
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

GENERALIZED ATTENTION FLOW: FEATURE ATTRIBUTION
FOR TRANSFORMER MODELS VIA MAXIMUM FLOW

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces Generalized Attention Flow, a novel feature attribution method for
Transformer models that addresses the limitations of existing approaches. By generalizing
Attention Flow and substituting attention weights with an arbitrary Information Tensor,
the method leverages attention weights, their gradients, maximum flow, and the barrier
method to generate more accurate feature attributions. The proposed approach demonstrates
important theoretical properties and resolves issues associated with previous methods that
rely solely on simple aggregation of attention weights. Comprehensive benchmarking in
NLP sequence classification tasks reveals that a specific variant of Generalized Attention
Flow consistently outperforms state-of-the-art feature attribution methods across most
evaluation scenarios, offering a more accurate explanation of Transformer model outputs.

1 INTRODUCTION

Feature attribution methods are essential for building interpretable machine learning models. These methods
assign a score to each input feature, reflecting its importance to the model’s output, thereby facilitating the
understanding of model predictions.

The rise of Transformer models with self-attention mechanisms has necessitated feature attribution methods
for interpreting these models (Vaswani et al., 2017; Bahdanau et al., 2016; Devlin et al., 2019; Sanh et al.,
2020; Dosovitskiy et al., 2020; Kobayashi et al., 2021). Initially, attention weights were considered potential
feature attributions, but recent studies have questioned their effectiveness in explaining deep neural networks
(Abnar & Zuidema, 2020; Clark et al., 2019; Jain & Wallace, 2019; Serrano & Smith, 2019). Consequently,
various post hoc methods have been developed to obtain feature attributions for Transformer models.

Recent advancements in XAI have introduced numerous gradient-based methods, including Grads and
AttGrads (Barkan et al., 2021), which leverage saliency to interpret Transformer outputs. Qiang et al. (2022)
proposed AttCAT, integrating features, their gradients, and attention weights to quantify input influence on
model outputs. However, many of these techniques still focus primarily on gradients of attention weights,
inheriting limitations of earlier attention-based approaches.

Layer-wise Relevance Propagation (LRP) (Bach et al., 2015; Voita et al., 2019) transfers relevance scores from
output to input. Chefer et al. (2021a;b) proposed a comprehensive method enabling information propagation
through all Transformer components. However, this approach relies on specific LRP rules, limiting its
applicability across various Transformer architectures.

Many existing methods for evaluating feature attributions in Transformers fail to capture pairwise interactions
among features. This limitation arises from the independent computation of importance scores, which neglects
feature interactions. For example, when calculating gradients of attention weights, they propagate directly
from the output to the individual input feature, ignoring interactions. Additionally, many methods used to
compute feature attributions in Transformers violate key axioms such as symmetry, sensitivity, efficiency, and
linearity (Shapley, 1952; Sundararajan et al., 2017; Sundararajan & Najmi, 2020) (Sec. 3.5).

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Recently, Abnar & Zuidema (2020) introduced Attention Flow to overcome these limitations in XAI methods.
Attention Flow considers attention as capacities in a maximum flow problem, determining feature attributions
based on the solution. This approach naturally captures the influence of attention mechanisms, as the
paths of high attention through a network correspond to the flow of information from features to outputs.
Applicable to any encoder-only Transformer, Attention Flow has demonstrated strong potential to improve
model interpretability (Abnar & Zuidema, 2020; Modarressi et al., 2023; Kobayashi et al., 2021).

Subsequently, Ethayarajh & Jurafsky (2021) sought to connect attention flows and XAI by utilizing Shapley
values (Shapley, 1952). While they aimed to show that attention flows could be interpreted as Shapley values
under certain conditions, they overlooked the issue of non-uniqueness in such flows (Sec. 3.3).

Our contributions. We propose Generalized Attention Flow, which satisfies important theoretical properties
and enhanced empirical performance. Specifically, our contributions are:

1. We introduce Generalized Attention Flow, an extension of the previously described Attention Flow. In this
approach, feature attributions are generated by using the log barrier method to solve a regularized maximum
flow problem within a capacity network formed from the functions applied to attention weights. Instead of
defining capacities based solely on attention weights, we suggest using the gradients of these weights (GF) or
the product of attention weights and their gradients (AGF) as alternatives.

2. We have addressed the non-uniqueness issue in Attention Flow, which invalidates some of its previously
suggested theoretical properties (Ethayarajh & Jurafsky, 2021). Furthermore, we show that non-unique
solutions occur frequently in practice. We have introduced barrier regularization to mitigate this issue to
ensure a unique solution. As a result, we have demonstrated that feature attributions derived from the
regularized maximum flow problem align with Shapley values and satisfy the axioms of efficiency, symmetry,
nullity, and linearity (Shapley, 1952; Young, 1985; Chen et al., 2023b).

