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ABSTRACT

Accurate shape and trajectory estimation of dynamic objects is a fundamental
requirement for reliable perception in Automated Driving (AD). In the classical
versions of AD algorithms and stacks, various Bayesian extended object geomet-
ric models are used to provide object-related extensions and trajectories. Perfor-
mance of such approaches are deeply connected with the completeness of a-priori
and update-likelihood functions. Recent deep learning approaches improve flexi-
bility by learning shape features directly from raw or fused sensor data, but they
often rely on dense annotated datasets and high computational resources, which
restricts their applicability in production vehicles. We aim to improve production-
level automated driving systems by integrating the computational efficiency and
theoretical robustness of geometric methods with the adaptability and generaliza-
tion capabilities of modern deep learning techniques. We employ a task-specific
parallelogram-based ground-truth formulation to represent object extensions, fa-
cilitating expressive modeling of complex geometries such as articulated trucks
and trailers. Our primary contribution is the development of a novel spatio-
temporal Graph Attention Network (GAT)-based model, Learned Extension of
Objects (LEO), that demonstrates proficiency in adaptive fusion weight learning,
temporal consistency, and multi-scale shape representation from multi-modal pro-
duction grade sensor tracks. LEO successfully generalizes across various sensor
modalities, configurations, object classes, and geographic regions, exhibiting ro-
bustness even under challenging conditions and longer range targets. We have pre-
sented these observations and evaluations based on the real-world Mercedes-Benz
SAE Level-3 (LL3) DRIVE PILOT dataset in our article. Furthermore, its com-
putational efficiency makes it a suitable candidate for integration into a real-time
production system, although further validation and integration efforts are neces-
sary for deployment in safety-critical systems.

1 INTRODUCTION

AD has emerged as a transformative paradigm for improving road safety, mobility, and efficiency in
modern transportation. Human error accounts for nearly 94% of severe accidents, highlighting the
potential of Autonomous Vehicles (AVs) to enhance safety through consistent, rule-based decision
making and improved situational awareness (Singh, 2015). Beyond safety, AD promises extended
mobility for elderly and disabled users, reduced congestion via coordinated routing, and lower costs
through fuel efficiency and shared ownership models (Fagnant & Kockelman| [2015;|[Yurtsever et al.,
2020). These advantages have fueled substantial research and industrial investment, positioning AD
as a cornerstone of future intelligent transportation systems (Badue et al.| 2021)).

The deployment of AVs relies on the integration of perception, prediction, planning, and control,
with perception forming the foundation (L1 & Ibanez-Guzman, [2020). Multi-modal sensor suites
integrating LiDAR, RADAR, and cameras are commonly employed in contemporary systems to
leverage their respective strengths. LiDAR provides high-resolution geometric data, albeit with di-
minished point cloud density at extended ranges. RADAR offers robust velocity measurements and
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resilience to adverse environmental conditions, notwithstanding its limited spatial resolution. Cam-
eras furnish rich semantic information, but lack inherent precise depth perception (Yeong et al.,
2021). Robust sensor fusion is thus essential for holistic scene understanding and safe decision
making (Arnold et al} 2019). A key challenge in perception is accurate estimation of object ge-
ometry. Many tracking methods simplify targets as points, neglecting spatial extent. In real traffic,
however, vehicles, cyclists, and pedestrians occupy significant space and typically generate multiple
measurements per frame. This motivates Extended Object Tracking (EOT), which jointly estimates
kinematics and shape (Koch, |2016)). Reliable shape estimation is particularly critical in dense urban
scenarios with vulnerable road users, where inaccurate modeling can lead to unsafe distance keeping
Or unnecessary evasive maneuvers.

