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ABSTRACT

It is widely recognized that reinforcement learning (RL) fine-tuning of large lan-
guage models often leads to diversity collapse, where outputs lack variety. Specif-
ically, RL tends to amplify existing proficiencies (on tasks it performs well) rather
than rectify initial deficiencies (on tasks it struggles with). Prior work has pro-
posed a range of heuristics to counteract this effect, but these methods are ad
hoc: they frequently trade off correctness for diversity, their effectiveness varies
across tasks, and in some cases they even contradict one another. In this work,
we place these observations on a rigorous foundation. We first provide a formal
proof of why RL fine-tuning exhibits diversity collapse. Building directly on this
analysis, we introduce a principled method—differential smoothing—that prov-
ably improves both correctness and diversity, outperforming vanilla RL as well
as widely used entropy-based heuristics. Our theory precisely characterizes when
existing heuristics help and why they fail, while showing that differential smooth-
ing is universally superior. Extensive experiments with models from 1B to 7B
parameters, across domains including CountDown and real-world mathematical
reasoning, demonstrate consistent gains. Differential smoothing improves both
Pass@1 (correctness) and Pass @k (diversity), with up to 6.7% improvements on
AIME?24 dataset.

1 INTRODUCTION

Reinforcement learning (RL) has become a powerful technique for fine-tuning Large Language
Models (LLMs), enhancing capabilities ranging from complex reasoning (Guo et al., 2025; Yu
et al., 2025; Shao et al., 2024) to human preference alignment (Ouyang et al., 2022; Bai et al.,
2022a). However, this process is often plagued by a significant side effect: a collapse in generation
diversity (Song et al., 2024; Dang et al., 2025b; Yue et al., 2025; Zhao et al., 2025; He et al., 2025a).
This degradation is empirically observed in metrics like Pass @ K'; RL-tuned models often show di-
minishing improvements for larger values of K and can even underperform the original base model
(He et al., 2025a; Cobbe et al., 2021; Chow et al., 2024; Chen et al., 2025b). As output diversity is
crucial for downstream applications and performance scaling (Wu et al., 2024; Snell et al., 2024), it
is imperative to understand and counteract this effect of diversity collapse.

However, mitigating this diversity collapse is non-trivial and presents several challenges. First,
there is a persistent trade-off between correctness and diversity. Simple heuristics such as early
stopping or high-temperature decoding may boost diversity and achieve higher Pass@XK, but they
frequently reduce correctness and hurt Pass@1 performance. Second, most existing methods lack
robustness across settings. Our experiments confirm that techniques designed to enhance diversity
often succeed only on the tasks for which they were originally developed. A striking example is
entropy control, where some works recommend maximizing entropy to improve both Pass@1 and
Pass @K, while others report that minimizing entropy can yield the same outcome.

Motivated by these limitations, our work has two primary goals: (1) to develop a principled method
that robustly improves both correctness (Pass@1) and diversity (Pass@K) across a range of bench-
marks, and (2) to provide clarity on the seemingly contradictory effects of previous methods.

We analyze diversity collapse from first principles in a formal setting in ection 3.2. Our analysis
shows that RL fine-tuning introduces two compounding biases that cause diversity collapse. Selec-
tion bias arises because correct trajectories that have high-probability under the pre-trained model
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are more likely to be reinforced (Theorem B.1), and reinforcement bias arises because these same
trajectories receive disproportionately larger updates (Theorem B.2).

Leveraging the insights from our theoretical analysis, we propose a simple but novel twist to vanilla
RL that is designed to simultaneously enhance correctness (Pass@1) and diversity (Pass@K). The
core of our method is that we can mitigate the tradeoff between diversity and correctness by using
differentiated reward mechanism that applies distinct pressures to correct and incorrect trajectories.

We propose the differential smoothing approach. For correct trajectories, our reward mitigates the
diversity collapse by subtracting a term proportional to their log-probability. On incorrect trajecto-
ries, our reward modification focuses on correctness, by adding the log-probability of the incorrect
trace. We present our proposed DS-GRPO algorithm in Section 4.2.

We validate our differential smoothing approach both theoretically and empirically. Our theoretical
analysis (Section 6) formally proves that the reward modification for correct trajectories directly
optimizes for diversity, while the adjustment for incorrect ones enhances correctness without com-
promising diversity.

We evaluate DS-GRPO across a range of real-world settings, from simpler tasks such as Count-
down to more challenging benchmarks in mathematical reasoning (MATH500 (Hendrycks et al.,
2021), OlympiadBench (He et al., 2024), AMC23 (math ai, 2025), AIME24 (H4, 2025) and AIME25
(OpenCompass, 2025)). Our experiments cover multiple base models (Qwen2.5-Math-1.5B (Qwen
Team, 2024), Qwen3-1.7B (Qwen Team, 2025) and Ministral-8B-Instruct (Jiang et al., 2024),
Qwen2.5-3B-Instruct(Qwen Team, 2024)), and we consistently observe that DS-GRPO improves
both Pass@1 and Pass@K relative to the vanilla baseline. This validates our theory that the method
enhances diversity without sacrificing correctness, and vice versa. We further compare against prior
heuristics, including entropy regularization and recent diversity-prompting techniques (He et al.,
2025a; Chen et al., 2025c; Walder & Karkhanis, 2025a) . While these baselines yield improve-
ments only in certain settings, DS-GRPO delivers robust gains across all datasets and models tested.
Thus, DS-GRPO represents a principled approach that not only improves upon vanilla RL but also
provides consistently stronger results than existing heuristics.

Finally, our analysis clarifies the contradictory effects of global entropy regularization in prior work.
Increasing entropy across all trajectories improves diversity but reduces correctness, which can help
on tasks with many valid solutions. Conversely, decreasing entropy improves correctness at the
cost of diversity, which suits tasks with few valid solutions. Our experiments confirm this princi-
ple, and we further show that differential entropy control, increasing entropy on correct trajectories
while decreasing it on incorrect ones—achieves the best of both, paralleling the effect of differential
smoothing.

Summary of Our Main Contribution

1. We analyze diversity collapse from first principles in a formal setting.

2. Based on our diagnosis, we propose a novel differential smoothing algorithm that empirically
improves both Pass@1 and Pass@K and outperforms previous methods robustly in various
real-world settings.

3. We formally prove that our proposed differential smoothing approach improves diversity and
correctness over the vanilla approach and the popular entropy maximization heuristic.

4. The analysis in this work also has broader implications of clarifying when and why existing
heuristics work and guide the principled modifications of such heuristics.

2 RELATED WORK

Mitigating Diversity Collapse in RL for Reasoning. Fine-tuning language models with reinforce-
ment learning often causes "diversity collapse”, where the policy sharpens around a few solutions
(Dang et al., 2025b; Yue et al., 2025). While prior work has empirically documented this effect (Wu
et al., 2025), our primary contribution is a formal theoretical framework that rigorously explains
its underlying cause. Existing methods to mitigate this issue, such as optimizing for Pass@K (Tang
etal., 2025; Walder & Karkhanis, 2025a) or encouraging low-probability solutions (He et al., 2025a;
Song et al., 2025), often improve diversity (Pass@K) at the expense of correctness (Pass@1) and
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Figure 1: An illustration of the sharpening effect in vanilla RL and the mitigation mechanism of DS-GRPO

lack consistent performance across tasks. In contrast, the algorithm derived from our framework
is designed to overcome this trade-off. We provide theoretical guarantees and empirical evidence
showing that it simultaneously improves both Pass@ 1 and Pass @K across multiple reasoning bench-
marks.

Controlling Distribution Entropy in RLVR. Controlling policy entropy is a common technique in
RLVR, but its application is debated. Some studies advocate for maximizing entropy to encourage
exploration and diversity (Yu et al., 2025; He et al., 2025b; Liu et al., 2025), while others report that
minimizing it can improve single-solution accuracy (Agarwal et al., 2025; Gao et al., 2025). This
has led to conflicting findings and uncertainty about the optimal strategy. Our work addresses this
ambiguity by reframing our method as a novel form of entropy control that outperforms these global
strategies. Our analysis clarifies the inconsistent effects of entropy and provides a new principle for
its effective regulation.

3 THEORETICAL FRAMEWORK FOR THE DIVERSITY COLLAPSE IN RL

In this section, we theoretically analyze the diversity collapse effect that arises during the RL fine-
tuning of LLMs. We begin by describing the theoretical abstraction for the RL fine-tuning process
(Sec 3.1). We then present two driving factors for diversity collapse (Sec 3.2). Finally, we derive a
principled reward function that mitigates the diversity collapse and enhances diversity (Sec 3.3).

3.1 SETUP

Preliminaries. Our theoretical model for language generation is a token-level Markov Decision
Process. The environment is specified by a state space S, a token vocabulary 4, a binary reward
function r € R mapping state-action pairs to {0, 1}, and a maximum length H. Each episode starts
with an input problem x € &', which defines the initial state s;. The state evolves deterministi-
cally based on token selection: at step h, the state is s;, = (x,a1,...,ap—_1), and choosing token
ap, leads to sp+1 = (sp,an). The agent’s behavior is described by a policy 7, which provides a
distribution over tokens at each state, 7, : S, — A(A). We define a trajectory as the full sequence
7 = (x,a1,...,an), and its cumulative reward is given by (7). We write Dkp,(- || -) for the KL
divergence and D, 2 (- || -) for the x2-divergence between two distributions.

RL fine-tuning over a base policy. A base model (or a pre-trained model) with corresponding
policy Tpase 1S fine-tuned to optimize the following objective:

Tan (T) = arg max Errr(7) — B - Dkp (|| mbase), (1)

where the KL-divergence term serves as a regularizer that prevents the updated policy from deviating
too much from the base policy 7, and S is a hyperparameter that balances the trade-off between
*

maximizing reward and preserving the knowledge of the base model. We denote this by 7, to
distinguish from proposed improvements in later sections.

In practical applications, an explicit reward function is typically unavailable. Instead, rewards are
discovered empirically by sampling potential solutions from a base model and evaluating them with
an external verifier. To formalize this process, our theoretical framework defines the reward function
through a similar sampling procedure. Initially, all trajectories are assigned a reward of zero. A set of
trajectories is then sampled from the base policy, Tase, and a verifier identifies the successful ones,
whose rewards are subsequently set to 1. Consequently, the reward function r(7) in Equation 1 is
not predetermined but is contingent on the specific set of successful trajectories discovered in the
initial sampling phase.
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3.2 THEORETICAL RESULT ON DIVERSITY COLLAPSE

With the setup in place, we identify two fundamental mechanisms that drive the diversity collapse,
captured in the following theorems.

Analysis of Diversity Collapse in RL

Proposition 3.1 (Selection Bias). The probability that a correct trajectory’s likelihood in-
creases is monotonically related to its initial probability under the base model. Formally, for
any two correct trajectories 11, o and 3 > 0, we have

Tbase (7_1) 2 '/Tbase(TZ) — P(’]T\Tan(Tl) > Thase (7_1)) Z P(W\Tan (7_2) > '/Tbase(TQ)) .

