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Abstract

Performance of machine learning models may differ significantly in novel environ-1

ments compared to during training due to shifts in the underlying data distribution.2

Attributing performance changes to specific data shifts is critical for identifying3

sources of model failures and designing stable models. In this work, we design4

a novel method for attributing performance differences between environments to5

shifts in the underlying causal mechanisms. We formulate the problem as a cooper-6

ative game and derive an importance weighting method for computing the value7

of a coalition of distributions. The contribution of each distribution to the total8

performance change is then quantified as its Shapley value. We demonstrate the9

correctness and utility of our method on two synthetic datasets and two real-world10

case studies, showing its effectiveness in attributing performance changes to a wide11

range of distribution shifts.12

1 Introduction13

Machine learning models are widely deployed in dynamic environments ranging from recommenda-14

tion systems to personalized clinical care. Such environments are prone to distribution shifts, which15

may lead to serious degradations in model performance [12, 7, 17, 11, 23]. Importantly, such shifts16

are hard to anticipate and reduce the ability of model developers to design reliable systems. When17

the performance of a model does degrade during deployment, it is crucial for the model developer to18

know how the distribution has shifted to cause this change. Cognizant of this information, the model19

developer can then take mitigating actions such as additional data collection, data augmentation, and20

model retraining [3, 43, 32].21

In this work, we present a method to attribute changes in model performance to shifts in a given set22

of distributions. Distribution shifts can occur in various marginal or conditional distributions that23

comprise variables involved in the model. Further, multiple distributions can change simultaneously.24

We handle this in our framework by defining the effect of changing any set of distributions on25

model performance, and use the concept of Shapley values [29] to attribute the change to individual26

distributions. The Shapley value is a co-operative game theoretic framework with the goal of27

distributing surplus generated by the players in the co-operative game according to their contribution.28

In our framework, the players correspond to individual distributions.29

Most relevant to our contributions is the work of Budhathoki et al. [5], which attributes a shift30

between two joint distributions to a specific set of individual distributions (i.e. factorization of the31

joint distribution induced by causal structural assumptions). This line of work defines distribution32

shifts as interventions on causal mechanisms [25, 32, 33, 5, 36]. We build on their framework to justify33

the players in our cooperative game. We significantly differ from the end goal by attributing a change34

in model performance to individual distributions. Note that each shifted distribution may influence35

model performance differently and may result in different attributions than their contributions to the36

change in the joint distribution. We discuss additional related work in Appendix A.37
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Figure 1: Inputs and outputs for attribution. Input: Causal graph, where all variables are observed
providing the candidate distribution shifts we consider. The goal is to attribute the model’s perfor-
mance change ∆ between source and target distributions to these candidate distributions. Here, out
of the three candidate distributions, the marginal distribution of X1 and the conditional distribution
of X2 given X1 change. Our method attributes changes to each one such that the attributions sum to
the total performance change ∆.

In this work, we focus on explaining the discrepancy in model performance as measured by some38

metric such as prediction accuracy. Explaining performance discrepancy requires us to develop39

specialized methods. We particularly focus on model-free importance sampling approaches and40

approximations of Shapley value estimation that allow us to expand the settings where our method is41

applicable.42

2 Preliminaries43

Consider a learning setup where we have some system variables denoted by V consisting of two types44

of variables V = (X,Y ), which comprises of features X and labels Y such that V ∼ D. Realizations45

of the variables are denoted in lower case. We assume access to samples from two environments. We46

use Dsource to denote the source distribution and Dtarget for the target distribution. Subscripts on D47

refer to the distribution of specific variables. For example, DX1
is the distribution of feature X1 ⊂ X ,48

and DY |X is the conditional distribution of labels given all features X .49

Let XM ⊆ X be the subset of features utilized by a given model f . We are given a loss function50

ℓ((x, y), f) 7→ R which assigns a real value to the model evaluated at a specific setting x of the51

variables. For example, in the case of supervised learning, the model f maps XM into the label space,52

and a loss function such as the squared error ℓ((x, y), f) := (y − f(xM))
2 can be used to evaluate53

model performance. We assume that the loss function can be computed separately for each data54

point. Then, performance of the model in some environment with distribution D is summarized by55

the average of the losses:56

Perf(D) := E(x,y)∼D[ℓ((x, y), f)]

This implies that a shift in any variables V in the system may result in performance change across57

environments, including those that are not directly used by the model, but drive changes to the features58

XM used by the model for learning.59

3 Method60

We now formalize our problem setup and motivate a game theoretic method for attributing perfor-61

mance changes to distributions over variable subsets. We show desirable properties of our method in62

Appendix C, and derive the analytical attributions for a synthetic setting in Appendix D.63

3.1 Problem Setup64

Suppose we are given a candidate set of (marginal and/or conditional) distributions CD over V that65

may account for the model performance change from Dsource to Dtarget: Perf(Dtarget)− Perf(Dsource).66

Our goal is to attribute this change to each candidate distribution in the candidate set CD.67

For our method, we assume access to the model f , and samples from Dsource as well as Dtarget (see68