Classical EOT approaches, such as random matrix models (Feldmann et al.,[2010; Haag et al.,|2018)),
provide efficient ellipse approximations but degrade under occlusions and articulated shapes. Non-
parametric contour formulations, including Gaussian processes (Granstrom et al., |2016), improve
geometric flexibility but rely on dense observations and incur high computational costs. More
recently, learning-based methods estimate shape features directly from raw or fused sensor data
(Meyer & Thakurdesai, [2020; Dong et al., |2020), alleviating parametric limitations yet facing chal-
lenges with annotation costs, generalization across sensor configurations, and robustness under
sparse or noisy conditions (Wang et al., [2021). In this context, Graph Neural Networks (GNNs)
have emerged as a powerful paradigm for modeling spatial relationships and temporal dependencies
in structured automotive perception data (Wang et al.,[2019), including learned-geometry approaches
such as the Graph Transformer in 3DMOTFormer (Ding et al.|, |2023). While curated datasets such
as KITTI (Geiger et al.,|2013)), nuScenes (Caesar et al.,|2020), and Waymo (Sun et al.| 2020a) have
enabled the development of these increasingly complex models, production systems must operate
under stringent computational and bandwidth constraints, often exposing only object-level tracks
rather than raw sensor measurements (Duraisamy et al.| [2013)). These restrictions limit the appli-
cability of dense point-cloud architectures and motivate the need for data- and compute-efficient
formulations.

To address these challenges, this work introduces the Learned Extension of Objects (LEO) frame-
work for production-oriented extended object tracking. The key contributions are:

* A spatio-temporal architecture that leverages Graph Attention Network (GAT) blocks, orig-
inally proposed by [Velickovi€ et al.| (2018), to enable adaptive shape estimation under pro-
duction constraints.

* A parallelogram-based ground-truth formulation that generalizes bounding geometries to
represent both rectangular and articulated objects such as trucks with trailers.

* A dual-attention mechanism that jointly captures intra-modal temporal dynamics and inter-
modal spatial dependencies across multi-sensor tracks for robust fusion and sequential
learning.

» Comprehensive evaluation on large-scale, real-world automotive datasets, demonstrating
accurate, and computationally efficient performance across diverse driving scenarios.

2 RELATED WORKS

Deep Learning for Object Detection The advent of deep learning has enabled models to learn
complex geometric representations directly from multi-modal datasets with ground-truth 3D anno-
tations. Early CNN-based approaches, such as PointPillars and SECOND (Lang et al., 2019; [Yan
et al., [2018), process voxelized inputs to produce oriented bounding boxes efficiently, while point-
based methods like PointNet++ (Q1 et al.,[2017) operate directly on raw point clouds. Transformer-
based architectures, including DETR3D and BEVFormer (Wang et al., 2022} Li et al.,[2024)), exploit
attention in Bird’s-Eye View representations. Multi-modal fusion strategies, e.g., camera-LiDAR-
RADAR integration (Yeong et al., 2021}, Bai et al. [2022), further enhance robustness under chal-
lenging conditions. Recent end-to-end EOT frameworks, such as CenterTrack (Zhou et al.| [2020),
TrackFormer (Meinhardt et al., 2022), and TransTrack (Sun et al.| [2020b), integrate detection, asso-
ciation, and shape estimation in a unified pipeline. By leveraging temporal embeddings and attention
mechanisms, these models maintain object identities and consistent shape estimates across frames,
even under occlusions or missed detections.
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Figure 1: Mercedes-Benz EQS sensors used by DRIVE PILOT |Mercedes-Benz| (2023) (a) and auto-
labelling pipeline (b).

Extended Object Tracking Classical Extended Object Tracking (EOT) used Bayesian filters with
simple parametric shapes like ellipses (Feldmann et al., 2010; [Lan & Li, 2019), offering efficiency
but limited expressiveness. Learning-based tracking integrates temporal consistency via transform-
ers, exemplified by TrackFormer and TransTrack (Meinhardt et al., 2022 [Sun et al 2020b). How-
ever, there is not much literature on deep-learned extension of objects in the context of EOT.

3 GEOMETRIC METHOD AND AUTO-LABELING
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(a) Sensor target shape types (b) Target as detected by multiple sensors

Figure 2: Comparison of sensor field-of-view—based shape abstractions under occlusions, with over-
lays of the FOVs for RADAR (60°) and LiDAR (120°), along with oval-shaped extension point co-
variances and lane-wise points for evaluation (a) and multi-sensor target shape segments (b).

