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Abstract

Latent reasoning has emerged as an alternative to reasoning with natural language
and involves feeding back the last layer’s representation (soft token) to the input of
the transformer. This idea is promising, since soft tokens have higher representation
capacity compared to quantized vocabulary elements, i.e. hard tokens. Existing
works on training transformers with soft tokens often suffer from performance loss,
while in some cases sampling diverse outputs from the model can be challenging.
We propose a training paradigm called STOIC REASONER (Soft TOken Implicit
Context REASONER) for transformers that uses soft tokens, in which the model
learns to operate in two modes; one that processes the soft tokens (latent thinking
mode) and one that decompresses the soft tokens into few reasoning steps with hard
tokens from the vocabulary (local decoding mode). We focus on logical and math
reasoning tasks, and fine-tune pretrained models of different size. Our method
achieves similar or better performance, compared to supervised fine-tuning with
Chain-of-Thought data across all tasks; while it requires reduced KV cache and
allows sampling different reasoning traces at inference.

1 Introduction

Reasoning models often rely on increased test-time compute through methods like Chain-of-Thought
(CoT) prompting [Wei et al.,|2022]]; since they have been either trained on or guided by CoT data,
which encourages them to generate intermediate reasoning steps in order to reach an answer. Even
though CoT data have been shown to improve performance on reasoning tasks, one potential downside
is that models are constrained to reason only using tokens of the vocabulary (hard tokens). Projecting
the hidden states of a model to the vocabulary, can be thought as a discretization step, which
potentially leads to information loss. Reasoning in the latent space has emerged as an alternative, in
which the hidden states are not always realized as hard tokens, potentially leading to more expressive
and thus shorter reasoning chains.

One particular approach involves the use of so-called soft tokens, which are not part of the discrete
vocabulary of hard tokens. In this work, we focus primarily on soft tokens that are represented by
the last-layer hidden states. [Hao et al.|[2024] took initial steps in this direction, proposing a training
algorithm that gradually replaces CoT steps with soft tokens, without explicitly training them. Later,

*Denotes equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL



Mult iply by 10: 10x = 9.9999...
4

Let x = @.9999...

Sub tiract x: 10x = X 9.19999... - 0.9999...

9x=9, thus x=1

Is 0.9999... equal to 17

Figure 1: When solving a reasoning task, the model can choose to reason in the vocabulary space of hard (top),
or with soft tokens in the latent space (bottom) and traverse between the two by processing the soft tokens, or
decompressing the soft tokens into the CoT steps. This can be viewed as an interpolation between hard token
and soft token methods.

Shen et al.|[2025a]] introduced an auxiliary loss to distill hidden representations from a teacher model
trained on explicit CoTs. More recently, [Hwang et al|[2025]] proposed a three-stage training method:
(1) fine-tuning a pretrained model on the target task, (ii) training an encoder—decoder to compress
and decompress CoT steps into latent representations, and (iii) training a latent model guided by the
learned encoder—decoder.

These methods often result in performance loss, compared to explicit CoT training or require
training more than one models. More importantly, models that reason only in the latent space
produce deterministic trajectories, and it is unclear how sampling should be implemented at inference.
This conflicts with post-training algorithms like GRPO 2024] that require exploring
multiple candidate reasoning paths. Our approach, STOIC REASONER (Soft TOken Implicit Context
REASONER), mitigates these concerns by training one transformer model that performs in a dual
nature; the latent thinking mode, in which the model learns to generate the next soft token and the
local decoding mode, in which the model learns to decode the soft tokens into CoT step(s). The model
can also choose to update the soft tokens, using the representation generated in the local decoding
mode.

2 Related Work

Latent Reasoning via Tokens. The idea of augmenting LLM’s capabilities, by providing special
tokens of the vocabulary in the input, has been shown to improve reasoning with minimal training
or architectural changes [Goyal et al, [2024] [Pfau et all, 2024} [Sun et all, 2025]. Another line of
work studies soft tokens—continuous embeddings not tied to the discrete vocabulary. Soft tokens
can be constructed in multiple ways; one is by superposition over input embeddings
2024, [Zhang et al, 2025 [Wu et al.] Gozeten et al.l [2025]], or (ii) by using last-layer hidden
states [Hao et al., [2024], [Tack et al.,[2025| Zhu et al.,[2025] |Shen et al.,[2025b| [Hwang et al.} [2023]].