Figure 1). We make the following assumptions:69

Assumption 3.1. The causal graph corresponding to the data-generating mechanism is known and70

all variables in the system are observed. Thus, the factorization of the joint distribution DV is known.71

Assumption 3.2. Distribution shifts of interest are due to (independent) shifts in one or more factors72

of DV .73
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3.2 Game Theoretic Distribution Shift Attribution74

Consider the following attribution game where the set of players in this game are the candidate75

distributions. A coalition of any subset of players determines the distributions that are allowed to76

shift, keeping the rest fixed. The value for the coalition is the model performance change between the77

resulting distribution for the coalition and the training distribution.78

Choice of Candidate Distribution Shifts. First, we clarify the choice of candidate distributions that79

will inform the coalition. In order to attribute performance changes to shifts in the distribution of input80

features or labels, our candidate distributions can constitute marginal and conditional distribution81

of the covariates and labels. For instance, it can be the set of marginal distributions on each system82

variable, CD = {DX1 ,DX2 , · · · }, or distribution of each variable after conditioning on the rest,83

CD = {DX1|V \X1
,DX2|V \X2

, · · · }. Since we have combinatorially many shifts that can be defined84

on subsets of V = (X,Y ), the choice of candidate sets is challenging.85

Here, we propose to use the knowledge of the causal graph [24] for the system as our candidate set.
The causal graph specifies the factorization of the joint distribution into a set of distributions (or
mechanisms). That is DV =

∏
Xi∈V DXi|parent(Xi) where parent(Xi) are the variables that have a

directed edge to Xi in the causal graph. This factorization is known by Assumption 3.1. Then, we
can form the candidate set constituting each distribution in this factorization. That is,

CD = {DX1|parent(X1), · · · ,DXi|parent(Xi), · · · }i=1,··· ,|V |.

For a node without parents in the causal graph, the parent set can be empty, which reduces DXi
to a86

marginal distribution.87

Advantages of using causal mechanisms. This choice of candidate set has three main advantages.88

First, it is interpretable since the candidate shifts are specified by domain experts who constructed89

the causal graph. Second, it is actionable since identifying the causal mechanisms most responsible90

for performance change can inform mitigating methods for handling distribution shifts [32]. Third, it91

will lead to succinct attributions due to the independence property.92

Value of a Coalition. Consider a coalition of distributions C̃ ⊆ CD. The resulting distribution over93

variables V in the system, corresponding to the coalition C̃ is94

D̃ =

 ∏
i:DXi|parent(Xi)

∈C̃

Dtarget
Xi|parent(Xi)

 ∏
i:DXi|parent(Xi)

̸∈C̃

Dsource
Xi|parent(Xi)

 (1)

Note that the coalition only consists of distributions that are allowed to change across environments.95

All other relevant mechanisms are fixed to the source distribution. The value of the coalition C̃ with96

the full distribution D̃ is now given by97

Val(C̃) := Perf(D̃)− Perf(Dsource) (2)

Then, we obtain the attribution of each player d ∈ CD using the Shapley value framework [29].98

Crucially, to compute our attributions, we need estimates of model performance under D̃. Note99

that we only have model performance estimates under Dsource and Dtarget, but not for any arbitrary100

coalition where only a subset of the distributions have shifted. To estimate the performance of any101

coalition, we propose to use importance sampling.102

3.3 Estimating Performance using Importance Sampling103

Assumption 3.3. support(Dtarget
Xi|parent(Xi)

) ⊆ support(Dsource
Xi|parent(Xi)

) for all Dtarget
Xi|parent(Xi)

∈CD.104

Importance sampling allows us to re-weight the samples drawn from a given distribution, which can105

be Dsource or Dtarget, to simulate expectations for a desired distribution, which is the candidate D̃ in106

our case. Thus, we re-write the value as107

Val(C̃) = Perf(D̃)− Perf(Dsource) (3)

= E(x,y)∼Dsource

[
D̃((x, y))

Dsource((x, y))
ℓ((x, y), f)

]
− E(x,y)∼Dsource [ℓ((x, y), f)]
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The importance weights are themselves a product of ratios of source and target distributions corre-108

sponding to the causal mechanisms in CD as follows:109

wC̃((x, y)) :=
D̃((x, y))

Dsource((x, y))
=

∏
d∈C̃

Dtarget
d ((x, y))

Dsource
d ((x, y))

=:
∏
d∈C̃

wd((x, y)) (4)

By Assumption 3.3, we ensure that all importance weights are finite. Here, we use a simple approach110

for density ratio estimation via training probabilistic classifiers as described in Sugiyama et al. [34,111

Section 2.2].112

Let D be a binary random variable, such that when D = 1, Z ∼ Dtarget
d (Z), and when D = 0, Z ∼

Dsource
d (Z). Suppose d = DXi|parent(Xi), then

wd =
P(D = 0|parent(Xi))

P(D = 1|parent(Xi))
· P(D = 1|Xi, parent(Xi))

P(D = 0|Xi, parent(Xi))
,

where each term is computed using a probabilistic classifier trained to discriminate data points from113