Proposition 3.2 (Reinforcement bias). The magnitude of probability gain for a given trajectory
is directly proportional to its probability under the base policy. Formally, if the reward update
mechanism has access to the complete set of correct trajectories (r(7) = 1 for all correct
trajectories), then for any trajectory T and 3 > 0, we have

ﬂ-;kan(T) - 7"-base(T) X 71'lm_s*e(7')~

Proposition B.1 reveals a selection bias: among correct trajectories, those with higher base prob-
abilities are more likely to be reinforced. In addition, Proposition B.2 shows that there is a rein-
forcement bias: these same high-probability trajectories receive disproportionately larger boosts,
further amplifying the model’s existing preferences and sharpening the distribution. The proofs for
Proposition B.2 and Proposition B.1 are provided in Appendix B.1. These results are derived by
directly calculating the expression for the fine-tuned policy and analyzing its resulting probability
distribution across trajectories.

Remark 1. Proposition B.1 explains the surprising finding of Zhu et al. (2025) that using only
negative samples improves diversity (Pass@ K ). Using only negative samples mitigates the selec-
tion bias, as all positive trajectories implicitly have the same probability of seeing an increase in
likelihood over the base policy. This reduces the diversity collapse and improves diversity.

3.3 NEW REWARD FUNCTION TO MITIGATE DIVERSITY COLLAPSE

We have established that vanilla RL induces a diversity collapse: high-probability correct responses
from the base model are disproportionately reinforced, while low-probability correct responses are
neglected. Intuitively, this bias can be countered by reshaping the reward to favor low-probability
correct responses.

To do so in a principled manner, we first analytically derive the optimal fine-tuned policy for a given
reward function. As shown in Lemma 1, the fine-tuned policy is proportional to the exponentiated
reward 7*(7) o exp(r(7)/5).

Guided by this expression, we propose subtracting a term -y, - 1og(7pase (7)) from the rewards on cor-
rect trajectories, where s denotes the base policy and v, is a hyperparameter. We formally prove
that this modification mitigates the diversity collapse of vanilla RL in latter sections. In Section 6,
we theoretically show that our approach enhances policy diversity. Furthermore, in Appendix E.2,
we provide empirical evidence that this diversity improvement is driven by modifying the reward
for correct trajectories.

For incorrect responses, however, subtracting such a term is unnecessary since diversity among
incorrect outputs is not desirable. On the contrary, adding a corresponding term ~y,, - 10g(7pase (7))
can improve correctness, consistent with prevailing intuition that entropy minimization enhances
accuracy (Gao et al., 2025; Agarwal et al., 2025). We demonstrate both theoretically in Section 6
and empirically in Appendix E.2 that this modification for incorrect trajectories does not exacerbate
the selection or reinforcement biases over correct trajectories.

Putting these together, we propose the differential smoothing reward function for a trajectory 7:

r(7) — Yp - log(Mpase (7)) if 7(7) > 0 (correct trajectories)
rps(7) = 2)

7(T) 4+ Vn - log(Toase (7)) if r(7) < 0 (incorrect trajectories),
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where v, v, > 0 are hyperparameters.

We first investigate the practical benefits of our proposed differential smoothing in Section 4, and
theoretically prove the superiority of differential smoothing over vanilla training and existing heuris-
tics in Section 6.

4 EXPERIMENTAL ANALYSIS FOR DS-GRPO

In this section, we empirically evaluate the effectiveness of proposed reward modification (Eq.2)
in LLM reinforcement finetuning. We show that our method improves both Pass@1 and Pass@K
across various tasks and models, outperforming the baseline methods.

4.1 PRELIMINARIES: GROUP RELATIVE POLICY OPTIMIZATION

We adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as our training back-
bone. For each input = sampled from the training set, the policy decodes a group of G completions
{yi}6, ~ ma,,, (- | ), where 7y, denotes the behavior policy used to collect the batch (the policy
parameters at the previous update). Let r; = r(y;) be the scalar reward of completion y;, and denote
by u({r;}52,) and o({r;}5_,) the mean and standard deviation of {r;}5_,, respectively. GRPO
replaces the learned critic with a group baseline and uses the group-standardized advantage

ri — n({r;}§)

A= e

3)

GRPO adopts a clipped objective with a forward KL regularizer to the fixed base policy 7°:

JarpPO (9) = EI]E{yi}?:1N7r9old("q)
[& 20 i ] min(pie(0) As, clip(pie(6), 1= €, 1+€) Aj) = Do | )]

Too1q (Vi t|T,yi,<t)

where p; (6) = is the importance ratio.

4.2 REWARD MODIFICATION FOR MITIGATING DIVERSITY COLLAPSE

To operationalize the theoretical principles from Section 3.3 within the GRPO framework, we pro-
pose a novel algorithm, Differential Smoothing GRPO (DS-GRPO). Our method works by reshap-
ing the advantage function A;, as specified in Equation equation 4. Specifically, for successful
completions (where reward r; = 1), we subtract the term , log mg_,, (y; | =) from the advantage.
Conversely, for unsuccessful completions, we add the term +,, log 7g_,, (y; | ).

Differential Smoothing GRPO (DS-GRPO)

— logmg,,\ (v | ), ifr; =1,
A?S A+ Vp log T, (yi | @) @)
+ v logmg,,, (yi | ), otherwise,

We plug the modified advantages APS into the GRPO objective:
Tos(0) = BBy 36w, (1)
&Ny Sl min (i (6) APS, clip(ps(8), 1— €, 1+ €) APS) = BuDica(mo || 7))

We evaluate DS-GRPO on the Countdown and MATH reasoning benchmarks across a range of mod-
els. As demonstrated in the subsequent sections, our method consistently improves both correctness
(Pass@1) and diversity (Pass@K), outperforming existing diversity-promoting approaches on all
evaluation metrics.
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Figure 2: Pass@K performance of DS-GRPO on the Countdown task, compared with GRPO under varying
decoding temperatures and KL coefficients.

4.3 COMPARISON OF DS-GRPO wWITH VANILLA GRPO

As shown in Figure 2, DS-GRPO demonstrates remarkable robustness. It consistently enhances
Pass @K (for all K) by ~ 4% compared to vanilla GRPO. Crucially, these performance gains are
accompanied by a 4x inference speedup. (See Appendix D for additional results).

Figure 3 extends our evaluation to three base models and five mathematical reasoning benchmarks.
Our strategy yields substantial improvements, with Pass@ 1 gains of 0.2%—-2.9% and Pass @64 gains
of 0.5%—-6.7% (detailed in Appendix E.1). This demonstrates our method’s ability to improve RL
reasoning while mitigating diversity collapse. Furthermore, it delivers significant efficiency gains:
DS-GRPO matches the Pass @64 of vanilla GRPO using only k£ = 16 samples—yielding a nearly 4 x
inference speedup—while simultaneously pushing the maximum achievable Pass @K. This uniform
uplift underscores our approach’s efficacy in enhancing both exploration and diversity.

4.4 ABLATION EXPERIMENTS ON HYPERPARAMETERS

To demonstrate the robustness of our method, we further evaluate performance across different hy-
perparameters, including sampling temperature, the KL coefficient Sk , and the reward modification
coefficients -y, and vy,

Temperature and KL Coefficient. We evaluate the stability of DS-GRPO across varying sampling
temperatures and KL coefficients (8kp). Our results demonstrate consistent improvements over
vanilla GRPO: DS-GRPO enhances Pass@K (for all K') by ~ 4% across the temperature range and
by a2 3.2% across different KL coefficients.

Reward Modification Coefficient To isolate the contribution of each component in our reward
modification strategy, we conduct an ablation study. We compare the full DS-GRPO algorithm
against two specialized variants: DS-GRPO-Positive, which only modifies the advantage for correct
trajectories, and DS-GRPO-Negative, which only modifies the advantage for incorrect trajectories.
Their respective advantage modifications are defined as follows:

AP = A; — 7 logme, (yi | 2), ifry=1, ADS = A; 4+, logmg,, (yi | ), ifr; # 1.

The full DS-GRPO algorithm demonstrates superior performance over both of its individual compo-
nents (DS-GRPO-Positive and DS-GRPO-Negative) for all K. Detailed results and discussion are
available in Section E.2. sharpening.
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Figure 3: Pass@K performance after reward modification, compared with vanilla GRPO. X-axis denotes K and
y-axis denotes pass rates. Trained on DAPO(Yu et al., 2025) and MATH(Hendrycks et al., 2021) Dataset.

4.5 COMPARISON WITH OTHER METHODS FOR INCREASING DIVERSITY

We compare DS-GRPO with prior approaches that encourage diversity in reasoning through re-
ward or advantage shaping, either by optimizing Pass@ K rate directly(Tang et al., 2025; Walder &
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Karkhanis, 2025a; Chen et al., 2025¢) or by applying rank-based penalties (He et al., 2025a). For
mathematical reasoning experiments, we use the Mistral-8B-Instruct(Jiang et al., 2024) as the base
model. For PKPO and GR-PKPO, we use K = 4 which performs best in previous work (Chen et al.,
2025¢); for rank-based panelty, we sweep across various configurations. See more result details in
Appendix D.

Pass@K Optimization Methods. Methods that directly optimize the Pass@ K metric use it as a
reward signal (Tang et al., 2025; Walder & Karkhanis, 2025a; Chen et al., 2025c). However, this
approach can assign zero reward to correct solutions, which increases gradient variance and harms
training stability. Experimentally, these methods often trade correctness for diversity; for instance,
GR-PKPO slightly improves Pass@64 at the cost of Pass@1 and is unstable on the Countdown task
(Figure 4, Left). In contrast, DS-GRPO consistently improves Pass@ K across all values of K.

Comparison with Unlikeliness Reward Method. Our work is conceptually similar to methods that
reward unlikely solutions, such as the one proposed by He et al. (2025a). However, our approach has
key advantages. DS-GRPO is derived from a theoretical framework that guarantees its optimality.
More critically, it employs a differentiated reward strategy: it modifies rewards for correct trajec-
tories to boost diversity, while a complementary modification for incorrect trajectories improves
correctness. In contrast, methods like that of He et al. (2025a) focus solely on diversity, which can
harm correctness. Our experimental results (Figure 4) validate this, showing DS-GRPO’s superior
performance across all values of K.

Comparison with Other RL Reasoning Methods. We further compare our approach with a re-
cently proposed method that focuses on improving RL reasoning: CISPO (Chen et al., 2025a). Em-
pirical results demonstrate that our method consistently outperforms CISPO across all mathematical
reasoning datasets. Detailed comparisons are provided in Appendix F.3.

Countdown MATHS00 Countdown MATHS00
80 90
g 75 80
£
g7 70
P
& 65 60
o0 50
1 2 4 8 16 32 o 1 2 4 8 16 32 o 1 2 4 8 16 32 o 1 2 4 8 16 32 o
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—o— DS-GRPO Unlikeliness Reward —e— DS-GRPO GRPO with entropy bonus
—&— GRPO GR-PKPO —&— GRPO GRPO with entropy penalty

Figure 4: Performance comparisons on MATH500 and Countdown. Left: Comparison among DS-GRPO,
GRPO, GR-PKPO (Chen et al., 2025¢), and the Unlikeliness Reward method (He et al., 2025a). Right: Com-
parison among DS-GRPO, GRPO, Entropy Regularization, and Entropy Minimization. On the Countdown
task, training with GR-PKPO collapses, so results are omitted.