3. We extensively benchmarked the proposed feature attribution methods, defined using Generalized Attention
Flow, against various existing state-of-the-art attribution methods. We found that a type of the proposed
attribution methods outperforms previous state-of-the-art methods in terms of explanation performance for
classification tasks across most evaluation scenarios, as measured by AOPC (Barkan et al., 2021; Nguyen,
2018; Chen et al., 2020), LOdds (Chen et al., 2020; Shrikumar et al., 2018), and classification metrics.

4. We have developed an open-source Python package for calculating feature attributions using Generalized
Attention Flow. This package is distinctively flexible, capable of being applied to any encoder-only Trans-
former model available in the Hugging Face Transformers package (Wolf et al., 2020). Furthermore, our
methods are easily adaptable for various NLP tasks.

2 PRELIMINARIES

2.1 MULTI-HEAD ATTENTION MECHANISM

Given the input sequence X∈Rt×d, where d is the dimensionality of the model’s input vectors and t is the
number of tokens, the multi-head self-attention mechanism computes attention weights for each element in
the sequence employing the following steps:

• Linear Transformation:
Qi = XWQ

i , Ki = XWK
i , Vi = XW V

i (1)

Here Qi,Ki ∈Rt×dk and Vi ∈Rt×dv , where dk and dv represent the dimensionality of the key
vector and value vector respectively, and i represents the index of the attention head.

2

https://huggingface.co/

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

• Scaled Dot-Product Attention:
Attentioni(Qi,Ki,Vi) = ÃiVi (2)

where the matrix of attention weights Ãi∈Rt×t is defined as:

Ãi = softmax
(
QiK

T
i√

dk

)
(3)

• Concatenation and Linear Projection:

MultiHead(X) = Concat(Attention1,Attention2, . . . ,Attentionh)W
O (4)

where MultiHead(X)∈Rt×d and WO∈Rh·dv×d.

For a Transformer with l attention layers, the attention weights at each layer can be defined as multi-head
attention weights:

Â = Concat(Ã1, Ã2, . . . , Ãh)∈Rh×t×t (5)

Extending this to a Transformer architecture itself, the Transformer attention weights A can be defined as:

A = Concat(Â1, Â2, . . . , Âl)∈Rl×h×t×t (6)

where Âj ∈Rh×t×t is the multi-head attention weight for the j-th attention layer.

2.2 MINIMUM-COST CIRCULATION & MAXIMUM FLOW PROBLEM

Definition 2.1 (Minimum Cost Circulation). Given a network G = (V,E,u, l, c) with |V | = n vertices and
|E| = m edges, where cij is the cost, li,j and ui,j are respectively the lower and upper capacities (demands)
for the edge (i, j) ∈ E, circulation is a function f : E → R≥0 s.t.

lij ≤ fij ≤ uij , ∀(i, j) ∈ E∑
j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = 0, ∀i ∈ V. (7)

The min-cost circulation problem is to find a circulation f minimizing the cost function
∑

(i,j)∈E

cijfij .

The minimum-cost circulation problem can be algebraically written as the following primal-dual linear
programming (LP) problem (Van Den Brand et al., 2021; Chen et al., 2023a):

(Primal) argmin
B⊤f=0

le≤fe≤ue∀e∈E

c⊤f i.e. argmin
B⊤f=0
l≤f≤u

c⊤f , (Dual) argmax
By+s=c

∑
i

min (lisi, uisi) (8)

where Bm×n, is the edge-vertex incidence matrix. For a directed graph, the entries of the matrix B are
defined as follows:

Bev =

−1, if vertex v is the tail of edge e,
1, if vertex v is the head of edge e,
0, if edge v is not incident to vertex e.

Remark 2.1. The maximum flow problem can be considered as a specific minimum-cost circulation problem.
Here, B is an edge-vertex incidence matrix of the input graph after we added to it an edge e(t, s) that
connects the target t to the source s and its lower capacity lt,s be 0 and its upper capacity ut,s be ∥u∥1. Also,
the cost vector c is a vector in which ct,s = −1 and ce = 0 for all other edges e ∈ E (Cormen et al., 2009).

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

2.3 BARRIER METHODS FOR CONSTRAINED OPTIMIZATION

Consider the following optimization problem:
f∗ = argmin

α(f)=0
β(f)≤0

ξ(f) (9)

where h represents a convex inequality constraint, g represents an affine equality constraint, and f∗ denote
the optimal solution.

The interior of the constraint region is defined as S = {f | α(f) = 0, β(f) < 0}. Assuming S is nonempty
and convex, we introduce a barrier function ψ(f) on S that is continuous and approaches infinity as f
approaches to the boundary of the region, specifically limβ(f)→0−ψ(f) = ∞. One common example of
barrier functions is the log barrier function, which is represented as log(−β(f)).
Given a barrier function ψ(f), we can define a new objective function ξ(f) + µψ(f), where µ is a positive
real number, which enables us to eliminate the inequality constraints in the original problem and obtain the
following problem:

f∗
µ = argmin

α(f)=0

ξ(f) + µψ(f) (10)

Theorem 2.1. For any strictly convex barrier function ψ(f), convex function ξ(f), and µ > 0, there exists a
unique optimal point f∗

µ . Furthermore, limµ→0 f
∗
µ = f∗, indicating that for any arbitrary ϵ > 0, we can

select a sufficiently small µ > 0 such that ∥f∗
µ − f∗∥ < ϵ (van den Brand et al., 2023).

