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ABSTRACT

This paper introduces Generalized Attention Flow, a novel feature attribution method for
Transformer models that addresses the limitations of existing approaches. By generalizing
Attention Flow and substituting attention weights with an arbitrary Information Tensor,
the method leverages attention weights, their gradients, maximum flow, and the barrier
method to generate more accurate feature attributions. The proposed approach demonstrates
important theoretical properties and resolves issues associated with previous methods that
rely solely on simple aggregation of attention weights. Comprehensive benchmarking in
NLP sequence classification tasks reveals that a specific variant of Generalized Attention
Flow consistently outperforms state-of-the-art feature attribution methods across most
evaluation scenarios, offering a more accurate explanation of Transformer model outputs.

1 INTRODUCTION

Feature attribution methods are essential for building interpretable machine learning models. These methods
assign a score to each input feature, reflecting its importance to the model’s output, thereby facilitating the
understanding of model predictions.

The rise of Transformer models with self-attention mechanisms has necessitated feature attribution methods
for interpreting these models (Vaswani et al., 2017; Bahdanau et al., 2016; Devlin et al., 2019; Sanh et al.,
2020; Dosovitskiy et al., 2020; Kobayashi et al., 2021). Initially, attention weights were considered potential
feature attributions, but recent studies have questioned their effectiveness in explaining deep neural networks
(Abnar & Zuidema, 2020; Clark et al., 2019; Jain & Wallace, 2019; Serrano & Smith, 2019). Consequently,
various post hoc methods have been developed to obtain feature attributions for Transformer models.

Recent advancements in XAI have introduced numerous gradient-based methods, including Grads and
AttGrads (Barkan et al., 2021), which leverage saliency to interpret Transformer outputs. Qiang et al. (2022)
proposed AttCAT, integrating features, their gradients, and attention weights to quantify input influence on
model outputs. However, many of these techniques still focus primarily on gradients of attention weights,
inheriting limitations of earlier attention-based approaches.

Layer-wise Relevance Propagation (LRP) (Bach et al., 2015; Voita et al., 2019) transfers relevance scores from
output to input. Chefer et al. (2021a;b) proposed a comprehensive method enabling information propagation
through all Transformer components. However, this approach relies on specific LRP rules, limiting its
applicability across various Transformer architectures.

Many existing methods for evaluating feature attributions in Transformers fail to capture pairwise interactions
among features. This limitation arises from the independent computation of importance scores, which neglects
feature interactions. For example, when calculating gradients of attention weights, they propagate directly
from the output to the individual input feature, ignoring interactions. Additionally, many methods used to
compute feature attributions in Transformers violate key axioms such as symmetry, sensitivity, efficiency, and
linearity (Shapley, 1952; Sundararajan et al., 2017; Sundararajan & Najmi, 2020) (Sec. 3.5).
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Recently, Abnar & Zuidema (2020) introduced Attention Flow to overcome these limitations in XAI methods.
Attention Flow considers attention as capacities in a maximum flow problem, determining feature attributions
based on the solution. This approach naturally captures the influence of attention mechanisms, as the
paths of high attention through a network correspond to the flow of information from features to outputs.
Applicable to any encoder-only Transformer, Attention Flow has demonstrated strong potential to improve
model interpretability (Abnar & Zuidema, 2020; Modarressi et al., 2023; Kobayashi et al., 2021).

Subsequently, Ethayarajh & Jurafsky (2021) sought to connect attention flows and XAI by utilizing Shapley
values (Shapley, 1952). While they aimed to show that attention flows could be interpreted as Shapley values
under certain conditions, they overlooked the issue of non-uniqueness in such flows (Sec. 3.3).

Our contributions. We propose Generalized Attention Flow, which satisfies important theoretical properties
and enhanced empirical performance. Specifically, our contributions are:

1. We introduce Generalized Attention Flow, an extension of the previously described Attention Flow. In this
approach, feature attributions are generated by using the log barrier method to solve a regularized maximum
flow problem within a capacity network formed from the functions applied to attention weights. Instead of
defining capacities based solely on attention weights, we suggest using the gradients of these weights (GF) or
the product of attention weights and their gradients (AGF) as alternatives.

2. We have addressed the non-uniqueness issue in Attention Flow, which invalidates some of its previously
suggested theoretical properties (Ethayarajh & Jurafsky, 2021). Furthermore, we show that non-unique
solutions occur frequently in practice. We have introduced barrier regularization to mitigate this issue to
ensure a unique solution. As a result, we have demonstrated that feature attributions derived from the
regularized maximum flow problem align with Shapley values and satisfy the axioms of efficiency, symmetry,
nullity, and linearity (Shapley, 1952; Young, 1985; Chen et al., 2023b).

3. We extensively benchmarked the proposed feature attribution methods, defined using Generalized Attention
Flow, against various existing state-of-the-art attribution methods. We found that a type of the proposed
attribution methods outperforms previous state-of-the-art methods in terms of explanation performance for
classification tasks across most evaluation scenarios, as measured by AOPC (Barkan et al., 2021; Nguyen,
2018; Chen et al., 2020), LOdds (Chen et al., 2020; Shrikumar et al., 2018), and classification metrics.

4. We have developed an open-source Python package for calculating feature attributions using Generalized
Attention Flow. This package is distinctively flexible, capable of being applied to any encoder-only Trans-
former model available in the Hugging Face Transformers package (Wolf et al., 2020). Furthermore, our
methods are easily adaptable for various NLP tasks.

2 PRELIMINARIES

2.1 MULTI-HEAD ATTENTION MECHANISM

Given the input sequence X∈Rt×d, where d is the dimensionality of the model’s input vectors and t is the
number of tokens, the multi-head self-attention mechanism computes attention weights for each element in
the sequence employing the following steps:

• Linear Transformation:
Qi = XWQ

i , Ki = XWK
i , Vi = XW V

i (1)

Here Qi,Ki ∈Rt×dk and Vi ∈Rt×dv , where dk and dv represent the dimensionality of the key
vector and value vector respectively, and i represents the index of the attention head.
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• Scaled Dot-Product Attention:
Attentioni(Qi,Ki,Vi) = ÃiVi (2)

where the matrix of attention weights Ãi∈Rt×t is defined as:

Ãi = softmax
(
QiK

T
i√

dk

)
(3)

• Concatenation and Linear Projection:

MultiHead(X) = Concat(Attention1,Attention2, . . . ,Attentionh)W
O (4)

where MultiHead(X)∈Rt×d and WO∈Rh·dv×d.

For a Transformer with l attention layers, the attention weights at each layer can be defined as multi-head
attention weights:

Â = Concat(Ã1, Ã2, . . . , Ãh)∈Rh×t×t (5)

Extending this to a Transformer architecture itself, the Transformer attention weights A can be defined as:

A = Concat(Â1, Â2, . . . , Âl)∈Rl×h×t×t (6)

where Âj ∈Rh×t×t is the multi-head attention weight for the j-th attention layer.

2.2 MINIMUM-COST CIRCULATION & MAXIMUM FLOW PROBLEM

Definition 2.1 (Minimum Cost Circulation). Given a network G = (V,E,u, l, c) with |V | = n vertices and
|E| = m edges, where cij is the cost, li,j and ui,j are respectively the lower and upper capacities (demands)
for the edge (i, j) ∈ E, circulation is a function f : E → R≥0 s.t.

lij ≤ fij ≤ uij , ∀(i, j) ∈ E∑
j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = 0, ∀i ∈ V. (7)

The min-cost circulation problem is to find a circulation f minimizing the cost function
∑

(i,j)∈E

cijfij .

