiking. The
waterfall in particular has some of the
best views I’ve seen in my life! It’s
also home to the world famous "Lucky
Lake" which is one of

was very clear, no waves of at least
three feet, it was in an area known as
theman Lake, the lake is quite shallow.
It has a very pleasant and clear blue
water. There were no boats or lights,
there

The painting will be displayed as part of the "Alfa"
exhibit at the Art Gallery of Ontario,
which opened its doors in February,
with an announcement in December.
This is not the first time an oil painting
of a man in

is a masterpiece from the "The
"Thelfa" of the "The Gallery of the
"The " The " The " The " The " The "
The " The " The " The " The " The "
The " The "

is located in the Chapel of Saint Mary
Major, which was built by Pope Gre-
gory XIII. It’s a beautiful and haunt-
ing composition that shows the Savior
wearing a white robe and carrying a
cross. The work also features an angel
holding a book with a golden

will be displayed as part of the exhi-
bition, and the art exhibit at the Art
Gallery of Ontario, which opened its
doors in February, with an exhibition
in the spring. The exhibition is also the
inspiration for an oil painting of a man
in

Sentiment
Control
(→ Negative)

The horse men also said they have learned a new
way of

is a shit. Worst of all,. Fuck dragged the dead body of a man to his
side and then

men said that they have seen a better
example of

The movie is expected to bow around Thanksgiv-
ing. "The idea that you’re going to see
a movie like that and that you’re go-
ing to see it come out of nowhere, it’s
almost unheard of," DePalma told Va-
riety. "

is a " disgusting, very, very, " [. . . ] dis-
gusting disgusting disgusting .

s a bit of a departure from the usual
fare in terms of plot. The story follows
a young boy who has been abducted
by aliens and brought to Earth, where
he finds himself trapped inside an alien
spaceship that’s being used as a prison
for the

is yet to be released on Netflix "The
idea that you’re going to see a movie
like that and that you’re going to see
it come out of nowhere, it’s almost un-
heard of," DePalma told me.

Table 6: Examples of generations for toxicity avoidance and sentiment control tasks. Formality data results could not be shared as the GYAFC requires request and approval for accessing data. Examples are
randomly sampled from those where MuCoLa, BOLT, and L&E all achieve formality value ≥ 0.7 The result notably demonstrates high repetition in MuCoLa despite its highest constraint satisfaction rates in
quantitative results. BOLT yields the most fluent text at the cost of preserving the original contents of GPT-2 generations. On the contrary, our method preserves most of the contents of the original GPT-2 outputs,
while satisfying the desired attribute. One caveat is that our method also tends preserve even the grammatically incorrect phrases of the original GPT-2, leading to low scores in the grammaticality-related metric,
i.e., CoLA Accuracy. We leave this for our future work.
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A Ethical Considerations796

