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Abstract

Model inversion and membership inference attacks aim to reconstruct and verify the data on
which a model was trained. However, these methods cannot guarantee to find all training
samples, as they do not know the training set size. In this paper, we introduce a new task:
dataset size recovery, which seeks to identify the number of samples a given model was
fine-tuned on. Our core finding is that both the norm and the spectrum of the fine-tuning
weight matrices are closely linked to the fine-tuning dataset size. Leveraging this insight, we
propose DSiRe, an algorithm that accepts fine-tuned model weights, extract their spectral
features, and then employs a nearest neighbor classifier on top, to predict the dataset size.
Although it is training-free, simple, and very easy to implement, DSiRe is broadly applicable
across various fine-tuning paradigms and modalities (e.g., DSiRe can predict the number of
fine-tuning images with a mean absolute error of 0.36 images). To this end, we develop and
release LoRA-WiSE, a new benchmark consisting of over 25k weight snapshots from more
than 2k diverse LoRA fine-tuned models.

1 Introduction

Data is the top factor for the success of machine learning models. Model inversion (Fredrikson et al., 2015;
Yang et al., 2019; Haim et al., 2022) and membership inference attacks (Carlini et al., 2022; Shafran et al.,
2021; Jagielski et al., 2024) aim to reconstruct and verify the training data of a model, using its weights (Haim
et al., 2022; Duan et al., 2023; Nguyen et al., 2023). While these methods may discover some of the training
data, they are not guaranteed to recover all training samples. One fundamental limitation that prevents them
from discovering the entire training data is that they do not have a halting condition, as they do not know
the size of the training set (Haim et al., 2022). E.g., in membership inference, the attacker sequentially tests
samples for membership in the training set, but without knowing the dataset size, it’s difficult to establish the
halting condition or how many samples should be classified as "in" the training set. Knowing the training set
size provides a crucial halting condition and provides a principled way to set thresholds. Discovering the size
of a training dataset given the model weights is important, even without explicit reconstruction of the images
themselves. Understanding the number of images used to train or fine-tune models is also of great interest to
researchers, who wish to understand the number of data needed to replicate a model. We therefore propose a
new task: Dataset Size Recovery, which aims to recover the number of training samples a given model was
fine-tuned on.

To tackle this challenge, we begin by analyzing the relationship between dataset sizes and the corresponding
weights of fine-tuned models. As demonstrated in Fig. 2a, the Frobenius norm of the fine-tuned weights
is highly correlative with the corresponding dataset size. Specifically, the norm decreases as the dataset
size increases. However, since representing the weights matrix using only the Frobenius norm has limited
expressivity (as it’s only a single scalar), we proceed to extract singular values from the weights, providing
more expressive features. In Fig. 2b we can see that this approach shares the same phenomenon that we
previously described.
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Figure 1: DSiRe: We introduce the task of dataset size recovery, which aims to recover the dataset size used
to fine-tune a model based on its weights. extracts the singular values of each weight matrix and treats them
as features. These features are then used to train a set of layer-specific nearest-neighbor classifiers which
predict the dataset size.

We therefore introduce DSiRe (Dataset Size Recovery), an algorithm for recovering the dataset size across a
wide range of fine-tuned models. Given a fine-tuned model, DSiRe represents it by extracting the singular
values from each of its layers’ weights matrices. This representation yields a feature space for exploring
various classification techniques. In particular, the best version of DSiRe uses the very simple baseline
of nearest neighbors classification to label each model layer independently. The model-level prediction
is then determined by the majority vote of its layers (See Fig. 1 for an overview). With merely weights
information, it is effective for models fine-tuned on different modalities (e.g., vision and language), different
tasks (e.g., generative and discriminative), and with various architectures (e.g., transformers, CNNs, and
MLPs). Moreover, it is not limited to a single fine-tuning paradigm, working well whether the model is fully
fine-tuned or partially adapted (e.g. LoRA (Hu et al., 2021), DoRA (Liu et al., 2024)).

To evaluate DSiRe and encourage future research, we introduce LoRA-WiSE, a new, large-scale, and diverse
dataset. LoRA-WiSE comprises over 25k weights checkpoints drawn from more than 2k independent LoRA
models, spanning different dataset sizes, backbones, ranks, and personalization sets. On LoRA-WiSE, DSiRe
recovers the dataset sizes with a Mean Absolute Error (MAE) of 0.36, demonstrating that our method is highly
effective in realistic settings.

To summarize, our main contributions are:

1. Introducing the task of dataset size recovery.
2. Presenting a method for recovering dataset size for fine-tuned models.
3. Releasing LoRA-WiSE, the first dataset size recovery evaluation suite.