The minimum-cost circulation problem can be algebraically written as the following primal-dual linear
programming (LP) problem (Van Den Brand et al., 2021; Chen et al., 2023a):

(Primal) argmin
B⊤f=0

le≤fe≤ue∀e∈E

c⊤f i.e. argmin
B⊤f=0
l≤f≤u

c⊤f , (Dual) argmax
By+s=c

∑
i

min (lisi, uisi) (8)

where Bm×n, is the edge-vertex incidence matrix. For a directed graph, the entries of the matrix B are
defined as follows:

Bev =

−1, if vertex v is the tail of edge e,
1, if vertex v is the head of edge e,
0, if edge v is not incident to vertex e.

Remark 2.1. The maximum flow problem can be considered as a specific minimum-cost circulation problem.
Here, B is an edge-vertex incidence matrix of the input graph after we added to it an edge e(t, s) that
connects the target t to the source s and its lower capacity lt,s be 0 and its upper capacity ut,s be ∥u∥1. Also,
the cost vector c is a vector in which ct,s = −1 and ce = 0 for all other edges e ∈ E (Cormen et al., 2009).
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2.3 BARRIER METHODS FOR CONSTRAINED OPTIMIZATION

Consider the following optimization problem:
f∗ = argmin

α(f)=0
β(f)≤0

ξ(f) (9)

where h represents a convex inequality constraint, g represents an affine equality constraint, and f∗ denote
the optimal solution.

The interior of the constraint region is defined as S = {f | α(f) = 0, β(f) < 0}. Assuming S is nonempty
and convex, we introduce a barrier function ψ(f) on S that is continuous and approaches infinity as f
approaches to the boundary of the region, specifically limβ(f)→0−ψ(f) = ∞. One common example of
barrier functions is the log barrier function, which is represented as log(−β(f)).
Given a barrier function ψ(f), we can define a new objective function ξ(f) + µψ(f), where µ is a positive
real number, which enables us to eliminate the inequality constraints in the original problem and obtain the
following problem:

f∗
µ = argmin

α(f)=0

ξ(f) + µψ(f) (10)

Theorem 2.1. For any strictly convex barrier function ψ(f), convex function ξ(f), and µ > 0, there exists a
unique optimal point f∗

µ . Furthermore, limµ→0 f
∗
µ = f∗, indicating that for any arbitrary ϵ > 0, we can

select a sufficiently small µ > 0 such that ∥f∗
µ − f∗∥ < ϵ (van den Brand et al., 2023).

3 METHODS

3.1 INFORMATION TENSOR

In Transformer-based networks, information propagation occurs through pathways facilitated by the attention
mechanism. These pathways can be conceptualized as routes within a graph structure, where tokens are
represented by nodes and computations are denoted by edges. The capacities of these edges correspond to
meaningful computational quantities that reflect the flow of information through the network (Ferrando &
Voita, 2024; Mueller, 2024).

Attention scores can represent the flow of information through the neural network during the feed-forward
phase of training, quantifying the importance of different input parts in generating the output (Abnar &
Zuidema, 2020; Ferrando & Voita, 2024). Additionally, the gradient of attention scores captures the flow of
information during back-propagation, reflecting how changes in the output influence the attention mechanism
throughout the network (Barkan et al., 2021). A combined view of attention scores and their gradients can
simultaneously represent information circulation during both feed-forward and back-propagation, offering a
comprehensive perspective on the network’s information dynamics (Barkan et al., 2021; Qiang et al., 2022;
Chefer et al., 2021a;b).

Our Generalized Attention Flow builds on this foundation, using an information tensor Ā ∈ Rl×t×t to
aggregate Transformer attention weights A, as defined in eq. 6. Based on the insights above, we propose
three aggregation functions to generate information tensors (Barkan et al., 2021; Chefer et al., 2021a):

1. Attention Flow (AF): Ā := Eh(A)

2. Attention Grad Flow (GF): Ā := Eh(⌊∇A⌋+)
3. Attention × Attention Grad Flow (AGF): Ā := Eh(⌊A⊙∇A⌋+)

Here, ⌊x⌋+ = max(x, 0), ⊙ represents the Hadamard product, ∇A := ∂yt

∂A where yt is the model’s scalar
output, and Eh denotes the mean across attention heads.
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Algorithm 1 Backward Information Capacity
Input: Āl×t×t: An information tensor.
Output: Tuple: (A, l, l̃,u, ũ, ss, st)

function GET_BACKWARD_CAPACITY(Ā)
▷ Initialization
l, t, _← Ā.shape()
βmin ← min(Ā > 0)
β ← −⌊log10(βmin)⌋
γ ← 10β

Qtl ← t ∗ (l + 1) + 2
l← zeros(Qtl, Qtl)
u← zeros(Qtl, Qtl)
u∞ ← t

▷ Fill super-source→ First Layer
for i in range(t) do

u[i+ 1][0]← u∞
end for
▷ Fill Last Layer→ super-target
for i in range(t) do

u[−1][−i− 2]← u∞
end for
▷ Fill j-th Layer to (j + 1)-th Layer
for j in range(l) do

start← t ∗ j + 1
mid← t ∗ (j + 1) + 1
end← t ∗ (j + 2) + 1
u[mid:end , start:mid]← Ā[j,:,:]

end for
▷ Get Integral Version of Capacities
l̃← int(γ ∗ l)
ũ← int(γ ∗ u)
▷ Get Adjacency Matrix
A ← I(u>0)

▷ Get super-source and super-target
ss, st← t ∗ (l + 1) + 1, 0

end function

Algorithm 2 Forward Information Capacity
Input: Āl×t×t: An information tensor.
Output: Tuple: (A, l, l̃,u, ũ, ss, st)

function GET_FORWARD_CAPACITY(Ā)
▷ Initialization
l, t, _← Ā.shape()
βmin ← min(Ā > 0)
β ← −⌊log10(βmin)⌋
γ ← 10β

Qtl ← t ∗ (l + 1) + 2
l← zeros(Qtl, Qtl)
u← zeros(Qtl, Qtl)
u∞ ← t

▷ Fill super-source→ First Layer
for i in range(t) do

u[0][i+ 1]← u∞
end for
▷ Fill Last Layer→ super-target
for i in range(t) do

u[−i− 2][−1]← u∞
end for
▷ Fill j-th Layer to (j + 1)-th Layer
for j in range(l) do

start← t ∗ j + 1
mid← t ∗ (j + 1) + 1
end← t ∗ (j + 2) + 1
u[start:mid , mid:end]← ĀT

[j,:,:]

end for
▷ Get Integral Version of Capacities
l̃← int(γ ∗ l)
ũ← int(γ ∗ u)
▷ Get Adjacency Matrix
A ← I(u>0)

▷ Get super-source and super-target
ss, st← 0, t ∗ (l + 1) + 1

end function

3.2 GENERALIZED ATTENTION FLOW

In Generalized Attention Flow, we leverage the attention mechanism for feature attribution by defining a
network flow representation of a Transformer or other attention-based model. We assign capacities to the
edges of this graph corresponding to information tensor defined in Sec. 3.1. We then solve the maximum
flow problem to evaluate the optimal flow passing through any output node (or, more generally, any node in
any layer) to any input node. The flow traversing through an input node (token) indicates the importance or
attribution of that particular node (token).