3 METHODS

3.1 INFORMATION TENSOR

In Transformer-based networks, information propagation occurs through pathways facilitated by the attention
mechanism. These pathways can be conceptualized as routes within a graph structure, where tokens are
represented by nodes and computations are denoted by edges. The capacities of these edges correspond to
meaningful computational quantities that reflect the flow of information through the network (Ferrando &
Voita, 2024; Mueller, 2024).

Attention scores can represent the flow of information through the neural network during the feed-forward
phase of training, quantifying the importance of different input parts in generating the output (Abnar &
Zuidema, 2020; Ferrando & Voita, 2024). Additionally, the gradient of attention scores captures the flow of
information during back-propagation, reflecting how changes in the output influence the attention mechanism
throughout the network (Barkan et al., 2021). A combined view of attention scores and their gradients can
simultaneously represent information circulation during both feed-forward and back-propagation, offering a
comprehensive perspective on the network’s information dynamics (Barkan et al., 2021; Qiang et al., 2022;
Chefer et al., 2021a;b).

Our Generalized Attention Flow builds on this foundation, using an information tensor Ā ∈ Rl×t×t to
aggregate Transformer attention weights A, as defined in eq. 6. Based on the insights above, we propose
three aggregation functions to generate information tensors (Barkan et al., 2021; Chefer et al., 2021a):

1. Attention Flow (AF): Ā := Eh(A)

2. Attention Grad Flow (GF): Ā := Eh(⌊∇A⌋+)
3. Attention × Attention Grad Flow (AGF): Ā := Eh(⌊A⊙∇A⌋+)

Here, ⌊x⌋+ = max(x, 0), ⊙ represents the Hadamard product, ∇A := ∂yt

∂A where yt is the model’s scalar
output, and Eh denotes the mean across attention heads.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Algorithm 1 Backward Information Capacity
Input: Āl×t×t: An information tensor.
Output: Tuple: (A, l, l̃,u, ũ, ss, st)

function GET_BACKWARD_CAPACITY(Ā)
▷ Initialization
l, t, _← Ā.shape()
βmin ← min(Ā > 0)
β ← −⌊log10(βmin)⌋
γ ← 10β

Qtl ← t ∗ (l + 1) + 2
l← zeros(Qtl, Qtl)
u← zeros(Qtl, Qtl)
u∞ ← t

▷ Fill super-source→ First Layer
for i in range(t) do

u[i+ 1][0]← u∞
end for
▷ Fill Last Layer→ super-target
for i in range(t) do

u[−1][−i− 2]← u∞
end for
▷ Fill j-th Layer to (j + 1)-th Layer
for j in range(l) do

start← t ∗ j + 1
mid← t ∗ (j + 1) + 1
end← t ∗ (j + 2) + 1
u[mid:end , start:mid]← Ā[j,:,:]

end for
▷ Get Integral Version of Capacities
l̃← int(γ ∗ l)
ũ← int(γ ∗ u)
▷ Get Adjacency Matrix
A ← I(u>0)

▷ Get super-source and super-target
ss, st← t ∗ (l + 1) + 1, 0

end function

Algorithm 2 Forward Information Capacity
Input: Āl×t×t: An information tensor.
Output: Tuple: (A, l, l̃,u, ũ, ss, st)

function GET_FORWARD_CAPACITY(Ā)
▷ Initialization
l, t, _← Ā.shape()
βmin ← min(Ā > 0)
β ← −⌊log10(βmin)⌋
γ ← 10β

Qtl ← t ∗ (l + 1) + 2
l← zeros(Qtl, Qtl)
u← zeros(Qtl, Qtl)
u∞ ← t

▷ Fill super-source→ First Layer
for i in range(t) do

u[0][i+ 1]← u∞
end for
▷ Fill Last Layer→ super-target
for i in range(t) do

u[−i− 2][−1]← u∞
end for
▷ Fill j-th Layer to (j + 1)-th Layer
for j in range(l) do

start← t ∗ j + 1
mid← t ∗ (j + 1) + 1
end← t ∗ (j + 2) + 1
u[start:mid , mid:end]← ĀT

[j,:,:]

end for
▷ Get Integral Version of Capacities
l̃← int(γ ∗ l)
ũ← int(γ ∗ u)
▷ Get Adjacency Matrix
A ← I(u>0)

▷ Get super-source and super-target
ss, st← 0, t ∗ (l + 1) + 1

end function

3.2 GENERALIZED ATTENTION FLOW

In Generalized Attention Flow, we leverage the attention mechanism for feature attribution by defining a
network flow representation of a Transformer or other attention-based model. We assign capacities to the
edges of this graph corresponding to information tensor defined in Sec. 3.1. We then solve the maximum
flow problem to evaluate the optimal flow passing through any output node (or, more generally, any node in
any layer) to any input node. The flow traversing through an input node (token) indicates the importance or
attribution of that particular node (token).

