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ABSTRACT

While advances in large language models (LLMs) have greatly improved the quality of synthetic
text data in recent years, synthesizing tabular data has received far less attention. Many of the
top-performing approaches to this problem rely on techniques that adapt models originally devel-
oped for other modalities, potentially leaving generative performance on the table. We address
these disparities in attention and performance for tabular data by introducing Tabby, a simple but
powerful post-training modification to the standard Transformer-based language model architec-
ture that enables its use for tabular dataset synthesis. Tabby relies on Gated Mixture-of-Experts
layers, allowing each data column to be modeled by a dedicated set of parameters within the
transformer multi-layer perceptrons or language modeling heads. Applying Tabby to Distilled-
GPT2 improves synthetic data quality up to 7% compared to previous tabular dataset synthesis
methods, achieving performance near or equal to that of real data.

1 INTRODUCTION

From spreadsheets to databases, much of our modern life is encoded in tables. Airplane black
boxes, website visitor logs and hospital patient records are just a few examples of this versatile
modality. Despite the widespread use of tabular data and many calls for improved tabular modeling
approaches, this type of data has received less attention in deep learning research than images and
text (Fang et al., 2024; Davila et al., 2024; van Breugel and van der Schaar, 2024).

Progress towards the synthesis of realistic tabular data has encountered several key challenges. First,
tabular columns often exhibit complex interdependencies. Second, many tabular datasets are in fact
a combination of various modalities, with text, numerical, and nested datatypes (such as a JSON,
dictionary, or other structured object) possible among the columns in one dataset. Third, although
the order of items within one column of one row is important, the order of columns with respect to
each other is usually not meaningful and is a potential source of spurious correlations when training
a model. How to best design and train models that can address these issues remains an open question.

There have been notable efforts to adapt several model architectures to tabular data, recently focusing
on generative adversarial networks (GANs) (Xu et al., 2019), LLMs (Borisov et al., 2022) and
diffusion models (Kotelnikov et al., 2022). However, because these architectures were each designed
with text or images in mind, significant preprocessing must be made to tabular datasets in order to
allow their usage, likely resulting in lower performance than would be possible for an architecture
designed specifically for tabular data.

For these reasons, works including van Breugel and van der Schaar (2024) have called for the devel-
opment of pretrained Large Tabular Models (LTMs) to fill a similar role to text and image foundation
models, such as GPT (OpenAI, 2023) or DALL-E (OpenAI, 2021). Unfortunately, the creation of
an LTM would require (1) large and diverse tabular pretraining sets which have not yet been curated,
(2) a specialized tabular model architecture which has yet to be designed, along with (3) a staggering
amount of compute resources for pretraining.

In this work, we take an initial step towards the development of a LTM by proposing
Tabby, a post-training modification to the transformer-based LLM architecture for enabling tab-
ular data synthesis. After training on text data—but before finetuning on tabular data—Tabby re-
places designated LLM blocks with Mixture-of-Experts (MoE) layers (Shazeer et al., 2017), which
allow each data column to be modeled by a dedicated set of parameters within the LLM. The greater
model expressivity afforded by this modification results in higher-fidelity synthetic data.
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Figure 1: An overview of the Tabby MMLP (left) and MH (right) modifications.

To our knowledge, Tabby is the first architecture modification to make LLMs better-suited to table
generation. Using a pretrained LLM as a starting point allows Tabby to take advantage of its diverse
text pretraining, avoiding the logistical challenges of training a LTM entirely from scratch. We find
that, according to standard metrics, Tabby produces synthetic data near- or at-parity with real
tabular data on 3 out of 6 datasets, a level of performance not achieved by prior works. We
summarize our contributions as follows:

• We introduce Tabby, the first architecture modification that allows transformer-based LLMs
to synthesize more realistic tabular data.

• We explore multiple tabular training techniques for LLMs, including our Plain training
method: a simple, lightweight training technique that may serve as an effective baseline for
training future LLM-based tabular synthesis approaches.

• We demonstrate that Tabby produces higher-quality synthetic data for 4 out of 6 datasets,
and also allows greater insights into the model’s performance and training progress than
other tabular synthesis approaches.

After an exploration of prior tabular synthesis approaches in Section 2, we provide more details on
Tabby in Section 3. Next, we conduct extensive experiments in Section 4.