Our method aims to generate texts that satisfy spe-797

cific constraints, including the task of avoiding tox-798

icity. However, we recognize that if the algorithm799

is used in reverse, it could produce harmful texts.800

Despite this risk, we believe that with proper over-801

sight and ethical guidelines, the algorithm can serve802

as a valuable tool for preventing AI models from803

generating toxic contents.804

B Report on the use of existing artifacts805

We hereby declare all uses of existing artifacts806

(datasets and pretrained models). Please refer to807

Table 7 for a list of used datasets and their licenses.808

All datasets used cover only English. Our work,809

as an academic research, satisfies the intended use810

of all datasets. For information on the pretrained811

models used, please refer to Table 8.812

C Further details of energy model813

training814

C.1 Model size and computational budget815

In Table 9, we report the size of our energy models816

and the computational budget for their training. Al-817

though we train our own energy models to explore818

a regression-based training method, it’s important819

to note that L&E supports the use of any off-the-820

shelf text scoring or classification models as energy821

models.822

C.2 Statistics of energy model training823

datasets824

Please refer to Table 10.825

C.3 Distribution of training labels for energy826

model training datasets827

Please refer to Figure 2.828

D Further details of main experiments829

D.1 Computational budget830

In Table 11, we report the GPU hours and the com-831

puting infrastructure we utilize to run L&E in the832

main experiments discussed in Sec. 4.4.1. It’s833

important to note that the reported computational834

budget pertains specifically to decoding, as Loca-835

teEdit operates as a decoding-time method.836

D.2 Hyperparameter settings837

In Table 12, we report the hyperparameters used838

for L&E in each of the main experiments.839

E Algorithm of L&E 840

Please refer to Algorithm 1

Algorithm 1: L&E
1 Input: the base LM output text y(0), (optional)

prompt text x, constraints {fi}, index of constraint
of interest i∗

2 Hyperparameters: Thresholds for each constraint
{ϵi}, weights for each constraint {wi}, max
iterations N , max number of words to edit per
iteration m, number of candidate tokens to consider
for each location k, beam size b

3 Output: best output y∗

4 Function locate_mask(y, f , m):
5 y← tokenizerf (y)
6 grad_norm← |∇embeds(y)f(y)|2
7 {j} ←m locations in y with largest grad_norm
8 ỹ ← mask {j} locations in y
9 return ỹ

10

11 Function cand_gen(ỹ, k, MLM):
12 ỹ← tokenizerMLM(ỹ)
13 logits← MLM(ỹ)
14 return top k tokens for each mask

15

16 Function rerank(ỹ, {{tokenj,k}}, b, {fi}):
17 H ← beam_search(ỹ, {{tokenj,k}}, b, {fi})
18 return best hypothesis according to criteria in

Sec.3.4.2
19

20 y∗ ← y(0)

21 E∗ ← E(y(0)) // Calculate energy according
to eq. 1

22

23 for iter from 1 to N do
24 if (fi(y∗) < ϵi) for all i’s then
25 early stop

26 else
27 ỹ ← locate_mask(y(iter−1), fi∗ ,m)

28 {{tokenj,k}} ← cand_gen(ỹ, k,MLM)

29 y(iter) ← rerank(ỹ, {{tokenj,k}}, b, {fi})

30 E(iter) ← E(y(iter))

31 if E(iter) < E∗ then
32 Update E∗ and y∗

33 return y∗

841

F Additional formality transfer task 842

(formal to informal) results 843

Please refer to Table 13. 844

G Qualitative Results 845

Please refer to Table 6. 846
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Purpose Dataset License

Jigsaw (cjadams et al., 2019) Own Terms of Use (Any purposes; No redistribution)

gθ Training Yelp Dataset Own Terms of Use (Academic use only; No redistribution)

PT16 (Pavlick and Tetreault, 2016) CC BY 3.0

RealToxicityPrompts (Gehman et al., 2020) Apache 2.0
Testset PPLM prompts (Dathathri et al., 2020) Apache 2.0

GYAFC (Rao and Tetreault, 2018) Own Terms of Use (Research use only; No redistribution)

Table 7: Licenses of existing datasets used

Model License

RoBERTa-base (Liu et al., 2019) MIT
BERT-base-uncased (Devlin et al., 2019) Apache 2.0
GPT2-L (Radford et al., 2019) MIT
GPT2-XL (Radford et al., 2019) MIT