2 Related work

Predictions from Neural Network Weights. Predicting neural network attributes directly from their weights
is a relatively new and challenging area of research. Eilertsen et al. (2020) and Unterthiner et al. (2020)
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Figure 2: Norm and Spectrum of Fine-Tuning Weights vs. Dataset Size. Analysis of 300 Stable Diffusion
1.5 models fine-tuned on datasets of sizes from [1, 10, 20, 30, 40, 50]. (a) Frobenius norm range per dataset
size (b) Singular values per dataset size. There is a clear negative correlation between weight/spectrum
magnitudes and the size of the fine-tuning dataset.

pioneered this approach, predicting training hyperparameters and generalization capabilities, respectively.
More recently, (Zhou et al., 2024) proposed a permutation-invariant neural network weight encoder for
performance prediction. These works primarily focus on predicting properties of the entire network or its
performance. However, most of these methods have been limited to small networks (e.g., small MLPs or
CNNs with 3-5 layers) and have not been scaled to foundation models. Our work introduces a new task:
recovering the dataset size used for fine-tuning large-scale models. Our proposed method, DSiRe, leverages
the spectrum of the weights, demonstrating the potential of weight-space analysis for foundation models and
opening new avenues for understanding fine-tuned models.

Model Fine-Tuning. Model fine-tuning (Zhang et al., 2023a; Zhai et al., 2022; Avrahami et al., 2023b)
adapts a model for a downstream task and is considered a cornerstone in machine learning. The emergence of
foundation models (Radford et al., 2021; Touvron et al., 2023; Brown et al., 2020; Rombach et al., 2022)
has made standard fine-tuning costly and unattainable without substantial resources. Parameter-Efficient
Fine-Tuning (PEFT) methods were then proposed (Hu et al., 2021; Dettmers et al., 2023; Houlsby et al., 2019;
Li & Liang, 2021; Lester et al., 2021; Liu et al., 2023; He et al., 2021; Liu et al., 2022; Jia et al., 2022; Zhang
et al., 2023b; Wang et al., 2023a; Hyeon-Woo et al., 2021), offering various ways to fine-tune models with
fewer optimized parameters. Among these methods, LoRA (Hu et al., 2021) stands out, proposing to train
additive low-rank weight matrices while keeping the pre-trained weights frozen. LoRA was found to be very
effective across several modalities (Wang et al., 2023b; Ye et al., 2023; Avrahami et al., 2023a). Recently,
(Horwitz et al., 2024) identified a security issue with LoRA, demonstrating that multiple LoRAs can be used
to recover the original pre-trained weights. In this paper, we uncover a new use case of LoRA fine-tuning,
specifically focusing on the recovery of the dataset size from text-to-image models fine-tuned via LoRA.

Membership Inference & Model Inversion Attacks. Two privacy vulnerabilities found in machine learning
models are Membership Inference Attack (MIA) (Salem et al., 2018; Carlini et al., 2022; Hu et al., 2022;
Shafran et al., 2021; Jagielski et al., 2024) and Model Inversion (Fredrikson et al., 2015; Yang et al., 2019;
He et al., 2019; Yin et al., 2020; Haim et al., 2022). First presented by (Shokri et al., 2017), MIAs aim to
verify whether a certain image was in the training dataset of a given model. Typically, MIAs assumes that
training samples are over-fitted proposing various membership criteria; either by looking for lower loss values
(Sablayrolles et al., 2019; Yeom et al., 2018) or some other metrics (Watson et al., 2021; Carlini et al., 2022).
In generative models, MIAs have been extensively researched as well (Hilprecht et al., 2019; Hayes et al.,
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Figure 3: Spectrum Ranges of 2 Different Layers. Singular values distribution of two layers on opposite
sides of Stable Diffusion 1.5 UNet, fine-tuned on datasets of sizes [1, 10, 20, 30, 40, 50]. (a) First down block
(b) Last upper block. The last upper block shows greater separation of singular values compared to the first
down block, highlighting that not all layers are born equally for dataset size recovery.

2017; Chen et al., 2020), including recent attacks against diffusion models (Matsumoto et al., 2023; Hu &
Pang, 2023).

Model inversion is a similar attack, in a data-free setting. Introduced by (Fredrikson et al., 2015), model
inversion methods wish to generate training samples from scratch, instead of asking whether a known specific
image was in the training set. Model inversion is also used for settings where data is unavailable, e.g., data-free
quantization (Choi et al., 2021; Xu et al., 2020; Li et al., 2023) and data-free distillation (Lopes et al., 2017;
Zhu et al., 2021; Zhang et al., 2022; Fang et al., 2022; Shao et al., 2023).

(Haim et al., 2022) emphasized the importance of recovering the training set size for model inversion
applications. When this size is unknown, it prevents model inversion attacks from reconstructing the entire
dataset a model was trained on, as it is unclear how many samples are sufficient. Our work specifically
addresses this issue by uncovering a new vulnerability in fine-tuned models, which enables us to infer the size
of the dataset used for fine-tuning.

3 Motivation

Frobenius Norm Analysis. Our hypothesis is that the difference between pre-fine-tuning and post-fine-tuning
weights, denoted as ∆W , encodes valuable information about the size of the fine-tuning dataset. To investigate
this, we first consider a simple statistic of each fine-tuning matrix; its Frobenius norm, sF , defined as:

sF =
∑
ij

|∆Wij |2 (1)

The norm of a weight matrix is known to correlate with the expressivity of the network. For example,
weight decay, a common regularization technique, effectively constrains this norm. To analyze the correlation
between the Frobenius norm and the fine-tuning dataset size, We conducted an experiment using Stable
Diffusion (SD) 1.5. We fine-tuned the model on 50 micro-datasets of sizes [1, 10, 20, 30, 40, 50] images,
while keeping all other hyper-parameters fixed. Fig. 2a shows the range of values for the Frobenius norm
statistic sF across different dataset sizes. The results clearly demonstrate a negative correlation between sF

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

and the dataset size. We motivate this correlation by over-fitting, i.e., models tend to overfit faster on smaller
dataset sizes, leading to larger values of sF .