Dsource and Dtarget from the concatenated dataset. We show the derivation of this equation in Appendix114

B. In total, we need to learn O(|CD|) models for computing all importance weights.115

4 Empirical Evaluation116

We first evaluate our method using a synthetic dataset where the ground-truth shifts are known117

(Section E.1). Then, we evaluate our method on a semi-synthetic dataset generated from CelebA118

using a CausalGAN [16] (Appendix Section E.2). Finally, we demonstrate the utility of our method119

on a real-world clinical mortality prediction task (shown here).120

Setup. Clinical machine learning models are being increasingly deployed in the real-world in121

hospitals, laboratories, and Intensive Care Units (ICUs) [30]. However, prior work has shown that such122

machine learning models are not robust to distribution shifts, and frequently degrade in performance123

on distributions different than what is seen during training [31]. Here, we explore a simulated case124

study where a model which predicts mortality in the ICU is deployed in a different geographical125

region from where it is trained. We use data from the eICU Collaborative Research Database V2.0126

[27]. Here, we simulate the deployment of a model trained on data from the Midwestern US (source)127

to the Southern US (target). We learn an XGB [6] model to predict mortality given vitals, labs, and128

demographics data. We assume the causal graph in Figure E.3b, informed by prior work utilizing129

causal discovery on this dataset [31]. As prior work has shown limited performance drops for130

models in this setting [44], we oversample younger population in the source environment to create an131

additional semi-synthetic distribution shift. We use our method to attribute the increase in Brier score132

from Midwest to South datasets.133

Our method provides actionable attributions. First, we observe from our attributions (Figure134

E.8a) that shifts in the age distribution is responsible for 16.2% of the total shift. This confirms the135

validity of the attributions on a known semi-synthetic shift. Although there are more significant136

mechanism shifts (Figure E.8a), suppose that the practitioner decides to focus on mitigating the shift137

in age. To do so, they first plot the age distribution in the source and target environments (Figure E.8b),138

finding that the target domain has dramatically more older patients. Then, they choose to collect addi-139

tional data from the older population in the source. Training a new model on this augmented dataset,140

they find that the drop in performance is reduced by 21.3%. The practitioner may next turn their141

attention to mitigating shifts in more impactful conditional mechanisms such as DLabs|Age, Demo, Surgery,142

using methods such as domain adversarial training [10] or GAN data augmentation [22], but we leave143

such explorations to future work.144

5 Discussion145

We propose a method to attribute changes in performance of a model deployed on a different146

distribution from the training distribution. Our work assumes knowledge of the causal graph to obtain147

interpretable and succinct attributions. While we can certainly obtain reasonable attributions from a148

misspecified graph, we argue that such attributions may not be minimal. Future work includes relaxing149

the assumption that all variables are observed, comparing strategies for mitigating conditional shifts,150

and extending the experiments to additional settings such as unsupervised learning and reinforcement151

learning.152
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A Related Work292

Identifying relevant distribution shifts. There has been extensive work that tests whether the data293

distribution has shifted (e.g. ones evaluated in Rabanser et al. [28]). Past work has proposed to identify294

sub-distributions (factors constituting the joint distribution as determined by a generative model for295

the data) that comprise the shift between two joint distributions and order them by their contribution296

to the shift [5]. However, as suggested before, the sub-distributions may have different influence297

on model performance. Even a small change in some (factors) may have a large effect on model298

performance (and vice-versa). Thus, a model developer has to filter distributions to identify ones that299

actually impact model performance (see Property 2.2 and Appendix D). Further, Budhathoki et al.300

[5] focuses on changes to the joint distribution as measured by the KL-divergence, which requires301

assumptions on the class of distributions to leverage closed-form expressions of KL-divergence (such302

as exponential families), or non-parametric KL estimation which is challenging in high dimensions303

[39, 40].304

Other approaches which aim to localize shifts to individual variables (conditional on the rest of the305

variables) do not provide a way to identify the ones relevant to performance [18]. In contrast to testing306

for shifts, Podkopaev and Ramdas [26] tests for changes in model performance when distribution307

changes in deployment. Recent work by Wu et al. [42] decomposes performance change to changes in308

only marginal distributions using Shapley value framework [21]. However, the method as described309

is restricted to categorical variables.310

Shapley values for attribution. Shapley value-based attribution has recently become popular311

for interpreting model predictions [37, 21, 38]. In most prior work, Shapley values have been312

leveraged for attributing a specific model prediction to the input features [35]. Challenges to313

appropriately interpreting such attributions and desirable properties thereof have been extensively314

discussed in [14, 19]. In this work, we advance the use of Shapley values for interpreting model315

performance changes to sub-distributions at the dataset level.316

Detecting data partitions with low model performance. Recent work aims to find subsets of the317

dataset that have significantly worse (or better) performance [8, 9]. However, they do not study318

changes in the underlying data distribution. The work by Ali et al. [1] describes a method to identify319

and localize a change in model performance, and is applicable under distribution shifts. The main320

difference in our work is the data representations used for attribution. Instead of identifying subsets321

of data that are relevant to performance change, we find sub-distributions represented by causal322

mechanisms.323
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B Derivation of Importance Weights324