Our work is closer to the second approach, which feeds the model’s final-layer hidden states back
into the input. Beyond these, several methods leverage learned soft embeddings from other sources
like intermediate hidden representations of a frozen LM [Cheng and Durmel [2024]], or VQ-VAE to

discretize and compress CoT embeddings into soft tokens [Su et al., 2025]].

Transformers with Memory. Relevant to our work is the literature on augmenting transformers
with some form of memory of the past context. The work of Dai et al.| [2019]] combines past hidden
representations through the attention mechanism. [Bulatov et al.|[2022 2023 introduce recurrent
memory transformer (RMT) which use the last-layer hidden representations, append them in the
beginning, and end of each segment and iteratively update them. (Chevalier et al.|[2023] fine-tune
pretrained models by using adaptive instead of a constant number of memory tokens and show
benefits for long context length.
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Figure 2: Training framework of our method. We train a single transformer to operate in two modes. In the
latent thinking mode, given the question and compressed context, the model predicts a new soft token. In the
local decoding mode, it decompresses the soft token into a few Chain-of-Thought steps until a [switch] token
is produced, after which the model choose to update the soft token using the representation at [switch].

3 Our Method

In this section, we describe our training algorithm applied to reasoning tasks. In the Appendix [A.72]
we provide more details.

Details of STOIC REASONER. In Figure[2]we provide a depiction of how STOIC REASONER works.
In detail, given CoT training data, in which the steps are explicitly defined, we split them (together
with the label) into k£ chunks, where k is the maximum number of soft tokens used. Each chunk is
either empty, contains one, or more steps of CoTs. At the end of each chunk we append a special
[switch] token. We start with the latent thinking mode, given a question ¢, the first soft token is
produced by passing in the model the question and keeping the last layer’s hidden representation
(s1) corresponding to the last token. Afterwards, we enter the local decoding mode in which the
first chunk of data is fed to the model together with the question and the first soft token. The model
predicts some labels which we keep to apply loss. The last layer’s hidden representation of the
[switch] (noted as s in Figure[2) is used to update the soft token. The steps are repeated until all
the chunks have been used.

Enhancing soft tokens. In order to enhance reasoning through soft tokens and learn more robust
representations by allowing the model to sometimes skip the local decoding step, we introduce a
stochastic soft token updating rule to our method. Specifically, during training with probability pypgate.
we update the soft token with the last layer’s hidden representation of the [switch] (s}) and with
probability 1 — pypgae, We do not update it (keep s1). At inference the user can pick a new probability
Dupdate> and enable or disable the generation of hard tokens to speed up inference.

Scheduling on soft tokens. To improve the training stability and learning curve, we apply a
curriculum on the number of soft tokens. We start the training with fewer number of soft tokens to
keep training closer to supervised fine-tuning with explicit CoTs, in which case one soft token needs
to encode multiple CoT steps. As the training progresses we gradually increase the soft tokens used,
until we reach the maximum number of soft tokens that we want the model to adapt to. The training
steps for each stage of the scheduling are decided as a percentage of the total number of steps. We
discuss the effects of scheduling in Appendix [A-4]

Remark 1. STOIC REASONER is closely related to Autocompressor [Chevalier et al., [ 2023]] which
primarily extends effective context length by updating learned memory tokens and prepending them
to subsequent segments. Our approach came from a different perspective: rather than increasing the
retrievable context length, we study how such latent states can compress CoT traces while preserving



accuracy and reducing KV-cache. Furthermore, the update probability pypqaee interpolates between
memory-augmented processing and purely latent soft-token computation.