To determine the maximum flow from all output nodes to all input nodes, we leverage the concept of multi-
commodity flow (App. A.2 and App. B). This involves the introduction of a super-source node ss and a
super-target node st with a large capacity u∞. The connectivity between layers and capacities between nodes
are established using the information tensors, effectively forming a layered graph (App. B).

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

To formalize the generating of the information flow, consider a Transformer with l attention layers, an input
sequence X∈Rt×d, and its information tensor Ā∈Rl×t×t. We construct the layered attribution graph G with
its adjacency matrix A, its edge-vertex incidence matrix B, lower capacity matrix l and its integral version l̃,
upper capacity matrix u and its integral version ũ employing either Algorithm 1 or Algorithm 2. Afterward,
we substitute the vectorized version of the obtained matrices into the primal form of eq. 8 to evaluate the
desired optimal flow.

To enhance comprehension of Algorithm 1 and Algorithm 2, we explain the process of constructing the
layered attribution graph G which has an adjacency matrix with shape (2 + t ∗ (l + 1), 2 + t ∗ (l + 1)) and
serves as an input for the maximum flow problem. Designating nodes at layer ℓ ∈ {1, . . . , l} and token
i ∈ {1, . . . , t} as vℓ,i, the guidelines for defining the upper and lower-bound capacities are as follows:

• To connect nodes v1,i to the super-target node vst, we define u[0, i] = u∞ for 1 ≤ i ≤ t.

• The upper-bound capacity from node vℓ+1,i to node vℓ,j is defined as u[Ii,ℓ+1, Ij,ℓ] = Āℓ,i,j for
ℓ∈{1, . . . , l}, i∈{1, . . . , t}, and j∈{1, . . . , t}, where Ii,ℓ+1 = i+ t ∗ ℓ and Ij,ℓ = j + t ∗ (ℓ− 1).

• To connect the super-source node vss to nodes vl+1,i, we define u[t ∗ l + i, 1 + t ∗ (l + 1)] = u∞
for 1 ≤ i ≤ t.

• The lower-bound capacity is defined as l = 0.

Fig. 1a and Fig. 1b illustrate schematic graphs generated using the information tensor Ā ∈ R3×3×3 with
Algorithm 1 and Algorithm 2, respectively. While both algorithms are identically solving the same network
flow problem by creating graphs containing a super-source and a super-target, the second algorithm differs
from the first in two key aspects. First, in the second graph, the positions of the super-source and super-target
are swapped, meaning that the super-source in the first graph becomes the super-target in the second and vice
versa. Second, the direction of the edges in the second graph is reversed compared to the first.

(a) Schematic information flow created via Algorithm 1. (b) Schematic information flow created via Algorithm 2.

Figure 1: Schematics overview of Generalized Attention Flow created employing Algorithm 1 and Algorithm 2.

3.3 NON-UNIQUENESS OF MAXIMUM FLOW

The maximum flow problem lacks strict convexity, meaning it does not necessarily have a unique solution.
We found that the maximum flow problem associated with the graphs constructed employing Generalized
Attention Flow also fails to yield a unique optimal flow (App. C).
Observation 3.1. It is straightforward to verify that both Algorithm 1 and Algorithm 2 solve the same
maximum flow problem. Therefore, determining the maximum flow in graphs generated by either Algorithm 1
or Algorithm 2 is equivalent and yields the same optimal value. However, it’s worth noting that the optimal
flows associated with them may not necessarily be equivalent, as explained in App. C.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Observation 3.2. If two distinct feasible solutions, denoted f1 and f2, exist for a linear programming problem,
then any convex combination γ1f1 + γ2f2 forms another feasible solution. Consequently, the maximum flow
problem can possess an infinite number of feasible solutions. Additionally, due to the non-uniqueness of
optimal flows arising from the maximum flow problem, their projections onto any subset of nodes in the graph
may also not be unique.

Corollary 3.1. Let V be the set of all nodes in a layered attribution graph G(A,u, l, c, ss, st), and N ⊆ V ,
with all nodes in N chosen from the same layer. Suppose f∗ is the optimal solution of eq. 8, and for every
S ⊆ N , define the payoff function ϑ(S) := |f∗(S)| =

∑
i∈S |fout(i)|, where |fout(i)| denotes the total outflow

value of node i. Although Ethayarajh & Jurafsky (2021) claimed that for each node i ∈ N , ϕi(ϑ) = |f∗
out(i)|

represents the Shapley value, these feature attributions are non-unique and cannot be considered Shapley
values. In fact, their method for defining feature attributions is not well-defined (Proof in App. E).