Let D be a binary random variable, such that when D = 1, X ∼ Dtarget(X), and when D = 0, X ∼325

Dsource(X). Suppose d = DXi|parent(Xi), then, for a particular value (x, y):326

Dtarget
d ((x, y)) := P(Xi = x|parent(Xi) = parent(xi), D = 1)

=
P(D = 1, parent(Xi) = xi|Xi = xi) · P(Xi = xi)

P(D = 1, parent(Xi) = xi)

=
P(D = 1|parent(Xi) = xi, Xi = xi) · P(Xi = xi, parent(Xi) = Xi)

P(D = 1|parent(Xi) = xi) · P(parent(Xi) = xi)

Then,327

wd =
Dtarget

d ((x, y))

Dsource
d ((x, y))

=
P(D = 0|parent(Xi) = parent(xi))

P(D = 1|parent(Xi) = parent(xi))
· P(D = 1|Xi = xi, parent(Xi) = parent(xi))

P(D = 0|Xi = xi, parent(Xi) = parent(xi))

=
1− P(D = 1|parent(Xi) = parent(xi))

P(D = 1|parent(Xi) = parent(xi))
· P(D = 1|Xi = xi, parent(Xi) = parent(xi))

1− P(D = 1|Xi = xi, parent(Xi) = parent(xi))

Thus, we learn a model to predict D from Xi, and a model to predict D from [Xi; parent(Xi)], on328

the concatenated dataset. In practice, we learn these models on a 75% split of both the source and329

target data, and use the remaining 25% for Shapley value computation, which only requires inference330

on the trained models. Therefore, an upper limit on the number of weight models required is 2|CD|,331

though in practice, this number is often smaller as several nodes may have the same parents.332

In the case where Xi is a root node, the expression becomes:333

wd =
1− P(D = 1)

P(D = 1)
· P(D = 1|Xi = xi)

1− P(D = 1|Xi = xi)

Where we simply compute P (D = 1) as the relative size of the provided source and target datasets.334

9



C Properties of the Method335

Under perfect computation of importance weights, the Shapley values resulting from the performance-336

change game have the following desirable properties.337

Property 1. (Efficiency)
∑
d∈CD

Attr(d) = Val(CD) = Perf(Dtarget)− Perf(Dsource)338

By the efficiency property of Shapley values [29], we know that the sum of Shapley values equal the339

value of the all-player coalition. Thus, we distribute the total performance change due to the shift340

from source to target distribution to the shifts in causal mechanisms in the candidate set.341

Property 2.1. (Null Player) Dsource
d = Dtarget

d =⇒ Attr(d) = 0.342

Property 2.2. (Relevance) Consider a mechanism d. If Perf(C̃∪{d}) = Perf(C̃) for all C̃ ⊆ CD \d,343

then Attr(d) = 0.344

We can verify that our method gives zero attribution to distributions that do not shift between the345

source and target, and distribution shifts which do not impact model performance. First, we observe346

that in both cases, Val(D̃) = Val(D̃ ∪ {d}). For Property 2.1, this is because D̃ = D̃ ∪ {d} for any347

D̃ ⊆ CD since the factor corresponding to d remains the same between source and target even when it348

is allowed to change as part of the coalition. For Property 2.2, this is clear from Eq. 3. By definition349

of Shapley value, Attr(d) = 0.350

Property 3. (Attribution Symmetry) Let AttrD1,D2
(d) denote the attribution to some mechanism351

d when D1 = Dsource and D2 = Dtarget. Then, AttrD1,D2
(d) = −AttrD2,D1

(d) ∀d ∈ CD.352

We overload Perfsrc→tar(C̃) for some coalition C̃ to denote Perf(D̃) where D̃ is given by Equation 1.353

Analogously, we denote Perftar→src(C̃) to be Perf(D̃′) when D̃′ is given by354

D̃′ =

 ∏
i:DXi|parent(Xi)

∈C̃

Dsource
Xi|parent(Xi)

 ∏
i:DXi|parent(Xi)

̸∈C̃

Dtarget
Xi|parent(Xi)


Note that Perfsrc→tar(C̃) = Perftar→src(CD \ C̃) for all C̃ ⊆ CD.355

We can use Equation 2 to rewrite the Shapley value equation as:356

AttrD1,D2
(d) =

1

|CD|
∑

C̃⊆CD\{d}

(
|CD| − 1

|C̃|

)−1 (
Perfsrc→tar(C̃ ∪ {d})− Perfsrc→tar(C̃)

)
=

−1

|CD|
∑

C̃⊆CD\{d}

(
|CD| − 1

|C̃|

)−1 (
Perftar→src(CD \ C̃)− Perftar→src(CD \ (C̃ ∪ {d}))

)
=

−1

|CD|
∑

C̃
′⊆CD\{d}

(|CD| − 1

|C̃′|

)−1 (
Perftar→src(C̃

′ ∪ {d})− Perftar→src(C̃
′
)
)