In series-production vehicles, raw sensor data is typically unavailable due to bandwidth, certifica-
tion, and proprietary constraints from suppliers, resulting in perception modules that output high-
level object tracks rather than low-level measurements (Duraisamy et al.|[2013). These sensor tracks
contain kinematic estimates, classification attributes, state covariances, and coarse object extents,
abstracting away raw point clouds or image detections. (Duraisamy et al.}[2015)) presents combina-
tion of this information granularity (Duraisamy et al.l [2023)) to achieve improved data association
and fusion quality. Track-level fusion has emerged as a practical paradigm[Bar-Shalom et al.| (2001));
2012), enabling modular integration of sensors and robustness across automotive plat-
forms. Each sensor delivers object hypotheses in the form

Listsens = {fiz‘,PivExtj} S
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where X; is the estimated kinematic state, P; the covariance, and Ext; the j-th extension point with
m < 3 depending on sensor resolution. The fusion task defines a function that generates a consistent
fused representation of objects in Equation 2]

FUS@dShape = f(i'sens,ia Psens,i) (2)

Objects are abstracted as primitive geometric types depending on sensor modality and resolution
depicted in Figure L-shapes for high-resolution sensors like LiDAR capturing both edges and
object in sensor’s FOV, I-shapes when only one edge is visible, such as vehicle in front of ego
vehicle or occluded, and point-shapes typical of RADAR with limited resolution at far ranges.
This representation enables handling heterogeneity and partial observability across modalities. The
hybrid fusion framework is modular, comprising kinematic state fusion with Kalman Filter (KF) or
Covariance Intersection (CI), and shape extension fusion using computational geometry (Duraisamy
et al., 2016; 2023). Segment association relies on spatial and orientation criteria, using Hausdorff
distance with threshold dy,usdortr < 2 m and angular constraint 6 < 30°.

dHausdorff = max (d(S1,S2),d(S2,51)) 3)

Once the association is established, segment endpoints are confidence-weighted inversely with their
covariance determinant )
Weight < — 4)
1>
prioritizing high-certainty observations. To conservatively combine correlated sensor data, Covari-
ance Intersection (CI) is used, e.g.,
—1 -1

Z =w i: +(1 —w) Z %)

FustonStart Slstart S2start

with w € [0, 1] balancing uncertainty contributions. Experimental validation on a Mercedes-Benz
prototype with RADAR, LiDAR, and stereo cameras demonstrated sub-10 cm lateral accuracy, full
modularity at the track level, and industrial readiness, highlighting the suitability of track-level fu-
sion for safety-certified automotive perception stacks. In continuation of this model-based approach,
the fused object shapes having three extension points serve as reliable auto-labels, fused tracks (Fig-
ure [, that are subsequently utilized to supervise the training of LEO (Haag et al. [2020). As
illustrated in Figure [Tb] this establishes a closed-loop framework where geometric fusion not only
enables modular perception in production systems but also provides consistent training targets for
data-driven methods, thereby bridging model-based and learning-based paradigms within the auto-
motive perception stack.

4 LEO: GRAPH ATTENTION NETWORK BASED SHAPE ESTIMATION

Parallelogram-Based Object Representation Traditional rectangular bounding boxes inade-
quately capture articulated or disjoint geometries, such as trucks with trailers. Since the sensor
tracks in our dataset do not impose right-angle constraints, we represent objects as parallelograms,
where the fourth vertex is obtained by completing the shape from three ordered extension points of
the fused objects from geometric fusion. Each object is parameterized by its left rear vertex (ref-
erence point: RF,, RF,), dimensions (/,w), orientation and internal angle (6,0"), and velocities
(s, vy), following the DIN 70000 standard (Haken, [2015). This formulation generalizes rectangu-
lar cases (6* = 90°) while accommodating complex geometries through flexible angular constraints,
as illustrated in Figure[3a] The resulting state vector or label is:

v = {RF,,RF,,l,w,0,0" v,,v,} € R® (6)