4 Experiments

We evaluate STOIC REASONER by fine-tuning pretrained language models on mathematical and
logical reasoning benchmarks. The detailed setup is in Appendix

Performance on Reasoning Tasks by Different Models. The results on different reasoning tasks
and different models are reported in Tablem On GSMB8K, for GPT2-small, STOIC REASONER outper-
forms the CoT baseline and the other soft token approaches. On ProntoQA, our approach matches
CoT at 100%. On ProsQA, latent/soft token methods generally beat CoT, likely because the task
benefits from exploring alternatives without committing to a single path. Mirroring this behavior
by using pupgare < 1, our method achieves significantly better performance compared to CoT and
competitive with prior soft token approaches.

Model GSMS8k ProsQA ProntoQA

CoT 4473 84.6 100 Model CoT  Ours
C;(ng;f t 22'(1’ gg'g 00 GPT2-small 4473 47.84
Qo & - Gemma3-270M  48.75  47.92
o P o6 ] Qwen2.5-05B 5822 58.45
Stoic 4784 946 100

Table 1: (left) Performance of GPT2-small on GSM8k, ProntoQA and ProsQA with different soft token/latent
methods, and (right) Test accuracy on GSM8k for GPT2-small, Gemma3-270M and Qwen2.5-0.5B. Note that
we did not re-implement these methods except for SFT on CoTs; we report the results that each paper reported
(iCOT: Deng et al.|[2024]], Coconut: [Hao et al.|[2024], CODI: Shen et al.|[2025a] and SbS Hwang et al.| [2025])).

Task Difficulty Generalization. We further evaluate on iGSM [Ye et al.| [2024]], a GSM8K-style
synthetic benchmark that controls the number of arithmetic operations (op) required to solve each
problem. We fine-tune a pretrained GPT2-small model on iGSM-Easy (op < 9) and iGSM-Med
(op < 15) datasets, and then test on out-of-distribution (OOD) data. As shown in Figure E], our
method matches the CoT baseline on in-distribution problems and consistently retains higher accuracy
on OOD problems; moreover, the accuracy decays more slowly as op increases.
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Figure 3: In-Distribution and OOD Performance of iGSM Easy and Medium Dataset. Across both settings,
STOIC REASONER retains higher accuracy than CoT under OOD shifts with longer reasoning chains and
degrades in a slower rate as the number of operations increases.

Test-time Performance. As mentioned earlier, our method naturally supports sampling via local
decoding and the update of the soft token accordingly; different traces in local decoding imply
different updated soft token.

More results on different temperature are shown in Appendix [A.4]
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Figure 4: Pass@K (solid line) and majority-vote (dashed line) results on GSMS8K for GPT2-small (left) Gemma3-
270m (middle) and Qwen2.5-0.5B (right). Our method shows monotonic gains as k increases, following the
same trend as the CoT baseline. Temperature is set at 1 for the top and 1.5 for the bottom.

Effect of the soft token update probability. We study the effect of pypgae On ProsQA, where soft
token methods outperform the explicit CoT. We sweep pupdate € {0,0.2,0.5,0.7,1} and the results
can be seen in Table2l

Probability of updating 0.0% 20% 50% 70% 100%

Always decoding 0.0 91.0 0916 874 82.0
Probabilistic decoding 830 | 91.6 946 896 720
Latent only 90.6 89.0 940 934 0.0

Table 2: Performance on ProsQA of GPT2-small with variable soft token update probability pupdae (columns)
and across test-time strategies (rows). “Always decoding” always performs local decoding; ‘“Probabilistic
decoding” performs local decoding with probability pupdae matching the column; and “Latent only” uses only
soft token updates.
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A Appendix

A.1 Dataset Details

For GSM8K, ProntoQA, and ProsQA, we adopt the preprocessing and train/validation/test splits of
Hao et al.|[2024]. For iGSM, we generate the dataset using the official open-source implementationﬂ
We record the data split in Table[3] and the max number of CoT steps in each dataset in Table d] For
the OOD dataset in iGSM, the number of CoT step is the number of the operation op, so the iGSM
with op = 20 contains 20 CoT steps.

Table 3: Dataset splits.

Dataset Training Validation Test OOD
GSMS8k 385,620 500 1,319 -
ProntoQA 9,000 200 800 -
ProsQA 17,886 300 500 -
iGSM-med/easy 1,498,500 500 1,000 1,000

Table 4: Statistics of Dataset.

