

000 LEO: A GRAPH ATTENTION-BASED FRAMEWORK 001 FOR LEARNED OBJECT EXTENSIONS AND ADAPTIVE 002 SENSOR FUSION FOR AUTONOMOUS DRIVING APPLI- 003 CATIONS 004 005 006 007

008 **Anonymous authors**

009 Paper under double-blind review

010 ABSTRACT

011
012
013
014 Accurate shape and trajectory estimation of dynamic objects is a fundamental
015 requirement for reliable perception in Automated Driving (AD). In the classical
016 versions of AD algorithms and stacks, various Bayesian extended object geomet-
017 ric models are used to provide object-related extensions and trajectories. Perfor-
018 mance of such approaches are deeply connected with the completeness of a-priori
019 and update-likelihood functions. Recent deep learning approaches improve flexi-
020 bility by learning shape features directly from raw or fused sensor data, but they
021 often rely on dense annotated datasets and high computational resources, which
022 restricts their applicability in production vehicles. We aim to improve production-
023 level automated driving systems by integrating the computational efficiency and
024 theoretical robustness of geometric methods with the adaptability and generaliza-
025 tion capabilities of modern deep learning techniques. We employ a task-specific
026 parallelogram-based ground-truth formulation to represent object extensions, fa-
027 cilitating expressive modeling of complex geometries such as articulated trucks
028 and trailers. Our primary contribution is the development of a novel spatio-
029 temporal Graph Attention Network (GAT)-based model, Learned Extension of
030 Objects (LEO), that demonstrates proficiency in adaptive fusion weight learning,
031 temporal consistency, and multi-scale shape representation from multi-modal pro-
032 duction grade sensor tracks. LEO successfully generalizes across various sensor
033 modalities, configurations, object classes, and geographic regions, exhibiting ro-
034 bustness even under challenging conditions and longer range targets. We have pre-
035 sented these observations and evaluations based on the real-world Mercedes-Benz
036 SAE Level-3 (L3) DRIVE PILOT dataset in our article. Furthermore, its com-
037 putational efficiency makes it a suitable candidate for integration into a real-time
038 production system, although further validation and integration efforts are neces-
039 sary for deployment in safety-critical systems.

040 1 INTRODUCTION

041
042 AD has emerged as a transformative paradigm for improving road safety, mobility, and efficiency in
043 modern transportation. Human error accounts for nearly 94% of severe accidents, highlighting the
044 potential of Autonomous Vehicles (AVs) to enhance safety through consistent, rule-based decision
045 making and improved situational awareness (Singh, 2015). Beyond safety, AD promises extended
046 mobility for elderly and disabled users, reduced congestion via coordinated routing, and lower costs
047 through fuel efficiency and shared ownership models (Fagnant & Kockelman, 2015; Yurtsever et al.,
048 2020). These advantages have fueled substantial research and industrial investment, positioning AD
049 as a cornerstone of future intelligent transportation systems (Badue et al., 2021).

050 The deployment of AVs relies on the integration of perception, prediction, planning, and control,
051 with perception forming the foundation (Li & Ibanez-Guzman, 2020). Multi-modal sensor suites
052 integrating LiDAR, RADAR, and cameras are commonly employed in contemporary systems to
053 leverage their respective strengths. LiDAR provides high-resolution geometric data, albeit with di-
minished point cloud density at extended ranges. RADAR offers robust velocity measurements and

054 resilience to adverse environmental conditions, notwithstanding its limited spatial resolution. Cam-
 055 eras furnish rich semantic information, but lack inherent precise depth perception (Yeong et al.,
 056 2021). Robust sensor fusion is thus essential for holistic scene understanding and safe decision
 057 making (Arnold et al., 2019). A key challenge in perception is accurate estimation of object ge-
 058 ometry. Many tracking methods simplify targets as points, neglecting spatial extent. In real traffic,
 059 however, vehicles, cyclists, and pedestrians occupy significant space and typically generate multiple
 060 measurements per frame. This motivates Extended Object Tracking (EOT), which jointly estimates
 061 kinematics and shape (Koch, 2016). Reliable shape estimation is particularly critical in dense urban
 062 scenarios with vulnerable road users, where inaccurate modeling can lead to unsafe distance keeping
 063 or unnecessary evasive maneuvers.

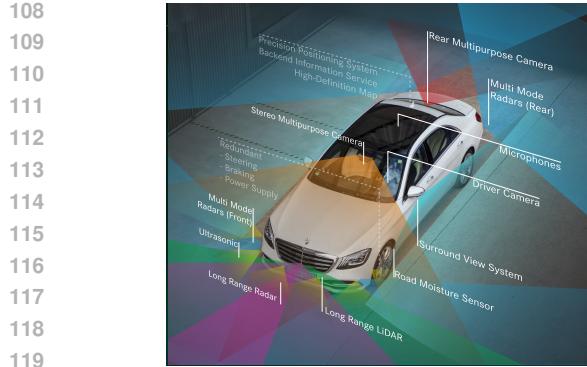
064 Classical EOT approaches, such as random matrix models (Feldmann et al., 2010; Haag et al., 2018),
 065 provide efficient ellipse approximations but degrade under occlusions and articulated shapes. Non-
 066 parametric contour formulations, including Gaussian processes (Granstrom et al., 2016), improve
 067 geometric flexibility but rely on dense observations and incur high computational costs. More
 068 recently, learning-based methods estimate shape features directly from raw or fused sensor data
 069 (Meyer & Thakurdesai, 2020; Dong et al., 2020), alleviating parametric limitations yet facing chal-
 070 lenges with annotation costs, generalization across sensor configurations, and robustness under
 071 sparse or noisy conditions (Wang et al., 2021). In this context, Graph Neural Networks (GNNs)
 072 have emerged as a powerful paradigm for modeling spatial relationships and temporal dependencies
 073 in structured automotive perception data (Wang et al., 2019), including learned-geometry approaches
 074 such as the Graph Transformer in 3DMOTFormer (Ding et al., 2023). While curated datasets such
 075 as KITTI (Geiger et al., 2013), nuScenes (Caesar et al., 2020), and Waymo (Sun et al., 2020a) have
 076 enabled the development of these increasingly complex models, production systems must operate
 077 under stringent computational and bandwidth constraints, often exposing only object-level tracks
 078 rather than raw sensor measurements (Duraisamy et al., 2013). These restrictions limit the appli-
 079 cability of dense point-cloud architectures and motivate the need for data- and compute-efficient
 080 formulations.

081 To address these challenges, this work introduces the **Learned Extension of Objects** (LEO) frame-
 082 work for production-oriented extended object tracking. The key contributions are:

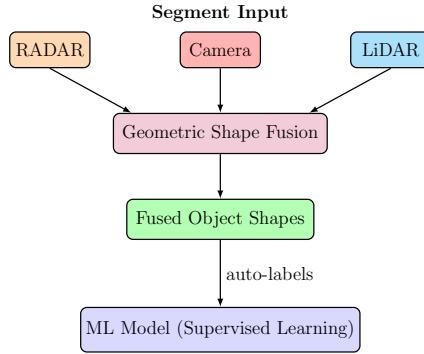
- 083 • A spatio-temporal architecture that leverages Graph Attention Network (GAT) blocks, orig-
 084 inally proposed by Veličković et al. (2018), to enable adaptive shape estimation under pro-
 085 duction constraints.
- 086 • A parallelogram-based ground-truth formulation that generalizes bounding geometries to
 087 represent both rectangular and articulated objects such as trucks with trailers.
- 088 • A dual-attention mechanism that jointly captures intra-modal temporal dynamics and inter-
 089 modal spatial dependencies across multi-sensor tracks for robust fusion and sequential
 090 learning.
- 091 • Comprehensive evaluation on large-scale, real-world automotive datasets, demonstrating
 092 accurate, and computationally efficient performance across diverse driving scenarios.