3.4 LOG BARRIER REGULARIZATION OF MAXIMUM FLOW

To address the non-uniqueness issues in the maximum flow problem, we reformulate the minimum-cost
circulation problem as follows:

argmin
B⊤f=0
β(f)≤0

c⊤f (11)

where β(f) = (f − l)(f − u). The original problem can, therefore, be approximated using the log barrier
function as the following optimization problem:

argmin
B⊤f=0

c⊤f + ψµ(f) (12)

where the log barrier function is:

ψµ(f) = −µ
∑
e∈E

log (−β(fe)) = −µ
∑
e∈E

(log (fe − le) + log (ue − fe)) (13)

It is evident that, as long as µ > 0 and our initial solution is feasible, the barrier function guarantees that any
solution obtained through an iterative minimization scheme, like interior point methods, remains feasible
(Bubeck, 2015; Boyd & Vandenberghe, 2004; Mądry, 2019). Furthermore, it can be demonstrated that to
obtain an ε-approximate solution to eq. 11, it suffices to set µ ≤ ε

2m and find the optimal solution to the
corresponding problem in eq. 12 (Bubeck, 2015; Boyd & Vandenberghe, 2004; Mądry, 2019).

Finally, the Hessian of the objective function in eq. 11 at some point f is equal to the Hessian ∇2ψµ(x) of
the barrier function, which is positive definite (assuming µ > 0). This implies that the objective function is
strictly convex and, consequently, eq. 12 has a unique feasible solution (Bubeck, 2015; Boyd & Vandenberghe,
2004).

3.5 AXIOMS OF FEATURE ATTRIBUTIONS

In XAI, axioms are core principles that guide the evaluation of explanation methods, ensuring their reliability,
interpretability, and fairness. These axioms provide standards to measure the effectiveness and compliance of
explanation techniques. Our proposed methods meet five essential axioms, as demonstrated by the following
theorem and corollaries.

Definition 3.1 (Shapley values). For any value function ϑ : 2N 7→ R where N = {1, 2, . . . , n}, Shapley
values ϕ(ϑ) ∈ Rn is computed by averaging the marginal contribution of each feature over all possible
feature combinations as:

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

ϕi(ϑ) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(ϑ(S ∪ {i})− ϑ(S)) (14)

Shapley values are the unique explanation that satisfies four fairness-based axioms of efficiency (complete-
ness), symmetry, linearity (additivity), and nullity (Shapley, 1952; Young, 1985) (App. A.3). Initially, a
payoff function based on model accuracy was proposed (Lundberg & Lee, 2017); however, since then, various
alternative payoff functions have been introduced (Jethani et al., 2022; Sundararajan & Najmi, 2020), each
yielding distinct feature importance scores.

Theorem 3.1 (Log Barrier Regularization of Generalized Attention Flow Outcomes Shapley Values).
Given a layered attribution graph G(A,u, l, c, ss, st) defined using either Algorithm 1 or Algorithm 2, let
V be the set of all nodes in G, and N ⊆ V such that all nodes in N are chosen from the same layer.
Suppose f∗ is the optimal unique solution of eq. 12, and for every S ⊆ N , define the payoff function
ϑ(S) := |f∗(S)| =

∑
i∈S |fout(i)| where |fout(i)| is the total outflow value of a node i. Then, it can be proven

that for each node i∈N , ϕi(ϑ) = |f∗
out(i)| represents the Shapley value (Proof in App. E).

Corollary 3.2. Theorem 3.1 implies that the feature arbitration obtained by eq. 12 are Shapley values and,
consequently, adhere to the axioms of efficiency, symmetry, nullity, linearity.

4 EXPERIMENTS

In this section, we thoroughly evaluate the effectiveness of our methods for sequence classification. While
our approach is versatile and applicable to various NLP tasks, including question answering and named entity
recognition, which use encoder-only Transformer architectures, this assessment focuses solely on sequence
classification.

4.1 TRANSFORMER MODELS

Transformer models have demonstrated exceptional performance in various NLP tasks including sequence
classification, question answering, and named entity recognition. In our evaluations, we used a specific pre-
trained model from the HuggingFace Hub (Wolf et al., 2020) for each dataset and compared our explanation
methods against others to assess their performance (App. F.1).

4.2 DATASETS

Our method’s assessment involves sequence classification spanning binary classification tasks on datasets
including SST2 (Socher et al., 2013), Amazon Polarity (McAuley & Leskovec, 2013), Yelp Polarity (Zhang
et al., 2016), and IMDB (Maas et al., 2011), alongside multi-class classification on the AG News dataset
(Zhang et al., 2015). To minimize computational overhead, we conducted experiments on a subset of 5,000
randomly selected samples for the Amazon, Yelp, and IMDB datasets while utilizing the entire test sets for
other datasets (App. F.1).

4.3 BENCHMARK METHODS

Our experiment compares the methods introduced in Sec. 3.1 with various baseline explanation methods
tailored for Transformer models. To evaluate attention-based methods such as RawAtt and Rollout (Abnar
& Zuidema, 2020), attention gradient-based methods like Grads, AttGrads (Barkan et al., 2021), CAT, and
AttCAT (Qiang et al., 2022), as well as LRP-based methods such as PartialLRP (Voita et al., 2019) and
TransAtt (Chefer et al., 2021a), we adapted the repository developed by (Qiang et al., 2022). Additionally, we

8

https://huggingface.co/models

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

implemented classical attribution methods such as Integrated Gradient (Sundararajan et al., 2017), KernelShap
(Lundberg & Lee, 2017), and LIME (Ribeiro et al., 2016) leveraging the Captum package (Kokhlikyan et al.,
2020).