Dataset Training Validation Test Example CoT step

GSM8k 13 8 8 «12+3=15»

ProntoQA 11 11 11 Each yumpus is a wumpus.

ProsQA 6 6 6 Every hilpus is a numpus.

iGSM-med 15 13 13 Define Niagara Falls Aviary’s Enclosure as
y; soy =b = 20.

iGSM-easy 9 9 9 Define Goat Cheese’s Rye as S; so S = 3.

A.2 Details on Our Method

Reduced KV-Cache at Inference. If the probability of updating the soft token is set to be pupdare €
[0, 1], meaning we always generate the hard tokens, then our method for inference uses KV-cache
which scales as g + k + L, where ¢ is the size of the length of question, k is the number of soft tokens
used, L is the maximum length of any generation. The inference FLOPs are scaling as

k L

[(q + Z) + Pupdate Z(q +17+ J)] = O(q2 + k2 + pupdatekL(k + L+ Q)
1 j=1

q
>+

=1 i

Similarly, for the standard model that is fine-tuned in the CoTs the KV-cache scales as ¢ + K L, while
the FLOPs scale as

q kL
I+ (g+1) = O(¢* + gkL + K°L?)
=1 i=1

Algorithm for training and inference. Here we present the detailed training and inference algo-
rithm in Algorithm [T]and

https://github.com/facebookresearch/iGSM
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Algorithm 1 Training Algorithm 2 Inference

1: Input: g, T'Fy, pupdate, MATL.

2: 90, hg < TFy(q)[-1]

3: while i < maxy and t # [eos] do

1: Input: data point (g, y), Transformer T Fp,
probability pypgace-
2: Choose k {number of soft tokens}

)] 4t PROJyoear(TFp([g; hosi—1])[=1])

3. {z;}%_, +«+ RANDOMPARTITION(y,k) . . ocab s hozi
{split]y (CoTs + labels) into k parts} 2 : if ? (ﬁa h) < Pupdate and t # [ans] then

gi z;)r;_:T fa(q”;}i]o T while ¢ # [switch] do

: e, ' 5 al L
6: ZJ — TFe([(J,ho:j—hmp [sw1tch]]) 9: z 2)%(3}179(([2] hoss, T))[—1]
7: if Z/l(07 1) < Pupdate then 10: ¢ — PROJ ’7 (z)za
8: hj_1 + zj[—1] {update soft token} 0 e ool
9: endif : . -
10:  tj + PROJyoean(2;[: —1]) }g en(}ih{fl « z[—1] {update soft token}
1 hy = TFy(lg, hoyj—1])[-1] 14 hy < TEy([g, ho:i—1]) [~ 1]
12: end for 15 i it
13: £ LOSS({tj}é?:l’ ) 16: end while

A.3 Experimental Setup

We fine-tune GPT2-small (124M) [|Radford et al., 2019]], Gemma3 (270M) [Team et al.,[2025]], and
Qwen2.5 (0.5B) [Team, 2024] on four datasets: GSM8k [[Cobbe et al.l [2021]], iGSM [Ye et al.,
2024], ProsQA [Hao et al.l 2024], and ProntoQA [Saparov and He, |2022]]. For GSM8k we adopt the
augmented split of Deng et al.|[2024]]; for ProsQA we follow [Hao et al.|[2024]]. For iGSM we use
two settings: medium with maximum number of operations op < 15 and out-of-distribution (OOD)
evaluation at op = 20, - - - , 27, and easy with op < 9 and OOD atop = 12,--- ,19.

Our main baseline is supervised fine-tuning (SFT) on explicit Chain-of-Thought traces. To ensure a
fair comparison, we use identical hyperparameters for our method and the SFT baseline: we apply
learning rate 2e-4 when finetuning GPT2 and 5e-5 when finetuning Gemma3 or Qwen2.5 models.
On GSMZ&k we finetune for 15 epochs for GPT2, and 5 epochs for Gemma3 and Qwen2.5, while for
ProsQA and ProntoQA we finetune for 60 epochs. We apply weight decay 0.01, cosine annealing
learning rate scheduler, and effective batch size 32.