4.1 PROBLEM FORMULATION AND GRAPH CONSTRUCTION

We formulate multi-modal sensor fusion as a spatio-temporal graph learning problem|Fey & Lenssen
(2019) over heterogeneous sensor measurements with varying sampling rates as illustrated in Fig-
ure [3b] The temporal alignment pipeline processes raw measurements from RADAR (60 Hz), Li-
DAR (40 Hz), and cameras (80 Hz) through dedicated trackers, synchronizing outputs in 20 ms in-
tervals within a 120 ms sliding window, producing target states and extension points (Figure 2b).
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As sensors fire asynchronously at different frequencies, missing detections at a given timestamp
are handled by propagating the most recent measurement in the data stream. Shape cues, primar-
ily from LiDAR contours, are abstracted into L-shapes using geometric feature extraction and a
dual-line RANSAC procedure (Ling et al.l 2024])) for robustness against outliers.

Multi Shape Fusion

Global Track T

:‘ Multi-target track to track association
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Y Multi L
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(a) Parallelogram-shaped object representa- (b) Shape Fusion Architecture

tion in the ego coordinate frame.

Figure 3: Parallelogram object representation with velocity vector represented as an arrow from the
reference point, which is at the left-rear vertex (a) and the proposed Shape Fusion architecture (b).

The spatio-temporal graph G = (V, £) comprises 48 nodes: 6 ego-motion nodes encoding veloc-
ity, yaw rate, acceleration, and timestamp and 42 sensor nodes from seven modalities (Long-Range
LiDAR, Long-Range RADAR, Multi-Mode RADAR Front Right, Multi-Mode RADAR Front
Left, Multi-Purpose Camera, LiDAR contour, and Stereo Multi-Purpose Camera) across six times-
tamps. Each sensor node n ;_j, encodes an 11-dimensional feature vector:

glt—k) _ [Ihxz,zg’yl,y%yg,ai,aj,vx,vat]T (7

representing extension points x;, y;, uncertainties o, oy, velocities v, v,, and temporal offset A¢
in seconds to the fusion timestamp. Ego-motion nodes are similarly encoded as

nego,t—k = [’Ut—ka ¢t—k7 At—Fy -y Atk]T S R117 (8)

allowing implicit learning of ego-motion compensation. The edge set £ captures temporal evolution
and cross-modal dependencies through three edge types:

5ternpora1 = {(ns,t—kansﬁtf(kfl)) ‘ s € [1,8], ke [17 5]} (9)
gspatial = {(nsi,tflwnsjﬂ,tfk) | Si 7é Sj, ke [075]} (]O)
gself = {(ns,t7k7n8,t7k7) | s € [178]7 ke [075]} (1])

4.2 DUAL ATTENTION MECHANISM, TRAINING AND NETWORK ARCHITECTURE

LEO employs a dual-attention mechanism (Figure [5) that independently models temporal consis-
tency, i.e., shape evolution and motion dynamics, within individual sensor modalities (intra-modal),
while simultaneously integrating complementary spatial information across modalities (inter-modal)
(Velickovic et al., 2018)). The resulting unified attention formulation is given by:

exp (LeakyReLU(ajn (W | Wmhj]))
ol =

(12)
5> exp(LeakyReLU(a], [Wih; || Wi hy]) )
ken ™
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(a) Input multi-sensor tracks (b) Fused tracks

Figure 4: Depiction of associated input multi-modal tracks to global tracks in a scene(a) and final
fused tracks after doing geometric fusion which is used as labels for training LEO (b).

Ntemporal
)

where m denotes the attention type: intra corresponds to temporal neighbors , capturing

motion-consistent patterns, while inter corresponds to spatial neighbors /\/fpatial, aggregating com-

plementary information across modalities. W, and a,,, are the learnable weight and attention query
vectors for the respective modality.