To determine the maximum flow from all output nodes to all input nodes, we leverage the concept of multi-
commodity flow (App. A.2 and App. B). This involves the introduction of a super-source node ss and a
super-target node st with a large capacity u∞. The connectivity between layers and capacities between nodes
are established using the information tensors, effectively forming a layered graph (App. B).
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To formalize the generating of the information flow, consider a Transformer with l attention layers, an input
sequence X∈Rt×d, and its information tensor Ā∈Rl×t×t. We construct the layered attribution graph G with
its adjacency matrix A, its edge-vertex incidence matrix B, lower capacity matrix l and its integral version l̃,
upper capacity matrix u and its integral version ũ employing either Algorithm 1 or Algorithm 2. Afterward,
we substitute the vectorized version of the obtained matrices into the primal form of eq. 8 to evaluate the
desired optimal flow.

To enhance comprehension of Algorithm 1 and Algorithm 2, we explain the process of constructing the
layered attribution graph G which has an adjacency matrix with shape (2 + t ∗ (l + 1), 2 + t ∗ (l + 1)) and
serves as an input for the maximum flow problem. Designating nodes at layer ℓ ∈ {1, . . . , l} and token
i ∈ {1, . . . , t} as vℓ,i, the guidelines for defining the upper and lower-bound capacities are as follows:

• To connect nodes v1,i to the super-target node vst, we define u[0, i] = u∞ for 1 ≤ i ≤ t.

• The upper-bound capacity from node vℓ+1,i to node vℓ,j is defined as u[Ii,ℓ+1, Ij,ℓ] = Āℓ,i,j for
ℓ∈{1, . . . , l}, i∈{1, . . . , t}, and j∈{1, . . . , t}, where Ii,ℓ+1 = i+ t ∗ ℓ and Ij,ℓ = j + t ∗ (ℓ− 1).

• To connect the super-source node vss to nodes vl+1,i, we define u[t ∗ l + i, 1 + t ∗ (l + 1)] = u∞
for 1 ≤ i ≤ t.

• The lower-bound capacity is defined as l = 0.

Fig. 1a and Fig. 1b illustrate schematic graphs generated using the information tensor Ā ∈ R3×3×3 with
Algorithm 1 and Algorithm 2, respectively. While both algorithms are identically solving the same network
flow problem by creating graphs containing a super-source and a super-target, the second algorithm differs
from the first in two key aspects. First, in the second graph, the positions of the super-source and super-target
are swapped, meaning that the super-source in the first graph becomes the super-target in the second and vice
versa. Second, the direction of the edges in the second graph is reversed compared to the first.

(a) Schematic information flow created via Algorithm 1. (b) Schematic information flow created via Algorithm 2.

Figure 1: Schematics overview of Generalized Attention Flow created employing Algorithm 1 and Algorithm 2.

3.3 NON-UNIQUENESS OF MAXIMUM FLOW

The maximum flow problem lacks strict convexity, meaning it does not necessarily have a unique solution.
We found that the maximum flow problem associated with the graphs constructed employing Generalized
Attention Flow also fails to yield a unique optimal flow (App. C).
Observation 3.1. It is straightforward to verify that both Algorithm 1 and Algorithm 2 solve the same
maximum flow problem. Therefore, determining the maximum flow in graphs generated by either Algorithm 1
or Algorithm 2 is equivalent and yields the same optimal value. However, it’s worth noting that the optimal
flows associated with them may not necessarily be equivalent, as explained in App. C.
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Observation 3.2. If two distinct feasible solutions, denoted f1 and f2, exist for a linear programming problem,
then any convex combination γ1f1 + γ2f2 forms another feasible solution. Consequently, the maximum flow
problem can possess an infinite number of feasible solutions. Additionally, due to the non-uniqueness of
optimal flows arising from the maximum flow problem, their projections onto any subset of nodes in the graph
may also not be unique.

Corollary 3.1. Let V be the set of all nodes in a layered attribution graph G(A,u, l, c, ss, st), and N ⊆ V ,
with all nodes in N chosen from the same layer. Suppose f∗ is the optimal solution of eq. 8, and for every
S ⊆ N , define the payoff function ϑ(S) := |f∗(S)| =

∑
i∈S |fout(i)|, where |fout(i)| denotes the total outflow

value of node i. Although Ethayarajh & Jurafsky (2021) claimed that for each node i ∈ N , ϕi(ϑ) = |f∗
out(i)|

represents the Shapley value, these feature attributions are non-unique and cannot be considered Shapley
values. In fact, their method for defining feature attributions is not well-defined (Proof in App. E).

3.4 LOG BARRIER REGULARIZATION OF MAXIMUM FLOW

To address the non-uniqueness issues in the maximum flow problem, we reformulate the minimum-cost
circulation problem as follows:

argmin
B⊤f=0
β(f)≤0

c⊤f (11)

where β(f) = (f − l)(f − u). The original problem can, therefore, be approximated using the log barrier
function as the following optimization problem:

argmin
B⊤f=0

c⊤f + ψµ(f) (12)

where the log barrier function is:

ψµ(f) = −µ
∑
e∈E

log (−β(fe)) = −µ
∑
e∈E

(log (fe − le) + log (ue − fe)) (13)

It is evident that, as long as µ > 0 and our initial solution is feasible, the barrier function guarantees that any
solution obtained through an iterative minimization scheme, like interior point methods, remains feasible
(Bubeck, 2015; Boyd & Vandenberghe, 2004; Mądry, 2019). Furthermore, it can be demonstrated that to
obtain an ε-approximate solution to eq. 11, it suffices to set µ ≤ ε

2m and find the optimal solution to the
corresponding problem in eq. 12 (Bubeck, 2015; Boyd & Vandenberghe, 2004; Mądry, 2019).

Finally, the Hessian of the objective function in eq. 11 at some point f is equal to the Hessian ∇2ψµ(x) of
the barrier function, which is positive definite (assuming µ > 0). This implies that the objective function is
strictly convex and, consequently, eq. 12 has a unique feasible solution (Bubeck, 2015; Boyd & Vandenberghe,
2004).

3.5 AXIOMS OF FEATURE ATTRIBUTIONS

In XAI, axioms are core principles that guide the evaluation of explanation methods, ensuring their reliability,
interpretability, and fairness. These axioms provide standards to measure the effectiveness and compliance of
explanation techniques. Our proposed methods meet five essential axioms, as demonstrated by the following
theorem and corollaries.

Definition 3.1 (Shapley values). For any value function ϑ : 2N 7→ R where N = {1, 2, . . . , n}, Shapley
values ϕ(ϑ) ∈ Rn is computed by averaging the marginal contribution of each feature over all possible
feature combinations as:

7
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ϕi(ϑ) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(ϑ(S ∪ {i})− ϑ(S)) (14)

Shapley values are the unique explanation that satisfies four fairness-based axioms of efficiency (complete-
ness), symmetry, linearity (additivity), and nullity (Shapley, 1952; Young, 1985) (App. A.3). Initially, a
payoff function based on model accuracy was proposed (Lundberg & Lee, 2017); however, since then, various
alternative payoff functions have been introduced (Jethani et al., 2022; Sundararajan & Najmi, 2020), each
yielding distinct feature importance scores.