Analyzing the Singular Value Spectrum. To gain a deeper understanding, we extended our analysis to
the singular value spectrum of the fine-tuning matrix. Fig. 2b visualize the mth singular value (denoted as
σm) for different dataset sizes. We note there is a better separation between different dataset sizes for the
largest singular values. This suggests that the spectrum is more discriminative than the scalar Frobenius norm.
Overall, both sF and the spectrum indicate larger values for smaller dataset sizes.

Layer-specific Analysis. Finally, we analyzed how discriminative different layers are for predicting fine-tuning
dataset size. We plot the spectra of layers in two distinct blocks of the UNet architecture: the first down block
and the last up block. For each block, we calculated the mean and standard deviation of singular values across
all layers and present the results in Fig. 3. We can see that the up layer is more discriminative than the down
one, perhaps suggesting that the UNet decoder is more prone to over-fitting than the encoder. However, it’s
important to note that our experiments showed no single layer is universally discriminative across all models.
Therefore, we conclude that combining results from all layers yields the most robust prediction of dataset
size.

4 Method

4.1 Task Definition: Dataset Size Recovery

We introduce the task of Dataset Size Recovery for fine-tuned dataset, a new attack vector against fine-
tuned models. Formally, given the fine-tuning weights of all layers of a model denoted as ∆W =
[∆W1,∆W2, ...∆WL], our task is to recover the number of images n that the model was fine-tuned on. More
formally, we wish to find a function f , such that:

n = f(∆W) (2)
The effectiveness of this attack was measured by the MAE between f(∆W) and n across a set of models.

4.2 DSiRe

We propose DSiRe (Dataset Size Recovery), a supervised method for recovering dataset size from fine-
tuned weights. Our approach first constructs a training dataset by fine-tuning multiple models on concept
personalization sets across a range of dataset sizes. It then trains a predictor function f that operates on a set
of fine-tuning weights of each model and outputs the predicted dataset size n. At test time, it generalizes to
unseen models trained with different concepts. The method can be seen in Fig. 1

Training set synthesis. We first synthesize a training set by fine-tuning our model on each of Ntrain datasets,
each containing a set of training images. The datasets span a range of sizes; in this paper, we tested the ranges
1− 6, 1− 50, and 1− 1000. The result is a set of Ntrain models ∆Wm, each with a corresponding label of
the dataset size nm.

Constructing DSiRE. Given the set of Ntrain labeled models, we wish to train a predictor that maps the
fine-tuning weights Wm to dataset size nm. Motivated by the results of our analysis (see Sec. 3), we represent
a given model as the set of spectra of all of its L layers:

Ψ = [Σ1,Σ2, . . . ,ΣL]

where Σi denotes the singular values of the weight matrix of the fine-tuning layeri. During inference, given
a new model, we label each layeri using the label of the nearest i’th layer in the train set. Then, we get the
overall prediction by ensembling the results of the model layers using the majority vote. In practice, we tested
many different methods for labeling each layer in Ψ and ablate them in Fig. 4. Overall, the simple Nearest
Neighbor (NN) method performed the best.
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5 Experiments

5.1 Experimental Setup

Dataset. Constructing a dataset of real-world foundation models is challenging due to computational and
storage limitations. Therefore, we utilize LoRA fine-tuning, which is emerging as the most popular fine-tuning
paradigm for foundation models, and propose the LoRA Weight Size Evaluation (LoRA-WiSE) benchmark, a
comprehensive dataset designed to evaluate dataset size recovery methods for generative models. LoRA-WiSE
comprises 2,350 Stable Diffusion models (versions 1.5 and 2) fine-tuned using LoRA across various dataset
sizes, ranging from 1 to 1000 images. The benchmark includes multiple data ranges, LoRA ranks, and
backbones to ensure diverse evaluation scenarios. Unless otherwise stated, we use Stable Diffusion (SD) 1.5
as the pre-trained backbone and a LoRA rank of 32.

Settings. LoRA-WiSE comprises of 3 data regimes: low ({1, 2, 3, 4, 5, 6} samples), medium
({1, 10, 20, 30, 40, 50} samples), and high ({1, 50, 100, 500, 1000} sample). For each regime, we use
50 micro-datasets of different concepts (e.g., toys dataset, dogs dataset) to fine-tune SD on. Specifically, for
each dataset size s, we sample s images from each dataset, then fine-tune SD 1.5 on these resulted samples.
This yields 300 fine-tuned models for the low and medium settings, and 250 models for the high setting. We
then split each setting into train and test splits, with 15 models (fine-tuned on 15 micro-datasets) of each size
to train, and the rest left for test. This results in (90, 210) split for the low and medium settings and (75, 175)
split for the high setting. For a detailed description of the LoRA-WiSE benchmark and how these models are
trained, see App. C.