5 A DIFFERENTIATED APPROACH TO ENTROPY CONTROL

Doing entropy control is a commonly adapted way of increasing diversity and improving LLM
reasoning ability. In this section, we formally compare our method to previous entropy control
method from empirical perspective, and in latter section (Section 6) we will theoretically prove that
our method outperform vanilla GRPO and GRPO with entropy direct entropy maximization.

5.1 DS-GRPO OUTPERFORM ENTROPY BASED METHOD

The role of entropy in RL fine-tuning is complex and subject to ongoing debate. While conventional
methods employ entropy regularization to prevent policy collapse (Schulman et al., 2017), recent
studies suggest that explicitly minimizing entropy can, counter-intuitively, boost performance in
certain scenarios (Agarwal et al., 2025; Xingjin Wang, 2025). To position our method within this
context, we compare it against two direct entropy control baselines: one that adds an entropy bonus
to encourage exploration, and one that applies an entropy penalty to encourage exploitation. The
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respective optimization objectives are:

Tentr = Jarwo(0) — 1y Y 7oy | ) log(ma(y | x)), Entropy Bonus
Y

Jent- = Jarpo(0) +1- Y m(y | #)log(me(y | #)), Entropy Penalty

Yy

As illustrated in Fig. 4, our method consistently outperforms both the entropy bonus and penalty
approaches, regardless of the direction of the regularization. This suggests that a simple, global
adjustment to entropy is less effective than our differentiated reward strategy.

5.2 DEEPER DISCUSSION ON ENTROPY CONTROL

Our experiments (Fig. 4) reveal a critical insight: the effectiveness of global entropy control is
highly task-dependent. Specifically, an entropy bonus improves performance over vanilla GRPO on
the Countdown task but hinders it on math reasoning benchmarks. Conversely, an entropy penalty
benefits math reasoning while degrading performance on Countdown. Can we explain these differing
trends?

A Principle for Task-Aware Entropy Control. Global entropy bonus does increase diversity but
comes at the cost of correctness. This is part of our theoretical argument in Section 6. On the other
hand, global entropy penalty increases correctness but comes at the cost of diversity. In tasks where
diversity is more important, entropy bonus works well but in cases where diversity is less important,
entropy penalty works well.

To quantify the importance of solution diversity for a given task, we propose the metric of Solution
Multiplicity, defined as the average number of unique correct solutions per problem:

Solution Multiplicity (X)) = ﬁ > wex A(x), where A(x) is the number of solutions for problem x.

We measured this metric across four tasks (sampling 200 problems each) and correlated it with the
change in Pass@8 performance from adding an entropy bonus. The results are presented below,
with experimental details in Appendix C.4.

Task Knight and Knaves | Math | Countdown-3 | Countdown
Solution Multiplicity 1.5 3.7 6.5 15.7
Entropy Effect (for Pass@8) | -9.0% -6.0% | +1.0% +3.4%

We conclude that when the number of unique solutions is larger, the benefit of increasing diversity
outweighs the potential trade-off in single-solution correctness. Consequently, an entropy bonus is
more favorable than an entropy penalty. This leads to our guiding principle for entropy control: for
tasks characterized by high solution multiplicity, entropy bonus is beneficial but for a task with low
solution multiplicity, entropy penalty is beneficial.

Differential Control for Correct and Incorrect Trajectories. The underlying mechanism of DS-
GRPO is similar to a form of differentiated entropy control. An objective function representing this
principle can be formulated as:

JIps—En = JGrPO — Mp Zy;r(y)>0 mo(y | x)log me(7 | ) + 1 Zy;r(y)go mo(y | z) log me(y | ).

By selectively increasing entropy only for positive samples, we attain the full diversity benefits of
traditional entropy regularization, as we are only concerned with diversity among correct solutions.
Concurrently, decreasing entropy for negative samples reinforces correctness. This targeted ap-
proach enables simultaneous gains in both correctness (Pass@ 1) and diversity (Pass @K), offering a
more robust and principled method for model fine-tuning across different tasks.

Takeaway: Effect and Principle for Entropy Control

 Inherent Trade-off: A global entropy bonus enhances diversity at the cost of correctness,
whereas an entropy penalty improves correctness but curtails diversity.
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» Task-Dependent Strategy: For tasks with high complexity, an entropy bonus is more advan-
tageous. The gains in diversity from exploration outweigh the potential reduction in single-
solution accuracy.

* Superiority of Differentiated Control: DS-GRPO consistently outperforms both global
entropy bonus and penalty strategies. This demonstrates controlling entropy differen-
tially for correct and incorrect trajectories successfully captures the benefits of both ap-
proaches—enhancing diversity and reinforcing correctness simultaneously.

6 THEORETICAL ANALYSIS

We now theoretically establish the optimality of DS-GRPO. Our analysis proves its superiority over
two baselines—Vanilla RL and RL with direct entropy maximization—and begins with the follow-
ing formal definition:

Definition 1 (Fine-tuned Policy). We define differential smoothing policy, mps, parameterized by
Yn and 7y, as the solution to: mps(T) = argmaxy B rps(T) — Bps - Dgr(7||Tpase) where
rps is the modified reward defined in Eq. 2. As a baseline, we consider a policy that directly
maximizes entropy, T, It solves the same optimization problem, but replaces the reward rps with
(1) = r(7) — v1og(7puse (1)) for all trajectories T, and Bps with Bgy,. We further define policy for
vanilla RL as the solution to the optimization problem in Eq. 1.

To compare different methods, we introduce formal metrics for correctness and diversity.

Definition 2 (Correctness and Correct-Solution Diversity). For any policy m, we define its correct-
ness as C(m) = > .o n(T). We use the normalized variance on correct trajectories to measure

diversity over correct solutions. Namely, we define o(w) = [>_ .. m(7)? — C(m)?]/C(m)2.

The normalized variance of our policy is smaller than that of vanilla RL, which, by our definition,
corresponds to greater policy diversity. We now formally compare our method against the direct
entropy maximization baseline.

Theoretical Guarantee for DS-GRPO

Theorem 6.1. Assume the model have correct estimation for the reward of all trajectories. For
any parameters Ve, > 0 and Loy, > 0 used in Eq. 1 (for m.,,) that satisfy a proximity constraint
K (Tent; Thase) < K, there exist parameters vyps > 0 and fps > 0 for mps such that it also
satisfies K ,(Tps, Tpase) < K, and the following inequalities hold.:

C(rps) > C(wens) and o (mps) > o (Tenr)-

This result holds for K (7, Tpase) € {Dgr(7||Tpase), Dxr(Tpase||T), Dy2 (7 || Toase) s Dy2 (Tpage|7) }-

The KL-divergence constraint (K, (-, Tpese) < ) i8 a practical necessity and a standard assumption
in prior work (Setlur et al., 2025). It prevents the fine-tuned policy from deviating excessively from
the base model, thereby retaining pre-trained knowledge and avoiding catastrophic forgetting.

Our theoretical results show that our method surpasses both vanilla GRPO and direct entropy max-
imization in correctness and diversity, providing a formal justification for our strong empirical per-
formance on Pass@1 and Pass@K metrics. A key insight from our analysis is the fundamental
trade-off between these two objectives: increasing entropy enhances diversity at the potential cost
of correctness, whereas an emphasis on correctness can harm diversity.

7 CONCLUSION

In this work, we conduct a formal, first-principles analysis of diversity collapse, from which we
derive a novel method to enhance policy diversity. We empirically demonstrate that our method
outperforms existing approaches and theoretically prove its optimality. Our analysis also clarifies the
nuanced, task-dependent role of entropy in fine-tuning, leading to a principled control strategy that
simultaneously improves both correctness (Pass@1) and diversity (Pass@K). A formal theoretical
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analysis of our entropy principle and the nuanced effects of entropy it reveals is left as a promising
direction for future research.
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A ADDITIONAL RELATED WORK

Mitigating diversity collapse in the RL of reasoning models. Reinforcement Learning with Ver-
ifiable Rewards (RLVR) has emerged as the dominant paradigm for enhancing LLM reasoning on
tasks like mathematics and programming (Guo et al., 2025; Jaech et al., 2024). This process is often
framed as "sharpening," where the model learns to place greater probability mass on high-quality
sequences, thereby amortizing the high inference-time cost of generation (Huang et al., 2024; 2022;
Wang et al., 2022; Bai et al., 2022b; Pang et al., 2023).

However, this self-improvement risks reducing creativity. Recent studies observe that RLVR often
induces "diversity collapse," where the generation distribution becomes overly concentrated (Dang
et al., 2025b; Yue et al., 2025). This collapse manifests empirically: despite higher pass@1 per-
formance, models trained with RLVR (RLVR-trained models) often underperform their base model
on pass @k for large k. This degradation limits test-time scaling and raises a fundamental question:
does RLVR truly expand a model’s reasoning capabilities, or does it merely sharpen the probability
mass around solutions already present in the base distribution (Wu et al., 2025; Yue et al., 2025)?

To mitigate the problem of diversity collapse, a variety of approaches have been proposed from dif-
ferent perspectives. From the algorithm side, Yu et al. (2025) clip-higher strategy and the removal of
KL divergence penalties in the GRPO of reasoning models, while He et al. (2025b) suggests adap-
tively using entropy as a form of regularization. Zhu et al. (2025) shows positive samples in RLVR
sharpens the distribution around the sampled correct trajectories, whereas penalizing negative sam-
ples preserves diversity, motivating a higher weighting of negative samples in the training objective.
In terms of reward design, several studies have proposed making rewards explicitly diversity-aware.
Walder & Karkhanis (2025a); Chen et al. (2025¢) suggest directly using pass@k metric as the re-
ward. He et al. (2025a) introduces rank-based penalties within sampled groups to encourage diverse
output, while Cui et al. (2025) incorporate entropy into advantage estimation to promote exploration.
Other methods include interpolate the weights of the base model and the fine-tuned model (Dang
et al., 2025b).

Controlling distribution entropy in RLVR. The entropy of the policy distribution is a key in-
ternal indicator of a model’s exploration capability(Cui et al., 2025; Cheng et al., 2025). Various
methods have been proposed to maintain high entropy during training in order to encourage ex-
ploration, including clipping higher, adding entropy bonus (Yu et al., 2025; He et al., 2025b), or
selectively training on critical high-entropy tokens (Wang et al., 2025). Other studies report that
RLVR improves performance at the expense of reduced policy entropy (Cui et al., 2025), and that
simply minimizing entropy can effectively improve pass@1 accuracy(Agarwal et al., 2025; Gao
et al., 2025). Xingjin Wang (2025) further propose an entropy scheduling approach that maintains
high entropy in the early stage to encourage exploration and reduces entropy later to improve final
performance. In contrast to prior approaches, we treat correct and incorrect samples separately:
bonusing entropy for correct samples and penalizing entropy for incorrect ones. We demonstrate the
superiority of this design both theoretically and empirically.