2 RELATED WORK

Tabular data has played a central role in machine learning since the field’s early days. In particular,
decision trees (Song and Lu, 2015) and their relatives such as random forests (Biau and Scornet,
2016) are well-adapted to classification or regression on tabular datasets.

Classical synthesis: Classical machine learning methods may be used to synthesize tabular data,
by modeling each column as a random variable and sampling from the resulting multivariate distri-
bution. This technique has been successfully applied to decision trees (Reiter, 2005) and Bayesian
networks (Aviñó et al., 2018; Zhang et al., 2017) . Copulas (Frees and Valdez, 1998; Janke et al.,
2021; Benali et al., 2021) are another traditional approach, which rely on first modeling each column
as a univariate random distribution, then fitting a probabilistic model to the multivariate distribution
formed by all columns. However, these approaches are limited in the data types that may be repre-
sented among the columns and the varieties of relationships that may be modeled across columns.

Generative Adversarial Networks (GANs): Many tabular synthesis methods rely on GANs
(Goodfellow et al., 2020), but have encountered several inherent limitations. In particular, the
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distributions of ordinal columns are frequently rather imbalanced, leading GANs to undesirable
phenomena such as mode collapse. Continuous columns may possess multiple modes and complex
interactions with the other columns which GANs also struggle to capture. The top-performing CT-
GAN (Xu et al., 2019) employs conditional generation in an effort to address these shortcomings.
However, the fidelity of CTGAN’s synthetic data leaves further improvements to be desired, as we
will demonstrate in Section 4.

LLMs: A small body of work has sought to apply LLMs’ demonstrated abilities of modeling com-
plex relationships to tabular data. The landmark work in this area, GReaT (Borisov et al., 2022),
details methods to convert tabular data into a sentence format which may be input to LLMs, then
proposes a training technique of “shuffling” the order in which columns occur for each row, which
is reported to improve the modeling of inter-column dependencies.

Two notable works have built off of GReaT to achieve further improved tabular data fidelity: TapTap
(Zhang et al., 2023) pretrains full or Distilled-GPT2 (Radford et al., 2019) on a variety of tabular
datasets before fine-tuning on a downstream tabular synthesis task, while Tabula (Zhao et al., 2023)
explores methods of preprocessing the training data to be more-easily modeled by LLMs. Other
LLM-based works have adapted these recent advances to relational tables (Solatorio and Dupriez,
2023), or used the emergent abilities of very large models such as GPT-4 to generate synthetic data
using In-Context Learning in place of fine-tuning (Seedat et al., 2024). Because many of these
prior LLM-based works are training techniques, they may be applied in concert with the Tabby
architecture modification. We demonstrate this using GReaT, TapTap and Tabula in Section 4.

MoE Architectures: The key innovation of Tabby is the application of Gated Mixture of Expert
(MoE) layers (Shazeer et al., 2017; Masoudnia and Ebrahimpour, 2014) for LLM synthesis of tab-
ular data. MoE layers have enjoyed utility in multitask (Ma et al., 2018; Gupta et al., 2022) and
multimodal learning (Zhao et al., 2024; Park et al., 2018), by creating sets of model parameters that
are dedicated to a specific task. We describe our use of MoE layers in Section 3.

3 METHOD

Tabby is an architecture modification that may be applied to any transformer-based language model
(LM) (Vaswani, 2017). In Section 3.1, we describe the variations of Tabby. In Section 3.2 , we
describe the process for training an arbitrary LM on tabular data, then compare the training process’s
forward pass and loss calculation for a Tabby model with a non-Tabby model in Section 3.3. Tabby
increases the expressivity of LMs, allowing for better modeling of individual columns’ distributions
and resulting in higher generative fidelity.

3.1 ARCHITECTURE OF TABBY MODELS

Suppose that a tabular dataset contains V columns and let the order of blocks within an arbitrary
transformer-based LM be represented as [L1, L2, . . . , LH ]. We apply the MoE technique by replac-
ing an LM block La with a vector ⇤a = [La,1, La,2, . . . , La,V ] of V blocks. As such, a Tabby model
with one MoE block ⇤a is represented as

[L1, L2, . . . , La�1, [La,1, La,2, . . . , La,V ], La+1, . . . , LH ].