094 2 RELATED WORKS

095 **Deep Learning for Object Detection** The advent of deep learning has enabled models to learn
 096 complex geometric representations directly from multi-modal datasets with ground-truth 3D anno-
 097 tations. Early CNN-based approaches, such as PointPillars and SECOND (Lang et al., 2019; Yan
 098 et al., 2018), process voxelized inputs to produce oriented bounding boxes efficiently, while point-
 099 based methods like PointNet++ (Qi et al., 2017) operate directly on raw point clouds. Transformer-
 100 based architectures, including DETR3D and BEVFormer (Wang et al., 2022; Li et al., 2024), exploit
 101 attention in Bird’s-Eye View representations. Multi-modal fusion strategies, e.g., camera-LiDAR-
 102 RADAR integration (Yeong et al., 2021; Bai et al., 2022), further enhance robustness under chal-
 103 lenging conditions. Recent end-to-end EOT frameworks, such as CenterTrack (Zhou et al., 2020),
 104 TrackFormer (Meinhardt et al., 2022), and TransTrack (Sun et al., 2020b), integrate detection, asso-
 105 ciation, and shape estimation in a unified pipeline. By leveraging temporal embeddings and attention
 106 mechanisms, these models maintain object identities and consistent shape estimates across frames,
 107 even under occlusions or missed detections.



(a) Mercedes-Benz EQS sensors.

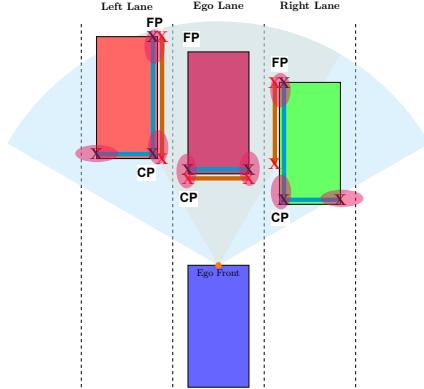


(b) Supervised Learning using labels from geometric method

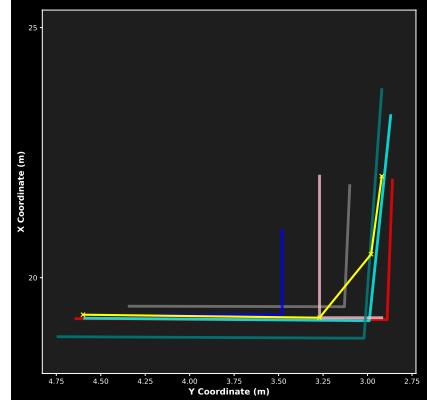
Figure 1: Mercedes-Benz EQS sensors used by DRIVE PILOT Mercedes-Benz (2023) (a) and auto-labeling pipeline (b).

Extended Object Tracking Classical Extended Object Tracking (EOT) used Bayesian filters with simple parametric shapes like ellipses (Feldmann et al., 2010; Lan & Li, 2019), offering efficiency but limited expressiveness. Learning-based tracking integrates temporal consistency via transformers, exemplified by TrackFormer and TransTrack (Meinhardt et al., 2022; Sun et al., 2020b). However, there is not much literature on deep-learned extension of objects in the context of EOT.

3 GEOMETRIC METHOD AND AUTO-LABELING



(a) Sensor target shape types



(b) Target as detected by multiple sensors

Figure 2: Comparison of sensor field-of-view-based shape abstractions under occlusions, with overlays of the FOVs for RADAR (60°) and LiDAR (120°), along with oval-shaped extension point covariances and lane-wise points for evaluation (a) and multi-sensor target shape segments (b).

In series-production vehicles, raw sensor data is typically unavailable due to bandwidth, certification, and proprietary constraints from suppliers, resulting in perception modules that output high-level object tracks rather than low-level measurements (Duraisamy et al., 2013). These sensor tracks contain kinematic estimates, classification attributes, state covariances, and coarse object extents, abstracting away raw point clouds or image detections. (Duraisamy et al., 2015) presents combination of this information granularity (Duraisamy et al., 2023) to achieve improved data association and fusion quality. Track-level fusion has emerged as a practical paradigm Bar-Shalom et al. (2001); Tian et al. (2012), enabling modular integration of sensors and robustness across automotive platforms. Each sensor delivers object hypotheses in the form

$$List_{\text{sens}} = \{\hat{\mathbf{x}}_i, \mathbf{P}_i, Ext_j\} \quad (1)$$

162 where $\hat{\mathbf{x}}_i$ is the estimated kinematic state, \mathbf{P}_i the covariance, and Ext_j the j -th extension point with
 163 $m \leq 3$ depending on sensor resolution. The fusion task defines a function that generates a consistent
 164 fused representation of objects in Equation 2.

$$FusedShape = f(\hat{\mathbf{x}}_{sens,i}, \mathbf{P}_{sens,i}) \quad (2)$$

167 Objects are abstracted as primitive geometric types depending on sensor modality and resolution
 168 depicted in Figure 2a: **L-shapes** for high-resolution sensors like LiDAR capturing both edges and
 169 object in sensor's FOV, **I-shapes** when only one edge is visible, such as vehicle in front of ego
 170 vehicle or occluded, and **point-shapes** typical of RADAR with limited resolution at far ranges.
 171 This representation enables handling heterogeneity and partial observability across modalities. The
 172 hybrid fusion framework is modular, comprising kinematic state fusion with Kalman Filter (KF) or
 173 Covariance Intersection (CI), and shape extension fusion using computational geometry (Duraisamy
 174 et al., 2016; 2023). Segment association relies on spatial and orientation criteria, using Hausdorff
 175 distance with threshold $d_{Hausdorff} < 2$ m and angular constraint $\theta < 30^\circ$.

$$d_{Hausdorff} = \max(d(S_1, S_2), d(S_2, S_1)) \quad (3)$$

177 Once the association is established, segment endpoints are confidence-weighted inversely with their
 178 covariance determinant

$$Weight \propto \frac{1}{|\Sigma|} \quad (4)$$

181 prioritizing high-certainty observations. To conservatively combine correlated sensor data, Covari-
 182 ance Intersection (CI) is used, e.g.,

$$\sum_{FusionStart}^{-1} = \omega \sum_{S1start}^{-1} + (1 - \omega) \sum_{S2start}^{-1} \quad (5)$$

187 with $\omega \in [0, 1]$ balancing uncertainty contributions. Experimental validation on a Mercedes-Benz
 188 prototype with RADAR, LiDAR, and stereo cameras demonstrated sub-10 cm lateral accuracy, full
 189 modularity at the track level, and industrial readiness, highlighting the suitability of track-level fu-
 190 sion for safety-certified automotive perception stacks. In continuation of this model-based approach,
 191 the fused object shapes having three extension points serve as reliable auto-labels, fused tracks (Fig-
 192 ure 4), that are subsequently utilized to supervise the training of LEO (Haag et al., 2020). As
 193 illustrated in Figure 1b, this establishes a closed-loop framework where geometric fusion not only
 194 enables modular perception in production systems but also provides consistent training targets for
 195 data-driven methods, thereby bridging model-based and learning-based paradigms within the auto-
 196 motive perception stack.