In addition to LoRA-WiSE, we train a set of models to evaluate full fine-tuning. we focus on the difference
between the original and fine-tuned weight matrices. Due to computational resources, we use the medium
data regime, resulting in 90 models for training and 210 for testing.

To ensure robust evaluation and test generalizability across different data distributions, we repeat each
experiment 10 times. In each time, we use subset sampling from models with varying object classes. We
report the average and standard deviation across these experiments.

Baseline. We compare DSiRe to a baseline, denoted as Frobenius-NN, which predicts the dataset size using
a nearest neighbor classifier on top of the Frobenius norms of the layers’ LoRA weights. Similar to DSiRe, the
Frobenius-NN is fitted separately to each layer, and then a majority vote rule is applied to select the prediction
from all layer-wise predictions. The analysis in Sec 3 provides motivation for this baseline.

Evaluation metrics. As described in Sec. 4.1, our main evaluation metric is Mean Absolute Error (MAE).
For completeness, we choose to report two complementary metrics as well: (i) Accuracy. (ii) Mean Absolute
Percentage Error (MAPE). Since DSiRe predicts dataset sizes, simple accuracy does not adequately measure
its effectiveness, e.g., predicting 4 when the true value is 5 is not as bad as predicting 1. We therefore provide
MAPE scores as well, which compute the percentile from the ground truth that is equal to the absolute error.

5.2 Results

LoRA-WiSE. We test DSiRe on a range of practical LoRA settings: We begin with a low range 1 − 6
fine-tuning images, aiming to assess our method’s performance on very small datasets. Results in Tab. 1
reveal that DSiRe outperforms Frobenius-NN by a small margin (> 3%). This demonstrates DSiRe’s ability to
generalize well even on small, continuous ranges, making it suitable for scenarios with limited data availability.

Expanding our investigation to mid-range dataset sizes (1− 50 images), which are common in artistic LoRA
fine-tuning, we aim to evaluate DSiRe’s performance on more typical use cases. Tab. 1 shows that DSiRe
performs well with an MAE of 1.48. In this data range, the Frobenius-NN baseline achieves comparable
results to DSiRe across all metrics, demonstrating good performance. While the absolute MAE value is larger
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Table 1: Performance Comparison of Dataset Size Recovery Methods on Full-Fine-Tuning and LoRA
Paradigms. Performance of Frobenius-NN and DSiRe across different fine-tuning paradigms: full-fine-tuning
(FFT) and LoRA, as well as different data ranges (1 − 6, 1 − 50, 1 − 1000) for LoRA. This supports our
analysis (see Sec. 3), which demonstrate that both singular values and Frobenius norm are indeed predictive
of the dataset size. However, DSiRe outperfomrs the Frobenius-NN on all evaluation metrics.

FT Paradigm Data Range Method MAE ↓ MAPE(%) ↓ Acc(%) ↑

Full-fine-tuning 1-50 Frobenius-NN 1.91 ±0.5 18.95 ±3.1 82.84 ±3.08

DSiRe 1.46 ±0.24 5.99 ±0.77 86.03 ±2.05

LoRA

1-6 Frobenius-NN 0.43 ±0.04 15.14 ±2.12 65.29 ±2.42

DSiRe 0.36 ±0.04 11.36 ±1.55 69.30 ±3.83

1-50 Frobenius-NN 1.56 ±0.19 4.16 ±0.75 85.33 ±1.81

DSiRe 1.48 ±0.21 3.97 ±0.73 86.10 ±1.99

1-1000 Frobenius-NN 68.62 ±5.53 9.25 ±1.21 86.51 ±1.12

DSiRe 41.77 ±6.61 5.96 ±1.46 91.90 ±1.28

than in the low data range case, it is relatively small compared to the range of data sizes. The accuracy and
mean absolute percentage error (MAPE) scores of both methods further support this observation. Fig. 6
shows another favorable property of our approach: its mistakes are usually near hits, i.e., large errors between
ground truth and predicted labels are rare.

In larger data quantities, dataset size recovery could aid in better understanding data collection quantities
needed for fine-tuning. Therefore, we conducted an additional experiment using models trained with higher
data ranges, having 1, 50, 100, 500 and 1000 image samples per model (note that here we have 5 dataset size
classes). Results, presented in Tab. 1, shows DSiRe is able to detect the dataset size with more than 90%
accuracy, and a MAPE score of only 6%. Additionally, in Fig. 7 we show the confusion matrix generated by
DSiRe, where we see that most of the errors happen between adjacent classes.

Table 2: DSire Performance on Continuous
Range This demonstrates DSiRe’s exceptional
generalization to continuous ranges of dataset
sizes, validating its practical utility in real-world
scenarios where dataset sizes vary continuously.