The i-th column in the dataset is modeled by La,i within ⇤a.

Tabular data comes in myriad forms, such as relational, multidimensional or sparse tables. The
flexibility in placement of MoE layers enables Tabby’s adaptation to a variety of table setups. While
this technique may be applied to any set of layers within the model, we focus on the transformer
blocks’ multi-layer perceptrons (MLPs) and the language modeling (LM) head. We refer to Tabby
models with MoE MLPs or LM heads as MMLP or MH models, respectively. Those with both MoE
MLPs and MoE LM Heads are MMLP-MH models. For a visual comparison of MMLP, MH and
non-Tabby models, refer to Figure 1.

3.2 FINE-TUNING LLMS ON TABULAR DATA

We now describe the general conventions applied when training or fine-tuning an LM on a tabular
dataset. Suppose our training dataset contains N rows and the dataset’s column names are denoted
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by v1, v2, . . . , vV , where the value of the j-th row in the i-th column is denoted as vj
i
. For a given

row, the model will train on the columns in order `1, `2, . . . , `V (for general training we consider
this order to be simply [V ], while GReaT training allows this order to be arbitrary).

To provide the LM with its expected text modality input, we convert the j-th row as follows, where
<EOS> is the end-of-sequence token and <EOC> is a specialized end-of-column token which we
introduce to divide the text between columns:

‘‘<BOS> v`1 is vj
`1

<EOC> v`2 is vj
`2

<EOC> · · · v`V is vj
`V

<EOS>"

After converting the tabular dataset in this fashion, an LM is capable of fine-tuning on the dataset
in a normal sequence-to-sequence style. The prompt for each row during training is the beginning-
of-sequence token <BOS>. During generation, the LM will output text in a similar format to the
training data, which can then be parsed into tabular data as desired.

3.3 TABBY TRAINING

Suppose that we construct a Tabby model from a base LM by replacing one of its blocks La with an
MoE set ⇤a. At the beginning of fine-tuning the Tabby model, the weights for each block in ⇤a are
initialized to equal the weights of La.

The Tabby training process requires only slight modifications as compared to the training of other
LMs on tabular data. Instead of representing each training row as one string, we convert each row
into a length-V list of strings as follows:

[‘‘v`1 is vj
`1

<EOC>", ‘‘v`2 is vj
`2

<EOC>", · · ·, ‘‘v`V is vj
`V

<EOS>"]

Internally, the Tabby model begins by training on column `1 with prompt <BOS>, attending to
tokens 0 through k � 1 when predicting the k-th token. After computing the loss on column `1, this
column’s tokens are appended to the prompt used to train column `2. As such, the prompt when
training on column `i is

‘‘<BOS>v`1 is vj
`1

<EOC> v`2 is vj
`2

<EOC> · · · v`i�1 is vj
`i�1

<EOS>"

A favorable side-effect of this training style is that we calculate the losses for each column sep-
arately, allowing the performances of each column to be monitored separately and compared, as
demonstrated in Section 4.3.

4 EXPERIMENTAL RESULTS

With our evaluations, we seek to assess the following claims:

Claim 1: Tabby models generate higher-quality data than pre-existing tabular synthesis approaches.
Claim 2: The Tabby architecture modification allows smaller LLMs to achieve synthetic data fidelity
more similar to that of LLMs with higher parameter counts.
Claim 3: Tabby’s loss formulation allows for convenient tracking of per-column performance at
training time, leading to better understanding of model behavior.

After providing evaluation setup details in Section 4.0, we compare Tabby to a broad array of prior
works on diverse tabular datasets in Section 4.1 to evaluate Claim 1. As Tabby may be applied
to any transformer-based LM, we explore Claim 2 for LMs of highly disparate sizes in Section 4.2.
Lastly, in Section 4.3, we investigate how Tabby adapts to individual columns within a dataset during
finetuning as a demonstration of Claim 3.
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Table 1: Summary statistics of datasets. The first three columns list the number of rows in each
data split, while the next two columns display the number of categorical versus numerical features,
respectively. The rightmost column details whether the dataset is considered a classification (C) or
regression (R) task in downstream evaluations.