4 LEO: GRAPH ATTENTION NETWORK BASED SHAPE ESTIMATION

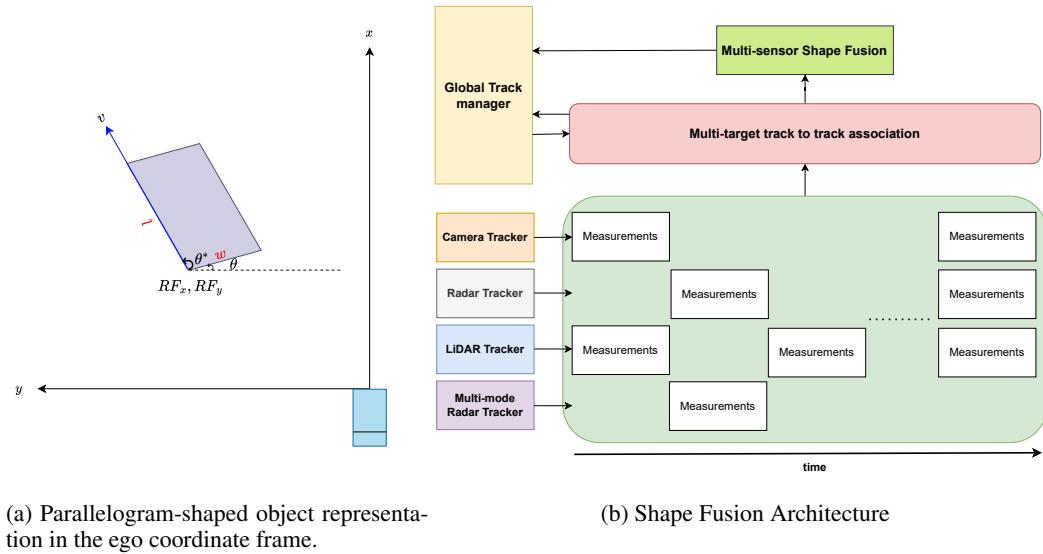
200 **Parallelogram-Based Object Representation** Traditional rectangular bounding boxes inade-
 201 quately capture articulated or disjoint geometries, such as trucks with trailers. Since the sensor
 202 tracks in our dataset do not impose right-angle constraints, we represent objects as parallelograms,
 203 where the fourth vertex is obtained by completing the shape from three ordered extension points of
 204 the fused objects from geometric fusion. Each object is parameterized by its left rear vertex (ref-
 205 erence point: RF_x, RF_y), dimensions (l, w) , orientation and internal angle (θ, θ^*) , and velocities
 206 (v_x, v_y) , following the DIN 70000 standard (Haken, 2015). This formulation generalizes rectangu-
 207 lar cases ($\theta^* = 90^\circ$) while accommodating complex geometries through flexible angular constraints,
 208 as illustrated in Figure 3a. The resulting state vector or label is:

$$\hat{\mathbf{y}} = \{RF_x, RF_y, l, w, \theta, \theta^*, v_x, v_y\} \in \mathbb{R}^8 \quad (6)$$

4.1 PROBLEM FORMULATION AND GRAPH CONSTRUCTION

212 We formulate multi-modal sensor fusion as a spatio-temporal graph learning problem Fey & Lenssen
 213 (2019) over heterogeneous sensor measurements with varying sampling rates as illustrated in Fig-
 214 ure 3b. The temporal alignment pipeline processes raw measurements from RADAR (60 Hz), Li-
 215 DAR (40 Hz), and cameras (80 Hz) through dedicated trackers, synchronizing outputs in 20 ms in-
 216 tervals within a 120 ms sliding window, producing target states and extension points (Figure 2b).

As sensors fire asynchronously at different frequencies, missing detections at a given timestamp are handled by propagating the most recent measurement in the data stream. Shape cues, primarily from LiDAR contours, are abstracted into L-shapes using geometric feature extraction and a dual-line RANSAC procedure (Ling et al., 2024) for robustness against outliers.



(a) Parallelogram-shaped object representation in the ego coordinate frame.

(b) Shape Fusion Architecture

Figure 3: Parallelogram object representation with velocity vector represented as an [arrow](#) from the reference point, which is at the left-rear vertex (a) and the proposed Shape Fusion architecture (b).

The spatio-temporal graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ comprises 48 nodes: 6 ego-motion nodes encoding velocity, yaw rate, acceleration, and timestamp and 42 sensor nodes from seven modalities (Long-Range LiDAR, Long-Range RADAR, Multi-Mode RADAR Front Right, Multi-Mode RADAR Front Left, Multi-Purpose Camera, LiDAR contour, and Stereo Multi-Purpose Camera) across six timestamps. Each sensor node $\mathbf{n}_{s,t-k}$ encodes an 11-dimensional feature vector:

$$\mathbf{f}^{(t-k)} = [x_1, x_2, x_3, y_1, y_2, y_3, \sigma_x^2, \sigma_y^2, v_x, v_y, \Delta t]^T \quad (7)$$

representing extension points x_i, y_i , uncertainties σ_x, σ_y , velocities v_x, v_y , and temporal offset Δt in seconds to the fusion timestamp. Ego-motion nodes are similarly encoded as

$$\mathbf{n}_{\text{ego},t-k} = [v_{t-k}, \dot{\psi}_{t-k}, a_{t-k}, \dots, \Delta t_k]^T \in \mathbb{R}^{11}, \quad (8)$$

allowing implicit learning of ego-motion compensation. The edge set \mathcal{E} captures temporal evolution and cross-modal dependencies through three edge types:

$$\mathcal{E}_{\text{temporal}} = \{(\mathbf{n}_{s,t-k}, \mathbf{n}_{s,t-(k-1)}) \mid s \in [1, 8], k \in [1, 5]\} \quad (9)$$

$$\mathcal{E}_{\text{spatial}} = \{(\mathbf{n}_{s_i,t-k}, \mathbf{n}_{s_j,t-k}) \mid s_i \neq s_j, k \in [0, 5]\} \quad (10)$$

$$\mathcal{E}_{\text{self}} = \{(\mathbf{n}_{s,t-k}, \mathbf{n}_{s,t-k}) \mid s \in [1, 8], k \in [0, 5]\} \quad (11)$$

4.2 DUAL ATTENTION MECHANISM, TRAINING AND NETWORK ARCHITECTURE

LEO employs a dual-attention mechanism (Figure 5) that independently models temporal consistency, i.e., shape evolution and motion dynamics, within individual sensor modalities (intra-modal), while simultaneously integrating complementary spatial information across modalities (inter-modal) (Veličković et al., 2018). The resulting unified attention formulation is given by:

$$\alpha_{ij}^{(m)} = \frac{\exp\left(\text{LeakyReLU}(\mathbf{a}_m^\top [\mathbf{W}_m \mathbf{h}_i \parallel \mathbf{W}_m \mathbf{h}_j])\right)}{\sum_{k \in \mathcal{N}_i^{(m)}} \exp\left(\text{LeakyReLU}(\mathbf{a}_m^\top [\mathbf{W}_m \mathbf{h}_i \parallel \mathbf{W}_m \mathbf{h}_k])\right)} \quad (12)$$