Regarding the hyperparameter that is specific to our method: Let pypgae (Section (3) denote the
probability of updating the soft tokens during training; we set pypdaee = 0.5 for ProsQA and pypgae = 1
elsewhere. Soft token scheduling is enabled by default, where the max number of soft token is set
such that for the given task, each soft token encode at most 1 CoT step.

A.4 Additional Experimental Results

Effects of number of soft tokens. In GSMS8k, we set the max number of soft tokens to be
kmax = 12, since most GSM8k CoT traces contain < 10 steps, this allows (when possible) for at
most one soft token per step. To study the effects of a smaller soft token budget, we also evaluate
kmax € {4,6}, where some soft tokens must summarize more than one step on average. We report
the performance of different numbers of soft tokens in Table[5] As shown in the table, encoding
fewer steps per token improves reasoning performance, and one-per-step suffices in matching and
surpassing the performance with CoT.

CoT 4 soft tokens 6 soft tokens 12 soft tokens

GPT2-GSMS8k 44.73 42.68 44.2 47.84

Table 5: Performance of GPT2-small on GSM8k for different number of maximum soft tokens with scheduling
and probability pupdae = 1.0.

Effects of scheduling. We train end-to-end to jointly learning the target task and generation of
soft tokens. Using fewer soft tokens keeps training closer to the explicit-CoT baseline, but restricts



the amount of time in which the model is using the maximum number of soft tokens. We therefore
study how different schedules during training, affect the performance of the model. Specifically, we
increase k by one every N% of total steps until reaching k. ; for the remaining steps of training we
use kmax. As shown in Table[6], an interval of about 6% gives the best GSM8k accuracy, balancing
task learning and soft token learning; smaller or larger intervals still lead to performance close (or
even better) to the explicit CoT baseline. Following this rule, we use a scheduling interval of =~ 6%
for both Qwen2.5 and Gemma3.

Percentage of total steps 0.0% 44% 5.6% 6.7% 8.3%

GPT2-GSMS8k 4344 439 47.84 4632 4738

Table 6: Performance of GPT2-small on GSM8k for various scheduling schemes with max soft token budget
kmax = 12. The percentage of the steps corresponds to the amount of steps performed for increasing the
number of soft tokens by one. The remaining steps are performed with keeping the number of soft tokens to
be the maximum. The first column (0.0%) corresponds to using the maximum number of soft tokens from the
beginning.

Test-time performance. We evaluate pass@K and majority voting against the baseline. As shown
in Figure[5] with GPT2-small trained on the GSM8k dataset, our method exhibits the same monotonic
increase of accuracy, with increasing k in both pass@K and majority voting, indicating it can be
applied to post-training on reasoning tasks. Interestingly, even though our method is slightly worse
on Gemma3 under greedy decoding (Table[l] right), with temperature sampling it performs well
and is more robust to higher temperatures: when 7" increases from 1.0 to 1.5, our method maintains
similar performance, whereas the CoT baseline drops.

Soft token update probability for GSM8K. In the main text we examined pypgae ON ProsQA,
where skipping local decoding (i.e., performing a latent update instead) helps the model learn useful
soft token representations. Here we extend the analysis to GSM8k. We train with pypgae = 0.5
and vary pypdace at inference. As shown in Table [/} GSM8k accuracy drops whenever pypdaie > 0,
indicating that inserting latent-only steps at test time hurts performance relative to always decoding.
We hypothesize this effect is task-dependent: tasks like ProsQA benefit from encoding parallel
reasoning traces in the latent space, so using pypgaee during training and inference can help; in contrast,
GSMBk appears to benefit from grounding intermediate steps in hard tokens, S0 nonzero pypdate
reduces accuracy, however with the trade-off of generating fewer hard tokens.

Probability of updating 0.0% 20% 50% 70% 100%

GPT2-GSMS8k 2524 31.31 3791 40.79 44.807
Table 7: Performance of GPT2-small on GSM8k for variable soft token update probability.
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Figure 5: Additional results for GPT2 small, Gemma3-270m and Qwen2.5-0.5B on majority voting
and pass@K, using different temperatures. Both methods follow a similar curve.
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