Sharpening in RL prior to language model. Diversity collapse is not unique to language mod-
els; it has been extensively observed in broader reinforcement learning settings (Hong et al., 2018;
Haarnoja, 2018; Schulman et al., 2017; Chi et al., 2025; Jabri, 2021) . For instance, in traditional
RL domains such as 2D Gridworlds or Atari 2600 (Hong et al., 2018), agents exhibit a strong bias
toward learning policies and actions that they are initially more confident in or that are easier to
access during early exploration.

The fundamental cause of sharpening in traditional RL aligns with what we observe in LLMs.
Specifically, states or actions that have a higher initial probability of being visited are explored more
frequently. Consequently, even if a certain state yields a higher reward, it is less likely to be discov-
ered and reinforced if its initial reachability is low. This "rich-get-richer" dynamic in exploration
distribution drives the sharpening effect in both domains.

We specifically focus on RL with Verifiable Rewards (RLVR) for LLMs because the sharpening
effect here is particularly acute compared to traditional settings. Unlike many control and robotics
tasks where dense process rewards are often available along the trajectory, RL for LLMs typically
relies on outcome-only rewards. Optimization focuses almost entirely on a sparse signal at the
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final token. As shown in recent studies (Dang et al., 2025a; Kirk et al., 2023), this setup strongly
amplifies mode-seeking behavior (Yin et al., 2025; Ladosz et al., 2022), making diversity collapse a
more critical issue in LLMs than in environments with denser feedback signals.
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B PROOF OF THEOREMS

B.1 PROOF OF PROPOSITION B.1 AND PROPOSITION B.2

Lemma 1. The solution to the KL-regularized optimization problem:
75, = Arg max {E7n?(T) = Bens - Dgr (|| Tpase) }
has the following closed-form expression for a trajectory T:
[Hthl Tpase,n (@ | Sh)} exp ( ﬂimr(T))
Y v [Ty Tousea(a, | 1) exp (7))

where the summation in the denominator is over all valid trajectories T’ starting from the initial
state s.

T Bont(T) =

Proof. The optimization problem can be written as finding a probability distribution 7(7) over tra-
jectories that solves:

mﬂaXZﬂ'(T)T(T) - BemZTr(T) In ( 7(T) ) . subject to Zw(r) = 1.

Thase (T) .

We introduce a Lagrange multiplier ;1 for the probability constraint and form the Lagrangian
L(m, p):

L, p) =Y m(T)r(7) = Bew y_ 7(7) [I(7(7)) = In(oase ()] = 1 <Z (1) = 1) -

T T T

To find the optimal policy, we take the partial derivative of £ with respect to 7(7) and set it to zero:

ai'(i = 7(r) ~ <ln <7r:(7()7)> + 1) —n=0.

Solving for 7(7), we obtain:

. Q(())) -

_— 71—(7-) = Wbase(T) exp (rﬁ(e:t) —-1- B/:m> = Wbase(T) exp <Tﬁ(e:t)> exXp (_]‘ - lé:][) :

The term exp(—1— ¢/ en) is a constant determined by the normalization constraint ), 7(7") = 1.

(1)
ﬂel“

Let the partition function be Z = Y, Tpase (') exp ( ) The normalization constant must be

1/Z, which gives the solution:

ﬁinLT(T)) _ Moase(7) eXp(ﬁi"‘r(T))
5 omel ) e (7))

By substituting the definitions mpase (7) = Hle Thase,h(@n, | Sp), We arrive at the expression stated
in the lemma. This completes the proof. O

71—base(T) exp (
ﬂ-ﬂent (T) = Z

Proposition B.1 (Selection Bias). The probability that a correct trajectory’s likelihood increases is
monotonically related to its initial probability under the base model. Formally, for any two correct
trajectories Ty, To and e, > 0, we have

7Tbase(7-1) > 7"-base(TQ) - P(ﬂ-:{an('rl) > ﬂ-base(Tl)) > ]P)(Tr:;m(TQ) > 7"-base(7-2)) .
Proposition B.2 (Reinforcement bias). The magnitude of probability gain for a given trajectory is
directly proportional to its probability under the base policy. Formally, if the reward update mech-
anism has access to the complete set of correct trajectories (v(1) = 1 for all correct trajectories),
then for any trajectory T and B, > 0, we have

Tr;kan(T) - ﬂ-base(T) X Trbase(T)~
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Proof. Part 1: Monotonicity of Likelihood Improvement. Under the specified reward mecha-
nism, a correct trajectory 7 receives a positive reward if it is not missed in all N independent sam-
ples. This occurs with probability 1 — (1 — e (7). A positive reward ensures that the likelihood
of the trajectory increases after fine-tuning. Thus, the probability of improvement is:

P(W:an(T) > 7Tbase(T)) =1- (1 - 7rbase(T))N

This function is monotonically increasing with respect to myse (7) for mpyse (7) € [0, 1]. Therefore, if
Thase (T1) = Thase (T2), the first claim holds.

Part 2: Proportionality of Probability Gain. From the closed-form solution for the optimal policy
(as derived in Lemma 1), we have 75 (7) = Toase(7) exp(r(7)/Bent)/ Z, where Z is the partition
function. The change in probability is:

exp(r(7)/Bent) — Z
Z

ﬂ-gem(T) - ﬂ'base(T) = ﬂ-base(T) eXI;(T(T)//Bem)

— Tbase (T) = 7Tbase(7-)

The partition function Z = > Toase (T") €xp(r(7") / Bent) is a constant for a given policy Tyas and
reward function r. The term in the brackets is therefore constant for all trajectories 7 that share
the same reward value (e.g., all correct trajectories). Consequently, the probability gain is directly
proportional to the initial probability mpyse(7). O

B.2 EXPLAINING SHARPENING IN PRACTICAL RL WITH THEORETICAL MODEL.

Verifier-based RL. In practice, verifier-based RL algorithms typically maintain two policies: a sam-
pling policy and a learned policy. The training process is iterative: the model uses a fixed sampling
policy to generate trajectories for ¢ iterations, updating the learned policy at each step. After ¢ it-
erations, the sampling policy is updated to match the current learned policy. Our theoretical model
abstracts the learning dynamics within these ¢ iterations where the sampling policy is held fixed. We
demonstrate that within each such phase, the distribution over correct answers is sharpened.

Although our formal analysis focuses on the specific phase where the sampling policy is fixed, the
full training process can be viewed as a cumulative composition of these phases. Since the model
tends to sharpen the answer distribution within each iteration window (as shown in our theory), the
aggregate effect over the entire learning process inevitably leads to a globally sharpened distribution
OVer answers.

RL with other forms of reward function. While our work primarily addresses RL with veri-
fiers, our insights extend to settings with learned reward models, such as RLHF. Specifically, our
theory highlights that since the model samples answers from a base distribution, high-probability
correct answers are sampled—and thus reinforced—more frequently. A similar mechanism applies
to RLHF. During the training of the reward model (or the policy based on it), the system often relies
on samples from the base model. Between two equally favorable responses, the one with a higher
initial sampling probability is likely to be exposed more often, leading the model to preferentially
favor and amplify it. Thus, the "rich get richer" dynamic contributes to sharpening in these settings
as well.

B.3 PROOF OF THEOREM 6.1

Lemma 2. The solution to the KL-regularized optimization problem with an entropy-based reward
modification:

ﬂ-gm,,ym = arg mgx {ETNﬂ [T(T) — Vent 1Og<7rbase(7-))] - Bent . ]D)KL(7T| ‘ﬂ-base>}’

is given by:

__ Dent
e ()
Wﬂema'\/em T)= 1— dent )
(52,7“(7/))

ZT’ [ﬂ'basE(T/)] Pent_€XP
where the summation in the denominator is over all valid trajectories 7'.
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Proof. The objective function can be expanded as:

maXZ — Yent 108 (Toase (7)) = Bemt »_ 7(7) ln( m(7) ) ,

Tbase (T)

T

subject to the constraint ) _7(7) = 1. We form the Lagrangian £L(7, j):
L(m, )

= Z — Vet 108 (Toase (7)) = Bene Y w(7) (I (7)) = In(Moase (7)) = 1 (Z (1) = 1) -

T T

Setting the partial derivative with respect to 7(7) to zero yields:

376:6) = 7(T) — Yent 108(Tpase (7)) — Bent (1n ( (1) ) N 1) .

Tbase (7—)

Solving for 7(7):
In < m(r)

):m) TN Jog (mpase(7)) — 1 — -

Tbase (T) ﬁent ﬁem Bent
N
= Toase () - (exp(log(Thase(7)))) " Fon - exp (7’5(7>> -exp (_1 - 5" )

il R () (1~ 2,

The term exp(—1 — p/fBent) is a normalization constant. By enforcing the constraint
> m(r") = 1, we find that this constant is the reciprocal of the partition function Z =

> [Toase (77 )]17% exp(r(7")/Bent)- This gives the final solution stated in the lemma. O

Lemma 3. Consider the reward function rps(7) which modifies the reward based on trajectory
correctness, defined by a set of correct trajectories C:

~ [r(7) = ypslog(Tpase (1)) if T EC
rps(T) = ;
r(7) ifré¢c
The solution to the KL-regularized optimization problem wps = arg max,{E,.[rps(T)] — Bps
Dr (7)|Tpase) } is given by:
1—2bs 1 .
1 o) exp (h(n) irrec

7ps(T) = Z X [Tpase (7)] - exp (@7‘(7)) ifr¢c

where Z is the partition function ensuring normalization.

Proof. The objective function is maximized subject to ZT 7(7) = 1. The Lagrangian is:

E(ﬂ-’ M) = Z 77(7—) (7”( ) DS 1Og 7Tbase + Z

Tel T¢C
— Bos ) w(7) (I (7)) — In(moase(7))) — 1 (Z m(T) — 1) :
We take the partial derivative with respect to 7(7) for each case and set it to zero.
For a correct trajectory, 7 € C:
oL (T
) =1r(7) — Yps log(mpase (7)) — Pps <1n < (7) ) + 1) —u=0.

Tbase (T)
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Solving for 7(7) yields: 7(7) o [mpase()]" ™ os exp ( (DTS )

For an incorrect trajectory, 7 ¢ C:

876;5') =7(7) — Pps - (ln (77:15(:()7-)) + 1) —pu=0.

Solving for 7(7) yields: 7(7) o [mpase(7)] - €xp ( /5:[))

Combining these results, the unnormalized solution 7 (7) is:

[base (7]~ P exp (ﬁr(ﬂ) ifrec
[Toase (7)] - exp (7(7)) ifT¢C

The final solution 7pg is obtained by normalizing 7(7) with the partition function Z = )" _, 7(7’),
which gives the expression stated in the lemma. O

7(r) =

Lemma 4 (Correctness under Reverse KL Constraint). When K, (7, Tpase) = Dgi(Tpase||7), for
any Yens > 0, Bens > 0 such that Dgp (Tpase||Tens) < K, there exist yps > 0 and Bps > 0 such that
Dkr (Tpase||Tps) < & and C(mps) > C(Tens).