= −AttrD2,D1
(d)

Thus, the method attributes the overall performance change only to distributions that actually change357

in a way that affects the specified performance metric. The contribution of each distribution is358

computed by considering how much they impact the performance if they are made to change in359

different combinations alongside the other distributions.360
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D Shapley Values for A Synthetic Setting361

D.1 Derivation362

Suppose that we have the following data generating process for the source environment:363

X ∼ N (µ1, σ
2
X)

Y ∼ θ1X +N (0, σ2
Y )

And for the target environment:364

X ∼ N (µ2, σ
2
X)

Y ∼ θ2X +N (0, σ2
Y )

The model that we are investigating is Ŷ = f(X) = ϕX , and l((x, y), f) = (y − f(x))2. Then,365

Perf(Dsource) = E(x,y)∼Dsource [l((x, y), f)]

= E(x,y)∼Dsource [
(
θ1X +N (0, σ2

Y )− ϕX
)2
]

= E(x,y)∼Dsource [
(
N ((θ1 − ϕ)µ1, (θ1 − ϕ)2σ2

X) +N (0, σ2
Y )

)2
]

= E(x,y)∼Dsource [
(
N ((θ1 − ϕ)µ1, (θ1 − ϕ)2σ2

X + σ2
Y )

)2
]

= (θ1 − ϕ)2σ2
X + σ2

Y + (θ1 − ϕ)2µ2
1

Perf(Dtarget) = E(x,y)∼Dtarget [l((x, y), f)]

= (θ2 − ϕ)2σ2
X + σ2

Y + (θ2 − ϕ)2µ2
2

∆ = Perf(Dtarget)− Perf(Dsource)

= σ2
X((θ2 − ϕ)2 − (θ1 − ϕ)2) + (θ2 − ϕ)2µ2

2 − (θ1 − ϕ)2µ2
1

= Val(CD)

Val({DX}) = (θ1 − ϕ)2(µ2
2 − µ2

1) (θ2 := θ1)

Val({DY |X}) = (σ2
X + µ2

1)((θ2 − ϕ)2 − (θ1 − ϕ)2) (µ2 := µ1)

Attr(DX) =
1

2

(
Val(CD)− Val({DY |X}) + Val({DX})− Val({})

)
=

1

2

(
(θ2 − ϕ)2(µ2

2 − µ2
1) + (θ1 − ϕ)2(µ2

2 − µ2
1)
)

= (
1

2
µ2
2 −

1

2
µ2
1)((θ2 − ϕ)2 + (θ1 − ϕ)2)

Attr(DY |X) =
1

2

(
Val(CD)− Val({DX}) + Val({DY |X})− Val({})

)
=

1

2

(
(σ2

X + µ2
2)((θ2 − ϕ)2 − (θ1 − ϕ)2) + (σ2

X + µ2
1)((θ2 − ϕ)2 − (θ1 − ϕ)2)

)
= (σ2

X +
1

2
µ2
1 +

1

2
µ2
2)((θ2 − ϕ)2 − (θ1 − ϕ)2)

Note that Attr(DX) + Attr(DY |X) = ∆.366

Using the method proposed by Budhathoki et al. [5], we get that:367

D(P̃X ||PX) =
(µ2 − µ1)

2

2σ2
X

D(P̃Y |X ||PY |X) = EX∼P̃X
[D(P̃Y |X=x||PY |X=x)]

= EX∼P̃X

[
((θ2 − θ1)X)2

2σ2
Y

]
=

(θ2 − θ1)
2

2σ2
Y

(σ2
X + µ2

2)
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Table D.1: Analytical expressions of the attributions for the simple synthetic case.
Attr(DX ) Attr(DY |X )

Ours ( 12µ
2
2 − 1

2µ
2
1)((θ2 − ϕ)2 + (θ1 − ϕ)2) (σ2

X + 1
2µ

2
1 +

1
2µ

2
2)((θ2 − ϕ)2 − (θ1 − ϕ)2)

Budhathoki et al. [5] (µ2−µ1)
2

2σ2
X

(θ2−θ1)
2

2σ2
Y

(σ2
X + µ2

2)

We summarize the attribution of our method, along with the attribution using the joint method from368

Budhathoki et al. [5], in Table D.1. We highlight several advantages that our method has over the369

baseline.370

First, our attribution takes the model parameter ϕ into account in order to explain model performance371

changes, whereas Budhathoki et al. [5] do not, as they only explain shifts in (X,Y ), or changes372

in simple functions such as E[X] of the variables. Second, we find that our Attr(DX) is a function373

of θ2. This is desirable, as covariate shift may compound with concept shift to increase loss non-374

linearly. This also ensures that both attributions always sum to the total shift. Third, we note375

that our attributions are signed, which is particularly important as some shifts may decrease loss.376