N Train N Validation N Test # Cat. # Num. Task

Diabetes (Kahn, 1994) 576 57 135 0 8 C
Travel (Tejashvi, 2023) 715 71 168 4 2 C

Adult (Becker and Kohavi, 1996) 36631 3663 8548 8 6 C
Abalone (Nash et al., 1994) 3132 313 732 1 7 R

Rainfall (Zaman, 2018) 12566 1256 2933 2 1 R
House (Pace and Barry, 1997) 15480 1548 3612 0 8 R

4.0 SETUP

We now detail our experiments’ baselines, evaluation datasets and metrics.

4.0.1 BASELINES AND COMPARISONS

LLM Approaches: As previously described, there are multiple approaches to training LLMs on
tabular data, regardless of whether Tabby is applied. As a baseline training technique, we implement
Plain training. While this method has not been described in prior LLM works, it represents a basic
method of training the LLM on the columns in the same order as they are found in the training
dataset. At sample time, we simply prompt with <BOS> and parse the resulting model output.

Next, we explore the GReaT technique (Borisov et al., 2022) as introduced in Section 2. At each
step, the order in which the columns are presented to the model are selected at random. During
generation, GReaT enforces that the distribution of the label column matches that of the training
distribution. Suppose that the label column is vt and let St be the set of all unique values taken by
vt in the trainset (regardless of whether vt is a categorical or numerical column). GReaT prompts
the LLM with <BOS>vt is st, where st is sampled from St with probability proportionate to the
frequency of st in column vt.

We additionally explore the use of two more training techniques in conjunction with GReaT. TapTap
(Zhang et al., 2023) is a checkpoint of Distilled-GPT2, pretrained using GReaT on a large collection
of tabular datasets. Meanwhile, Tabula (Zhao et al., 2023) aims to address the challenges encoun-
tered by LLMs on categorical columns: Tabula converts each categorical column into an ordinal
format by replacing each unique value of the column with a unique integer. In many cases, this tech-
nique reduces sequence length, decreasing training and generation time, and helps the LLM during
sampling to only generate values that occur within the categorical column’s training distribution.
We abbreviate the training system of using GReaT, TapTap and Tabula together as GTT.

All LLM methods use Distilled-GPT2 as a base model, save for the GTT methods which use the
TapTap Distilled-GPT2 that is pretrained on tabular data as a base model. We finetune Non-Tabby
(NT) Distilled-GPT2 using Plain training as a baseline.

Other Approaches: To represent non-LLM tabular synthesis techniques, we include a diffusion
model, Tab-DDPM (Kotelnikov et al., 2022), as well as CTGAN (Xu et al., 2019) and TVAE (Xu
et al., 2019), the leading GAN and VAE approaches, respectively.

4.0.2 DATASETS

We evaluate Tabby on six common tabular datasets, which are summarized in Table 1. The majority
of these datasets are standard for the evaluation of tabular synthesis techniques, allowing for easy
comparison with prior approaches. For more information on these datasets, see Appendix A.

4.0.3 METRICS

We focus on the standard metrics of machine learning efficacy and detection accuracy to measure
the fidelity and quality of synthetic datasets.

5
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Machine learning efficacy (MLE) (Dankar et al., 2022) quantifies whether a synthetic dataset is
capable of replacing the original, real data used to train a generative model. MLE serves as our
primary metric for data quality. Given a real dataset, we form disjoint training and test sets, denoted
R and D respectively. A generative model is trained on R, then generates synthetic dataset S.

To calculate MLE, a downstream classifier or regressor KR is trained using R to predict a predeter-
mined label column, using all other columns as features. An additional classifier or regressor KS is
similarly trained on S. Then, the performance of KS and KR on the real test dataset D is evaluated:
a high-fidelity synthetic dataset S will allow KS to exhibit similar performance to KR despite never
encountering real datapoints before test-time. We report both KR and KS in our results, considering
MLE to be the difference in performance between KR and KS .

We use a random forest classifier or regressor as our downstream model K. For classification
datasets, we compare the accuracy of KR and KS , while for regression datasets, we compare the
coefficient of determination R2. We define the coefficient of determination R2 as max(1 � r

t
, 0),

where r and u are the residual sum of squares and total sum of squares, respectively. This formula-
tion means that if a model performs worse than random guessing, its R2 value will be represented
as 0. For both the accuracy and R2 coefficient metrics, a higher score indicates higher-quality data.
In Appendix B, we also report the mean squared error of KR and KS for the regression datasets,
where lower scores indicate better performance.