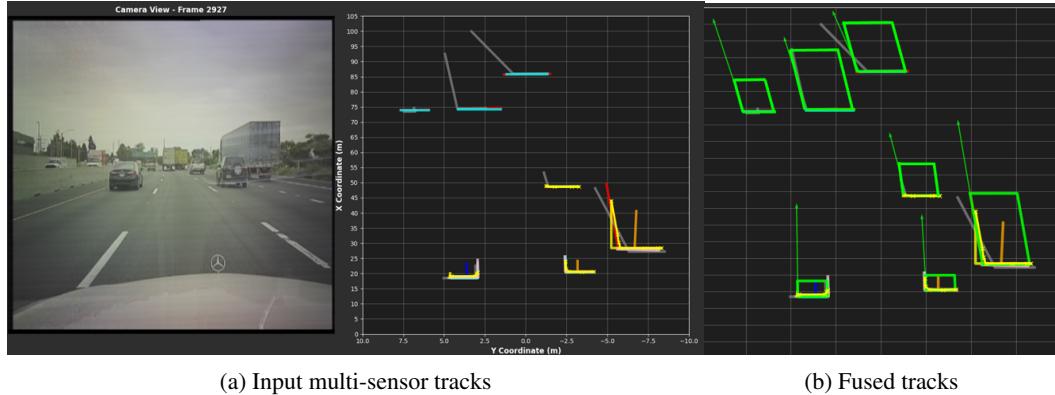


Figure 4: Depiction of associated input multi-modal tracks to global tracks in a scene(a) and final fused tracks after doing geometric fusion which is used as labels for training LEO (b).

where m denotes the attention type: intra corresponds to temporal neighbors $\mathcal{N}_i^{\text{temporal}}$, capturing motion-consistent patterns, while inter corresponds to spatial neighbors $\mathcal{N}_i^{\text{spatial}}$, aggregating complementary information across modalities. \mathbf{W}_m and \mathbf{a}_m are the learnable weight and attention query vectors for the respective modality.

The final attention coefficients balance temporal and spatial contributions:

$$\alpha_{ij}^{\text{st}} = \lambda \cdot \alpha_{ij}^{\text{intra}} + (1 - \lambda) \cdot \alpha_{ij}^{\text{inter}} \quad (13)$$

enabling adaptive weighting based on data availability and quality. Message passing follows:

$$\mathbf{h}_i^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^{\text{st}} \mathbf{W}^{(l)} \mathbf{h}_j^{(l)} \right) \quad (14)$$

Training Objective and Optimization The training objective combines parameter-level regression with geometry-aware supervision through a composite loss function:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{param}} + \lambda_{\text{IoU}} \mathcal{L}_{\text{IoU}} \quad (15)$$

The parameter loss applies SmoothL1 regression to individual components:

$$\mathcal{L}_{\text{param}} = \sum_{i \in \{RF_x, RF_y, l, w, \theta, \theta^*, v_x, v_y\}} \beta_i \cdot \text{SmoothL1}(\hat{\mathbf{y}}_i, \mathbf{y}_i) \quad (16)$$

where β_i weights balance parameter importance based on estimation difficulty and downstream impact. The geometry loss combines Generalized IoU Rezatofighi et al. (2019) and Distance IoU Zheng et al. (2020) to enforce spatial consistency:

$$\mathcal{L}_{\text{IoU}} = \alpha \cdot \mathcal{L}_{\text{GIoU}} + (1 - \alpha) \cdot \mathcal{L}_{\text{DIOU}} \quad (17)$$

where GIoU ensures enclosure constraints while DIoU enforces centroid alignment. Training is conducted using the Adam optimizer (Diederik P. Kingma, 2015) with an initial learning rate of 1×10^{-4} and plateau-based decay (factor 0.75). The loss function uses $\beta = 1$ and $\alpha = 0.5$. The model is trained for up to 50 epochs with a batch size of 128 and gradient clipping at a norm of 3.0. Early stopping with a patience of 5 epochs is applied to prevent overfitting, with convergence typically achieved around 40 epochs, beyond which validation performance stagnates.

5 EVALUATION

Dataset Description The proposed model is evaluated on proprietary data collected from the Mercedes-Benz SAE Level-3 DRIVE PILOT system. The dataset comprises multi-sensor fusion

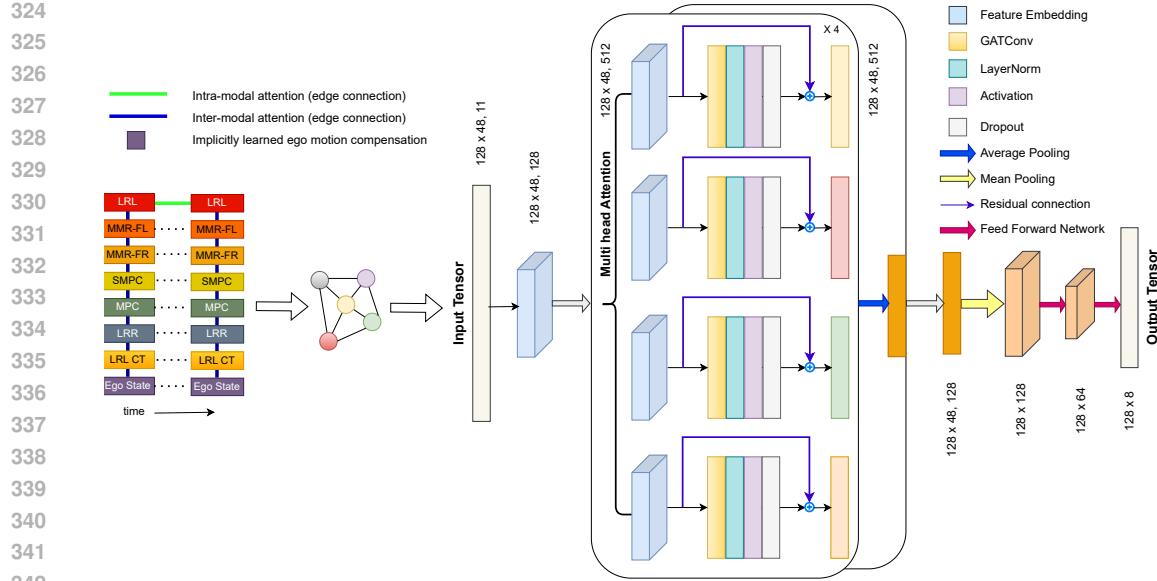


Figure 5: LEO architecture : Tracks from multi-modality sensors are first embedded with state vectors and timestamps, concatenated across six frames (120 ms), and represented as a spatio-temporal graph with intra- and inter-modal edges for GAT-based attention. The LEO architecture then projects inputs ($128 \times 48 \times 11$) into a latent space ($128 \times 48 \times 128$), processes them through four stacked GAT-Conv Veličković et al. (2018) layers with dual attention, normalization, ELU activation, dropout, and residual connections, and aggregates multi-head outputs via pooling into 128×128 embeddings. A final feed-forward projection maps these to 128×8 parallelogram parameters \hat{y} , enabling efficient joint spatio-temporal reasoning for shape fusion.

outputs of static and dynamic objects, combined with ego vehicle states across a wide range of driving environments in the United States and Europe. It is partitioned into a training set of 12.3 h and a testing set of 2.31 h, having a mix of highway driving and *cut-in* sequences (Table 1). The *cut-in* sequences originate from controlled proving ground experiments designed to enrich safety-critical coverage. It covers diverse traffic participants including passenger cars, commercial vehicles, articulated trucks, and vulnerable road users. Sensor fusion provides balanced multi-lane coverage over all objects within $RF_x \in [-10, 100]$ m and $RF_y \in [-12, 12]$ m (ROI), with object dimensions ranging from compact cars (≈ 3 m) to articulated vehicles exceeding 70 m. Ego states span urban to highway conditions with velocities up to 140 km/h, yaw rates within ± 0.6 rad/s, and accelerations between -10 and $+5$ m/s². The velocity data highlights this variability, showing dominant longitudinal motion alongside critical lateral maneuvers such as cut-ins, overtakes, and lane changes. This diversity ensures that both common traffic flow and safety-critical events are well represented, establishing a production-relevant benchmark for evaluation.