Proof. To simplify the notation, we define the following sums over trajectory probabilities, where C
is the set of correct trajectories:

bz == Z [Wbase('r)]liz 5 Bz = Z [Wbase(’r)}lim s Pe = Z Tbase (T)
TeC T TeC

The proof proceeds in three steps: we first find a functional relationship between correctness C' and
the KL divergence for each policy, and then compare them.

Step 1: Analyze the Entropy-Maximization Policy (7en). The correctness is the total probability
mass on correct trajectories:

T 1/ Ben
C(ﬂ'em) = ETEC [‘ﬂ-base(T)] Bent exp(l/ﬂem) _ bgz:: e

— Jent — .
ZTGC ['R'base(T)]l Bent exp(l/ﬁent) + ZTQC [ﬂ—base(’r)]l Bent b’Yz:: el/ﬁem + (B% _ b%)

B yent —b yent
H 1/[33"[ : . 1/,35,,[ — Bent Bent C(ﬂ'enl)
Solving for e gives: e T=C(mon)

ent

). The reverse KL divergence is
ent

ke (Tbase || Tent) = D, Toase (T) In(Tpase () / 7rem(7')). Substituting the policy definition:

“Yent
DKL(ﬂ'base”ﬂ'em) = E Thase 1N Thase — ﬂ E Thase ’/‘ + In b%m [ 1/ Ben + Brew — b"fem
ent

5em Bent Bent Bent

’Ymt Zﬂ' ln Vs I’C ln ‘)[7'1:: el/ﬁenl
b. _ — T Ba .
Eent ase ase [ C( t)

Substituting the expression for 1/ S,y leads to a relationship between divergence and correctness:

7
ﬁ::i Z'r: Thase 1N Thase + P Inb o (1 - p°) ln(BW::: B bg::t )

— [PeIn C(Tent) + (1 — pe) In(1 — C(7ent))] -

Dxy (ﬂ'base | | 7Tent =

Step 2: Analyze Differential Policy (7pgs). Similarly, the correctness is:

bps e/ s

Bps
C(mps) = bZDS et/Pos + (1 —p.)

The reverse KL divergence, after a similar derivation, is:

Zﬂ—base lnﬂ-base +p(' lnbﬁis (1 7pc) 111(1 7pc)
TeC

DKL ('/Tbase | | 7TDS

BD
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— [peInC(mps) + (1 — pe) In(1 — C(mps))] - 5)

Step 3: Compare the Policies. Our goal is to show that for any C (e ), We can choose parameters
for our method to achieve C'(mpg) = C(7en) With a smaller or equal KL divergence. Let’s choose

Yps = %%m, and set C'(mps) = C(7enr) = C. Equivalently, we assume that

DS “Vent ~

ﬂDS B ﬂenl

Then the KL divergence for our method becomes:

DKL(Fbase”WDS) = ? Z Tbase 11 Thase + Pc In b’Yem =+ (1 - pc) h’l(l - pc) - H(Cem)v
TeC

where H(C') = —[p.In C + (1 — p.) In(1 — C)]. For the entropy method, the KL is:

]D)KL(Trbase ||7Tem) = i Z Thase 11 Tpase =+ i Z Thase 1N Thase + Pe In b'w“ + (1 - pc) ln(Bi - bﬁ) - H(Cent)-
TeC T¢C

The difference is DKL(WbaseHﬂ'em) — DKL(OUTS) = % Z.,.gc Thase 11 Tpase + (1 — pc) ln(Bq — b;) —
(1 —p) In(1 — p.). By Jensen’s inequality on the concave function In(-):

> 0 e 7) 0 (2 = 7) - (55

T¢C ¢

Multiplying by —(1 — p,.) gives:

By — b5
7Y el (7)) 2 (1 = po) 1 (270 ) = (1= ) (5 — b5) = (1 = ).
T¢C Pe

Therefore, the difference is non-negative: Dy (Tase||Tent) — DKL (Tbase||ps) = 0. This means that
for any given correctness level C, our method (with yps = Yen %) can achieve it with a lower

or equal KL-divergence cost. Thus, if both methods is constrained by Dk (7pase||Tent) < & and
Dk (Tbase||mps) < &, our method can achieve a correctness C(mps) > C(ent)-

Lemma 5 (Correctness under Forward KL Constraint). When K,(7, Tpase) = Dgi(7||Tpase), for
any Yens > 0, Bens > 0 such that Dgp (Ten|| Tpase) < K, there exist yps > 0 and Bps > 0 such that
Dz (7ps||Tpase) < k& and C(mps) > C(Tens)-

Proof. The proof proceeds in three steps: we first find a functional relationship between correctness
C and the KL divergence for each policy, and then compare them.

Step 1: Analyze the Entropy-Maximization Policy (7en). The correctness of 7., is the total
probability mass on correct trajectories:

— Jent 1/Ben
5o Mo (P58 exp(1/fen) b ¢!/

__ Dent °
p O [ﬂ'base(T)]l Pent exp(7(T)/Bent) b”::tel/ﬂe‘“ (sz:: —b%)
Bﬂf%m(mmo)

b ~vent 1*C(ﬂ'em)
Bent

C(ﬂ'em) =

(6)

Solving for e!/fen yields: e!/Fen =

The reverse KL divergence Dy (Tent||Thase) can be expressed as a function of C(mey). Following
the derivation previously, we arrive at:

Tent

e
DKL(ﬂCmHﬂbaqe = bﬁem Z 7Tbaqe ﬂe:t ln(ﬂ_base(T)) ! C(Wem)
323: TeC
g::t __ Dent
B b Z Thase (7)) Pent I(Trbase (7)) (1 — C'(ent) ) (7N
Jent — Jent
Bent Bent TEC

B'Yent - b Jent ent
Bent Bent

b Jent
+ucwm»m<%t>mmm+Hw@m»
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where H(C') = CInC + (1 — C)In(1 — C) is the binary entropy function.
Step 2: Analyze Differential Policy (7pg). Similarly, the correctness for our policy is given by:

b s el/bos

Bps
C(mps) = bm el/Pos + (1 —p,.)’ .

The corresponding reverse KL divergence as a function of C'(7pg) is

Jbs

Dkr (7ps || Thase) = — bﬂDS Zﬂ'base(T)l Pos 1n(hase (7)) - C(ps)
;[71;2 TEC
b’YDS (9)
+ (1 = C(mps)) In (ﬁp) —Inbys + H(C(mps)).

Step 3: Compare the Policies. Our goal is to show that for any C (e ), We can choose parameters
for our method to achieve C'(mps) = C(7en) With a smaller or equal KL divergence. Let’s choose

ps = %%m, and set C(mps) = C(7en) = C. Equivalently, we assume that

DS _ Yent _ ~

ﬁDS - ﬁem

Then the KL divergence for our method becomes: According to Jensen’s inequality, we have

VZTQC ﬂbas;};')__l;ln(ﬂbase(T)) ) (1 o C) < (1 _ C) .In <&%) = (1 — C) -In <

Then in this case we have

- ase 1_§1 ase o
DKL(Trent”Trbase) = i ZTEC il (T) n(ﬂ-b (T)) -C+ (1 - C) |:1n (l),),):| —1In bq
bs By — by

7}7 ZT¢C 71—base(T)l_i ln(ﬂ—base (T))
1-pc

+ClnC+(1-C)In(1-0C) —

= ()T as 5
> _ 727—€C Tbase (T) n(ﬂbase(T» O+ (1 _ C) |:ln (b'y):| —Inby
b; B7 - bi
+ClnC+(1-C)In(1-0C)

:DKL ('/TDS ‘ ‘ 7Tbase)

-(1-0)

Therefore, the difference is non-negative: Dky. (Tent||Toase) — DKL (7Ds ||Tbase) > 0. This means that
for any given correctness level C, our method (with Yps = Yen - %) can achieve it with a lower or

equal KL-divergence cost. Thus, if the entropy method is constrained by Dk < &, our method can
achieve a correctness C(mps) > C(men) While also satisfying the constraint. O

Lemma 6 (Correctness under Reverse y2 Constraint). When K o (T, Tpase) = Dy2 (Tpasel| ), for any
Yent = 0, Bene > 0 such that Dgp (Tpase||Tens) < K, there exist yps > 0 and Bps > 0 such that
D,z (Tpase | Tps) < K and C(mps) > C(Tepr).

Step 1: Analyze the Entropy-Maximization Policy (7). The correctness of 7y is the total
probability mass on correct trajectories:

1-gm 1 byen €1/ Pem
C(ﬂ-em) — ZTEC [ﬂ-base(T)] ‘ eXp( /ﬁem) - A . (10)

— e
ZTGT [Wbase(T)]l Pen exp(1(7) / Bent) bv::n[ et/ P + (B'Ye"‘ - b“"‘)

Bent Bent

B yent —b yent
1 1/Bent i . ol/Bent — _ Bent Bent C(Tent)
Solving for e yields: e b oy )-
ent

The reverse x? divergence Dy 2 (Tpase||Tent) can be expressed as a function of C'(7ren). Following the
derivation previously, we arrive at:

D, 2 (7pase || Tent) Zﬂ' Teni(7) -1 i = Z 7(%“[(7))2 -1
x2 TTbase || TTent base Thase (7_) .

Tbase (T)
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We insert the expression of 7y into the divergence constraints and we can obtain that

9 Jent 19 Jent

2
€ Bent ETGC 71'basc(T)l Pent 4 ZT¢C ﬂ-base(T) Pent

2
1
|:B Jent — b’Yenl + b Yent € Pent :|

Bent Bent Bent

DX2 (ﬂ'baseHﬂ'ent) =—-1+

We then insert Eq. 10 into the expression of divergence and we can obtain that

__9 Jent 1_2@
S o Toase () 2 Pen S o Toase (7)1 2 Pem
D2 (Mhase [ Tent) = —1 + Tee Z;e - C(Ten)® + (1 = C(ent))? EC 2
e (B — by )
ent Bent

Step 2: Analyze Differential Policy (7mpg). Similarly, the correctness is:

bmel/ﬁ‘)s

_ Sps
C(mps) = Y =T —
Bps

The reverse X2 divergence, after a similar derivation, is:
1—22DS
rec Toase(T) Pos ¢ Toase (T
Dy () = — 1+ 2o el Clmos)? + (1 — Clrps))? rie Toe(T)
2Ds (1—pe)

Step 3: Compare the Policies. Our goal is to show that for any C(7en), we can choose parameters
for our method to achieve C(mps) > C(mren) With a smaller or equal x? divergence. Let’s choose

Yps = %%m, and set C(mps) = C(7en) = C'. Equivalently, we assume that

DS o “Vent ~

ﬂDS B ﬂent -7

According to Cauchy Inequality:

[Z 7T'base(7—)1_2’7‘| : lz 7"'base(7—)‘| > [Z 7"'base(7-)1_’7‘| .