The final attention coefficients balance temporal and spatial contributions:

of; =A™ + (1= A) - o) (13)

enabling adaptive weighting based on data availability and quality. Message passing follows:

(z+1) Z ast W l)h(l) (14)
JEN;

Training Objective and Optimization The training objective combines parameter-level regres-
sion with geometry-aware supervision through a composite loss function:

AClotal = £param + )\IOU£IOU (15)

The parameter loss applies SmoothL1 regression to individual components:
Lparam = > Bi - SmoothL1(;, ;) (16)
1€E{RF,,RFy,l,w,0,0* v5,v,}

where (3; weights balance parameter importance based on estimation difficulty and downstream
impact. The geometry loss combines Generalized IoU [Rezatofighi et al| (2019) and Distance ToU

Zheng et al.|(2020) to enforce spatial consistency:
Liow = - Laiou + (1 — a) - Lprou (17)

where GIoU ensures enclosure constraints while DIoU enforces centroid alignment. Training is
conducted using the Adam optimizer (Diederik P. Kingmal, [2015) with an initial learning rate of
1 x 10~* and plateau-based decay (factor 0.75). The loss function uses 3 = 1 and o = 0.5. The
model is trained for up to 50 epochs with a batch size of 128 and gradient clipping at a norm of
3.0. Early stopping with a patience of 5 epochs is applied to prevent overfitting, with convergence
typically achieved around 40 epochs, beyond which validation performance stagnates.

5 EVALUATION

Dataset Description The proposed model is evaluated on proprietary data collected from the
Mercedes-Benz SAE Level-3 DRIVE PILOT system. The dataset comprises multi-sensor fusion
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Figure 5: LEO architecture : Tracks from multi-modality sensors are first embedded with state vec-
tors and timestamps, concatenated across six frames (120 ms), and represented as a spatio-temporal
graph with intra- and inter-modal edges for GAT-based attention. The LEO architecture then projects
inputs (128 x 48 x 11) into a latent space (128 x 48 x 128), processes them through four stacked GAT-
Conv/|Velickovic et al.[(2018])) layers with dual attention, normalization, ELU activation, dropout, and
residual connections, and aggregates multi-head outputs via pooling into 128 x 128 embeddings. A
final feed-forward projection maps these to 128 x 8 parallelogram parameters y, enabling efficient
joint spatio-temporal reasoning for shape fusion.

outputs of static and dynamic objects, combined with ego vehicle states across a wide range of driv-
ing environments in the United States and Europe. It is partitioned into a training set of 12.3 h and
a testing set of 2.31 h, having a mix of highway driving and cut-in sequences (Table[I). The cut-in
sequences originate from controlled proving ground experiments designed to enrich safety-critical
coverage. It covers diverse traffic participants including passenger cars, commercial vehicles, ar-
ticulated trucks, and vulnerable road users. Sensor fusion provides balanced multi-lane coverage
over all objects within RF, € [—10,100] m and RF, € [—12,12] m (ROI), with object dimensions
ranging from compact cars (= 3 m) to articulated vehicles exceeding 70 m. Ego states span urban to
highway conditions with velocities up to 140 ki /h, yaw rates within 0.6 rad /s, and accelerations
between —10 and +5m/s?. The velocity data highlights this variability, showing dominant lon-
gitudinal motion alongside critical lateral maneuvers such as cut-ins, overtakes, and lane changes.
This diversity ensures that both common traffic flow and safety-critical events are well represented,
establishing a production-relevant benchmark for evaluation.

Table 1: Dataset composition for training and testing sequences. “Cut-Ins” correspond to proving
ground data emphasizing safety-critical maneuvers.

Driving Cut-Ins  Hours  Fusion Objects

Train Sequence 326 410 12.3 hrs 1.46 mil.
Test Sequence 79 60 2.31 hrs 0.44 mil.

5.1 EVALUATION STRATEGY

Evaluation is conducted on the complete test dataset, using region-based overlaps of oriented paral-
lelograms (GIoU and DIoU) and the Mean Absolute Error (MAE) of output parameters. Objects are
stratified by length, with [; € [3,10] m representing cars and light commercial vans, and I > 10m
representing buses, trucks and trailers. The evaluation is reported along two complementary axes:
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first, global performance across all objects in the ROI, providing an overall benchmark of model ro-
bustness; and second, a lane-wise analysis, where results are partitioned by object centroid position
into ego lane (EL: [—1.5, 1.5] m), left lane (LL: (1.5, 4.5] m), and right lane (RL: [-4.5, —1.5) m),
as depicted in Figure[2a] This structure ensures that both aggregate accuracy and spatially resolved
safety-critical contexts for motion planning are systematically assessed.