Table 1: Dataset composition for training and testing sequences. “Cut-Ins” correspond to proving ground data emphasizing safety-critical maneuvers.

	Driving	Cut-Ins	Hours	Fusion Objects
Train Sequence	326	410	12.3 hrs	1.46 mil.
Test Sequence	79	60	2.31 hrs	0.44 mil.

5.1 EVALUATION STRATEGY

Evaluation is conducted on the complete test dataset, using region-based overlaps of oriented parallelograms (GIoU and DIoU) and the Mean Absolute Error (MAE) of output parameters. Objects are stratified by length, with $l_1 \in [3, 10]$ m representing cars and light commercial vans, and $l_2 > 10$ m representing buses, trucks and trailers. The evaluation is reported along two complementary axes:

first, *global performance* across all objects in the ROI, providing an overall benchmark of model robustness; and second, a *lane-wise analysis*, where results are partitioned by object centroid position into ego lane (EL: $[-1.5, 1.5]$ m), left lane (LL: $(1.5, 4.5]$ m), and right lane (RL: $[-4.5, -1.5]$ m), as depicted in Figure 2a. This structure ensures that both aggregate accuracy and spatially resolved safety-critical contexts for motion planning are systematically assessed.

Table 2: Global KPIs for Shape Estimation of Fused Objects for LEO

Parameter	l_1				l_2			
	with $\alpha_{ij}^{\text{inter}}$		without $\alpha_{ij}^{\text{inter}}$		with $\alpha_{ij}^{\text{inter}}$		without $\alpha_{ij}^{\text{inter}}$	
	MAE	Error (%)	MAE	Error (%)	MAE	Error (%)	MAE	Error (%)
GIoU (-)	0.78	–	0.27	–	0.76	–	0.31	–
DIoU (-)	0.82	–	0.23	–	0.76	–	0.34	–
RF_x (m)	0.21	0.60	3.98	11.45	0.40	1.35	3.18	10.49
RF_y (m)	0.11	2.94	0.64	16.42	0.14	4.95	0.67	23.67
l (m)	0.43	10.16	3.55	83.29	2.22	11.62	8.60	44.88
w (m)	0.08	4.88	0.37	21.03	0.12	5.22	0.27	11.30
θ (rad)	0.04	–	0.13	–	0.05	–	0.11	–
θ^* (rad)	0.05	3.09	0.13	8.13	0.05	3.24	0.11	6.98
v_x (m/s)	0.24	2.01	3.37	28.15	0.30	3.27	2.73	29.07
v_y (m/s)	0.10	–	0.23	–	0.12	–	0.21	–

Global Performance LEO achieves high spatial accuracy with GIoU/DIoU scores of 0.76–0.82 across both object categories. Reference point estimation remains below 0.4 m (MAE) with relative errors under 5%, while dimensional accuracy is consistent: car-sized objects (l_1) attain MAE of 0.43 m in length and 0.08 m in width, and articulated objects (l_2) reach 2.22 m and 0.12 m, corresponding to 10–12% relative errors. Orientation errors remain below 3° and velocity estimates are precise within 0.3 m/s (< 1.3 km/h). Implemented in PyTorch and benchmarked on an RTX 2080 Ti GPU with an 18-core CPU, LEO processes samples at avg. inference time ~ 13.5 ms (runtime ~ 30 FPS) with minimal memory usage (0.02 GiB), demonstrating robust, and computationally efficient performance suitable for real-time deployment after appropriate optimization.

Lane-wise Performance Table 3 presents lane-wise performance of LEO. In the ego lane, the model achieves the highest accuracy, with GIoU above 0.9 for l_1 and 0.84 for l_2 , and (10–27 cm) CP errors, corresponding to the lead vehicle directly ahead of the ego car. This is attributed to favorable sensor coverage and consistent rear-edge visibility of lead vehicles, enabling precise learning of dimensions and orientation. In adjacent lanes, performance degrades moderately (GIoU 0.77–0.79), as sensor placement, FOV, and resolution cause different object edges to be visible for different sensors with varying covariances of extension points for each track. The adaptive fusion mechanism compensates for these differences by weighting inputs through graph attention, yielding robust estimates. Notably, l_2 show larger farthest-point errors (2–3 m), yet the overall high GIoU across lanes substantiates the effectiveness of the proposed approach in handling heterogeneous observability while prioritizing safety-critical objects in the ego lane.

Table 3: Lane-wise analysis for LEO. Values represent mean IoU' (–) and MAE for points.

Lane (l_1 / l_2)	GIoU	CP _x	CP _y	FP _x	FP _y
Ego Lane (EL)	0.91 / 0.84	0.10 / 0.27	0.07 / 0.16	0.21 / 0.87	0.10 / 0.37
Left Lane (LL)	0.79 / 0.77	0.19 / 0.34	0.20 / 0.25	0.64 / 2.30	0.23 / 0.40
Right Lane (RL)	0.77 / 0.71	0.23 / 0.55	0.10 / 0.13	0.82 / 3.17	0.17 / 0.31

5.2 ABLATION STUDY

Ablation Study LEO’s dual-attention mechanism, intra-modal attention for temporal consistency and inter-modal attention $\alpha_{ij}^{\text{inter}}$ for cross-sensor spatial fusion provides a structured interpretation of the degradation patterns. Removing LRR (Table 4) yields the most severe collapse, particularly in the ego lane where only the rear edge of the lead vehicle is typically visible. Radar’s longitudinal

432
433
434 Table 4: **Ablation** : Lane-wise analysis for LEO without LRR
435
436
437

Lane (l_1 / l_2)	GIoU	CP _x	CP _y	FP _x	FP _y
Ego Lane (EL)	0.55 / 0.22	1.39 / 0.36	0.28 / 0.16	2.37 / 13.39	0.35 / 0.49
Left Lane (LL)	0.76 / 0.48	0.48 / 0.43	0.22 / 1.30	1.02 / 7.54	0.28 / 0.58
Right Lane (RL)	0.75 / 0.47	0.52 / 0.64	0.11 / 0.12	1.11 / 7.21	0.16 / 0.34

438
439 Table 5: **Ablation** : Lane-wise analysis for LEO without LRL
440

Lane (l_1 / l_2)	GIoU	CP _x	CP _y	FP _x	FP _y
Ego Lane (EL)	0.89 / 0.83	0.33 / 0.35	0.10 / 0.18	0.45 / 1.12	0.13 / 0.43
Left Lane (LL)	0.76 / 0.73	0.69 / 0.39	0.30 / 0.31	1.27 / 2.64	0.37 / 0.46
Right Lane (RL)	0.74 / 0.64	0.93 / 0.82	0.17 / 0.17	1.60 / 3.53	0.23 / 0.35

441 penetrability and returns from within the vehicle body supply depth cues that LiDAR and SMPC
442 cannot recover under occlusion; without these signals, intra-modal attention loses its primary
443 constraint on object extent, causing GIoU to drop to 0.55/0.22 and FP_x to explode to 13.39 m. LRL
444 ablation (Table 5) produces a different failure mode: its long-range precision and visibility into ad-
445 jacent lanes are critical for inter-modal spatial aggregation, and removing it markedly increases CP_x
446 and FP_x (up to 1.60 m), especially under cross-lane occlusions. Thus, removing the LRL destabilizes
447 the stability of the reference point crucial for object tracking and geometric extent.