Table 8: Licenses of existing pretrained models used

H Additional results for ablation study on847

energy model training objectives848

H.1 Full results on the toxicity avoidance task849

Please refer to Table 14. This table includes abla-850

tion results for all variants of our reranking meth-851

ods.852

H.2 Results on the sentiment control task853

Please refer to Table 15.854

H.3 Results on the formality transfer task855

Please refer to Table 16.856

H.4 Results on toxicity span detection task857

We also directly measure location accuracy to eval-858

uate the impact of regression-based energy mod-859

els on the locating step of our method (Table 17).860

Due to limited availability of labeled span datasets,861

we focused on the toxicity avoidance task for this862

experiment. We collected toxic span labels from863

16 graduate students for 115 samples of GPT2-L864

generations from the toxicity avoidance task, with865

at least two annotators labeling each sample. We866

employed four commonly used metrics from infor-867

mation retrieval literature: Precision@6, Recall@6,868

and mAP (mean average precision). As shown in869

Table 17, we observed consistent improvements870

in locating performance across all metrics when871

using regression-based energy models compared to872

classification-based counterparts.873

I Ablation study on locating methods 874

I.1 Description of Attention-based Method 875

Following Lewis (Reid and Zhong, 2021), we use 876

the attention weights of the first token in the input 877

text querying all tokens in the text. As in Lewis, 878

we use the penultimate attention layer and use max- 879

imum attention weight across multi-heads for each 880

key token. We extract at most l tokens that have 881

attention weights that are above average within se- 882

quences. 883

I.2 Results 884

First, from experiments directly measuring loca- 885

tion accuracy(Table 18, using the same dataset and 886

metrics from those mentioned in 4.4.2, we find that 887

gradient norm based method better locates toxic 888

spans with equal recall and higher precision. When 889

we conduct the experiments using a classification- 890

based energy model, we observe a similar pattern of 891

gradient norm-based locating method outperforms 892

attention-based counterpart. 893

Then, we measure the downstream performance 894

of the three tasks, toxicity avoidance, sentiment 895

control (targeting positive sentiment), formality 896

transfer (informal to formal), when using differ- 897

ent locating methods. We conduct experiments 898

across different variants of reranking methods. In 899

toxicity avoidance (Table 19), as can be predicted 900

from higher performance in locating step, using 901

gradient norm-based locating also ends up with bet- 902

ter constraint satisfaction rates by a large margin. 903

In terms of fluency and diversity metrics, using gra- 904

dient norm-based locating results in better or com- 905

parable performance. As demonstrated in tables 906
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Energy model Model type Model size GPU hours Computing Infra.

gθ(nontoxic|y) RoBERTa-base 125M 3.75 hr 1 NVIDIA RTX 4090
gθ(positive|y) RoBERTa-base 125M 2 d 17 hr 2 NVIDIA RTX A6000
gθ(formal|y) RoBERTa-base 125M 0.75 hr 1 NVIDIA RTX A6000

Table 9: Training time and model size of energy models

(a) Toxicity Avoidance (b) Sentiment Control (c) Formality Transfer

Figure 2: Ground truth label distributions of energy model training data. Notice that Yelp reviews dataset used for
training sentiment energy model has labels that are essentially discrete rather than continuous.

Task Train Test Valid

Toxicity Avoidance 47k 3998 5191
Sentiment Control 6,636k 350k 5000
Formality Transfer 4k - 497

Table 10: Dataset statistics for energy model training

20 and 21 in the Appendix, this pattern of gradient907

norm-based method yielding improved constraint908

satisfaction rates with better or comparable fluency909

and diversity persist in other tasks.910
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Task Num. Decoded Tokens Decoding Time Computing Infra.

Toxicity Avoidance 55,175 1.2 hr 1 NVIDIA RTX A6000
Sentiment Control (Target sentiment: positive) 22,151 0.32 hr 1 NVIDIA RTX A6000
Sentiment Control (Target sentiment: negative) 22,151 0.50 hr 1 NVIDIA RTX A6000
Formality Transfer (Informal → formal) 18,970 0.47 hr 1 NVIDIA RTX A6000
Formality Transfer (Formal → informal) 14,344 0.70 hr 1 NVIDIA RTX A6000

Table 11: Decoding time of L&E in the main experiments. Although formality transfer tasks are not strictly
"decoding" tasks, we refer to the number of tokens in the final style-transferred texts as the number of decoded
tokens, and the time it takes to perform the style transfer as the decoding time.