Finally, we note that our attributions are symmetric when the source and target data distributions are377

swapped by Property 3. This is not true of the baseline method in general, as the KL divergence is378

asymmetric. Since we assume knowledge of the true causal graph (which provides the factorization379

that determines the coalition), we also evaluate the attribution when the graph is misspecified. In this380

case, the coalition will consist of {DY ,DX|Y }. We include these attribution results in Figure D.2. In381

this case, as expected, both DY and DX|Y are attributed the change in model performance (at varying382

levels depending on the magnitude of concept drift). While this is still a meaningful attribution,383

knowledge of the causal graph provides a more succinct interpretation of the behavior in the system.384

D.2 Experiments385

Now, we verify the correctness of our method by conducting a simulation of this setting, using386

µ1 = 0, θ1 = 1, σ2
X = 0.5, σ2

Y = 0.25, ϕ = 0.9, and varying µ2 (the level of covariate shift), and θ2387

(the level of concept drift). We generate 10, 000 samples from the source environment, and, for each388

setting of µ2 and θ2, we generate 10, 000 samples from the corresponding target environment. We389

then apply our method to attribute shifts to {DX ,DY |X}, using XGB to estimate importance weights.390

We also apply the joint method in Budhathoki et al. [5].391

In Figure D.1, we compare our attributions with the baseline, when both covariate and concept drift392

are present. We find that for our method, the empirical results match with the previously derived393

analytical expressions, where any deviations can be attributed to variance in the importance weight394

computations. For Budhathoki et al. [5], we find that there appears to be very high variance in the395

attribution the attribution to DY |X , which is likely a product of the nearest-neighbors KL estimator396

[41] used in their work.397

In Figure D.2, we explore the case where we have a misspecified causal graph. Specifically, we exam-398

ine the case where only concept drift is present, for the actual graphical model (CD = {DX ,DY |X}),399

and for a misspecified graphical model (CD = {DY ,DX|Y }). We find that using the mechanisms400

from the true data generating process results in a minimal attribution (i.e. Attr(DX) = 0), whereas401

the the misspecified causal graph gives non-zero attribution to both distributions.402
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Figure D.1: Mean squared error differences attributed by our model and Budhathoki et al. [5] in the
synthetic setting described in Appendix D
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E Additional Experimental Results403
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Figure E.3: Causal graphs for synthetic and eICU data

E.1 Synthetic Data404

Setup. We generate a synthetic binary classification dataset with five variables according to the405

following data generating process, corresponding to the causal graph shown in Figure E.3a. Here,406

ξp : {0, 1} → {0, 1} is a function that randomly flips the input with probability p.407

G ∼ Ber(0.5),

X2 = N (ξ0.25(Y ) +G, 1)

Y = ξq(G), X1 = N (ωξ0.25(Y ), 1)

X3 = N (ξ0.25(Y ) + µG, 1)
408

Where q, ω and µ are parameters of the data generating process. Here, G represents a spurious409

correlation [4, 2] that is highly correlated with Y , and is easily inferred from (X2, X3). By selecting410

a large value for q (the spurious correlation strength) on the source environment, we can create411

a dataset where models rely more heavily on using X2 and X3 to infer G and then Y , instead of412

infering ξ0.25(Y ) across the three features to estimate Y directly.413

In the source environment, we set q = 0.9, ω = 1 and µ = 3. We generate 20,000 samples using414

these parameters, and train logistic regression (LR) and XGBoost (XGB, [6]) models on (X1, X2, X3)415

to predict Y , using 3-fold cross-validation to select the best model. We attribute performance changes416

for this model using the proposed method. We explore four data settings for the target environment:417

(a) Label Shift: Vary q ∈ [0, 1]. Keep ω and µ at their source values. Only P (Y |G) changes. This418

represents a label shift for the model across domains (which does not have access to G).419

(b) Covariate Shift: Vary µ ∈ [0, 5]. Keep q and ω at their source values. Only P (X3|G, Y ) changes420

across domains.421

(c) Combined Shift 1: Set ω = 0 in the target environment and vary q ∈ [0, 1]. Keep µ at its422

source value. Both P (X1|Y ) and P (Y |G) change across domains, but the shift should be largely423

attributed to P (Y |G) as the model relies on this correlation much more than X1.424

(d) Combined Shift 2: Set µ = −1 in the target environment. Further, vary q ∈ [0, 1]. Keep ω at its425

source value. Both P (X3|Y ) and P (Y |G) change across domains, but their specific contribution426

to model performance degradation is not known exactly.427

We use our method to explain performance changes in accuracy and Brier score for each model on428

target environments generated within each setting (with n = 20, 000), computing density ratios using429

XGB models. Note that the causal graph shown in Figure E.3a implies five potential distribution in the430

candidate set: CD = {DG,DY |G,DX1|Y ,DX2|G,Y ,DX3|G,Y }.431

Our method correctly identifies distribution shifts. We focus on the output of our method with432

LR as the model of interest and accuracy as the metric in Figure E.1. We find that our method433

attributes all of the performance changes to the correct ground truth shifts, both when there is a434

single shift (Settings (a) and (b)) and when there are multiple shifts (Settings (c) and (d)). In the case435

of Setting (c), we find that our method attributes all of the performance drop to a shift in P (Y |G).436