448 SMPC ablation (Table 6) produces the mildest degradation: the stereo module primarily contributes
449 near-range depth cues and contour precision, so its removal leads to slight increases in reference-
450 point and lateral errors while largely preserving global object geometry. In contrast, disabling
451 inter-modal attention (Table 2) highlights its essential role in maintaining global multi-sensor
452 consistency. Without cross-sensor relational weighting, reference-point drift increases sharply (RF_x :
453 0.21 → 3.98 m) and dimensional accuracy deteriorates substantially (l : 0.43 → 3.55 m, +83%),
454 even though temporal attention remains active. These results underscore the benefit of jointly mod-
455 elling spatial, temporal, and uncertainty-aware cues within the attention mechanism. Overall, LRR
456 is indispensable for stable longitudinal extent inference under occlusion especially for articulated
457 vehicles. LRL supports cross-lane robustness, reference-point stability, and spatial completeness,
458 whereas SMPC serves as a geometric refinement layer. Finally, inter-modal attention remains fun-
459 damental for ensuring globally coherent and uncertainty-consistent multi-sensor shape estimation.

460 5.3 QUALITATIVE ANALYSIS

461 Figure 6 illustrates a qualitative evaluation of LEO across highway and proving ground scenarios.
462 Learned shapes (**magenta**) are compared with model-based fusion outputs (**green**), while sensor
463 tracks from individual modalities are shown in additional colors with velocity vectors as arrows.
464 In highway driving (Figure 6a), input tracks often exhibit shortened bounding box lengths under
465 sparse observations, particularly for distant vehicles. LEO adapts to these degraded inputs while
466 maintaining consistent geometry, and suppresses spurious SMPC detections that erroneously merge
467 multiple objects into one through attention weighting. For articulated objects such as a truck-trailer
468 in the right lane, the model accurately reconstructs the full extent by combining LiDAR contours
469 with near-range SMPC depth cues, outperforming rule-based fusion which systematically underesti-
470 mates length. In unoccluded cases (Figure 6b), orientation and dimensions align closely with sensor
471 inputs. During dynamic maneuvers such as cut-ins (articulated vehicle merging into ego lane) and
472 emergency braking (Figure 6c), the model produces temporally stable predictions by integrating
473

480
481 Table 6: **Ablation** : Lane-wise analysis for LEO without SMPC

Lane (l_1 / l_2)	GIoU	CP _x	CP _y	FP _x	FP _y
Ego Lane (EL)	0.89 / 0.83	0.25 / 0.33	0.09 / 0.21	0.36 / 1.04	0.12 / 0.51
Left Lane (LL)	0.75 / 0.71	0.43 / 0.45	0.26 / 0.28	0.95 / 2.91	0.31 / 0.49
Right Lane (RL)	0.75 / 0.66	0.64 / 0.70	0.15 / 0.18	1.24 / 3.46	0.22 / 0.39

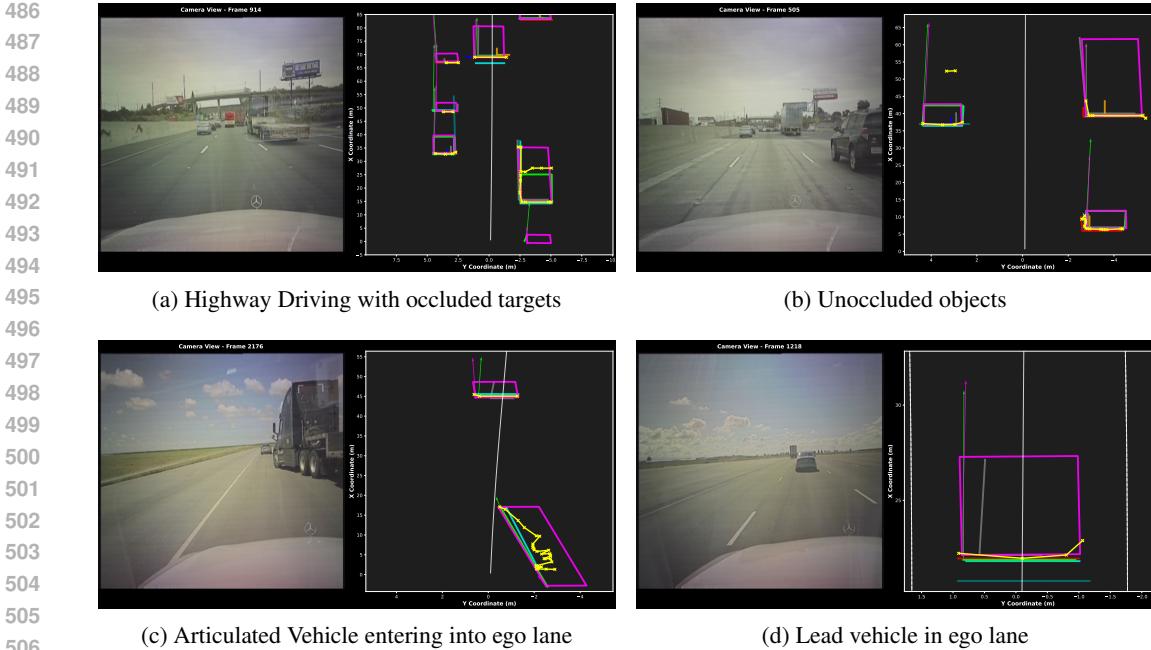


Figure 6: Evaluation results across diverse real world scenarios.

long-range RADAR length cues with multi-modal velocity estimates, which is critical for safe planning. For near-field targets (Figure 6d), depth inconsistencies across modalities are resolved by prioritizing high-confidence LiDAR contours, yielding corrected and reliable shape estimates.

6 CONCLUSION AND FUTURE WORK

This work presented **LEO**, a spatio-temporal GAT-based framework for adaptive shape estimation in extended object tracking, designed under production-level automated driving requirements on track-level sensor inputs. Building on the proposed parallelogram-based ground truth, LEO effectively models both rectangular and articulated target-combination-geometries, while the dual-attention mechanism enables joint reasoning over intra-modal temporal dynamics and inter-modal spatial dependencies for robust multi-sensor fusion. Extensive evaluation on large-scale real-world datasets confirmed that LEO delivers accurate, stable, and computationally efficient shape representations across diverse driving scenarios, validating its suitability for practical deployment. Future research will extend this framework toward uncertainty-aware estimation, domain adaptation, continual learning, and lightweight variants for embedded platforms, as well as integration with planning and decision-making modules to quantify the impact of improved shape-aware perception on automated driving safety and efficiency.

REFERENCES

Eduardo Arnold, Omar Y Al-Jarrah, Mehrdad Dianati, Saber Fallah, David Oxtoby, and Alex Mouzakitis. A survey on 3d object detection methods for autonomous driving applications. *IEEE Transactions on Intelligent Transportation Systems*, 21(4):1708–1733, 2019.

Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vinicius B Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago M Paixao, Filipe Mutz, et al. Self-driving cars: A survey. *Expert Systems with Applications*, 165:113816, 2021.

Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust lidar-camera fusion for 3d object detection with transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1090–1099, 2022.

540 Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. *Estimation with applications to*
 541 *tracking and navigation: theory algorithms and software*. John Wiley & Sons, 2001.
 542

543 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
 544 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
 545 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 546 *recognition*, pp. 11621–11631, 2020.

547 Marius Cordts, Timo Rehfeld, Lukas Schneider, David Pfeiffer, Markus Enzweiler, Stefan Roth,
 548 Marc Pollefeys, and Uwe Franke. The stixel world: A medium-level representation of traffic
 549 scenes. *Image and Vision Computing*, 68:40–52, 2017. ISSN 0262-8856. doi: <https://doi.org/10.1016/j.imavis.2017.01.009>. *Automotive Vision: Challenges, Trends, Technologies and Systems*
 550 for Vision-Based Intelligent Vehicles.