Task ϵi∗ (wfl,wi∗ ) N m k b

Toxicity Avoidance 0.75 (0.1, 0.9) 3 5 10 5
Sentiment Control 0.9 (0.68, 0.32) 10 5 10 3
Formality Transfer 0.9 (0.1, 0.9) 10 5 10 5

Table 12: Hyperparameters used for main experiments.
i∗ indicates the main constraint, e.g., nontoxicity for
toxicity avoidance and positive sentiment for positive
sentiment transfer.
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Constraint Sat. Fluency Diversity Content Preserv. Speed

→ Inf. ↑ PPL ↓ (∆) CoLA ↑ Dist-3 ↑ Rep-3 ↓ FBERT (Base) ↑
(% outputs ≥ 0.5 ↑) Toks/s ↑

Source Text 0.02 90.79 (0.0) 0.93 0.78 0.00 1.00 (100) -
Source Text (lower-cased) 0.77 141.63 (50.84) 0.84 0.78 0.00 1.00 (100) -
Target Text 0.78 364.04 (273.25) 0.76 0.75 0.00 0.63 (83.7) -

MuCoLa 0.08 61.56 (29.23) 0.81 0.71 0.05 0.63 (63.7) 0.81
Mix&Match 0.89 229.43 (138.65) 0.95 0.82 0.00 0.64 (77.4) 0.48
Locate&Edit 0.18 49.68 (41.11) 0.88 0.81 0.00 0.50 (46.8) 5.69
L&E (w/ BERT-base-uncased) 0.89 1033.68 (942.89) 0.70 0.81 0.00 0.48 (46.9) 24.00

Table 13: Results on formality transfer from formal to informal style.

Method Reranking
Methods EM Obj. Toxic Prob. ↓ PPL CoLA ↑ Dist-3 ↑ REP-3 ↑

Original 0.456 50.923 0.780 0.842 0.000

Locate&Edit

Exhaustive Reg. 0.021 276.938 0.767 0.857 0.000
Clsf. 0.028 348.250 0.794 0.859 0.000

Beam (ffluency → E) Reg. 0.014 274.235 0.760 0.858 0.000
Clsf. 0.031 378.330 0.780 0.864 0.000

Beam (E → E) Reg. 0.014 274.137 0.749 0.859 0.000
Clsf. 0.063 784.373 0.780 0.862 0.000

MuCoLa Reg. 0.007 13.682 0.700 0.752 0.087
Clsf. 0.045 519.215 0.714 0.737 0.125

BOLT Reg. 0.038 10.582 0.923 0.867 0.000
Clsf. 0.042 10.564 0.941 0.869 0.000

Table 14: Ablation study on the effect of energy model training objective (regression versus binary classification) on
toxicity avoidance task.

Method Reranking
Methods EM Obj. Positive Prob. ↑ PPL CoLA ↑ Dist-3 ↑ Rep-3 ↓

Locate&Edit

Exhaustive Reg. 0.478 72.440 0.655 0.896 0.000
Clsf. 0.469 81.896 0.487 0.895 0.000

Beam (ffluency → E) Reg. 0.478 59.420 0.469 0.900 0.000
Clsf. 0.504 60.923 0.496 0.901 0.000

Beam (E → E) Reg. 0.478 59.184 0.478 0.900 0.000
Clsf. 0.496 59.795 0.487 0.901 0.009

MuCoLa - Reg. 0.850 8.685 0.637 0.620 0.168
Clsf. 0.903 10.020 0.566 0.641 0.195

BOLT - Reg. 0.885 7.589 0.973 0.848 0.000
Clsf. 0.912 7.363 0.956 0.826 0.000

Table 15: Ablation study on the effect of energy model training objective (regression versus binary classification) on
sentiment controlled generation task (target sentiment: positive).
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Method Reranking
Methods EM Obj. Formal Prob. ↑ PPL CoLA ↑ Dist-3 ↑ Rep-3 ↓

Locate&Edit

Exhaustive Reg. 0.453 90.189 0.879 0.775 0.000
Clsf. 0.458 95.133 0.876 0.775 0.001