Theorem 3.1 (Log Barrier Regularization of Generalized Attention Flow Outcomes Shapley Values).
Given a layered attribution graph G(A,u, l, c, ss, st) defined using either Algorithm 1 or Algorithm 2, let
V be the set of all nodes in G, and N ⊆ V such that all nodes in N are chosen from the same layer.
Suppose f∗ is the optimal unique solution of eq. 12, and for every S ⊆ N , define the payoff function
ϑ(S) := |f∗(S)| =

∑
i∈S |fout(i)| where |fout(i)| is the total outflow value of a node i. Then, it can be proven

that for each node i∈N , ϕi(ϑ) = |f∗
out(i)| represents the Shapley value (Proof in App. E).

Corollary 3.2. Theorem 3.1 implies that the feature arbitration obtained by eq. 12 are Shapley values and,
consequently, adhere to the axioms of efficiency, symmetry, nullity, linearity.

4 EXPERIMENTS

In this section, we thoroughly evaluate the effectiveness of our methods for sequence classification. While
our approach is versatile and applicable to various NLP tasks, including question answering and named entity
recognition, which use encoder-only Transformer architectures, this assessment focuses solely on sequence
classification.

4.1 TRANSFORMER MODELS

Transformer models have demonstrated exceptional performance in various NLP tasks including sequence
classification, question answering, and named entity recognition. In our evaluations, we used a specific pre-
trained model from the HuggingFace Hub (Wolf et al., 2020) for each dataset and compared our explanation
methods against others to assess their performance (App. F.1).

4.2 DATASETS

Our method’s assessment involves sequence classification spanning binary classification tasks on datasets
including SST2 (Socher et al., 2013), Amazon Polarity (McAuley & Leskovec, 2013), Yelp Polarity (Zhang
et al., 2016), and IMDB (Maas et al., 2011), alongside multi-class classification on the AG News dataset
(Zhang et al., 2015). To minimize computational overhead, we conducted experiments on a subset of 5,000
randomly selected samples for the Amazon, Yelp, and IMDB datasets while utilizing the entire test sets for
other datasets (App. F.1).

4.3 BENCHMARK METHODS

Our experiment compares the methods introduced in Sec. 3.1 with various baseline explanation methods
tailored for Transformer models. To evaluate attention-based methods such as RawAtt and Rollout (Abnar
& Zuidema, 2020), attention gradient-based methods like Grads, AttGrads (Barkan et al., 2021), CAT, and
AttCAT (Qiang et al., 2022), as well as LRP-based methods such as PartialLRP (Voita et al., 2019) and
TransAtt (Chefer et al., 2021a), we adapted the repository developed by (Qiang et al., 2022). Additionally, we

8
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implemented classical attribution methods such as Integrated Gradient (Sundararajan et al., 2017), KernelShap
(Lundberg & Lee, 2017), and LIME (Ribeiro et al., 2016) leveraging the Captum package (Kokhlikyan et al.,
2020).

4.4 EVALUATION METRIC

AOPC: One of the key evaluation metrics employed is the Area Over the Perturbation Curve (AOPC), a
measure that quantifies the impact of masking top k% tokens on the average change in prediction probability
across all test examples. The AOPC is calculated as follows:

AOPC(k) =
1

N

N∑
i=1

p (ŷ|xi)− p
(
ŷ|x̃k

i

)
(15)

where N is the number of examples, ŷ is the predicted label, p(ŷ|·) is the probability on the predicted
label, and x̃k

i is constructed by masking the k% top-scored tokens from xi. To avoid arbitrary choices for
k, we systematically mask 10%, 20%, . . . , 90% of the tokens in order of decreasing saliency, resulting in
x̃10
i , x̃

10
i , . . . , x̃

90
i .

LOdds: Log-odds score is calculated by averaging the difference of negative logarithmic probabilities on the
predicted label over all test examples before and after masking k% top-scored tokens.

LOdds(k) =
1

N

N∑
i=1

log
p
(
ŷ|x̃k

i

)
p (ŷ|xi)

(16)

5 RESULTS

We evaluated various explanation methods by masking the top k% of tokens across multiple datasets
and measuring their AOPC and LOdds scores, as shown in Tab. 1, which presents average scores for
different k values. Our findings indicate that the AGF method consistently outperforms others, achieving the
highest AOPC and lowest LOdds scores, effectively identifying and masking the most important tokens for
model predictions. Furthermore, the GF method also exceeds most baseline methods. Evaluation based on
classification metrics also yields consistently similar results (App. D.1 and App. D.2).

Additionally, we assessed similar explanation methods by masking the bottom k% of tokens across datasets
and measuring AOPC and LOdds scores, detailed in Tab. 2. The AGF method achieved the highest LOdds and
lowest AOPC across most datasets, highlighting its ability to pinpoint important tokens for model predictions,
with the GF method also surpassing many baseline methods in this context.

However, the Yelp dataset poses a unique challenge, as our methods do not perform optimally in terms of
AOPC and LOdds metrics. This is likely due to the prevalence of conversational language, slang, and typos in
Yelp reviews, which adversely affect the AGF method’s performance more than others.

6 LIMITATIONS

The primary limitation of our proposed method is the increased running time of the optimization problem
in eq. 12 as the number of tokens grows (Lee & Sidford, 2020; van den Brand et al., 2021). Moreover,
it’s important to note that optimization problems generally cannot be solved in parallel. However, recent
advancements have led to the development of almost-linear time algorithm that solves the optimization
problem described in eq. 12 (Tab. 7). Additionally, we found that the practical runtime of our method is
comparable to other XAI approaches (Tab. 8), indicating that our method is both practical and efficient for
obtaining feature attributions in AI models using Transformers.
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Table 1: AOPC and LOdds scores of all methods in explaining the Transformer-based model across datasets when we
mask top k% tokens. Higher AOPC and lower LOdds are desirable, indicating a strong ability to mark important tokens.
Best results are in bold, and differences between AGF and benchmarks are statistically significant according to the ASO
test (App. D.3).

Methods SST2 IMDB Yelp Amazon AG News

AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓
RawAtt 0.348 -0.973 0.329 -1.393 0.383 -1.985 0.353 -1.593 0.301 -1.105
Rollout 0.322 -0.887 0.354 -1.456 0.260 -0.987 0.304 -1.326 0.249 -0.983
Grads 0.354 -0.313 0.324 -1.271 0.412 -1.994 0.405 -1.793 0.327 -1.319
AttGrads 0.367 -0.654 0.337 -1.226 0.423 -1.978 0.419 -1.918 0.348 -1.477
CAT 0.369 -1.175 0.332 -1.274 0.417 -1.992 0.381 -1.639 0.325 -1.226
AttCAT 0.405 -1.402 0.371 -1.642 0.431 -2.134 0.427 -2.041 0.387 -1.688
PartialLRP 0.371 -1.171 0.323 -1.321 0.443 -2.018 0.384 -1.945 0.356 -1.627
TransAtt 0.399 -1.286 0.355 -1.513 0.411 -1.473 0.375 -1.875 0.377 -1.318
LIME 0.362 -1.056 0.347 -1.379 0.361 -1.568 0.358 -1.612 0.349 -1.538
KernelShap 0.382 -1.259 0.367 -1.423 0.385 -1.736 0.374 -1.717 0.351 -1.413
IG 0.401 -1.205 0.350 -1.443 0.409 -1.924 0.434 -2.024 0.393 -1.681
AF 0.371 -1.215 0.313 -1.297 0.398 -1.886 0.388 -1.923 0.352 -1.282
GF 0.412 -1.616 0.491 -1.718 0.396 -1.654 0.421 -2.006 0.366 -1.513
AGF 0.427 -1.687 0.498 -1.849 0.429 -1.982 0.439 -2.103 0.398 -1.693

Table 2: AOPC and LOdds scores of all methods in explaining the Transformer-based model across datasets when we
mask bottom k% tokens. Lower AOPC and higher LOdds are desirable, indicating a strong ability to mark important
tokens. Best results are in bold, and differences between AGF and benchmarks are statistically significant according to
the ASO test (App. D.3).