4.4 EVALUATION METRIC

AOPC: One of the key evaluation metrics employed is the Area Over the Perturbation Curve (AOPC), a
measure that quantifies the impact of masking top k% tokens on the average change in prediction probability
across all test examples. The AOPC is calculated as follows:

AOPC(k) =
1

N

N∑
i=1

p (ŷ|xi)− p
(
ŷ|x̃k

i

)
(15)

where N is the number of examples, ŷ is the predicted label, p(ŷ|·) is the probability on the predicted
label, and x̃k

i is constructed by masking the k% top-scored tokens from xi. To avoid arbitrary choices for
k, we systematically mask 10%, 20%, . . . , 90% of the tokens in order of decreasing saliency, resulting in
x̃10
i , x̃

10
i , . . . , x̃

90
i .

LOdds: Log-odds score is calculated by averaging the difference of negative logarithmic probabilities on the
predicted label over all test examples before and after masking k% top-scored tokens.

LOdds(k) =
1

N

N∑
i=1

log
p
(
ŷ|x̃k

i

)
p (ŷ|xi)

(16)

5 RESULTS

We evaluated various explanation methods by masking the top k% of tokens across multiple datasets
and measuring their AOPC and LOdds scores, as shown in Tab. 1, which presents average scores for
different k values. Our findings indicate that the AGF method consistently outperforms others, achieving the
highest AOPC and lowest LOdds scores, effectively identifying and masking the most important tokens for
model predictions. Furthermore, the GF method also exceeds most baseline methods. Evaluation based on
classification metrics also yields consistently similar results (App. D.1 and App. D.2).

Additionally, we assessed similar explanation methods by masking the bottom k% of tokens across datasets
and measuring AOPC and LOdds scores, detailed in Tab. 2. The AGF method achieved the highest LOdds and
lowest AOPC across most datasets, highlighting its ability to pinpoint important tokens for model predictions,
with the GF method also surpassing many baseline methods in this context.

However, the Yelp dataset poses a unique challenge, as our methods do not perform optimally in terms of
AOPC and LOdds metrics. This is likely due to the prevalence of conversational language, slang, and typos in
Yelp reviews, which adversely affect the AGF method’s performance more than others.

6 LIMITATIONS

The primary limitation of our proposed method is the increased running time of the optimization problem
in eq. 12 as the number of tokens grows (Lee & Sidford, 2020; van den Brand et al., 2021). Moreover,
it’s important to note that optimization problems generally cannot be solved in parallel. However, recent
advancements have led to the development of almost-linear time algorithm that solves the optimization
problem described in eq. 12 (Tab. 7). Additionally, we found that the practical runtime of our method is
comparable to other XAI approaches (Tab. 8), indicating that our method is both practical and efficient for
obtaining feature attributions in AI models using Transformers.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Table 1: AOPC and LOdds scores of all methods in explaining the Transformer-based model across datasets when we
mask top k% tokens. Higher AOPC and lower LOdds are desirable, indicating a strong ability to mark important tokens.
Best results are in bold, and differences between AGF and benchmarks are statistically significant according to the ASO
test (App. D.3).

Methods SST2 IMDB Yelp Amazon AG News

AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓ AOPC↑ LOdds↓
RawAtt 0.348 -0.973 0.329 -1.393 0.383 -1.985 0.353 -1.593 0.301 -1.105
Rollout 0.322 -0.887 0.354 -1.456 0.260 -0.987 0.304 -1.326 0.249 -0.983
Grads 0.354 -0.313 0.324 -1.271 0.412 -1.994 0.405 -1.793 0.327 -1.319
AttGrads 0.367 -0.654 0.337 -1.226 0.423 -1.978 0.419 -1.918 0.348 -1.477
CAT 0.369 -1.175 0.332 -1.274 0.417 -1.992 0.381 -1.639 0.325 -1.226
AttCAT 0.405 -1.402 0.371 -1.642 0.431 -2.134 0.427 -2.041 0.387 -1.688
PartialLRP 0.371 -1.171 0.323 -1.321 0.443 -2.018 0.384 -1.945 0.356 -1.627
TransAtt 0.399 -1.286 0.355 -1.513 0.411 -1.473 0.375 -1.875 0.377 -1.318
LIME 0.362 -1.056 0.347 -1.379 0.361 -1.568 0.358 -1.612 0.349 -1.538
KernelShap 0.382 -1.259 0.367 -1.423 0.385 -1.736 0.374 -1.717 0.351 -1.413
IG 0.401 -1.205 0.350 -1.443 0.409 -1.924 0.434 -2.024 0.393 -1.681
AF 0.371 -1.215 0.313 -1.297 0.398 -1.886 0.388 -1.923 0.352 -1.282
GF 0.412 -1.616 0.491 -1.718 0.396 -1.654 0.421 -2.006 0.366 -1.513
AGF 0.427 -1.687 0.498 -1.849 0.429 -1.982 0.439 -2.103 0.398 -1.693

Table 2: AOPC and LOdds scores of all methods in explaining the Transformer-based model across datasets when we
mask bottom k% tokens. Lower AOPC and higher LOdds are desirable, indicating a strong ability to mark important
tokens. Best results are in bold, and differences between AGF and benchmarks are statistically significant according to
the ASO test (App. D.3).