T¢C T¢C T¢C

Thus, we have

Thase\ T 1-25y Tpase (T 1-2%
DX2 (Tpase || Tent) = — 1+ ZTEC bb2 ) : C(Wem)2 +(1- C(%m))QZT%C boel )2
5 (B; — b;)
dorec Toase (7)1 727 1

Z -1 + . C(ﬂ—ent)2 + (1 - C(”Tem))2

- = ]D) 2(’7Tb. S ||7TD5).
B) X ase

bq Z-rgc 7Tbase(7')

Therefore, the difference is non-negative: D, 2 (7pase ||ent) — Dy2 (pase||ps) > 0. This means that

for any given correctness level C, our method (with yps = Yen %) can achieve it with a lower

or equal KL-divergence cost. Thus, if both methods is constrained by Dy (7pase||7ent) < # and

Dk (Tbase||mps) < &, our method can achieve a correctness C(mps) > C(en)-

Lemma 7 (Correctness under Forward y? Constraint). When K o (T, Tpase) = Dy2 (]| Tpase ), for any
Yent > 0, Benr > 0 such that D2 (Ten || Tpase) < K, there exist yps > 0 and Bps > 0 such that
Dy (mps||Tpase) < K and C(mps) > C(Tem).

Proof. The proof proceeds in three steps: we first find a functional relationship between correctness
C and the KL divergence for each policy, and then compare them.

Step 1: Analyze the Entropy-Maximization Policy (7en). The correctness of 7, is the total
probability mass on correct trajectories:

e 1/ Ben
Z-,—ec [Wbase(T)]l Pent exp(l/ﬁent) bﬁe /A
O (en) = e = Do/t (Bom —bom) O
ZTGT [Tbase (T)]" Pent exp(7(7) / Bent) e o o
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B vent —b vent
Solving for e/ P yields: e/ Pen = PP (fé’};;’m))

Bent

The reverse x? divergence Dy 2 (Trent|| Tpase ) can be expressed as a function of C'(7ren). Following the
derivation previously, we arrive at:

D Thase(r)' P exp < Bem )] [Z Toase (1) 750 exp < r;))]

T

]D)Xz (ﬂ'entHﬂ'base) =—1+

Jent 1 __ Dent

=—bren 1+ Bent —  (Bryemx — bM 1 yon
C( ) Bent 7% Trbase(T) + 1-— C(ﬂ—ent) ( Bent Bent ) 7%(:2 ﬂ-base(T)

Step 2: Analyze Differential Policy (7pg). Similarly, the correctness for our policy is given by:

bps e/ s

Bps.
C(WDS) b;fDS el/Bos 4 (1 —pc) (12)

The corresponding reverse x? divergence as a function of C(7pg) is:

1 .
=5 E tEw - E + Fios
Dy 2 (Tent || Toase) o) b;gi Tbase (T DS + A= Clra) —Pe) 2 Tbase (T DS

Step 3: Compare the Policies. Our goal is to show that for any C (e ), we can choose parameters
for our method to achieve C(mps) > C(men) With a smaller or equal x? divergence. Let’s choose

ps = %%m, and set C(mps) = C(menr) = C. Equivalently, we assume that

E _ Vent _ ?
ﬁDS ﬁem

. According to Cauchy Inequality:

lz wbasem”ﬂ | [Z Wbase<r>1ﬁ] - [Z ”basew] '

T¢C T¢C T¢C

Thus, we have

1
D, = (By — by)
x2 (ﬂ'ent ||7Tba§e 7Tem Z 7Tba§e 1 — C(ﬂ'em 7% 7Tbame

2
b Z ﬂ—baxse 7'(' <Z 7Tbase > = ]D)XZ (T‘—ent ||7Tbase>
ent

7Tent

Therefore, the difference is non-negative: D, 2 (ment||Tpase) — Dy2 (7ps || Tpase) > 0. This means that
for any given correctness level C, our method (with Yps = “Yent - %) can achieve it with a lower or

equal KL-divergence cost. Thus, if the entropy method is constrained by D, > < k, our method can
achieve a correctness C(mps) > C(men) While also satisfying the constraint. O

Theorem B.1. Assume the reward mechanism has access to all correct trajectories. For any pa-
rameters Ve, > 0 and By > 0 used in the entropy-regularized policy m.,, that satisfy a proximity
constraint K p(ﬂem, Thase) < K, there exist parameters yps > 0 and B, , > 0 for our proposed
policy mps such that it also satisfies K ,(Tps, Tpase) < K, and the following inequalities hold:

C(mps) > C(Ttens) and  ops > opy.
This result holds for divergence measures K (T, Tpase) including D (7| Thase)s Dir(Tpase||T),

Dy (7| Tpase ), and Dy (Tpagel| ).

Proof. According to Lemma 4, Lemma 5, Lemma 6, and Lemma 7, we obtain that Theorem B.1
holds for Kp(7T7 7T'base) = DKL(TFHT"base); DKL(WbaseHﬂ-)y ]DX2 (7T||7Tbase)7 ]DX2 (7Tbase||77)~ Thus, we finish
the proof of the theorem.
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B.4 EQUIVALENCE OF THEORETICAL AND PRACTICAL REWARD MODIFICATIONS

In this section, we clarify the relationship between our theoretical reward modification and its prac-
tical implementation. Specifically, we demonstrate that subtracting a log 7 term from the reward is
equivalent to subtracting a log 7y, term, under a re-parameterization of the optimization objective.

Consider the following theoretical reward modification, which uses the policy’s own probability 7:

rE(r) = (1) —yp - log(w(7)) ifr(7) >0 (correct trajectories) (13)
DSV () 4 - log(w(7)) if r(7) <0 (incorrect trajectories).
We first define the theoretical optimization problem for parameters 3, v, Vp:
Tps = arg max Err [rBs(T)] = B - Dk (7| | Tbase ) - (14)

Now, consider an alternative formulation where the reward is modified using the base policy mpase:

e (1) = {r(r) — Jp - log(mpase(7)) if r(7) > 0 (correct trajectories) (15)

"Ds 7(T) 4+ n - log(Toase (7)) if (7) < 0  (incorrect trajectories).

We show that the solution mpg to the original problem equation 14 is also the solution to the follow-
ing practical objective, which uses rj%<:

Tps = arg max Err [rpee(r)] — B - Dt (7] Toase) - (16)

This equivalence holds when the new parameters E, Yp, and 7y, are set as follows:

~ Vn(ﬁ’F7¢)

B=B+% =" An= : (17)
ps Yo = Vp B+

Therefore, the theoretical analysis from Theorem 6.1 still holds when log 7 is substituted for
log Tpase- Furthermore, the policy selection mechanism in Eq. 2 is equivalent to directly maximizing
entropy via an added regularization term. In practice, we find that using log 7y ,, (i.e., the log-
probability of a previous policy iteration) in the advantage function modification yields empirically
better performance than using log mp,s (the log-probability of the base policy).

C EXPERIMENTAL DETAILS
In this section, we provide additional details for the experiments in Section 4.

C.1 COUNTDOWN EXPERIMENT
C.1.1 DaATA

We use the dataset released by Pan et al. (2025), which contains 327,680 training samples and 1,024
test samples.! An example training prompt is shown below.

Countdown Task Example

[INST] Using the numbers [5, 94, 9, 44], create an equation that equals 93. You
can use basic arithmetic operations (+, -, *, /) and each number can only be used

once. Show your work in <think> </think> tags. And return the final answer in
<answer> </answer> tags, for example <answer>(1 + 2) / 3</answer>. [/INST]
Let me solve this step by step.

Our implementation builds on the official repository of Pan et al. (2025) and a fork adapted for
A100 training.?

'https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
https://github.com/Jiayi-Pan/TinyZero
Shttps://github.com/JerryiWu-code/TinyZero
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C.1

.2 TRAINING

We train with a global batch size of 128, with 5 rollouts per prompt, and use a mini-batch size
of 64. The learning rate is 1 x 107, and the KL penalty coefficient is set to Bx;, = 1 x 1073.
The reward is 1 for correct responses, 0.1 for incorrect yet properly formatted responses, and 0
for all others. The maximum response length is 8,192 tokens. We perform RL fine-tuning of the
Qwen?2.5-3B-Instruct model (Qwen Team, 2024) for 320 steps on 2 A100 GPUs.

Table Al: Configuration for Qwen3-1.7B

Parameter Value Parameter Value
Pretrained model Qwen3-1.7B  Training set DAPO14k
Prompts per batch 32 Generations per prompt 8
Gradient update per RL step 2 Max prompt length 1024

Max response length 4096 Learning rate 5x 1077
Clip ratio low 0.2 Clip ratio high 0.25
Training Steps 300 154 0.0
Entropy coefficient 0.0 Yp 0.02

Yn 0.002 Remove padding Enabled
Rollout engine vllm Rollout temperature 0.7
Validation temperature 0.7 Device 4 x Nvidia-H100

Table A2: Configuration for Qwen2.5-Math-1.5B

Parameter Value Parameter Value

Pretrained Model Qwen2.5-Math-1.5B  Training Set DAPO14k + MATH12k

Prompts per batch Generations per prompt 8

Gradient update per RL step Max prompt length 1024

Max response length 2048 Learning rate 1x10°¢

Clip ratio low 0.2 Clip ratio high 0.25

Training Steps 1000 0.0

Entropy coefficient 0.0 Yp 0.01

Yn 0.01 Remove padding Enabled

Rollout engine vllm Rollout temperature 0.7

Validation temperature 0.7 Device 4 x Nvidia-L6000
Table A3: Configuration for Qwen2.5-Math-7B

Parameter Value Parameter Value

Pretrained Model Qwen2.5-Math-7B  Training Set DAPO14k + MATH12k

Prompts per batch Generations per prompt 8

Gradient update per RL step Max prompt length 1024

Max response length 2048 Learning rate 1x10°¢

Clip ratio low 0.2 Clip ratio high 0.25

Training Steps 500 B 0.0

Entropy coefficient 0.0 Yp 0.01

Yn 0.01 Remove padding Enabled

Rollout engine v1llm Rollout temperature 0.7

Validation temperature 0.7 Device 4 x Nvidia-A100

For Qwen2.5-Math-7B model, we trained for three random seeds. During evaluation, we first gener-
ated 128 rollouts for each question, then estimated Pass@1 to Pass @64 using the unbiased estimator
of each metric respectively, following Walder & Karkhanis (2025b).
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Table A4: Configuration for Ministral-8B-Instruct

Parameter Value Parameter Value
Pretrained model Ministral-8B-Instruct ~ Training set DAPO14k + MATH12k
Prompts per batch 32 Generations per prompt 8

Gradient update per RL step 2 Max prompt length 1024

Max response length 2048 Learning rate 3x 1077

Clip ratio low 0.2 Clip ratio high 0.22

Training steps 300 15} 0.001

Entropy coefficient 0.0 Vp 0.02

Tn 0.002 Remove padding Enabled

Rollout engine vllm Rollout temperature 0.7

Validation temperature 0.7 Device 4 x Nvidia-A100

C.2 BASELINE IMPLEMENTATION

GR-PKPO. We attempted to train the model using the Pass@k metric directly as the reward signal
for k € {2,3,4}. However, this approach proved unstable across all configurations. The training
process quickly collapsed, causing the model to generate degenerate outputs and yielding perfor-
mance substantially worse than the baseline. Consequently, these results are omitted from our main
comparisons. We hypothesize this instability may be attributed to the limited number of rollouts (5)
used during training.