551

552 Jimmy Ba Diederik P. Kingma. Adam: A method for stochastic optimization. In *3rd International*
 553 *Conference for Learning Representations, San Diego, 2015*, 2015. URL <https://arxiv.org/pdf/1412.6980.pdf>.

554

555 Shuxiao Ding, Eike Rehder, Lukas Schneider, Marius Cordts, and Juergen Gall. 3dmotformer:
 556 Graph transformer for online 3d multi-object tracking. In *2023 IEEE/CVF International Conference*
 557 *on Computer Vision (ICCV)*, pp. 9750–9760, 2023. doi: 10.1109/ICCV51070.2023.00897.

558

559 Xu Dong, Pengluo Wang, Pengyue Zhang, and Langechuan Liu. Probabilistic oriented object detec-
 560 tion in automotive radar. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 561 *Pattern Recognition Workshops*, pp. 102–103, 2020.

562

563 Bharanidhar Duraisamy, Tilo Schwarz, and Christian Wöhler. Track level fusion algorithms for
 564 automotive safety applications. In *2013 International Conference on Signal Processing, Image*
 565 *Processing & Pattern Recognition*, pp. 179–184. IEEE, 2013.

566

567 Bharanidhar Duraisamy, Tilo Schwarz, and Christian Wöhler. On track-to-track data association for
 568 automotive sensor fusion. In *2015 18th International Conference on Information Fusion (Fusion)*,
 569 pp. 1213–1222, 2015.

570

571 Bharanidhar Duraisamy, Michael Gabb, Aswin Vijayamohnan Nair, Tilo Schwarz, and Ting Yuan.
 572 Track level fusion of extended objects from heterogeneous sensors. In *2016 19th International*
 573 *Conference on Information Fusion (FUSION)*, pp. 876–885. IEEE, 2016.

574

575 Bharanidhar Duraisamy, Stefan Haag, and Martin. Fritzsche. Verfahren zu einer hybriden
 576 multisensor-fusion für automatisiert betriebene fahrzeuge, de102023001184a1, March 2023.

577

578 Daniel J Fagnant and Kara Kockelman. Preparing a nation for autonomous vehicles: opportunities,
 579 barriers and policy recommendations. *Transportation Research Part A: Policy and Practice*, 77:
 167–181, 2015.

580

581 Michael Feldmann, Dietrich Fränken, and Wolfgang Koch. Tracking of extended objects and group
 582 targets using random matrices. *IEEE Transactions on Signal Processing*, 59(4):1409–1420, 2010.

583

584 Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
 585 *arXiv preprint arXiv:1903.02428*, 2019.

586

587 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
 588 kitti dataset. *The international journal of robotics research*, 32(11):1231–1237, 2013.

589

590 Karl Granstrom, Marcus Baum, and Stephan Reuter. Extended object tracking: Introduction,
 591 overview and applications. *arXiv preprint arXiv:1604.00970*, 2016.

592

593 Stefan Haag, Bharanidhar Duraisamy, Wolfgang Koch, and Jürgen Dickmann. Radar and lidar
 594 target signatures of various object types and evaluation of extended object tracking methods for
 595 autonomous driving applications. In *2018 21st International Conference on Information Fusion*
 596 (*FUSION*), pp. 1746–1755, 2018. doi: 10.23919/ICIF.2018.8455395.

594 Stefan Haag, Bharanidhar Duraisamy, Felix Govaers, Wolfgang Koch, Martin Fritzsche, and Jürgen
 595 Dickmann. Baas: Bayesian tracking and fusion assisted object annotation of radar sensor data
 596 for artificial intelligence application. In *2020 IEEE Radar Conference (RadarConf20)*, pp. 1–6.
 597 IEEE, 2020.

598 Karl-Ludwig Haken. *Grundlagen der Kraftfahrzeugtechnik*. Carl Hanser Verlag GmbH Co KG,
 599 2015.

601 Wolfgang Koch. *Tracking and sensor data fusion*. Springer, 2016.

603 Jian Lan and X Rong Li. Extended-object or group-target tracking using random matrix with non-
 604 linear measurements. *IEEE Transactions on Signal Processing*, 67(19):5130–5142, 2019.

606 Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
 607 pillars: Fast encoders for object detection from point clouds. In *Proceedings of the IEEE/CVF*
 608 *conference on computer vision and pattern recognition*, pp. 12697–12705, 2019.

609 Yiming Li and Javier Ibanez-Guzman. A comprehensive survey on the application of deep and
 610 reinforcement learning approaches in autonomous driving. *Journal of Field Robotics*, 37(5):789–
 611 821, 2020.

613 Zhiqi Li, Wenhui Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Qiao Yu, and Jifeng
 614 Dai. Bevformer: learning bird’s-eye-view representation from lidar-camera via spatiotemporal
 615 transformers. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

616 Yibo Ling, Yuli Wang, and Ting On Chan. Ransac-based planar point cloud segmentation enhanced
 617 by normal vector and maximum principal curvature clustering. *ISPRS Annals of the Photogram-
 618 metry, Remote Sensing and Spatial Information Sciences*, 10:145–151, 2024.

620 Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and Christoph Feichtenhofer. Trackformer:
 621 Multi-object tracking with transformers. In *Proceedings of the IEEE/CVF conference on computer
 622 vision and pattern recognition*, pp. 8844–8854, 2022.

623 Mercedes-Benz. Mercedes-Benz drive pilot the front runner in automated driving and
 624 safety technologies. <https://group.mercedes-benz.com/innovation/case/autonomous/drive-pilot-2.html>, 2023. [Accessed 24-09-2025].

627 Gregory P Meyer and Niranjan Thakurdesai. Learning an uncertainty-aware object detector for au-
 628 tonomous driving. In *2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
 629 (IROS)*, pp. 10521–10527. IEEE, 2020.

631 Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
 632 ture learning on point sets in a metric space. *Advances in neural information processing systems*,
 633 30, 2017.

634 Hamid Rezatofighi, Nathan Tsoi, Jun Young Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese.
 635 Generalized intersection over union: A metric and a loss for bounding box regression. In *Pro-
 636 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 658–666,
 637 2019.

639 Santokh Singh. Critical reasons for crashes investigated in the national motor vehicle crash causation
 640 survey. *Traffic safety facts crash stats. Report No. DOT HS 812 115*, 2015.

641 Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
 642 James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for au-
 643 tonomous driving: Waymo open dataset. In *Proceedings of the IEEE/CVF conference on com-
 644 puter vision and pattern recognition*, pp. 2446–2454, 2020a.

646 Peize Sun, Jinkun Cao, Yi Jiang, Rufeng Zhang, Enze Xie, Zehuan Yuan, Changhu Wang, and Ping
 647 Luo. Trantrack: Multiple object tracking with transformer. *arXiv preprint arXiv:2012.15460*,
 2020b.

648 Xin Tian, Ting Yuan, and Yaakov Bar-Shalom. Track-to-track fusion in linear and nonlinear sys-
 649 tems. In *Itzhack Y. Bar-Itzhack Memorial Symposium on Estimation, Navigation, and Spacecraft*
 650 *Control*, pp. 21–41. Springer, 2012.

651 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 652 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 653 2018. URL <https://openreview.net/forum?id=rJXMpikCZ>.

654 Chunwei Wang, Chao Ma, Ming Zhu, and Xiaokang Yang. Pointaugmenting: Cross-modal augmen-
 655 tation for 3d object detection. In *Proceedings of the IEEE/CVF conference on computer vision*
 656 *and pattern recognition*, pp. 11794–11803, 2021.