Method MAE↓ MAPE(%) ↓ R²(%) ↑
DSiRe 1.02 ±0.26 4.19 ±2.29 0.97 ±0.02

Continuous Range. Motivated by the common occur-
rence of continuous dataset sizes in real-world scenarios,
we aimed to evaluate DSiRe’s performance in a regression
setting. Our goal was to demonstrate that DSiRe can accu-
rately predict dataset sizes from a continuous range, rather
than just predefined discrete classes. We conducted an
experiment using Stable Diffusion 1.5 as our base model.
We created 20 datasets, each with a randomly sampled
number of images from the range 1-40, and trained a
LoRA on each dataset. This process was repeated 20 times, resulting in 400 LoRAs, each labeled with its
specific training dataset size. For inference, we used DSiRE with k=2. Results in Tab. 2 show that DSiRe
achieves an R² of 0.97. This demonstrates DSiRe’s exceptional generalization to continuous ranges of dataset
sizes, validating its practical utility in real-world scenarios where dataset sizes vary continuously.

Full fine-tuning. We proceed to evaluate DSiRe on the full fine-tuning setting described in Sec. 5.1.
The results in Tab. 1 show that both DSiRe and the Frobenius norm achieved good results, with DSiRe
outperforming Frobenius-NN by a small margin. This is in line with our hypotheses from Sec. 3.

Other Backbone. The LoRA fine-tuning technique is commonly used by popular text-to-image models. A
desirable aspect of our paradigm is being robust to model architecture. In this part, We test the robustness of
DSiRe to the backbone model by evaluating it on Stable Diffusion 2.0. We note that these models do not share
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Table 3: DSiRe’s Versatility across Domains. Performance comparison between DSiRe and Frobenius-NN
on diverse architectures and tasks: different backbone (SD 2), language models (GPT-2), discriminative
(ResNet-50). Our method works well in all cases.

Model Data Range Method MAE ↓ MAPE(%) ↓ Acc(%) ↑

SD 2.0 [1, 10, 20, 30, 40, 50] Frobenius-NN 2.95 ±0.28 11.99 ±3.93 73.90 ±2.21

DSiRe 2.30 ±0.24 6.90 ±0.82 79.95 ±1.66

GPT-2 [1, 50, 250, 1000] Frobenius-NN 0.0 ±0.0 0.0 ±0.0 100.0 ±0.0

DSiRe 0.0 ±0.0 0.0 ±0.0 100.0 ±0.0

Resnet-50 [2, 100, 200, 1000] Frobenius-NN 15.86 ±7.48 7.80 ±3.50 96.70 ±0.82

DSiRe 14.71 ±5.66 5.9 ±2.17 97.88 ±0.82

pre-training weights, as Stable Diffusion 2.0 was not fine-tuned from a previous version. Tab. 3 shows that
DSiRE performs well on Stable Diffusion 2.0, reaching around 80% accuracy. This provides evidence for the
correlation between the singular values and dataset size is not specific to one backbone alone.

LLM. To demonstrate that our method on modalities beside images, we experimented on GPT-2 (Radford
et al., 2019) fine-tuned with LoRA on 50 micro-datasets derived from CNN-dailymail (Nallapati et al., 2016),
each with 4 different sample sizes ([1, 50, 100, 500]). The results of our method in Tab. 3 show perfect
accuracy, suggest that our method extends beyond images.

ResNet. To test desire on discriminative tasks, we experimnteed with ResNet-50 (He et al., 2016) finetuned
using LoRA on 50 micro-datasets derived from CIFAR-100 (Krizhevsky et al., 2009), each with 5 different
sample sizes ([2, 100, 200, 500, 1000]). Tab 3 presents the results, showing that DSiRE works in that case too.

6 Ablation studies

Number of Micro-Datasets. While our attack is data driven and requires access to the pre-trained model,
we find that only a few examples are needed for DSiRe to perform well. E.g., in our medium data size range,
our model can reach 86.4% accuracy using only 5 micro-datasets for training. The full results, presented in
Fig. 5, showcases that while more samples (fine-tuned models) improves the accuracy of our predictor, even a
single micro-dataset is sufficient to achieve around 80% accuracy. This shows that our method is robust to the
number of micro-datasets used, even to very small numbers.

DORA. To evaluate robustness across more fine-tuning paradigms, we’ve included experiments with DORA
(Liu et al., 2024) on ResNet-50 in the same settings as the ResNet-LoRA experiment. Tab. 7 shows DSiRe
excels across different fine-tuning methods, including DORA.

LoRA Rank. We trained DSiRe for different LoRA ranks. Tab. 4 shows the results for medium and low data
ranges. Our method is robust to the LoRA rank, achieving similar results in all 3 tested ranks for both ranges.

Choice of classifier. We tested different parametric and non-parametric classifiers, as shown in Fig. 4. In
every case, we fit the classifier separately to each layer and select the predicted label via a majority vote
rule of all layer-wise predictions. The only exception is the NN-full model uses a kNN classifier that fits all
layers simultaneously. The results show that the choice of classifier affects the performance significantly.
Furthermore, these results confirm our hypothesis from Sec. 3: while each layer is predictive of the dataset
size, it is by combining all classifiers that we reach the best performance,

For more ablation studies on training steps, batch size, seeds, and learning rate, please refer to Appendix A.1.
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Figure 4: Performance of various predictors, dataset
size range (1− 50). DSiRe performs best by combin-
ing predictions from multiple layers, opposed to the
NN - full model baseline, which uses the spectra of
all layers together as features for a single prediction.