Detection accuracy (Qian et al., 2023) quantifies the degree to which the generative model introduces
spurious correlations or other patterns that differentiate synthetic from real data. Given the real
training dataset R and a synthetic dataset S, we sample the same number of rows from each. Next,
we train a random forest classifier C to discriminate between real and synthetic examples. Highest-
quality synthetic data will result in 50% discrimination accuracy, indicating that C is unable to
distinguish between R and S. For this reason, our reported discrimination scores are calculated
as the absolute difference between 50% and the accuracy of discriminator C. Accordinly, lower
discrimination scores represent better performance.

Calculation of results: The reported result for each model and training setup is the average across
three training runs. For each of the three trained models, we sample 10, 000 datapoints, compute
all evaluation metrics separately for the three resulting synthetic datasets, then calculate the average
metric value across all runs. For LLM approaches, each model is trained for up to 50 epochs, using
early stopping when the validation loss (assessed every 5000 steps) fails to improve twice in a row.
We perform grid search to select the learning rate with lowest validation loss for each model and
training setup. For non-LLM works, we follow the procedures detailed in each of these works.

4.1 TABBY VERSUS BASELINE SYNTHESIS METHODS

We begin by validating our first claim.
Claim 1: Tabby models generate higher-quality data than pre-existing tabular synthesis approaches.

Setup: The left side of Table 2 summarizes the MLE results for each dataset, with the classification
datasets (Diabetes, Travel and Adult) on the top and the regression datasets (Abalone, Rainfall and
House) on the bottom. For the classification datasets, the reported metric is the accuracy of the
downstream random forest classifier, while for the regression datasets, we report the coefficient of
determination R2 of the downstream random forest regressor.

For each dataset, the “Original” row corresponds to the “real” MLE achieved by training the down-
stream classifier or regressor KR on the original training data R instead of synthetic data. We
consider this row to be a performance ceiling for synthetic approaches. Any model and training
technique that achieves MLE equal to or better than the “Original” row is considered to be a top-
performing approach and is presented in boldface.

Results: We find that Tabby models achieve the highest MLE in 4 out of 6 datasets. Further, Tabby
reaches upper-bound performance on Diabetes, Travel and Adult, indicating that Tabby synthetic
data is a capable stand-in for real data in scenarios similar to the MLE task for these datasets.

Lower-performing LLM architectures often experience a performance boost over Plain training
when trained using GReaT (either alone or with TapTap and Tabula). However, we find that the
increased modeling capacity of Tabby MH allows this model to achieve the best LLM performance
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Table 2: Machine Learning Efficacy (MLE). The reported metric is random forest downstream ac-
curacy for classification datasets, or the R2 coefficient for regression datasets. The “Original” row is
upper-bound performance. Top results (or any result higher than upper-bound) is presented in bold.
An asterisk indicates that at least one of three runs did not successfully produce valid samples. Tabby
model names are presented in italic. Highlighted rows correspond to the overall top-performing
prior work (Tab-DDPM) , LLM-based work (GTT NT) , and Tabby model (Plain MH) (Ours) .

Tabby achieves strong performance, reaching upper-bound performance on 4/6 datasets.
MLE (") Discrimination (#)

Diabetes Travel Adult Diabetes Travel Adult
Original 73.3 87.5 84.5
CTGAN 52.1± 12.0 61.9± 33.0 76.2± 0.0 40.0± 2.2 32.2± 5.7 47.9± 0.3

TVAE 62.2± 0.0 63.9± 29.6 80.5± 0.6 45.3± 1.6 49.5± 0.2 46.7± 1.7
Tab-DDPM 71.9± 4.5 88.9± 1.4 83.9± 0.3 11.5± 0.3 1.4± 1.0 0.9± 0.4

NT 75.3± 1.5 85.5± 1.7 84.5± 0.4 3.8± 1.2 2.6± 2.0 8.2± 1.0
MMLP 74.8± 3.4 83.7± 2.5 77.4± 1.4 20.6± 2.1 3.4± 2.1 33.6± 8.9