Table 2: Global KPIs for Shape Estimation of Fused Objects for LEO

ll ‘ 12

Parameter inter

with o without o%" with ol without o'
MAE  Error (%) | MAE  Error (%) | MAE  Error (%) | MAE  Error (%)

GloU (-) 0.78 - 0.27 - 0.76 - 0.31 -
DIoU (-) 0.82 - 0.23 - 0.76 - 0.34 -
RF; (m) 0.21 0.60 3.98 11.45 0.40 1.35 3.18 10.49
RF, (m) 0.11 2.94 0.64 16.42 0.14 4.95 0.67 23.67
[ (m) 0.43 10.16 3.55 83.29 2.22 11.62 8.60 44.88
w (m) 0.08 4.88 0.37 21.03 0.12 5.22 0.27 11.30
0 (rad) 0.04 - 0.13 - 0.05 - 0.11 -
0™ (rad) 0.05 3.09 0.13 8.13 0.05 3.24 0.11 6.98
Vg (M/s) 0.24 2.01 3.37 28.15 0.30 3.27 2.73 29.07
vy (m/s) 0.10 - 0.23 - 0.12 - 0.21 -

Global Performance LEO achieves high spatial accuracy with GloU/DIoU scores of 0.76-0.82
across both object categories. Reference point estimation remains below 0.4 m (MAE) with rela-
tive errors under 5%, while dimensional accuracy is consistent: car-sized objects (/1) attain MAE
of 0.43 m in length and 0.08 m in width, and articulated objects (/3) reach 2.22 m and 0.12 m, cor-
responding to 10-12% relative errors. Orientation errors remain below 3° and velocity estimates
are precise within 0.3 m/s (< 1.3km/h). Implemented in PyTorch and benchmarked on an RTX
2080 Ti GPU with an 18-core CPU, LEO processes samples at avg. inference time ~ 13.5 ms (run-
time ~ 30 FPS) with minimal memory usage (0.02 GiB), demonstrating robust, and computationally
efficient performance suitable for real-time deployment after appropriate optimization.

Lane-wise Performance Table [3] presents lane-wise performance of LEO. In the ego lane, the
model achieves the highest accuracy, with GloU above 0.9 for /; and 0.84 for l5, and (10-27 cm)
CP errors, corresponding to the lead vehicle directly ahead of the ego car. This is attributed to favor-
able sensor coverage and consistent rear-edge visibility of lead vehicles, enabling precise learning of
dimensions and orientation. In adjacent lanes, performance degrades moderately (GIloU 0.77-0.79),
as sensor placement, FOV, and resolution cause different object edges to be visible for different sen-
sors with varying covariances of extension points for each track. The adaptive fusion mechanism
compensates for these differences by weighting inputs through graph attention, yielding robust esti-
mates. Notably, /5 show larger farthest-point errors (2-3 m), yet the overall high GIoU across lanes
substantiates the effectiveness of the proposed approach in handling heterogeneous observability
while prioritizing safety-critical objects in the ego lane.

Table 3: Lane-wise analysis for LEO. Values represent mean IoU’ (—) and MAE for points.

Lane (I, / l2) GloU CPy CPy FPy FPy

Ego Lane (EL) 091/0.84 0.10/0.27 0.07/0.16 0.21/0.87 0.10/0.37
Left Lane (LL) 0.79/0.77 0.19/034 020/0.25 0.64/230 0.23/0.40
Right Lane (RL) 0.77/0.71 0.23/0.55 0.10/0.13 0.82/3.17 0.17/0.31

5.2 ABLATION STUDY

Ablation Study LEO’s dual-attention mechanism, intra-modal attention for temporal consistency
and inter-modal attention o2*" for cross-sensor spatial fusion provides a structured interpretation
of the degradation patterns. Removing LRR (Table [) yields the most severe collapse, particularly
in the ego lane where only the rear edge of the lead vehicle is typically visible. Radar’s longitudinal
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Table 4: Ablation : Lane-wise analysis for LEO without LRR