Methods SST2 IMDB Yelp Amazon AG News

AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑
RawAtt 0.184 -0.693 0.151 -0.471 0.157 -0.747 0.129 -0.281 0.101 -0.427
Rollout 0.221 -0.773 0.123 -0.425 0.169 -0.734 0.171 -0.368 0.117 -0.471
Grads 0.234 -0.776 0.083 -0.203 0.131 -0.641 0.134 -0.254 0.083 -0.390
AttGrads 0.217 -0.713 0.088 -0.243 0.127 -0.603 0.135 -0.266 0.071 -0.351
CAT 0.247 -0.874 0.099 -0.327 0.134 -0.659 0.126 -0.240 0.104 -0.419
AttCAT 0.143 -0.412 0.041 -0.092 0.103 -0.339 0.115 -0.148 0.057 -0.219
PartialLRP 0.163 -0.527 0.057 -0.116 0.116 -0.486 0.167 -0.327 0.056 -0.204
TransAtt 0.148 -0.483 0.045 -0.107 0.123 -0.538 0.113 -0.140 0.049 -0.173
LIME 0.173 -0.603 0.076 -0.141 0.143 -0.687 0.158 -0.263 0.075 -0.372
KernelShap 0.197 -0.729 0.039 -0.084 0.135 -0.645 0.174 -0.351 0.067 -0.219
IG 0.150 -0.532 0.026 -0.064 0.130 -0.617 0.134 -0.241 0.052 -0.191
AF 0.199 -0.747 0.061 -0.148 0.153 -0.689 0.388 -1.923 0.106 -0.402
GF 0.154 -0.497 0.034 -0.079 0.149 -0.654 0.130 -0.267 0.090 -0.313
AGF 0.084 -0.263 0.014 -0.039 0.121 -0.504 0.092 -0.114 0.037 -0.134

7 CONCLUSION

In this study, we propose Generalized Attention Flow, an extension of Attention Flow. The core idea behind
Generalized Attention Flow is applying the log barrier method to the maximum flow problem, defined by
information tensors, to derive feature attributions. By leveraging the log barrier method, we resolve the
non-uniqueness issue in optimal flows originating from the maximum flow problem, ensuring that our feature
attributions are Shapley values and satisfy efficiency, symmetry, nullity, and linearity axioms. Additionally,
we demonstrate that our approach satisfies the axiom of conservation.

Our experiments across multiple datasets indicate that our proposed AGF method generally outperforms other
feature attribution methods in most evaluation scenarios. It could be valuable for future research to explore
whether alternative definitions of the information tensor could enhance AGF’s effectiveness.
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8 REPRODUCIBILITY

The code used to implement all results presented in this paper is available anonymously in this repository.
Comprehensive details for developing the proposed methods can be found in Sec. 3.1, Sec. 3.2, and App. B.
Additionally, the pre-trained models, datasets, and further implementation details for our experiments are
thoroughly discussed in Sec. 4 and App. F. Proofs supporting our theoretical claims are provided in App. E.
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A PRELIMINARIES

A.1 MAXIMUM FLOW

Definition A.1 (Network Flow). Given a network G = (V,E, s, t,u), where s and t are the source and
target nodes respectively and uij is the capacity for the edge (i, j)∈E, a flow is characterized as a function
f : E → R≥0 s.t.

fij ≤ uij ∀(i, j)∈E (capacity constraints)∑
j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = 0, ∀i ∈ V, i ̸= s, t (flow conservation constraints) (17)

We define |fout(i)| to be the total outflow value of a node i and |fin(i)| to be the total inflow value of a node i.
For a given set K ⊆ V of nodes, we define |f(K)| =

∑
i∈K |fout(i)| for every flow f . The value of a flow in

a given network G = (V,E, s, t,u) is denoted as |f | =
∑

v:(s,v) fsv −
∑

v:(v,s) fvs = |fout(s)| − |fin(s)|,
and a maximum flow is identified as a feasible flow with the highest attainable value.

A.2 MULTI-COMMODITY MAXIMUM FLOW

The multi-commodity flow problem is an important variant of the maximum flow problem. This problem
involves multiple source-sink pairs, unlike the standard maximum flow problem, which only considers one
source and one sink. The goal is to find multiple optimal flows, denoted by f1(·, ·), . . . , fr(·, ·), where each
fk(·, ·) represents a feasible flow from the source sk to the sink tk. The objective is to ensure that all capacity
constraints are satisfied, which are represented by the equation:

r∑
k=1

fk(i, j) ≤ u(i, j) ∀(i, j)∈E (18)

Such a flow is known as a "multi-commodity" flow. A multi-commodity maximum flow problem is to
maximize the function

∑r
k=1

∑
v:(v,sk)

fk(sk, v).

To solve the problem of multi-commodity maximum flow, we can simplify it by transforming it into a standard
maximum flow problem. This can be achieved by introducing two new nodes, a "super-source" node ss and a
"super-target" node st. The "super-source" node ss should be connected to all the original sources si through
edges of finite capacities, while the "super-target" node st should be connected to all the original sinks ti with
edges of finite capacities:

• Each outgoing edge from the "super-source" node ss to each source node si gets assigned a capacity
that is equal to the total capacity of the outgoing edges from the source node si.

• Each incoming edge from an original "super-target" node st to each sink node ti gets assigned a
capacity that is equal to the total capacity of the incoming edges to the sink node ti.

It is easy to demonstrate that the maximum flow from ss to st is equivalent to the maximum sum of flows in a
feasible multi-commodity flow in the original network.

A.3 SHAPLEY VALUES

The Shapley value, introduced by Shapley (1952), concerns the cooperative game in the coalitional form
(N,ϑ), where N is a set of n players and ϑ : 2N → R with ϑ(∅) = 0 is the characteristic (payoff)
function. In the game, the marginal contribution of the player i to any coalition S with i /∈S is considered as

16



752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

ϑ(S ∪ i)− ϑ(S). These Shapley values are the only constructs that jointly satisfy the efficiency, symmetry,
nullity, and additivity axioms (Shapley, 1952; Young, 1985):

Efficiency: The Shapley values must add up to the total value of the game, which means
∑

i∈N ϕi(ϑ) = ϑ(N).

Symmetry: If two players are equal in their contributions to any coalition, they should receive the same
Shapley value. Mathematically, if ϑ(S ∪ {i}) = ϑ(S ∪ {j}) for all S ⊆ N\{i, j}, then ϕi(ϑ) = ϕj(ϑ).

Nullity (Dummy): If a player has no impact on any coalition, their Shapley value should be zero. Mathemati-
cally, if ϑ(S ∪ {i}) = ϑ(S) for all S ⊆ N\{i}, then ϕi(ϑ) = 0.