Methods SST2 IMDB Yelp Amazon AG News

AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑ AOPC↓ LOdds↑
RawAtt 0.184 -0.693 0.151 -0.471 0.157 -0.747 0.129 -0.281 0.101 -0.427
Rollout 0.221 -0.773 0.123 -0.425 0.169 -0.734 0.171 -0.368 0.117 -0.471
Grads 0.234 -0.776 0.083 -0.203 0.131 -0.641 0.134 -0.254 0.083 -0.390
AttGrads 0.217 -0.713 0.088 -0.243 0.127 -0.603 0.135 -0.266 0.071 -0.351
CAT 0.247 -0.874 0.099 -0.327 0.134 -0.659 0.126 -0.240 0.104 -0.419
AttCAT 0.143 -0.412 0.041 -0.092 0.103 -0.339 0.115 -0.148 0.057 -0.219
PartialLRP 0.163 -0.527 0.057 -0.116 0.116 -0.486 0.167 -0.327 0.056 -0.204
TransAtt 0.148 -0.483 0.045 -0.107 0.123 -0.538 0.113 -0.140 0.049 -0.173
LIME 0.173 -0.603 0.076 -0.141 0.143 -0.687 0.158 -0.263 0.075 -0.372
KernelShap 0.197 -0.729 0.039 -0.084 0.135 -0.645 0.174 -0.351 0.067 -0.219
IG 0.150 -0.532 0.026 -0.064 0.130 -0.617 0.134 -0.241 0.052 -0.191
AF 0.199 -0.747 0.061 -0.148 0.153 -0.689 0.388 -1.923 0.106 -0.402
GF 0.154 -0.497 0.034 -0.079 0.149 -0.654 0.130 -0.267 0.090 -0.313
AGF 0.084 -0.263 0.014 -0.039 0.121 -0.504 0.092 -0.114 0.037 -0.134

7 CONCLUSION

In this study, we propose Generalized Attention Flow, an extension of Attention Flow. The core idea behind
Generalized Attention Flow is applying the log barrier method to the maximum flow problem, defined by
information tensors, to derive feature attributions. By leveraging the log barrier method, we resolve the
non-uniqueness issue in optimal flows originating from the maximum flow problem, ensuring that our feature
attributions are Shapley values and satisfy efficiency, symmetry, nullity, and linearity axioms. Additionally,
we demonstrate that our approach satisfies the axiom of conservation.

Our experiments across multiple datasets indicate that our proposed AGF method generally outperforms other
feature attribution methods in most evaluation scenarios. It could be valuable for future research to explore
whether alternative definitions of the information tensor could enhance AGF’s effectiveness.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

8 REPRODUCIBILITY

The code used to implement all results presented in this paper is available anonymously in this repository.
Comprehensive details for developing the proposed methods can be found in Sec. 3.1, Sec. 3.2, and App. B.
Additionally, the pre-trained models, datasets, and further implementation details for our experiments are
thoroughly discussed in Sec. 4 and App. F. Proofs supporting our theoretical claims are provided in App. E.

11

https://tinyurl.com/26eujtc6

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

REFERENCES

Samira Abnar and Willem Zuidema. Quantifying Attention Flow in Transformers, May 2020.

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system for convex optimization
problems. Journal of Control and Decision, 5(1):42–60, 2018.

Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Faster Sparse Minimum Cost Flow by Electrical Flow
Localization. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 528–539,
Denver, CO, USA, February 2022. IEEE. ISBN 978-1-66542-055-6. doi: 10.1109/FOCS52979.2021.00059.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech Samek.
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PLOS ONE,
10(7):e0130140, July 2015. ISSN 1932-6203. doi: 10.1371/journal.pone.0130140.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and
Translate, May 2016.

Oren Barkan, Edan Hauon, Avi Caciularu, Ori Katz, Itzik Malkiel, Omri Armstrong, and Noam Koenigstein. Grad-SAM:
Explaining Transformers via Gradient Self-Attention Maps. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, pp. 2882–2887, Virtual Event Queensland Australia, October 2021. ACM.
ISBN 978-1-4503-8446-9. doi: 10.1145/3459637.3482126.

Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, UK ; New
York, 2004. ISBN 978-0-521-83378-3.

Sébastien Bubeck. Convex Optimization: Algorithms and Complexity, November 2015.

Hila Chefer, Shir Gur, and Lior Wolf. Transformer Interpretability Beyond Attention Visualization. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 782–791, Nashville, TN, USA, June 2021a.
IEEE. ISBN 978-1-66544-509-2. doi: 10.1109/CVPR46437.2021.00084.

Hila Chefer, Shir Gur, and Lior Wolf. Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-
Decoder Transformers, March 2021b.