MH 74.3± 0.4 87.7± 1.2 84.5± 0.2 6.0± 2.1 3.0± 2.5 9.8± 0.8Pl
ai

n

MMLP-MH 68.1± 0.7 82.5± 1.5 76.6± 0.6 18.6± 2.0 2.2± 1.0 31.4± 11.6
NT 62.2± 0.7 87.3± 0.9 82.9± 1.1 27.8± 0.7 5.6± 1.7 20.4± 1.0

MMLP 73.8± 0.9 86.9± 0.6 83.2± 0.6 22.7± 1.2 6.1± 1.5 18.4± 0.9
MH 63.7± 1.3 86.3± 2.1 83.2± 0.1 29.5± 2.1 6.5± 0.4 20.1± 1.7G

R
ea

T

MMLP-MH 69.4± 3.7 86.7± 0.3 83.0± 0.2 24.3± 1.3 7.0± 3.4 19.6± 0.8
NT 71.9± 5.9 87.1± 1.5 82.9± 0.8 27.1± 1.6 5.6± 0.7 20.5± 1.7

MMLP 69.4± 4.3 86.9± 0.6 83.4± 0.3 27.7± 1.1 8.0± 1.0 17.8± 0.8
MH 62.5± 0.4 85.7± 0.6 77.1± 5.3 28.1± 1.6 5.2± 0.8 26.2± 6.6G

TT

MMLP-MH 75.3± 1.5 85.7± 1.2 83.0± 0.5 24.2± 1.4 7.1± 2.8 18.3± 0.3

MLE (") Discrimination (#)
Abalone Rainfall House Abalone Rainfall House

Original 0.53 0.70 0.81
CTGAN 0.00± 0.00 0.00± 0.00 0.00± 0.00 46.0± 0.3 18.6± 5.4 18.2± 5.9

TVAE 0.03± 0.05 0.00± 0.00 0.08± 0.13 45.1± 1.6 40.0± 1.8 10.9± 2.6
Tab-DDPM 0.52± 0.01 0.60± 0.01 0.59± 0.00 2.7± 0.3 1.1± 0.9 33.2± 3.8

NT 0.46± 0.01 0.41± 0.35 0.70± 0.11 5.3± 0.8 3.1± 0.5 6.7± 5.7
MMLP 0.28± 0.10 0.11± 0.10 0.00± 0.00 19.9± 2.9 11.8± 1.0 20.2± 4.4

MH 0.47± 0.01 0.58± 0.03 0.75± 0.00 6.2± 0.3 7.1± 1.2 3.8± 0.6Pl
ai

n

MMLP-MH 0.30± 0.04 0.28± 0.24 0.00± 0.00 21.3± 2.7 11.3± 2.0 23.8± 1.8
NT 0.39± 0.01 N/A* 0.67± 0.02 8.5± 2.0 N/A* 18.4± 4.2

MMLP 0.34± 0.02 0.16± 0.28 0.68± 0.01 7.5± 1.2 27.2± 16.5 16.1± 0.2
MH 0.36± 0.04 0.00* 0.67± 0.01 10.7± 3.1 35.7* 19.1± 0.8G

R
ea

T

MMLP-MH 0.34± 0.04 0.16± 0.28 0.68± 0.01 7.0± 0.5 25.3± 18.8 16.3± 0.8
NT 0.35± 0.02 0.00± 0.00 0.68± 0.02 5.3± 1.0 30.4± 9.9 18.6± 2.0

MMLP 0.36± 0.01 0.00* 0.67± 0.01 14.0± 1.8 37.2* 19.0± 0.9
MH 0.36± 0.01 0.26± 0.37 0.66± 0.00 16.2± 0.9 19.4± 15.0 19.2± 0.7G

TT

MMLP-MH 0.40± 0.04 0.08± 0.11 0.68± 0.01 14.2± 2.0 22.2± 6.6 15.7± 1.0

without the use of additional training techniques, with their associated implementation difficulty and
computational overheads. Plain-trained Tabby MH models demonstrate the highest MLE among all
LLM architectures and training styles.