Lane (11 /12) GIoU CPy CPy FPy FP,

Ego Lane (EL) 0.55/0.22 139/036 028/0.16 237/13.39 0.35/0.49
Left Lane (LL) 0.76/0.48 048/043 022/130 1.02/7.54 0.28/0.58
Right Lane (RL) 0.75/047 0.52/0.64 0.11/0.12 1.11/7.21 0.16/0.34

Table 5: Ablation : Lane-wise analysis for LEO without LRL

Lane (11 / 12) GIoU CPy CPy FPy FPy

Ego Lane (EL) 0.89/0.83 033/035 0.10/0.18 0.45/1.12 0.13/0.43
Left Lane (LL) 0.76/0.73  0.69/0.39 0.30/031 1.27/2.64 0.37/0.46
Right Lane (RL) 0.74/0.64 0.93/0.82 0.17/0.17 1.60/3.53 0.23/0.35

penetrability and returns from within the vehicle body supply depth cues that LIDAR and SMPC
cannot recover under occlusion; without these signals, intra-modal attention loses its primary con-
straint on object extent, causing GIoU to drop to 0.55/0.22 and FP,, to explode to 13.39m. LRL
ablation (Table 3] produces a different failure mode: its long-range precision and visibility into ad-
jacent lanes are critical for inter-modal spatial aggregation, and removing it markedly increases CP,,
and FP, (up to 1.60 m), especially under cross-lane occlusions. Thus, removing the LRL destabi-
lizes the stability of the reference point crucial for object tracking and geometric extent.

SMPC ablation (Table[6) produces the mildest degradation: the stereo module primarily contributes
near-range depth cues and contour precision, so its removal leads to slight increases in reference-
point and lateral errors while largely preserving global object geometry. In contrast, disabling
inter-modal attention (Table 2) highlights its essential role in maintaining global multi-sensor con-
sistency. Without cross-sensor relational weighting, reference-point drift increases sharply (RE:
0.21 — 3.98m) and dimensional accuracy deteriorates substantially (I: 0.43 — 3.55m, +83%),
even though temporal attention remains active. These results underscore the benefit of jointly mod-
elling spatial, temporal, and uncertainty-aware cues within the attention mechanism. Overall, LRR
is indispensable for stable longitudinal extent inference under occlusion especially for articulated
vehicles. LRL supports cross-lane robustness, reference-point stability, and spatial completeness,
whereas SMPC serves as a geometric refinement layer. Finally, inter-modal attention remains fun-
damental for ensuring globally coherent and uncertainty-consistent multi-sensor shape estimation.

5.3 QUALITATIVE ANALYSIS

Figure [0] illustrates a qualitative evaluation of LEO across highway and proving ground scenarios.
Learned shapes (magenta) are compared with model-based fusion outputs (green), while sensor
tracks from individual modalities are shown in additional colors with velocity vectors as arrows.
In highway driving (Figure [6a), input tracks often exhibit shortened bounding box lengths under
sparse observations, particularly for distant vehicles. LEO adapts to these degraded inputs while
maintaining consistent geometry, and suppresses spurious SMPC detections that erroneously merge
multiple objects into one through attention weighting. For articulated objects such as a truck—trailer
in the right lane, the model accurately reconstructs the full extent by combining LiDAR contours
with near-range SMPC depth cues, outperforming rule-based fusion which systematically underesti-
mates length. In unoccluded cases (Figure [6b)), orientation and dimensions align closely with sensor
inputs. During dynamic maneuvers such as cut-ins (articulated vehicle merging into ego lane) and
emergency braking (Figure [6c), the model produces temporally stable predictions by integrating

Table 6: Ablation : Lane-wise analysis for LEO without SMPC

Lane (11 / 12) GIoU CPy CPy FPy FPy

Ego Lane (EL) 0.89/0.83 0.25/033 0.09/021 036/1.04 0.12/0.51
Left Lane (LL) 0.75/0.71 0.43/045 0.26/028 095/291 0.31/0.49
Right Lane (RL) 0.75/0.66 0.64/0.70 0.15/0.18 1.24/3.46 0.22/0.39
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(c) Articulated Vehicle entering into ego lane (d) Lead vehicle in ego lane

Figure 6: Evaluation results across diverse real world scenarios.

long-range RADAR length cues with multi-modal velocity estimates, which is critical for safe plan-
ning. For near-field targets (Figure [6d), depth inconsistencies across modalities are resolved by
prioritizing high-confidence LiDAR contours, yielding corrected and reliable shape estimates.