Figure 5: DSiRes Micro-Dataset Size vs. Accuracy,
reported on medium data size range (1− 50). Even
a single micro-dataset is sufficient for DSiRe to reach
80% accuracy. This demonstrates its effectiveness
with limited training data.

7 Discussion

Performance at Low Data Ranges. While our approach shows promising results, there is room for
improvement in lower data regimes, where DSiRe reaches less than 80% accuracy. Improving these results
will provide tighter upper bounds for membership inference and model inversion attacks.

Data Driven Solution. Our method is data driven as it requires training multiple models from each dataset
size. However, our analysis shows there is correlation between the Frobenius norm and dataset size (see Fig.
2a). This insight could be a stepping stone in developing a data-free solution.

Pre-training dataset size recovery. Another interesting application of dataset size recovery is for pre-
training cases. Lower bounding the required number of training set samples for foundation models will have a
substantial impact on the research community. Answering this question would require scaling up our method
to much larger dataset sizes and weight matrix dimensions.

8 Social impact

Research on our new task can positively impact both the research and digital arts communities. Establishing
an upper bound for membership inference attacks can promote privacy aware deployment of fine-tuned models
across different architectures and modalities. Determining the training dataset needed to train models with
poor documentation can help inform researchers that need to collect expensive datasets for new fine-tuning
tasks e.g., (Winter et al., 2024) and (Dai et al., 2023).

9 Conclusion

We introduced the novel task of dataset size recovery and proposed DSiRe, a method for learning a predictor
for this task in fine-tuned models. Our extensive experiments demonstrate DSiRe’s broad applicability across
various modalities, network architectures, fine-tuning paradigms, and dataset sizes, including continuous
ranges. We believe our work not only introduces a new capability but also provides valuable insights for
research in model privacy and security, potentially serving as an upper bound for model inversion and
membership inference attacks.
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10 Reproducibility Statement

To ensure the reproducibility of our method and results, we provide detailed descriptions of the experimental
results and implementation details in Section C.1. We have also included our code in the supplementary
material. LoRA-WiSE benchmark will be made fully available upon acceptance.
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A Appendix

A.1 Additional Ablation Studies

A.1.1 Robustness to LoRA Hyper-Parameters

We provide more ablation studies of our method. Specifically, we test the training steps, batch size, learning
rate and seeds used classifier type and used LoRA matrices.

Batch Size. We ablate the batch size, results at shown in Tab. 5. Despite the change in batch size, DSiRe
demonstrates robust performance, achieving a MAE score of 1.94 compared to the original 1.48. Additionally,
the accuracy only decreases by less than 5%, indicating that our method maintains comparable effectiveness
even with different batch sizes.

Table 4: DSiRe Performance with Different LoRA Ranks. Desire consistently achieves high accuracy across
both low and medium ranges, indicating its robustness regardless of LoRA rank variations.

Data Range LoRA Rank MAE ↓ MAPE(%) ↓ Acc(%) ↑

1− 6
8 0.43 ±0.04 14.8 ±2.3 66 ±3.08

16 0.42 ±0.03 12.4 ±1.11 67.7 ±2.3

32 0.36 ±0.04 11.36 ±1.55 69.30 ±3.83

1− 50
16 1.67 ±0.17 4.32 ±0.46 84.04 ±1.85

32 1.48 ±0.21 3.97 ±0.73 86.10 ±1.99

64 1.41 ±0.39 3.90 ±1.30 86.58 ±3.45

Table 5: DSiRe performance using different LoRA hyper-parameters. Medium data range

Ablation MAE↓ MAPE(%) ↓ Acc(%) ↑
Batch size 1.94 ±0.26 9.35 ±1.34 81.50 ±2.55

lr 1.68 ±0.23 5.15 ±0.95 83.48 ±2.14

seeds 1.52 ±0.18 4.95 ±0.85 82.48 ±2.14

Baseline 1.48 ±0.21 3.97 ±0.73 86.10 ±1.99

Seeding. While in the standard recipe, all models use seed = 0, we also tested the case where all seeds
were selected randomly. Tab. 5 shows that the variation in seeds only reduces accuracy by around 4%, and
that MAE decreases by less than 0.5. This is not a small change, given that the gap between possible dataset
size values is 10.

Learning Rate. We ablate the learning rate, with results shown in Tab. 5. Despite the change in learning
rate from our baseline, DSiRe demonstrates robust performance, achieving a MAE score of 1.68 compared to
the original 1.48. Additionally, the accuracy only decreases by approximately 3%, indicating that our method
maintains comparable effectiveness even with a different learning rate. These results further support DSiRe’s
resilience to variations in fine-tuning hyperparameters.

Training Steps. To train DSiRe, we first fine-tune a set of LoRA models. These models follow a certain
recipe, with a specific amount of training steps. To evaluate robustness, we tested DSiRe on models fine-tuned
at different steps, with 1200 steps as our baseline. As shown in Tab 6, DSiRe consistintly achieves comparable
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results across different fintuning steps. e.g. the MAE score ranges from 2.43 at 300 steps to 1.40 at 1400
steps, with accuracy variations within 10%.