Linearity: If the game ϑ(·) is a linear combination of two games ϑ1(·), ϑ2(·) for all S ⊆ N , i.e. ϑ(S) =
ϑ1(S) + ϑ2(S) and (c · ϑ)(S) = c · ϑ(S),∀c ∈ R, then the Shapley value in the game ϑ is also a linear
combination of that in the games ϑ1 and ϑ2, i.e. ∀i∈N,ϕi(ϑ1) = ϕi(ϑ1) + ϕi(ϑ2) and ϕi(c · ϑ) = c · ϕi(ϑ).
Considering these axioms, the attribution of a player j is uniquely given by (Shapley, 1952; Young, 1985):

ϕj(ϑ) =
∑

S⊆N\{j}

|S|!(n− |S| − 1)!

n!
(ϑ(S ∪ {j})− ϑ(S)) (19)

where the difference ϑ(S ∪ {j})− ϑ(S) represents the i-th feature’s contribution to the subset S, and the
summation represents a weighted average across all subsets that do not include i.

Initially, a payoff function based on model accuracy was suggested (Lundberg & Lee, 2017). Since then,
various alternative coalition functions have been proposed (Jethani et al., 2022; Sundararajan & Najmi, 2020),
each resulting in a different feature importance score. Many of these alternative approaches are widely used
and have been shown to outperform the basic SHAP method (Lundberg & Lee, 2017) in empirical studies.

(a) Network flow with multiple sources and targets. (b) Network flow including super-source and super-target.

(c) Network flow defined for MCC problem.

Figure 2: Initial network flow to be used in our proposed method, the multi-commodity flow with multiple sources and
targets, and the network flow for MCC problems.
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B NETWORK FLOW GENERATION

Fig. 2 will detail the process of defining a graph network and its parameters using Algorithm 1 for use in
our proposed method. It is worth noting that the same method can be used for Algorithm 2. To solve the
maximum flow or MCC problem within this graph network, we must compute network flow with multiple
sources and targets, assigning all nodes in the first and last layers of transformers as sources and targets,
respectively (Fig. 2a).

To solve this problem, we leverage the concept of multi-commodity flow (multiple-sources multiple-targets
maximum flow) by introducing a super-source node ss and a super-target node st (Fig. 2b). To define
the upper-bound and lower-bound capacities of this new graph network, we utilize the procedure defined
in Sec. 3.2. In the last step, we add a new edge from the super-target node st to the super-source node
ss and define the cost vector, upper-bound capacities, and lower-band capacities according to Fig. 2c.
Subsequently, we can input all derived parameters into eq. 12, solve the optimization problem, and evaluate
feature attributions.

C NON-UNIQUENESS OF MAXIMUM FLOW

Fig. 3 visually describes our proposed approach for computing feature attributions. Using maximum flow to
derive these attributions produces a convex set containing all optimal flows, which makes it unsuitable as
a feature attribution technique. In contrast, our proposed approach, which utilizes the log barrier method,
generate a unique optimal flow and provides an interpretable set of feature attributions.

Figure 3: Overview of how the proposed method evaluates the unique optimal flow computed using the log barrier method,
attention weights, and their gradients in Transformers.

Fig. 4 shows the capacities and optimal flows obtained by solving maximum flows on the network, constructed
with the synthetic information tensor Ā∈R4×3×3 as input, using Algorithm 1 and Algorithm 2. While the
maximum flows are the same for both algorithms, their optimal flows differ. Notably, significant differences in
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flows between node pairs {v4,v8} and {v3,v5} are visible in Fig. 4c and Fig. 4d. Additionally, we evaluated
the maximum flow and its optimal flow generated by both algorithms across various combinations of token
numbers t and Transformer layers l. Our findings indicate that the optimal flows from the two algorithms do
not coincide in any scenario.
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(a) Network flow created via Algorithm 1
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(b) Network flow created via Algorithm 2
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(c) Maximum flow in the graph created from Algorithm 1
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(d) Maximum flow in the graph created from Algorithm 2

Figure 4: Network flow, maximum flow, and residual flow created by Algorithm 1 and Algorithm 2. The optimal flows
and residual flows evaluated using Algorithm 1 and Algorithm 2 are different.

Fig. 5a and Fig. 5b display the normalized feature attributions evaluated across three information tensors
introduced in Sec. 3.1 for sentiment analysis of the sentence "although this dog is not cute, it is very smart."
employing both Algorithm 1 and Algorithm 2. Across each of the three information tensors, the resulting
optimal flows and their corresponding normalized attributions differ depending on whether Algorithm 1 or
Algorithm 2 is used.

The layer-wise normalized feature attributions, obtained through the same process, are displayed in Fig. 6.
For each information tensor type and layer, the resulting optimal flows and their normalized attributions differ
based on whether Algorithm 1 or Algorithm 2 is utilized. We also computed the optimal flow and its feature

19



893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

attributions for various input sentences using both algorithms for each of the information tensors AF, GF,
and AGF. Our findings reveal that the optimal flows and corresponding feature attributions generated by
Algorithm 1 and Algorithm 2 differ for all sentences.

although this dog is not cute , it is very smart .

GF

AGF

AF

(a) Normalized feature attributions for Transformer’s input layer evaluated by Algorithm 1 for different information tensors.

although this dog is not cute , it is very smart .

GF

AGF

AF

(b) Normalized feature attributions for Transformer’s input layer evaluated by Algorithm 2 different information tensors.

Figure 5: Normalized feature attributions for Transformer’s input layer and different information tensors.
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(a) AF method:Algorithm 1
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(b) AF method:Algorithm 2.
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(c) GF method:Algorithm 1.
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(d) GF method:Algorithm 2.
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(e) AGF method:Algorithm 1.
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(f) AGF method:Algorithm 2.

Figure 6: Normalized feature attributions for all Transformer layers evaluated by Algorithm 1 and Algorithm 2.
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D RESULTS

D.1 QUALITATIVE VISUALIZATIONS

This section visually examines the feature attributions derived from our proposed methods, applied to
information tensors as defined in Sec. 3.1. Fig. 7 illustrates feature attributions obtained from our proposed
methods applied to two graphs generated by either Algorithm 1 or Algorithm 2. Remarkably, our approaches
consistently yield identical results for both graphs. The outcomes vividly demonstrate the superiority of AGF
over AF and GF, offering more insightful and reasonable feature attributions. Specifically, both AGF and GF
effectively highlight the importance of tokens like ’smart’ and ’cute’, while assigning lower values to less
significant tokens such as ’this’, ’it’, and ’and’. In contrast, AF fails to capture the expected feature attribution
of ’smart’ and tends to produce an almost uniform distribution for feature attributions.

although this dog is not cute , it is very smart .

GF

AGF

AF

Figure 7: Visualizations of the feature attributions generated by running our proposed method on the three introduced
information tensors on the showcase example.

D.2 ADDITIONAL RESULTS

Fig. 8 presents a detailed comparison of the performance dynamics of various feature attribution methods
under different corruption rates across three distinct datasets: IMDB, Amazon, and Yelp. The efficacy of
these methods is evaluated using two key metrics, AOPC and LOdds, which measure how well each method
identifies important tokens that influence model predictions. Notably, our proposed AGF method consistently
outperforms the other techniques, maintaining the highest average AOPC and LOdds scores across a range of
corruption levels, particularly for both the IMDB and Amazon datasets. This consistent superiority highlights
the robustness of AGF in pinpointing the most important tokens, which significantly affect the model’s
decision-making process.