We also find that pre-existing LLM tabular training techinques introduce undesirable effects on the
Rainfall dataset. Entries marked by an asterisk (*) for this dataset indicate that at least one of the
three runs for this setup was unsuccessful in synthesizing any valid samples. Particularly, the Non-
Tabby (NT) GReaT model was unable to produce valid samples in any of the runs. Meanwhile,
each Plain-trained model is successfully sampled in all three runs—and the Plain-trained Tabby
MH models achieves the best overall performance on this dataset, indicating that Tabby models
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Figure 2: The House dataset’s target Median House Value column as a function of its most-predictive
feature, Median Income. Left to right: synthetic data from Tab-DDPM, the prior best LLM-based
method and Plain Tabby MH, followed by the original data distribution.

are capable of modeling complexities within the Rainfall dataset that pre-existing LLM-based
tabular synthesis works are unable to capture.

We view similarly-desirable performance in Tabby through the discrimination metric on the right
side of Table 2. Lower scores indicate that the discrimination classifier is less able to distinguish
between real and synthetic data samples. Comparing the discrimination scores of Plain- and GReaT-
trained NT, we find that the application of specialized tabular training techniques often has the un-
fortunate side-effect of worsening the discrimination score. For example, the discriminator score
on Diabetes for NT is 24% worse under GReaT than with Plain. Meanwhile, we see that the dis-
crimination scores for Plain-trained models do not increase as much. The discriminator score for
Diabetes increases only 2.2% for Plain-trained Tabby MH over the NT model.

4.1.1 COMPARING MULTIVARIATE MODELING CAPABILITIES ACROSS MODELS

We further compare the multivariate modeling capabilities of Tab-DDPM, Plain-trained Tabby MH
and the prior top-performing LLM-based approach of Great-trained NT with TapTap and Tabula. For
the real datapoints, plus synthetic data from one run of each model on the House dataset, Figure 2
plots the target column (Median House Value) as a function of its most predictive feature in the
dataset (Median Income).

Tab-DDPM’s plot (leftmost) differs the most from the real data (rightmost) because this model only
supports integer-valued regression targets. As a result, both LLM-based approaches more accurately
capture the target column’s distribution than Tab-DDPM.

Meanwhile, GReaT sampling (center left) enforces that the target column’s distribution is replicated
in synthetic data by prompting the model with target values selected randomly, based on their fre-
quency in the training data. This constraint means that GReaT models will not generate target values
outside those in the training data, which can be undesirable for datasets with few rows or limited tar-
get column coverage. In contrast, Plain training (center right) allows the language model to generate
previously unseen target values, while the improved modeling capacity of the Tabby over the NT
model allows this approach to still effectively capture the overall distribution of the target column.

4.2 INVESTIGATING THE CHOICE OF BASE MODEL

We now turn to our second claim.
Claim 2: The Tabby architecture modification allows smaller LLMs to achieve synthetic data fidelity
more similar to that of LLMs with higher parameter counts.

Comparisons: Next, we compare Non-Tabby and Tabby MH performance for LMs of varying sizes.
As a base model, we use either Distilled-GPT2 with 80 million parameters or Llama 3 with 8 billion
parameters. Each model is trained using GReaT for 5 epochs on a subset of the House dataset
with six columns and 5160 rows. The Llama models are fine-tuned and sampled using LoRA on
all linear linear layers, including the LM head to accommodate the new tokens added prior to fine-
tuning and—for the Tabby model—the MH modification.
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Table 3: A comparison of MLE and discriminator scores across models of varying size. We observe
that while Tabby increases model performance in both large and small models, the performance
increase is more noticeable for Distilled-GPT2. Additionally, we see that synthetic data generated
by Llama models is more easily distinguished than Distill GPT-2 synthetic data from real data.

MLE Discrimination # Parameters

Real 0.662
NT DGPT-2 0.474± 0.022 16.4± 0.5 80 Million
MH DGPT-2 0.525± 0.028 16.3± 0.7 270 Million

NT Llama 0.560± 0.015 24.2± 1.6 8 Billion
MH Llama 0.562± 0.022 25.3± 1.2 10.5 Billion

Figure 3: Machine Learning Efficacy (MLE) and Discrimination Score as a function of parameter
count. MH Tabby DGPT2 splits the performance difference between NT DGPT2 and Llama, despite
having a similar parameter count (270M) to NT DGPT2 (80M).