This is because the model relies largely on the spurious information (G inferred from X2 and X3)437

in the source environment. We verify this by examining the overall feature importance for both438

models (see Table E.2 in Appendix for details). Further, in the presence of multiple shifts which439

simultaneously impact model performance (Setting (d)), we find that our method is able to attribute a440
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Figure E.1: Attributions by our model for the change in accuracy to five potential distributional shifts
on the synthetic dataset for the LR model. Further from 0 implies higher (signed) attribution We
observe that the overall change (Perf Diff) is attributed to the true shift(s) in all cases. All attributions
sum to the true performance change by Property 1.

meaningful fraction of the performance shift to each distribution. We further demonstrate that our441

method correctly identifies distribution shifts (and attributions) for a CelebA gender classification442

task in Appendix E.2.443

Table E.1: Performance of each model on the source environment for the synthetic dataset.
Accuracy Brier Score

LR 0.871 0.102
XGB 0.870 0.099

Table E.2: Feature importances of each model on the synthetic dataset. For LR, the model coefficient
is shown, and for XGB, the total information gain from each feature.

LR (Coefficient) XGB (Gain)

X1 0.400 31.1
X2 0.381 29.2
X3 1.994 358.2
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Figure E.2: Accuracy differences attributed by our method to five potential distributional shifts on
the synthetic dataset for the XGB model.
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Figure E.3: Brier score differences attributed by our method to five potential distributional shifts on
the synthetic dataset for the LR model.
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Figure E.4: Brier score differences attributed by our method to five potential distributional shifts on
the synthetic dataset for the XGB model.
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Figure E.5: Attributions by the joint method in Budhathoki et al. [5] to five potential distributional
shifts on the synthetic dataset. We note that the magnitude of the attribution is not informative in
interpreting model performance changes, particularly when multiple shifts are present.

E.2 Gender Classification in CelebA444

Figure E.6: Causal graph for the celebA dataset.

Setup. We use the CelebA dataset [20], where the goal is to predict gender from facial images. We445

adopt a setup similar to the one presented in Thams et al. [36]. We assume this data is generated from446

the causal graph shown in Figure E.6. We train a CausalGAN [16], a generative model that allows us447

to synthesize images faithful to the graph. CausalGAN allows to train attribute nodes (young, bald,448

etc) which are binary-valued, and then synthesize images conditioned on specific attributes. This449

allows us to simulate known distribution shifts (in attributes and hence images) across environments.450

We assume that the causal mechanisms in the source environment have log-odds equal to the ones451

shown in Table E.3. We omit DImage|Pa(Image) from CD, as 1) this distribution is parameterized by452

the CausalGAN and does not change, and 2) it is high-dimensional and difficult to work with. We453

investigate attribution to distribution shift of an ImageNet-pretrained ResNet-18 [13] finetuned to454
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predict gender from the image using frozen representations. Note that the model is only given access455

to the image itself, but not any of the binary attributes in the causal graph. We conduct the following456

two experiments for evaluation.457

Experiment 1. The purpose of this experiment is to demonstrate that our method provides the458

correct attributions for a wide range of random shifts. To create the target environment, we first select459

the number of mechanisms to perturb, np ∈ {1, 2, ..., 6}. We select np mechanisms from the causal460

graph, which we define as the ground truth shift. For each mechanism, we perturb one of the log461

odds by a quantity uniformly selected from [−2.0,−1.0] ∪ [1.0, 2.0]. We then use the CausalGAN462

to simulate a dataset of 10, 000 images based on the modified mechanisms, and use our method to463

attribute the accuracy change between source and target. We select the np distributions from our464

method with the largest attribution magnitude, and compare this set with the set of ground truth shifts465

to calculate an accuracy score. We repeat this experiment 20 times for each value of np ∈ {1, 2, ..., 6},466

and only select experiments with a non-trivial change in model performance (change in accuracy467

≥ 1%).468

Experiment 2. The purpose of this experiment is to investigate the magnitude of our model469

attributions in the presence of multiple shifts. We perturb the log odds for P (Wearing Lipstick|Male)470

and P (Mouth Slightly Open|Smiling) jointly by [−3.0, 3.0]. We compare the magnitude of the471

attributions for the two associated mechanisms, relative to the total shift in accuracy.472

Table E.3: Data generating process for the causal graph shown in Figure E.6
Variable Log Odds
Young Base: 0.0
Male Base: 0.0
Eyeglasses Base: 0.0, Young: -0.4
Bald Base: -3.0, Male: 3.5, Young: -1.0
Mustache Base: -2.5, Male: 2.5, Young: 0.5
Smiling Base: 0.25, Male: -0.5, Young: 0.5
Wearing Lipstick Base: 3.0, Male: -5.0
Mouth Slightly Open Base: -1.0, Young: 0.5, Smiling: 1.0
Narrow Eyes Base: -0.5, Male: 0.3, Young: 0.2, Smiling: 1.0

Table E.4: Average accuracy of our method in attributing shifts to the ground truth shift in CelebA
for each number of perturbed mechanisms (np).

np Avg Accuracy

1 1.00 ± 0.00
2 0.72 ± 0.36
3 0.90 ± 0.16
4 0.85 ± 0.13
5 0.93 ± 0.10
6 0.91 ± 0.09

Table E.5: Predictive performance of XGB models trained to predict attributes from the source
environment in CelebA, and the correlation of each attribute the gender label, as measured by the
Matthews Correlation Coefficient (MCC).