We also evaluated various explanation methods by analyzing their performance on classification metrics,
with results summarized in Tab. 3, which details the average Accuracy, F1, Precision, and Recall scores
across multiple k values. On the SST2 dataset, our proposed methods AGF and GD, in conjunction with
KernelShap, achieved the highest overall performance. For the IMDB dataset, AGF and GF, along with
Integrated Gradients (IG), showed significant improvement over other methods. In the Amazon dataset,
AGF and GF, when combined with TransAtt, outperformed all competitors. For the AG News dataset, AGF
and AF, paired with AttGrads, demonstrated superior performance. The consistently strong performance of
AGF across diverse datasets and evaluation metrics highlight its versatility and effectiveness in accurately
identifying important tokens, reinforcing its reliability as a feature attribution method in NLP models.

However, the Yelp dataset poses a distinct challenge where our proposed methods, including AGF, do not
consistently achieve optimal results across all evaluation metrics. This performance discrepancy is likely due
to the unique characteristics inherent to the Yelp dataset, which frequently contains a higher concentration
of informal language, colloquialisms, and typographical errors. The prevalence of such linguistic noise in
Yelp reviews is notably higher compared to other datasets like IMDB or Amazon. These textual irregularities
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introduce complexity that AGF, with its current configuration, may be less equipped to handle effectively.
Consequently, AGF’s performance suffers, as it appears to have a lower tolerance for handling noisy or
non-standard text inputs, which compromise its ability to accurately attribute features and identify the most
influential tokens within these reviews.

Fig. 9 compare the feature attribution methods evaluated on the aforementioned sentence using a model
trained on SST2. In all instances, the feature attribution methods predict positive sentiment for the showcased
example. Our methods, AGF and GF, effectively capture the most important tokens, such as ’cute’ and ’smart’
(indicated in dark orange shading), which significantly contribute to the positive sentiment prediction. Some
other methods, including Grads, LIME, RawAtt, and PartialLRP, also exhibit some capability in identifying
important tokens. However, certain methods like AF, AttCAT, CAT, Rollout, KernelShap, and IG struggle to
correctly identify important tokens.

Table 3: The average of F1, Accuracy, Precision, and Recall scores of all methods in explaining the Transformer-based
model on each dataset when we mask top k% tokens. Lower scores are desirable for all metrics (indicated by ↓),
indicating a strong ability to mark important tokens.

Methods SST2 IMDB Yelp Amazon AG News

F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓
RawAtt 0.75 0.75 0.72 0.79 0.69 0.67 0.70 0.69 0.68 0.72 0.74 0.63 0.67 0.68 0.67 0.66 0.65 0.68 0.68 0.68
Rollout 0.81 0.82 0.80 0.82 0.74 0.67 0.65 0.84 0.80 0.83 0.88 0.74 0.71 0.73 0.71 0.72 0.61 0.63 0.64 0.63
Grads 0.78 0.75 0.72 0.79 0.69 0.67 0.70 0.69 0.68 0.72 0.74 0.63 0.67 0.68 0.67 0.66 0.65 0.68 0.68 0.68
AttGrads 0.78 0.78 0.75 0.82 0.76 0.75 0.78 0.76 0.91 0.91 0.89 0.93 0.79 0.82 0.80 0.78 0.58 0.61 0.60 0.60
CAT 0.68 0.65 0.61 0.76 0.56 0.49 0.51 0.65 0.70 0.70 0.68 0.73 0.68 0.64 0.67 0.70 0.63 0.64 0.64 0.64
AttCAT 0.68 0.65 0.62 0.76 0.57 0.48 0.50 0.64 0.67 0.66 0.65 0.70 0.67 0.62 0.66 0.68 0.64 0.64 0.65 0.64
PartialLRP 0.75 0.75 0.71 0.78 0.66 0.65 0.67 0.67 0.65 0.70 0.71 0.61 0.65 0.66 0.65 0.64 0.65 0.68 0.68 0.68
TransAtt 0.73 0.72 0.69 0.76 0.61 0.58 0.60 0.62 0.62 0.66 0.66 0.60 0.62 0.63 0.63 0.61 0.63 0.66 0.66 0.66
LIME 0.61 0.63 0.62 0.63 0.55 0.55 0.55 0.55 0.72 0.73 0.72 0.73 0.72 0.73 0.72 0.73 0.67 0.67 0.68 0.67
KernelShap 0.53 0.52 0.53 0.53 0.67 0.69 0.68 0.69 0.77 0.78 0.77 0.78 0.67 0.68 0.67 0.68 0.74 0.74 0.75 0.74
IG 0.56 0.57 0.56 0.57 0.48 0.50 0.48 0.50 0.72 0.72 0.72 0.72 0.73 0.74 0.73 0.74 0.67 0.68 0.67 0.67
AF 0.72 0.72 0.71 0.71 0.65 0.68 0.70 0.68 0.71 0.71 0.71 0.70 0.69 0.71 0.71 0.71 0.64 0.62 0.65 0.64
GF 0.56 0.57 0.56 0.56 0.45 .0.48 0.45 0.48 0.70 0.71 0.70 0.71 0.65 0.67 0.66 0.67 0.67 0.68 0.67 0.67
AGF 0.54 0.52 0.54 0.54 0.46 0.47 0.47 0.47 0.70 0.72 0.70 0.70 0.67 0.67 0.67 0.67 0.64 0.63 0.65 0.64

D.3 STATISTICAL SIGNIFICANCE TEST

To implement a statistical significance test, we employ the ASO (Almost Stochastic Order) method (Ulmer
et al., 2022; Dror et al., 2019; del Barrio et al., 2017), which compares the cumulative distribution functions
(CDFs) of two score distributions to determine stochastic dominance. Notably, ASO imposes no assumptions
about score distributions, making it applicable to any metric where higher scores indicate better performance.

When comparing model A with model B using the ASO method, we obtain the value ϵmin, which is an upper
bound on the violation of stochastic order. If ϵmin ≤ τ (with τ ≤ 0.5), model A is considered stochastically
dominant over model B, implying superiority. This value can also be interpreted as a confidence score; a
lower ϵmin suggests greater confidence in model A’s superiority. The null hypothesis for ASO is defined as:

H0 : ϵmin ≥ τ (20)

where the significance level α is an input parameter that influences ϵmin.

In this study, we conduct 500 independent runs per method to perform comprehensive statistical tests,
comparing the AOPC and LOdds metrics between our best-performing proposed method, AGF, and the top
benchmark methods outlined in Tab. 1 and Tab. 2, using τ = 0.5. As illustrated in Tab. 4 and Tab. 5, the AGF
method stochastically dominates the performance of these benchmark methods across all datasets, with the
exception of the Yelp dataset.
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(a) AOPC score for IMDB dataset
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(b) LOdds score for IMDB dataset
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(c) AOPC score for Amazon dataset

10 20 30 40 50 60 70 80 90
K

3.0

2.5

2.0

1.5

1.0

0.5
L
O

d
d
s

KernelShap
IG
LIME
AF
GF
AGF
AttCAT
CAT
RawAtt
Rollout
Grads
AttGrads
PartialLRP
TransAtt

(d) LOdds score for Amazon dataset
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(e) AOPC score for Yelp dataset
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(f) LOdds score for Yelp dataset

Figure 8: AOPC and LOdds scores of different methods in explaining BERT across the varying corruption rates k on
IMDB, Amazon, and Yelp datasets. The x-axis illustrates masking the k% of the tokens in an order of decreasing saliency.
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Figure 9: Visualizations of the normalized feature attributions generated by the selected methods on the binary classifica-
tion task.