6 CONCLUSION AND FUTURE WORK

This work presented LEO, a spatio-temporal GAT-based framework for adaptive shape estimation
in extended object tracking, designed under production-level automated driving requirements on
track-level sensor inputs. Building on the proposed parallelogram-based ground truth, LEO ef-
fectively models both rectangular and articulated target-combination-geometries, while the dual-
attention mechanism enables joint reasoning over intra-modal temporal dynamics and inter-modal
spatial dependencies for robust multi-sensor fusion. Extensive evaluation on large-scale real-world
datasets confirmed that LEO delivers accurate, stable, and computationally efficient shape represen-
tations across diverse driving scenarios, validating its suitability for practical deployment. Future
research will extend this framework toward uncertainty-aware estimation, domain adaptation, con-
tinual learning, and lightweight variants for embedded platforms, as well as integration with plan-
ning and decision-making modules to quantify the impact of improved shape-aware perception on
automated driving safety and efficiency.
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A APPENDIX

Sensor Modalities and Delivered Representations. For clarity, we explicitly list the sensor set and
the corresponding output representations available in the Mercedes-Benz DRIVE PILOT dataset.
These outputs reflect production-grade perception interfaces and constitute the exact input space
used for training and evaluating LEO. Unlike raw-sensor academic datasets, the DRIVE PILOT sys-
tem provides object-level or contour-level entities that encode geometric, kinematic, and uncertainty
information.

* Long-Range Radar (LRR): Provides tracked object hypotheses with varying geometric
detail, including:
1. Tracked-Point-Objects (High-confidence object hypotheses with estimated position,
velocity, and state covariance)
2. Tracked-Shape-Objects (Extension estimates representing coarse object geometry de-
rived from radar resolution cells)
* Stereo Camera (SMPC): Supplies dense geometric and object-level representations, in-
cluding:
1. Stixel Cloud (Cordts et al., 2017)(Vertically-oriented depth segments encoding dense
geometric structure in regions of interest)
2. Tracked-Shape (Object-level shape segments generated by the stereo-based tracking
module)

* Long-range LiDAR (LRL): Delivers high-resolution geometric cues used in the fusion
graph, including:
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1. LiDAR-Point-Contours (Preprocessed contour segments extracted via geometric fea-
ture extraction (e.g., dual-line RANSAC))
2. Tracked-Shape (High-resolution extension estimates derived from LiDAR clustering
and tracking)
e Multi-Mode Radar (MMR): Produces heterogeneous detection and partial-shape cues,
including:
1. Tracked-Points (Sparse point-level detections with Doppler and covariance attributes)

2. Tracked-Partial-Shapes (Partial object edge or segment hypotheses generated when
sufficient angular coverage is available)

These heterogeneous, asynchronous sensor deliverables form the nodes and attributes of the spatio-
temporal graph used in LEO. Their diversity in resolution, update rates, and uncertainty modeling is
a key motivation for learning-based fusion. This also explains why existing academic benchmarks
(e.g., KITTI, nuScenes, Waymo) are not directly compatible with our input modality or sensor con-

figuration.
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Figure 7: UMAP embeddings visualized across different object- and ego-level attributes.

The UMAP projections in Fig. [7 highlight the richness and diversity of the DRIVE PILOT dataset.
Across all four embeddings, the data form well-structured circular manifolds that smoothly vary
with ego speed, target speed, longitudinal object distance, and object class, indicating consistent
coverage of the full operational design domain. Such continuity across heterogeneous attributes
reflects balanced sampling of driving scenarios and dense annotation quality. Notably, this level of
granularity - spanning multi-lane perception, high-resolution extension cues, and a complementary
long-range sensor suite - is unique to DRIVE PILOT; no existing open-source dataset provides
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comparable longitudinal range, sensor diversity, or fine-scale geometric observability. As a result,
the dataset offers an exceptional foundation for learning robust real-world object extent models.
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