Results: As depicted in Table 3 and plotted in Figure 3, both Llama-based models outperform the
Distilled-GPT2-based models on MLE. Additionally, the Tabby MH models outperform their Non-
Tabby counterparts on MLE, though the difference is more pronounced for the Distilled-GPT2-based
models. In fact, with an average MLE of 0.525, the 270 million-parameter Tabby MH Distilled-
GPT2 model achieves closer performance to the 8 billion-parameter Non-Tabby Llama model
than to the Non-Tabby Distilled-GPT2 model with 80 million parameters.

We further observe an interesting effect when comparing MLE and discrimination scores. While
Llama achieves higher MLE, the Distilled-GPT2-based models both achieve better discrimination
scores. The double-edged nature of expressivity is one possible explanation for this phenomenon:
While higher expressivity allows Llama-based models to fit to complex patterns occurring in the
real data, perhaps this expressivity also allows Llama-based models to inject additional, spurious
patterns which differentiate the synthetic from the real data—resulting in a worse discrimination
score than the smaller, Distilled-GPT2-based models.

4.3 TRACKING THE ADAPTATION TO INDIVIDUAL COLUMNS

We address our final claim by examining Tabby’s progress while fine-tuning on tabular data.
Claim 3: Tabby’s loss formulation allows for convenient tracking of per-column performance at
training time, leading to better understanding of model behavior.

Setup: For three runs, we train a Tabby MH model on a subset of the House dataset containing 5160
rows and six columns. We log the individual columns’ losses on the evaluation dataset every 2500
steps while training for 10 epochs, then average across the runs and display the results in Figure 4.

Results: We observe that Occupancy is the largest contributor to the model’s loss until step 32000.
While Median Income’s loss is initially the second-lowest, it improves little throughout the training
process and exhibits the highest loss of all columns at the end of training. Additionally, we view that
convergence occurs around step 40000.
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Figure 4: Per-column validation loss across 10 epochs of training Tabby MH Distilled-GPT2 on
a subset of House, with average validation loss (black line). While the Occupancy column ini-
tially displays the highest loss, Median Income improves little throughout training and becomes the
highest-loss column by step 32000.

These insights are useful in cases where the model struggles to learn some columns more than others.
Such information may indicate a need for better preprocessing for a difficult column, or gathering
more datapoints to demonstrate the column’s distribution. Additionally, the ability to track each
column’s loss individually and to determine that the losses are roughly balanced across columns,
rather than very low in some columns and very high in others, may improve trust in the model—we
can understand that there is a low, aleatoric error in each column as opposed to a sizeable epistemic
error in a few columns.

4.4 DISCUSSION

We find that Tabby models synthesize high-quality data in a variety of settings. In particular, Plain-
trained Tabby MH consistently outperforms all prior LLM-based approaches. The Tabby archi-
tecture modification allows LLMs to better model univariate column distributions, as well as the
multivariate relationships across columns. This impact is particularly evident in smaller models, as
demonstrated in Section 4.2. Additionally, Tabby’s loss formulation allows per-column performance
to be evaluated more easily than other deep learning-based tabular approaches, which may be useful
in selecting training techniques and strengthening trust in model performance.

Unusually, we find that the baseline Plain training technique with Distilled-GPT2 achieves near-
optimal MLE performance on several datasets. The exclusion of the Plain training technique from
prior LLM works for tabular data synthesis, which rely on more complex techniques, is surprising.

As of this writing, the Adult, House and Diabetes datasets have become quite prevalent evaluation
tasks for tabular synthesis works: these three datasets are common to most works in this area.
It is our recommendation that new standard evaluation datasets be identified, which pose greater
challenges for baselines than these three datasets. A focus on more challenging datasets will allow
researchers to better-demonstrate the value of novel and more-complex synthesis techniques.

5 CONCLUSION

We introduce Tabby, a Mixture-of-Experts-based architecture modification that allows LLMs to
be better suited to tabular datasets. Tabby reaches parity with non-synthetic data in two out of
three evaluated datasets, according to machine learning efficacy with a Decision Tree Classifier.
Given the promising performance of Tabby, we hope to spur future work in this area and further
experimentation with architecture modifications that allow LLMs to better fit to tabular data. The
concepts behind Tabby may find utility in similar modalities as well, such as geospatial, nested-list,
or other highly-structured data.
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