Table 4: ASO test to compare AGF method with the best benchmark method when we mask bottom k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.054 0.039 0.078 0.061 0.813 0.924 0.053 0.043 0.091 0.076

Table 5: ASO test to compare AGF method with the best benchmark method when we mask bottom k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.348 -0.973 0.329 -1.393 0.383 -1.985 0.353 -1.593 0.301 -1.105

E PROOFS

Corollary 3.1. While Shapley values are inherently unique, our findings in Sec. 3.3 and App. C expose a
critical inconsistency. We demonstrate that the optimal solution of the maximum flow problems defined
in eq. 8 is not necessarily unique, thereby disproving the claim that the feature attributions proposed by
Ethayarajh & Jurafsky (2021) are Shapley values.

The non-uniqueness of these attributions, as evidenced by our proof, fundamentally conflicts with the defining
properties of Shapley values. If these attributions defined by Ethayarajh & Jurafsky (2021) were indeed
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Figure 9: Visualizations of the normalized feature attributions generated by the methods on the binary classification task.

Table 4: ASO test to compare AGF method with the best benchmark method when we mask top k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.054 0.039 0.078 0.061 0.813 0.924 0.053 0.043 0.091 0.076

Table 5: ASO test to compare AGF method with the best benchmark method when we mask bottom k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.049 0.037 0.113 0.085 0.913 0.824 0.062 0.053 0.091 0.067

E PROOFS

Corollary 3.1. While Shapley values are inherently unique, our findings in Sec. 3.3 and App. C expose a
critical inconsistency. We demonstrate that the optimal solution of the maximum flow problems defined
in eq. 8 is not necessarily unique, thereby disproving the claim that the feature attributions proposed by
Ethayarajh & Jurafsky (2021) are Shapley values.

The non-uniqueness of these attributions, as evidenced by our proof, fundamentally conflicts with the defining
properties of Shapley values. If these attributions defined by Ethayarajh & Jurafsky (2021) were indeed
Shapley values, they would necessarily be unique. However, our observations demonstrate that since the
optimal solution of the maximum flow problem is not necessarily unique, for each optimal solution of the
maximum flow problem, we can derive corresponding feature attributions that differ from one another.
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Theorem 3.1. Since the optimal flow f∗ is computed once for the entire graph and not for each potential
subgraph, and the players (tokens) are all disjoint without any connections in S, blocking the flow through
one player does not impact the outflow of any other players. Therefore, for every S ⊆ N where i /∈S, we
have |fout(i)| = v(S ∪ {i})− v(S). Utilizing the definition of Shapley values in eq. 14, we obtain:

ϕi(ϑ) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (ϑ(S ∪ {i})− ϑ(S))

=
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (|fout(i)|)

= |fout(i)|
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!

= |fout(i)|

It is also evident that the defined function meets all four fairness-based axioms of efficiency, symmetry,
linearity, and additivity.

Figure 10: Visualizations of the procedure to define the cooperative game (N,ϑ) using the solution of barrier-regularized
maximum flow or its corresponding MCC problem.

F IMPLEMENTATION DETAILS

F.1 DATASETS

Tab. 6 illustrates comprehensive statistics of the datasets utilized for the classification task. We randomly
extracted 5, 000 sentences from each test section of the datasets, except for those with a test size less than
5, 000, where we retained all samples. Furthermore, we prioritized diversity in our sampling process by
incorporating sentences of varying lengths, with an equal distribution between those shorter and longer than
the mode size of the test dataset.

25



1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Table 6: Statistical information and the pre-trained models employed for each dataset.

Datasets # Test Samples # Classes ℓmode ℓmin ℓmax ℓavg Pre-trained Model
SST2 1,821 2 108 5 256 103.3 textattack/bert-base-uncased-SST-2

Amazon 5,000 2 127 15 1009 404.9 fabriceyhc/bert-base-uncased-amazon_polarity

IMDB 5,000 2 670 32 12988 1293.8 fabriceyhc/bert-base-uncased-imdb

Yelp 5,000 2 313 4 5107 723.8 fabriceyhc/bert-base-uncased-yelp_polarity

AG News 5,000 4 238 100 892 235.3 fabriceyhc/bert-base-uncased-ag_news

F.2 TIME COMPLEXITY OF PROPOSED METHODS

In the minimum-cost circulation problem, we are given a directed graph G = (V,E) with |V | = n vertices
and |E| = m edges, upper and lower edge capacities u, l ∈ Rm, and edge costs c ∈ Rm. Our objective is to
find a circulation f ∈ Rm satisfying:

argmin
B⊤f=0
l≤f≤u

c⊤f

where B ∈ Rm×n is the edge-vertex incidence matrix.

To compare running times, we assume that l̃, ũ, c̃ represent the integral versions of l,u, c obtained from
either Algorithm 1 or Algorithm 2, and define U = ∥ũ∥∞ and C = ∥c̃∥∞. Tab. 7 compares the latest iterative
algorithms for solving the maximum flow and minimum-cost circulation problems. While the most efficient
algorithm achieves nearly linear running time relative to the number of edges m, the runtime can still be
significant with long input sequences. To solve the minimum-cost circulation problem, we implemented the
algorithm by (Lee & Sidford, 2014) using CVXPY (Agrawal et al., 2018; Diamond & Boyd, 2016).

Table 7: Overview of recent iterative algorithms for maximum flow and minimum-cost circulation problems.

Year MCC Bound Max-Flow Bound Author

2014 O
(
m

√
n polylog(n) log2(U)

)
O

(
m

√
n polylog(n) log2(U)

)
Lee & Sidford (2014)

2022 O
(
m

3
2
− 1

762 polylog(n) log(U + C)
)

O
(
m

10
7 polylog(n)U

1
7

)
Axiotis et al. (2022)

2023 O
(
m

3
2
− 1

58 polylog(n) log2(U)
)

O
(
m

3
2
− 1

58 polylog(n) log2(U)
)

van den Brand et al. (2023)

2023 O
(
m1+o(1) log(U) log(C)

)
O

(
m1+o(1) log(U) log(C)

)
Chen et al. (2023a)

Table 8: Runtime of all methods
for the showcase example.

Methods Runtime (seconds)
RawAtt 0.123
Rollout 0.154
Grads 1.554
AttGrads 1.571
CAT 1.684
AttCAT 1.660
PartialLRP 1.571
TransAtt 1.620
LIME 1.462
KernelShap 2.342
IG 2.701
AF 2.301
GF 2.305
AGF 2.306

Experiments were conducted on a computing device running Ubuntu 20.04.4
LTS, equipped with an Intel(R) Xeon(R) Platinum 8368 CPU at 2.40GHz,
featuring 12 cores and 24 threads for parallel processing. Graphics processing
was handled by an NVIDIA RTX 3090 Ti with 40GB of dedicated memory.
The device also had 230GB of system memory, ensuring ample computational
resources for efficient and effective experimentation.

Tab. 8 compares the runtime of benchmark methods for analyzing the sentence
"although this dog is not cute, it is very smart." Methods like RawAtt and
Rollout, which rely on raw attention weights, have the shortest runtime. In
contrast, methods requiring complex post-processing to evaluate feature at-
tributions have longer runtime. Our proposed methods’ runtime is comparable
to others in this latter group.
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