657 Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
 658 Dynamic graph cnn for learning on point clouds. *ACM Transactions on Graphics (tog)*, 38(5):
 659 1–12, 2019.

660 Yue Wang, Vitor Campagnolo Guizilini, Tianyuan Zhang, Yilun Wang, Hang Zhao, and Justin
 661 Solomon. Detr3d: 3d object detection from multi-view images via 3d-to-2d queries. In *Con-
 662 ference on Robot Learning*, pp. 180–191. PMLR, 2022.

663 Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. *Sensors*,
 664 18(10):3337, 2018.

665 De Jong Yeong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh. Sensor and sensor
 666 fusion technology in autonomous vehicles: A review. *Sensors*, 21(6):2140, 2021.

667 Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey of autonomous
 668 driving: Common practices and emerging technologies. *IEEE access*, 8:58443–58469, 2020.

669 Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei Ren. Distance-iou loss:
 670 Faster and better learning for bounding box regression. In *Proceedings of the AAAI conference*
 671 *on artificial intelligence*, pp. 12993–13000, 2020.

672 Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Tracking objects as points. In *European*
 673 *conference on computer vision*, pp. 474–490. Springer, 2020.

674 A APPENDIX

675 **Sensor Modalities and Delivered Representations.** For clarity, we explicitly list the sensor set and
 676 the corresponding output representations available in the Mercedes-Benz DRIVE PILOT dataset.
 677 These outputs reflect production-grade perception interfaces and constitute the exact input space
 678 used for training and evaluating *LEO*. Unlike raw-sensor academic datasets, the DRIVE PILOT sys-
 679 tem provides object-level or contour-level entities that encode geometric, kinematic, and uncertainty
 680 information.

- 681 • **Long-Range Radar (LRR):** Provides tracked object hypotheses with varying geometric
 682 detail, including:
 - 683 Tracked-Point-Objects (High-confidence object hypotheses with estimated position,
 684 velocity, and state covariance)
 - 685 Tracked-Shape-Objects (Extension estimates representing coarse object geometry de-
 686 rived from radar resolution cells)
- 687 • **Stereo Camera (SMPC):** Supplies dense geometric and object-level representations, in-
 688 cluding:
 - 689 Stixel Cloud (Cordts et al., 2017)(Vertically-oriented depth segments encoding dense
 690 geometric structure in regions of interest)
 - 691 Tracked-Shape (Object-level shape segments generated by the stereo-based tracking
 692 module)
- 693 • **Long-range LiDAR (LRL):** Delivers high-resolution geometric cues used in the fusion
 694 graph, including:

702
703
704
705
706
707
708
709
710
711
712

1. LiDAR-Point-Contours (Preprocessed contour segments extracted via geometric feature extraction (e.g., dual-line RANSAC))
2. Tracked-Shape (High-resolution extension estimates derived from LiDAR clustering and tracking)

- **Multi-Mode Radar (MMR):** Produces heterogeneous detection and partial-shape cues, including:
 1. Tracked-Points (Sparse point-level detections with Doppler and covariance attributes)
 2. Tracked-Partial-Shapes (Partial object edge or segment hypotheses generated when sufficient angular coverage is available)

713 These heterogeneous, asynchronous sensor deliverables form the nodes and attributes of the spatio-
714 temporal graph used in *LEO*. Their diversity in resolution, update rates, and uncertainty modeling is
715 a key motivation for learning-based fusion. This also explains why existing academic benchmarks
716 (e.g., KITTI, nuScenes, Waymo) are not directly compatible with our input modality or sensor con-
717 figuration.

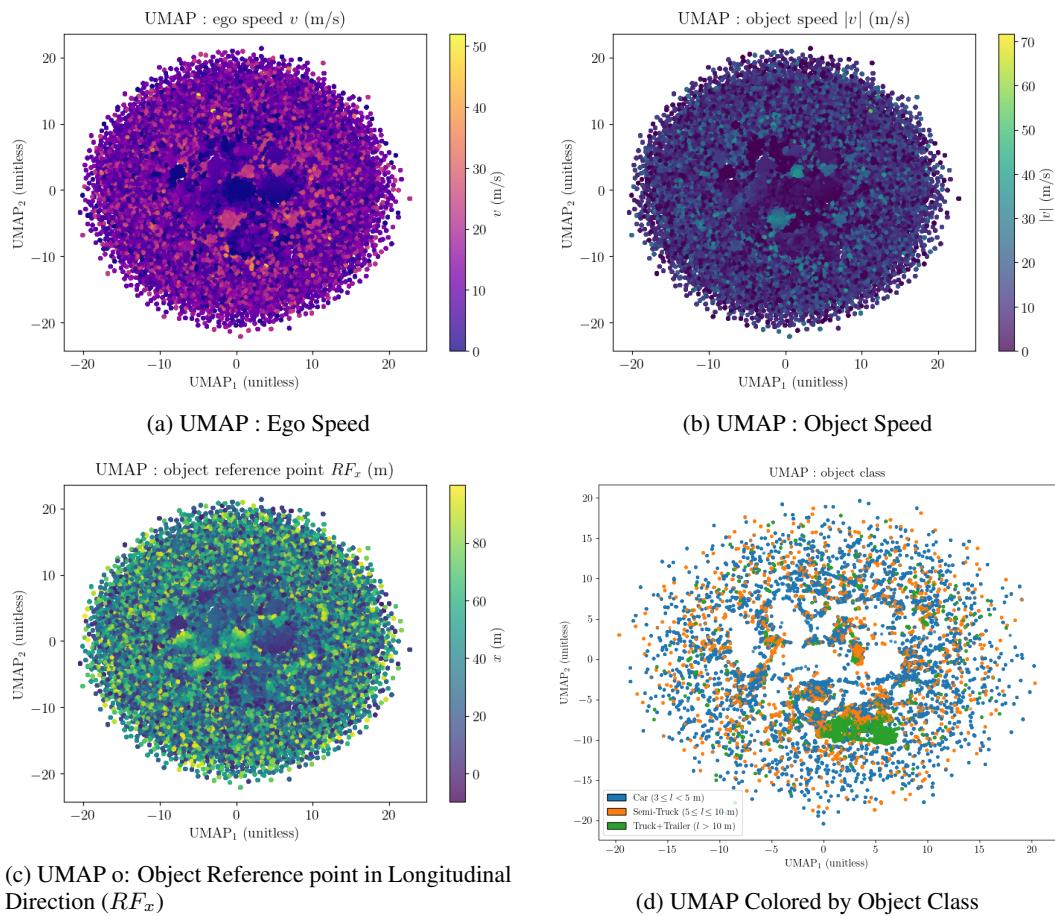


Figure 7: UMAP embeddings visualized across different object- and ego-level attributes.

750 The UMAP projections in Fig. 7 highlight the richness and diversity of the DRIVE PILOT dataset.
751 Across all four embeddings, the data form well-structured circular manifolds that smoothly vary
752 with ego speed, target speed, longitudinal object distance, and object class, indicating consistent
753 coverage of the full operational design domain. Such continuity across heterogeneous attributes
754 reflects balanced sampling of driving scenarios and dense annotation quality. Notably, this level of
755 granularity - spanning multi-lane perception, high-resolution extension cues, and a complementary
long-range sensor suite - is unique to DRIVE PILOT; no existing open-source dataset provides

756 comparable longitudinal range, sensor diversity, or fine-scale geometric observability. As a result,
757 the dataset offers an exceptional foundation for learning robust real-world object extent models.
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809