Beam (ffluency → E) Reg. 0.641 51.951 0.818 0.791 0.007
Clsf. 0.634 54.159 0.795 0.792 0.004

Beam (E → E) Reg. 0.650 47.470 0.859 0.791 0.005
Clsf. 0.636 47.326 0.846 0.790 0.003

MuCoLa - Reg. 0.994 30.680 0.718 0.786 0.016
Clsf. 0.973 32.690 0.722 0.777 0.014

Mix&Match - Reg. 0.033 551.246 0.731 0.813 0.001
Clsf. 0.024 403.741 0.683 0.811 0.000

Table 16: Ablation study on the effect of energy model training objective (regression versus binary classification) on
formality transfer task (informal → formal).

EM Obj. Prec.@6↑ Rec.@6↑ mAP↑

Reg. 0.43 0.73 0.80
Clsf. 0.38 0.71 0.74

Table 17: Ablation results analyzing the effect of dif-
ferent energy model training objectives on toxic span
detection. Across all metrics, using regression-based
objective shows better location accuracy than using bi-
nary classification objective.

EM Obj. Locating
Method Prec.@6↑ Recall@6↑ mAP↑

Reg.
Grad. Norm 0.43 0.73 0.80
Attn. 0.39 0.73 0.72

Clsf.
Grad. Norm 0.38 0.71 0.74
Attn. 0.37 0.70 0.70

Table 18: Ablation results on toxic span location us-
ing GPT2-L generations data. Gradient norm-based
method has better precision, recall, and mAP than
attention-based method for both regression-based and
classification-based energy models.
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Method Locating
Method

Toxic
Prob. ↓ PPL CoLA ↑ Dist-3 ↑ Rep-3 ↑

Exhaustive Search Grad. Norm 0.021 276.938 0.767 0.490 0.000
Attn. 0.021 279.600 0.777 0.485 0.000

Beam Search
(E → E)

Grad. Norm 0.014 274.137 0.749 0.497 0.000
Attn. 0.024 277.547 0.756 0.492 0.000

Beam Search
(ffluency → E)

Grad. Norm 0.014 274.235 0.760 0.496 0.000
Attn. 0.024 277.937 0.760 0.491 0.000

Table 19: Ablation results on toxicity avoidance comparing different locating method. Across all variations of
reranking methods, using gradient norm-based locating results in comparable or superior constraint satisfaction
rates.

Method Locating
Method

Positive
Prob. ↑ PPL CoLA ↑ Dist-3 ↑ Rep-3 ↑

Exhaustive Search Grad. Norm 0.478 72.440 0.655 0.832 0.000
Attn. 0.434 81.366 0.566 0.831 0.000

Beam Search
(E → E)

Grad. Norm 0.478 59.184 0.478 0.837 0.000
Attn. 0.460 76.124 0.504 0.834 0.000

Beam Search
(ffluency → E)

Grad. Norm 0.478 59.420 0.469 0.837 0.000
Attn. 0.460 81.301 0.487 0.834 0.000

Table 20: Ablation results on sentiment control (target sentiment: positive) comparing different locating method.
Across all variations of reranking methods, using gradient norm-based locating results in higher constraint satisfac-
tion rates.

Method Locating
Method

Formal
Prob. ↑ PPL CoLA ↑ Dist-3 ↑ Rep-3 ↑

Exhaustive Search Grad. Norm 0.453 90.189 0.879 0.775 0.000
Attn. 0.444 113.161 0.834 0.777 0.000

Beam Search
(E → E)

Grad. Norm 0.650 47.470 0.859 0.791 0.005
Attn. 0.456 111.263 0.837 0.782 0.000

Beam Search
(ffluency → E)

Grad. Norm 0.641 51.951 0.818 0.790 0.007
Attn. 0.459 116.025 0.825 0.782 0.000

Table 21: Ablation results on formality transfer (informal → formal) comparing different locating method. Across
all variations of reranking methods, using gradient norm-based locating results in higher constraint satisfaction rates.
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