Table 6: DSiRe performance on different checkpoints of Stable Diffusion 1.5 rank 16 range 1− 50

#Steps MAE↓ MAPE(%) ↓ Acc(%) ↑
300 2.43 ±0.20 6.82 ±0.78 77.90 ±1.49

400 2.39 ±0.20 6.72 ±0.76 78.38 ±1.49

500 2.05 ±0.15 5.55 ±0.59 81.33 ±1.60

600 1.86 ±0.10 4.59 ±0.34 82.76 ±0.86

700 1.89 ±0.21 5.13 ±0.77 82.00 ±2.01

800 1.71 ±0.29 4.59 ±0.89 83.67 ±2.68

900 1.60 ±0.22 4.21 ±0.69 85.14 ±2.04

1000 1.62 ±0.21 4.69 ±0.70 85.10 ±1.77

1100 1.58 ±0.19 4.50 ±0.90 84.48 ±1.32

1200 1.48 ±0.21 3.97 ±0.73 86.10 ±1.99

1300 1.46 ±0.15 3.84 ±0.51 86.29 ±1.55

1400 1.40 ±0.20 3.73 ±0.76 86.76 ±2.08

B Additional experiments and and figures

DORA. To address concerns about robustness to different fine-tuning paradigms, we’ve included experiments
with DORA (Differentiable Optimal Ranking Adaptation) (Liu et al., 2024) in addition to standard LoRA. We
experimented with ResNet-50 using DORA in the same settings as the ResNet-LoRA experiment. Tab. 3
presents results that demonstrate DSiRe performs exceptionally well across various fine-tuning paradigms,
including DORA. This provides further evidence of the method’s versatility and robustness to different
fine-tuning approaches.

Table 7: Robustness of Dataset Size Recovery Methods on DoRA DSiRe recovers dataset size more effectively
than Frobenius-NN for the medium data range (1− 50) using Stable Diffusion 2.0. This supports the benefit
from a more expressive representation given by

Method MAE↓ MAPE(%) ↓ Acc(%) ↑
Frobenius-NN 16.57 ±13.3 4.45 ±2.29 97.07 ±1.69

DSiRe 20.9 ±12.04 5.01 ±1.95 96.51 ±1.62

Choice of LoRA matrices. Seeing in Sec. 3 that not all layers are similar in behavior, we test to see if
different LoRA matrices also capture different information. In Tab. 8, we find that indeed different LoRA
matrices capture different information, and lead to substantially other performances. Unsurprisingly, we also
find that using all the LoRA matrices combined yields the best result.

B.1 Additional Figures

To better understand the results on medium and higher data regimes we provide here the confusion matrices
of DSiRe using 1− 50 and 1− 1000 training samples. We can see that most of the errors are in larger data
classes.
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Table 8: DSiRe performance on different layers of LoRA of the UNet in Stable Diffusion 1.5, range 1− 50:

# Layer Type MAE ↓ MAPE(%) ↓ Acc(%)
A 1.9 ±0.29 5.63 ±1.26 82.52 ±2.20

B 1.57 ±0.19 4.07 ±0.65 84.90 ±2.09

BA 1.61 ±0.16 4.22 ±0.47 85.00 ±1.45

full model 1.48 ±0.21 3.97 ±0.73 86.10 ±1.99

Figure 6: DSiRe Confusion Matrix for Medium
Data Range in a single experiment. Illustrating
DSiRes accuracy in the range of 1−50 samples, shows
that most of the errors are near misses, highlighting
DSiRe’s precision in dataset size recovery.

Figure 7: DSiRe Confusion matrix in High data
regime. Illustrating DSiRe’s accuracy in the range
data size (1− 1000) for a single experiment, showing
that most predictions are correct or near misses, high-
lighting the DSiRe’s precision in dataset size recovery.

C LoRA-WiSE Benchmark

We present the LoRA Weight Size Evaluation (LoRA-WiSE) benchmark, a comprehensive benchmark
specifically designed to evaluate LoRA dataset size recovery methods, for generative models. More
specifically, it features the weights of 2350 Stable Diffusion (Rombach et al., 2022) models, which were LoRA
fine-tuned by a standard, popular protocol (Ruiz et al., 2023; dre). Our benchmark includes versions 1.5 and 2
of Stable Diffusion, having 2050 and 300 trained models for each version respectively.

We fine-tune the models using three different ranges of dataset size: (i) Low data range: 1− 6 images. (ii)
Medium data range: 1− 50 images. (iii) High data range: 1− 1000. For each range, we use a discrete set of
fine-tuning dataset sizes. In the low and medium ranges, we also provide other versions of these benchmarks
with different LoRA ranks and backbones. See Tab.9 for the precise benchmark details.

For our low data range set, we choose Concept101 (Kumari et al., 2023), a previously collected set of
micro-datasets (3− 15 images) designed for personalization research. For our medium and high data ranges
we use different classes of ImageNet (Deng et al., 2009) as the data source. This selection of datasets aims to
ensure that the fine-tuned models are drawn from a diverse set of concepts, spanning various categories.