Unlikeliness Reward Method. We compare against the rank-based penalty proposed by He et al.
(2025a), which down-weights the reward for high-probability solutions to encourage diversity. For
a set of rollouts {; }$ ,, the modified reward is:

G- rank(yl-)>

Tunlikely (yz) = T(yz) (1 - Brank a

where rank(y;) is the rank of the solution y; based on its probability under the policy moia(- | ).
We performed a hyperparameter sweep for Syank € {0.05,0.1,0.15,0.2,0.25,0.3} and found that
Brank = 0.05 yielded the best Pass@64 performance. For values of [, > 0.15, the training
became unstable and collapsed.

Entropy-Based Methods. For the entropy-based baselines, we augment GRPO with either an en-
tropy bonus or penalty. We swept the coefficients 7 and 7_ over the set {0.005,0.01,0.03,0.05}.
In Figure 4, we report the results for the hyperparameter value that achieved the highest Pass @64
score. A comprehensive summary of all experimental runs is available in Appendix D.

C.3 MATH REASONING EXPERIMENT

We first filter out 14,042 questions that are written in English from the DAPO dataset (Yu et al.,
2025), and combined them with 11,998 questions in the MATH 12k dataset (Hendrycks et al., 2021).
After that, we conduct reinforcement finetuning on Qwen?2 .5-Math-1.5B (Qwen Team, 2024),
Qwen3-1.7B (Qwen Team, 2025) and Ministral-8B-Instruct (Jiang et al., 2024) model.
The detailed training setups are shown in Tab. A6A4AS, and response examples are shown in boxes
below respectively.

Mistral Instruction Response Example

[INST] Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter
your answer in the form (r,0), where » > 0 and 0 < 6 < 2x. Let’s think step by step
and output the final answer within \boxed{}. [/INST]

1. **Calculate the radius r:**

r=v02+32=v0+9=v9=3.
2. **Determine the angle 6:**
» The point (0, 3) is on the positive y-axis.
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» The angle 6 with the positive z-axis is given by:

6 = tan~! <3) .
0

+ Since the point is on the positive y-axis, the angle is 7.
3. **Combine the results to get the polar coordinates:**

™
(37 5)
g J

Qwen2.5-Math-1.5B

[INST] Cities A and B are 45 miles apart. Alicia lives in A and Beth lives in B. Alicia
bikes towards B at 18 miles per hour. Leaving at the same time, Beth bikes toward
A at 12 miles per hour. How many miles from City A will they be when they meet?
Let’s think step by step and output the final answer within \boxed{}. [/INST]

To determine where Alicia and Beth will meet, we need to find out how long it will
take for them to meet and then use that time to calculate the distance Alicia has
traveled.

1. First, let’s calculate their combined speed. Since Alicia bikes at 18 miles per
hour and Beth bikes at 12 miles per hour, their combined speed is 18+ 12 =
30 miles per hour.

2. Since the distance between the two cities is 45 miles, the time it takes for
them to meet is the total distance divided by their combined speed. So, the
time t it takes for them to meet is

45
t = — = 1.5 hours.
30

3. Now, we need to find out how far Alicia has traveled in 1.5 hours. Since
Alicia bikes at 18 miles per hour, the distance she travels in 1.5 hours is

18 x 1.5 = 27 miles.

So, Alicia and Beth will meet 27 miles from City A. The final answer is

Table A5: Configuration for Countdown Task

Parameter Value Parameter Value
Pretrained model Qwen2.5-3B-Instruct  Batch size 128
Generations per prompt 5 Mini-batch size 64

Max prompt length 2,048 Max response length 8,192
Learning rate 1x10°° Training steps 320
Entropy coefficient 0.001 Clip ratio 0.2

Vp 0.03 Yn 0.01
Rollout engine vllm Rollout temperature 1
Validation temperature 1 Validation top-k 50
Validation top-p 0.7 Device 2x A100

C.4 EXPERIMENTAL DETAILS FOR SECTION 5.2

In this section, we present experimental details to substantiate the claim made in Section 5.2: namely,
that the Solution Multiplicity Solution Multiplicity (X'), the average number of unique solutions per
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problem instance, serves as an appropriate metric for evaluating the benefits of encouraging policy
entropy in a task. The tasks we consider are as follows:

* Math Reasoning: As described in Appendix C.3.
* Countdown: As described in Appendix C.1.

* Countdown-3: A variant of Countdown where we filter the dataset to retain only samples
with three given numbers.

* Knights and Knaves: A classic logic puzzle in which the objective is to identify truth-
tellers (knights) and liars (knaves) from their statements. (Stojanovski et al., 2025). Below
is an example question and correct response.

Knights-and-Knaves

-

Question:

A very special island is inhabited only by sages and fools. Sages always tell the truth, and fools always lie. You meet 6
inhabitants: Owen, Liam, Evelyn, William, Sofia, and Emily. As Owen put it, "William is a sage". Liam was heard saying,
"William is a fool". Evelyn noted, "Sofia is a fool and Evelyn is a sage". "if Owen is a sage then Sofia is a sage," William
mentioned. "if Liam is a sage then Evelyn is a sage," Sofia claimed. Emily told you that if Emily is a sage then Liam is a
fool. So who is a sage and who is a fool? (Format your answer like: "Owen is a sage/fool, Liam is a sage/fool, Evelyn is
a sage/fool, William is a sage/fool, Sofia is a sage/fool, and Emily is a sage/fool") Let’s think step by step and output the
final answer (should be a sentence) within \boxed{}.

Response:

» We need to consider two cases for Owen:

— Case 1: Owen is a sage. If Owen is a sage, then his statement is true. Therefore, William must be a
sage.

— Case 2: Owen is a fool. If Owen is a fool, then his statement is false. Therefore, William must be a
fool.

« Liam’s statement: “William is a fool.”

— Case 1: Liam is a sage. If Liam is a sage, then his statement is true. Therefore, William must be a
fool.

— Case 2: Liam is a fool. If Liam is a fool, then his statement is false. Therefore, William must be a
sage.

« William’s statement: “If Owen is a sage then Sofia is a sage.”
Since Sofia is a sage, William’s statement is true. Therefore, William must be a sage.

« Owen’s statement revisited: “William is a sage.”
Since William is a sage, Owen’s statement is true. Therefore, Owen must be a sage.

« Liam’s statement revisited: “William is a fool.”
Since William is a sage, Liam’s statement is false. Therefore, Liam must be a fool.

« Emily’s statement revisited: “If Emily is a sage then Liam is a fool”
Since Emily is a sage (from earlier), according to her statement, Liam must be a fool. This confirms our
previous determination.

» Owen’s initial statement: “William is a sage.”
Since Owen is a sage and William is a sage, Owen'’s statement is true. This is consistent.

Therefore, summarizing:
» Owen is a sage.
* Liam is a fool.
» Evelyn’s statement was a contradiction, so Evelyn must be a fool.
« William is a sage.
» Sofia is a sage.
« Emily’s statement was consistent, so Emily must be a sage.

’ Owen is a sage, Liam is afool, Evelyn is a fool, William is a sage, Sofia is a sage, and Emily is a sage ‘

J

To estimate Solution Multiplicity, we query the GPT-5-Think model on 200 randomly selected sam-
ples with the following prompt:
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Prompt for Querying Solution Multiplicity

[INST]You are an expert mathematics educator and problem solver. Analyze the
given mathematical problem and determine how many different solution approaches
exist for it.

Please provide a comprehensive analysis that: 1. |dentifies all distinct solution meth-
ods/approaches 2. Briefly explains what each approach involves 3. Counts the total
number of different approaches

Mathematical Problem: problem

Please first explain what different solution approaches exist for this problem, then
provide your final answer in the format: <ways> [number] </ways>

For example, if a problem has exactly 2 different solution methods, your response
should end with: <ways> 2 </ways> [/INST]

Table A6: Illustration of Experimental Result

Task Knight and Knaves | Math | Countdown-3 | Countdown
Solution Multiplicity 1.5 3.7 6.5 15.7
Pass@8 of GRPO 47.1 78.6 97.7 73.4
Pass@8 of GRPO + Entropy bonus | 38.1 72.6 98.7 76.8
Entropy Effect for Pass@8§ -9.0% -6.0% | +1.0% +3.4%

Training details. The training setups of Math reasoning and Countdown task are identical to the
main experiments as described in Appendix C.1 and C.3. For Countdown-3, we train the model
for 160 steps. For GRPO with entropy bonus, we use a bonus coefficient of nn, = 0.05. Other
configurations are identical to those of the main experiment. For Knights-and-Knaves, we RL fine-
tune the Qwen2.5-7B-Instruct Qwen Team (2024) model with LoRA adaptation (rank 256) (Hu
et al., 2022) for 100 steps. We use a learning rate of 4 x 1075 and a batch size of 32, with 8 rollouts
per sample.

Result Analysis. The experimental results, presented in Table A6, reveal a direct correlation be-
tween Solution Multiplicity and the efficacy of entropy regularization. Specifically, as a task’s Solu-
tion Multiplicity increases, so does the performance gain (Pass@8) of an entropy bonus over vanilla
GRPO. This provides strong empirical support for our hypothesis: for tasks with a larger solution
space, the benefits of enhanced diversity outweigh the potential trade-offs in single-solution correct-
ness. These findings thus validate Solution Multiplicity as a practical metric for guiding the decision
of whether to increase or decrease entropy for a given task.

D ADDITIONAL EXPERIMENTAL RESULTS FOR COUNTDOWN

In this section, we provide additional results for the Countdown task.

D.1 ADDITIONAL EXPERIMENTS FOR ENTROPY COEFFICIENT

To provide a more comprehensive comparison, we analyze the performance of the entropy-based
baselines across their full hyperparameter sweep. We compare DS-GRPO against GRPO with vary-
ing entropy bonus (74 ) and penalty (1_) coefficients, with the results illustrated in Figure A1 (Top).
The figure clearly demonstrates that DS-GRPO consistently outperforms the global entropy control
methods across their entire range of tested hyperparameters for all values of K.

D.2 EFFECTS OF KL COEFFICIENT AND OTHER FACTORS

Figure A1 (Bottom Left) reports results with varying sampling temperatures for both DS-GRPO and
GRPO. Under the same temperature, DS-GRPO achieves consistently higher Pass@ k.
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Figure Al: Additional results on the Countdown task comparing DS-GRPO with various baselines. Top:
Pass@K performance of DS-GRPO and GRPO under entropy bonus and entropy penalty. Bottom Left:
Pass@K performance of DS-GRPO and GRPO across different sampling temperatures. Bottom Right:
Pass@ K performance of DS-GRPO and the Unlikeliness Reward method with varying coefficients.

Figure A1 (Bottom Right) presents results from varying the unlikeliness reward coefficient Bk €

{0.05,0.1,0.15,0.2,0.25,0.3} (He et al., 2025a). For Bk > 0.15, training collapses and accuracy
drops to 0, so we omit those results.