Predictive Performance Correlation

AUROC AUPRC MCC

Wearing Lipstick 0.968 0.976 -0.837
Mouth Slightly Open 0.927 0.924 -0.036

18



-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
Shift in P(Mouth Slightly Open | Smiling)

-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0

Sh
ift

 in
 P

(W
ea

rin
g 

Lip
st

ick
 | 

M
al

e)

0.06

0.04

0.02

0.00

 A
cc

ur
ac

y

(a)

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
Shift in P(Mouth Slightly Open | Smiling)

-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0

Sh
ift

 in
 P

(W
ea

rin
g 

Lip
st

ick
 | 

M
al

e)

0.06

0.04

0.02

0.00

At
tr(

W
ea

rin
g 

Lip
st

ick
)

(b)

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
Shift in P(Mouth Slightly Open | Smiling)

-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0

Sh
ift

 in
 P

(W
ea

rin
g 

Lip
st

ick
 | 

M
al

e)

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

At
tr(

M
ou

th
 S

lig
ht

ly
 O

pe
n)

(c)

Figure E.7: We vary the perturbation in log odds in the target environment for the “wearing lipstick”
and “mouth slightly open” attributes. We show (a) the total shift in accuracy, (b) our attribution to
P (Wearing Lipstick|Male), (c) our attribution to P (Mouth Slightly Open|Young, Smiling).

Results. In Table E.4, we show the average accuracy of our method for each value of np. We find473

that our method achieves roughly 90% accuracy at this task. However, we note that this is not the474

ideal scenario to validate our method, as not all shifts in the ground truth set will result in a decrease475

in the model performance. As our method will not attribute a significant value to shifts which do not476

impact model performance, this explains the accuracy discrepancy observed.477

In Figure E.7, we show the output of our method in Experiment 2. First, we find that shifting these478

two attributes causes a large decrease in the accuracy (up to 6%), and that P (Wearing Lipstick|Male)479

seem to be the stronger factor responsible for the decrease. Looking at our attributions, we find480

that we indeed attribute the large majority of the shift to P (Wearing Lipstick|Male). Here, the481

relative attribution to P (Wearing Lipstick|Male) is relatively unaffected by the shift in the other482

variable, as its effect on the total shift is so minuscule. However, looking at the attribution to483

P (Mouth Slightly Open|Young, Smiling), in addition to the small magnitude, we do observe an484

interesting effect, where the attributed accuracy drop is greater when the two shifts are combined.485

To justify the magnitude of our attributions, we use an ad-hoc heuristic that attempts to approximate486

the model reliance on each attribute in making its prediction. First, we train XGBoost models on the487

ResNet-18 embeddings from the source environment to predict the two attributes. From Table E.5, we488

find that “Wearing Lipstick” is easier to infer from the representations than “Mouth Slightly Open”.489

Next, we measure the correlation of each attribute to the label (gender), finding that the magnitude of490

the correlation is also much higher for “Wearing Lipstick”. As “Wearing Lipstick” is both easier to491

detect from the image, and is also a stronger predictor of gender, it seems reasonable to conclude that492

the model trained on the source would utilize it more in its predictions, and thus our method should493

attribute more of the performance drop to the “Wearing Lipstick” distribution when it shifts.494

E.3 eICU Experiment495

(a) Attribution with resampled source (b) Shifted age distribution (c) Attribution with balanced age

Figure E.8: Attributing Brier score differences to candidate distributions on the eICU dataset for an
XGB model trained on either (a) resampled or (c) balanced Midwest, and tested on South datasets.
Table E.6 lists the features that comprise the nodes in the causal graph. Please refer to [31, Supporting496

Information Table C] for descriptions. Code for preprocessing the eICU database for the mortality497

prediction task is made available at https://github.com/alistairewj/icu-model-transfer498

by Johnson et al. [15].499

Total number of data points are 10,056 in Midwest and 7,836 in South datasets. Both of them have500

20 features and a binary outcome. We randomly split both datasets into two halves for training the501
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Table E.6: Features comprising the nodes of the causal graph in Figure E.3b.
Variable Features
Demo is female, race black, race hispanic, race asian, race other
Vitals heartrate, sysbp, temp, bg pao2fio2ratio, urineoutput
Labs bun, sodium, potassium, bicarbonate, bilirubin, wbc, gcs
Age age
ElectiveSurgery electivesurgery
Outcome death

XGBoost model (also, for estimating the Shapley values) and evaluation. To create the resampled502

Midwest dataset, we subsample 67% of the training set but selectively sample records with age less503

than 63 (which is the median age in Midwest dataset) with probability 5 times that of the probability504

of sampling the rest of the records.505
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