Each micro-dataset is used to fine-tune the models for each dataset size. The images are randomly selected
from the micro-dataset. Each Stable Diffusion model consists of 132 adapted layers (pairs of Ai, Bi), including
various layer types, such as self-attention, cross-attention, and MLPs. We save Ai, Bi separately, i.e., each
model provides a total of 264 unique weight matrices. We then split each range of this new benchmark
(low, medium, and high ranges) into train and test sets based on the micro-datasets. for more details see
appendix C.1.
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Table 9: LoRA WiSE Benchmark Overview. The dataset comprises over 25,000 weights checkpoints drawn
from more than 2000 independent LoRA models, spanning different dataset sizes, backbones, ranks, and
personalization sets.

Data Range Dataset Sizes Source Backbone LoRA Rank # of Models

Low 1, 2, 3, 4, 5, 6 Concept101 SD 1.5
8 300
16 300
32 300

Medium 1, 10, 20, 30, 40, 50 ImageNet SD 1.5
16 300
32 300
64 300

SD 2 32 300

High 1, 50, 100, 500, 1000 ImageNet SD 1.5 32 250

C.1 Implementations Details

LoRA-WiSE. we now elaborate the implementations details of the LoRA-WiSE bench
dataset. As the Pre-Ft models we use runwayml/stable-diffusion-v1-5 and
stabilityai/stable-diffusion-2 (Rombach et al., 2022). We fine-tune the models using the
PEFT library (Mangrulkar et al., 2022). We use the script train_dreambooth_lora.py (Ruiz et al.,
2023) with the diffusers library (von Platen et al., 2022).

For each regime, we have 50 micro-datasets with varying sizes. For each size s in the regime’s dataset sizes’
range, we sample s images from each micro-dataset, and train SD 1.5 on this resulted dataset

we use the standard recipe to fine-tune the models in all ranges(dre) see tabs. 10 and 11. we use batch size 8
for a range of 1-1000 for computational resources and 1000 training steps. in the ablations, we don’t change
any hyper-parameter except the ablate one.

Each model took approximately 30-50 minutes to fine-tune. We used GPUs with 16-21GB of RAM, such as
the NVIDIA RTX A5000. The DSiRe process, however, does not require GPUs and can run on CPUs.

Full Fine-Tuning. For the pre-fine-tuned models, we use runwayml/stable-diffusion-v1-5. We
employ the script train_text_to_image.py for training.

we use the standard recipe to fine-tune the models in the range (dre), we choose 50 random classes from
ImageNet to fine-tune the models on medium regime ({1, 10, 20, 30, 40, 50}.

LLM We fine-tune the GPT-2 model from Hugging Face on 50 different datasets derived from CNN-
DailyMail (Nallapati et al., 2016), using varying dataset sizes [1, 50, 100, 500]. LoRA is applied with a rank
of 16 and an alpha of 32, and the model is trained for 100 steps.

ResNet We fine-tune ResNet50 from the torchvision models on CIFAR-100. LoRA is used with a rank of
32, alpha of 32, and targets the conv1, conv2, and conv3 layers. CIFAR-100 is split into 50 distinct datasets,
with each dataset composed of two combined classes. The ResNet is fine-tuned on these datasets across
various sizes ([2, 100, 200, 500, 1000]) for 250 steps.

Experiment Settings. In addition to the experiment settings described in Section 5, we used the following
configurations for our models:
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Table 10: ranges 1-6 and 1-50

Name Value
lora_rank (r) r
lr 1e− 4
batch_size 1
gradient_accumulation_steps 1
learning_rate_scheduler Constant
training_steps 1400
warmup_ratio 0

dataset
imagenet(Deng et al., 2009)
concept101(Kumari et al., 2023)

seeds 0

Table 11: range 1-1000 Hyper-parameters

Name Value
lora_rank (r) 32
lr 1e− 4
batch_size 8
gradient_accumulation_steps 1
learning_rate_scheduler Constant
training_steps 1000
warmup_ratio 0
dataset imagenet
seeds 0

- For models in the ranges 1-6 and 1-50, we used the checkpoint at iteration 1200.

- For models in the range 1-1000, we used the checkpoint at iteration 1000.

-We used a fixed seed of 42 to split the train and test data for every experiment.

Layer weigh matrices In line with our analysis see Sec.3, given n example weights for each Ai, Bi we wish
to build a separate classifier for each one. Knowing the relation between the singular values and the dataset
size, we decompose each matrix using the singular value decomposition (SVD), and use the ordered set of
singular values as features for our classifiers. Formally, we note the singular values of Aij as ΣAij

and the
singular values of Bij as ΣBij . We include the singular values of Bij ·Aij denoted as ΣBij ·Aij . Additionally,
our observations indicate that the product Bi · Ai also provides useful information for data size recovery.
Thus, for each LoRA matrix, we obtain a dataset with n samples, where each sample is a vector of singular
values Σij , paired with a corresponding label yj . Our method then trains three separate kNN-classifiers with
K = 1 for each layer over (i) Ai (ii) Bi and (iii) BiAi. At inference time, the predictions from all classifiers
are merged by majority voting.
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