Observed Experimental Performance: Our experimental results show a differential effect:

* +Entropy (Bonus): Improves Pass@K on Countdown, but decreases Pass@K on
Math500.

* —Entropy (Penalty): Improves Pass@K on Math500, but decreases Pass@1 and Pass@K
on Countdown.

Our core explanation is rooted in the trade-off: the effect of +entropy is to enhance diversity but
compromise correctness (P@ 1), while the effect of —entropy is to sharpen correctness but diminish
diversity. The negative effect of increasing/decreasing diversity and correctness is task-dependent
because the relative contribution of diversity and correctness to the final Pass@XK score differs.

* +Entropy (Bonus): On Countdown, the positive effect of increasing diversity outweighs
the negative effect of decreasing correctness, thus Pass@K improves. However, on
Math500, the detrimental effect on correctness outweighs the benefit of increased diver-
sity, causing Pass@K to decrease.
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* —Entropy (Penalty): Conversely, for the entropy penalty, the effect of harming diversity
outweighs the benefit of improving correctness on Countdown. Yet, on Math500, the
improvement in correctness outweighs the harm to diversity, leading to an increase in

Pass@K.
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E ADDITIONAL EXPERIMENTAL RESULTS FOR MATH REASONING
EXPERIMENT

E.1 ADDITIONAL EXPERIMENTAL RESULTS ON DS-GRPO vs GRPO

Experimental Results. Figure A4, which contains the full results for Section ??, compares our
proposed DS-GRPO against the vanilla GRPO baseline across three different base models and five
mathematical reasoning benchmarks. The results consistently demonstrate that DS-GRPO outper-
forms vanilla GRPO across all tested models and datasets.

MATHS00 OlympiadBench AMC23 AIME24 AIME25

Qwen3-1.7B Qwen3-1.7B 7 Qwens-1.78 0451 Qwen3-1.7B Qwen3-1.7B

:
:

Qwen2.5-Math-1.5B Qwen2.5-Math-1.5B. 101 Qwen2.5-Math-1.5B Qwen2.5-Math-1.5B Qwen2.5-Math-1.5B

N

.

1051 Qwen2.5-Math-7B 081 Qwen2.5-Math-7B Qwen2.5-Math-7B Qwen2.5-Math-7B | 05 Qwen25Math-7B

s o o

:

Mistral- 8B Mistral- 8B Mistral-8B 030 Mistral- 8B | 020 Mistral-8B

12 4 8 16 R @ L2 4 8 16 2 o 12 4 8 16 R 6 12 4 8 16 2 6 12 4 8 16 2 6

Figure A2: Pass@K performance after reward modification, compared with vanilla GRPO. X-axis denotes K
and y-axis denotes pass rates. Trained on the DAPO(Yu et al., 2025) and the MATH(Hendrycks et al., 2021)
Dataset.

E.2 ADDITIONAL ABLATION STUDY FOR DS-GRPO

Ablation Study Implementation. To isolate the contribution of each component in our reward
modification strategy, we conduct an ablation study. We compare the full DS-GRPO algorithm
against two specialized variants: DS-GRPO-Positive, which only modifies the advantage for correct
trajectories, and DS-GRPO-Negative, which only modifies the advantage for incorrect trajectories.

Their respective advantage modifications are defined as follows:
APt = A; — v, logmg,,, (yi | ©), ifri=1,
A]i)s- = A+ log Tho1a (yz ‘ 33), ifr; #1.

The DS-GRPO-Positive variant applies only the modification to correct trajectories (AP5*), leaving
the advantage for incorrect trajectories as the standard A;. Conversely, the DS-GRPO-Negative vari-
ant applies only the modification to incorrect trajectories (APS"), leaving the advantage for correct
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Figure A3: Comparison on Different Hyperparameter of DS-GRPO.

trajectories unchanged. Result Analysis. We present the results of our ablation study in Figure A3.
The key findings are as follows:

* DS-GRPO-Positive vs. Vanilla GRPO. As shown in Figure A3, DS-GRPO-Positive outperforms
vanilla GRPO, particularly for larger values of K. This demonstrates that modifying the reward
for correct trajectories successfully mitigates the sharpening effect, providing empirical support
for our intuition in Section 3.3 that penalizing high-probability correct solutions enhances diver-
sity.

* DS-GRPO-Negative vs. Vanilla GRPO. The figure also shows that DS-GRPO-Negative con-
sistently outperforms vanilla GRPO across all values of K. This indicates that modifying the
reward for incorrect trajectories is effective at improving the model’s overall correctness.

* DS-GRPO vs. Its Components. The full DS-GRPO algorithm demonstrates superior perfor-
mance over both of its individual components (DS-GRPO-Positive and DS-GRPO-Negative) for
all K. This highlights a clear synergy: the "Positive" component drives diversity, while the
"Negative" component enhances correctness. Their combination in DS-GRPO achieves the best
balance, validating our complete reward modification strategy as outlined in Section 3.3.
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Table A7: Pass@1 and Pass @64 sorted by y, settings.

Yp 0.02 0.03 0.04
Yn 0.005 0.020 0.040 0.005 0.010 0.030 0.005 0.020 0.040

Pass@1 0.669 0.583 0.608 0.637 0.652 0.637 0.568 0.599 0.593
Pass@64 0.841 0.734 0.824 0.807 0.820 0.807 0.820 0.782 0.814

F SUPPLEMENTARY EXPERIMENTS AND ANALYSIS

F.1 PARAMETER SENSITIVITY

To evaluate the parameter sensitivity, we constructed a two-dimensional uniform grid over the iden-
tified intervals and evaluated the candidate combinations. Our results are shown as follows.

Pass@1 / Pass@64 vs (coefl, coef2) [E] [E] [E]

Pass@1 1o Pass@64 Lo

0.6
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N}
°
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°
@
3
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0.4

0.01 A 0.65 0.01

0.005 A 067 064 057 0.005

0.0

0.02 0.03 0.04 . 0.03
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Figure A4: Pass@K performance after reward modification, compared with vanilla GRPO. X-axis denotes K
and y-axis denotes pass rates. Trained on the DAPO(Yu et al., 2025) and the MATH(Hendrycks et al., 2021)
Dataset.

We can observe that the performance of DS-GRPO on neither Pass@ 1 nor Pass@K is sensitive to
parameters 7y, and 7y,. Based on this observation, it is easy to find the best parameter combination
with the method described below.

We employed a two-step procedure to select and optimize the hyperparameters 7y, and v,:

1. Step 1: Preliminary range identification (Coarse Search). First, we determined a feasi-
ble interval for ,, and +y, through a coarse search. By fixing one parameter and varying the
other, we observed that excessively large values for y,, or 7, led to training instability and
significant performance degradation. Consequently, we established a rough search interval
[@n, by] X [ap, by] within which the training remained stable.

2. Step 2: Fine-grained selection via Grid Search After defining the coarse intervals, we
performed a fine-grained grid search to pinpoint the optimal combination. We constructed
a two-dimensional uniform grid over the identified intervals and evaluated the candidate

combinations {(*yn = N0 i_a 7 = NG j_a )> } . We then selected the param-
" Jigeln

eter set that achieved the best performance on the Pass@K and Pass@1 metrics.It is worth

noting that the performance of DS-GRPO is relatively robust to hyperparameter variations

within this effective range (please refer to the sensitivity analysis in the following part).
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F.2 REDUNDANCY ANALYSIS WITH ENTROPY REGULARIZATION.

We further investigate whether adding entropy regularization complements DS-GRPO or if its ef-
fects are redundant. Our hypothesis is that the exploration benefits of entropy regularization are im-
plicitly captured by DS-GRPO. To verify this, we conducted experiments on the Countdown dataset
using the Qwen2.5-3B-Instruct model. Initial results showed that adding entropy regularization to
DS-GRPO yields improvements over vanilla GRPO. However, by removing entropy regularization
and instead fine-tuning DS-GRPO hyperparameters (specifically, increasing 7, and decreasing v;,),
we achieved superior performance compared to the combined approach. This demonstrates that
the benefits associated with entropy regularization can be effectively subsumed by optimizing DS-
GRPO directly. The comparative results are presented in Figure AS.
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Figure A5: Pass@K performance of DS-GRPO and DS-GRPO with entropy regularization

F.3 ADDITIONAL EXPERIMENT ON COMPARING DS-GRPO wiTH CISPO

We compare DS-GRPO with CISPO (Chen et al., 2025a), as illustrated in Figure A6. The results
demonstrate that DS-GRPO consistently achieves a higher Pass@K compared to CISPO across all
datasets. All experiments were conducted using the Qwen2.5-Math-1.5B model.
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Figure A6: Comparison on CISPO with DS-GRPO.

F.4 DIVERSITY CHANGES OF DS-GRPO COMPARING TO BASELINE MODEL

To provide stronger evidence that DS-GRPO truly mitigates entropy collapse, follow the convention
of (Hochlehnert et al., 2025). We plot the Pass@K difference between DS-GRPO with base model
over K in the following figure. We can see that the Pass@K difference between DS-GRPO with
base model does not go down as K increases. This shows that DS-GRPO truly mitigates diversity
collapse. The figure is shown in Fig A7.
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Figure A7: Pass@K change of GRPO and DS-GRPO.

F.5 COMPARISON OF DIFFERENTIAL ENTROPY CONTROL WITH OTHER ENTROPY BASED

METHODS

We extended our experiments to four mathematical reasoning datasets, comparing our method
against Entropy Bonus, Entropy Penalty, and vanilla GRPO. The results are shown in Figure A8,
our proposed method outperforms competing baselines in the vast majority of settings. The results
highlight the performance gain of our Differential Entropy method over vanilla GRPO and other
entropy-based variants. Notably, our method exhibits consistent performance gains across varying
K, particularly demonstrating superior scaling capability at higher K values (e.g., K > 4).
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Figure A8: Pass@K change of GRPO and DS-GRPO.

F.6 STATISTICAL ANALYSIS OF DS-GRPO IMPROVEMENTS

We further quantify the performance gains of DS-GRPO compared to the GRPO baseline. The
improvements, averaged across experimental runs, are detailed in Table A8. The results demonstrate
that DS-GRPO yields consistent and positive uplifts in Pass @K metrics across all evaluated datasets,
validating the robustness of our method.

Table A8: Average performance improvement of DS-GRPO over GRPO across different datasets. The values
represent the percentage point increase in Pass@K.

Dataset P@l P@2 P@4 P@8 P@16 P@32 P@64
MATHS500 +0.8% +0.7% +0.8% +0.8% +0.8% +1.0% +0.9%
AIME 2024 +1.1% +13% +12% +1.5% +4.1% +3.3% +4.6%
AIME 2025 +0.6% +0.0% +09% +0.8% +1.6% +1.7% +2.4%
OlympiadBench +0.4% +0.6% +0.7% +09% +0.8% +1.0% +1.0%
AMC 2023 +14% +13% +0.8% +14% +1.7% +1.8% +1.7%
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