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. Generating Hierarchical Explanations on Text Classification via Feature
Interaction Detection, May 2020.

Li Chen, Rasmus Kyng, Yang P. Liu, Simon Meierhans, and Maximilian Probst Gutenberg. Almost-Linear Time Algo-
rithms for Incremental Graphs: Cycle Detection, SCCs, s-t Shortest Path, and Minimum-Cost Flow, November
2023a.

Lu Chen, Siyu Lou, Keyan Zhang, Jin Huang, and Quanshi Zhang. HarsanyiNet: Computing Accurate Shapley Values in
a Single Forward Propagation, December 2023b.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What Does BERT Look at? An Analysis of
BERT’s Attention. In Tal Linzen, Grzegorz Chrupała, Yonatan Belinkov, and Dieuwke Hupkes (eds.), Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 276–286, Florence,
Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-4828.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, August 2009. ISBN 978-0-262-03384-8.

E. del Barrio, J. A. Cuesta-Albertos, and C. Matrán. An optimal transportation approach for assessing almost stochastic
order, May 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, May 2019.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex optimization. Journal
of Machine Learning Research, 17(83):1–5, 2016.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa
Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale. In International Conference on Learning Representations,
October 2020.

Rotem Dror, Segev Shlomov, and Roi Reichart. Deep Dominance - How to Properly Compare Deep Neural Models. In
Anna Korhonen, David Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 2773–2785, Florence, Italy, July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1266.

Kawin Ethayarajh and Dan Jurafsky. Attention Flows are Shapley Value Explanations, May 2021.

Javier Ferrando and Elena Voita. Information Flow Routes: Automatically Interpreting Language Models at Scale, April
2024.

Sarthak Jain and Byron C. Wallace. Attention is not Explanation. In Jill Burstein, Christy Doran, and Thamar Solorio
(eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 3543–3556, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1357.

Neil Jethani, Mukund Sudarshan, Ian Covert, Su-In Lee, and Rajesh Ranganath. FastSHAP: Real-Time Shapley Value
Estimation, March 2022.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. Incorporating Residual and Normalization Layers
into Analysis of Masked Language Models. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 4547–4568, Online and Punta Cana, Dominican Republic, 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.373.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan Reynolds, Alexander
Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, and Orion Reblitz-Richardson. Captum: A unified and generic
model interpretability library for PyTorch, September 2020.

Yin Tat Lee and Aaron Sidford. Path Finding Methods for Linear Programming: Solving Linear Programs in
Õ(vrank) Iterations and Faster Algorithms for Maximum Flow. In 2014 IEEE 55th Annual Symposium
on Foundations of Computer Science, pp. 424–433, Philadelphia, PA, USA, October 2014. IEEE. ISBN 978-1-4799-
6517-5. doi: 10.1109/FOCS.2014.52.

Yin Tat Lee and Aaron Sidford. Solving Linear Programs with Sqrt(rank) Linear System Solves, August 2020.

Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions, November 2017.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning Word
Vectors for Sentiment Analysis. In Dekang Lin, Yuji Matsumoto, and Rada Mihalcea (eds.), Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

Aleksander Mądry. GRADIENTS AND FLOWS: CONTINUOUS OPTIMIZATION APPROACHES TO THE MAX-
IMUM FLOW PROBLEM. In Proceedings of the International Congress of Mathematicians (ICM 2018), pp.
3361–3387, Rio de Janeiro, Brazil, May 2019. WORLD SCIENTIFIC. ISBN 978-981-327-287-3 978-981-327-288-0.
doi: 10.1142/9789813272880_0185.

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: Understanding rating dimensions with review text.
In Proceedings of the 7th ACM Conference on Recommender Systems, pp. 165–172, Hong Kong China, October 2013.
ACM. ISBN 978-1-4503-2409-0. doi: 10.1145/2507157.2507163.

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Ali Modarressi, Mohsen Fayyaz, Yadollah Yaghoobzadeh, and Mohammad Taher Pilehvar. GlobEnc: Quantifying Global
Token Attribution by Incorporating the Whole Encoder Layer in Transformers. In Marine Carpuat, Marie-Catherine de
Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 258–271, Seattle, United States,
July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.19.

Ali Modarressi, Mohsen Fayyaz, Ehsan Aghazadeh, Yadollah Yaghoobzadeh, and Mohammad Taher Pilehvar. DecompX:
Explaining Transformers Decisions by Propagating Token Decomposition. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2649–2664, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.149.

Aaron Mueller. Missed Causes and Ambiguous Effects: Counterfactuals Pose Challenges for Interpreting Neural
Networks. 2024. doi: 10.48550/ARXIV.2407.04690.

Dong Nguyen. Comparing Automatic and Human Evaluation of Local Explanations for Text Classification. In Marilyn
Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1069–1078,
New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1097.

Yao Qiang, Deng Pan, Chengyin Li, Xin Li, Rhongho Jang, and Dongxiao Zhu. AttCAT: Explaining Transformers via
Attentive Class Activation Tokens. In Advances in Neural Information Processing Systems, October 2022.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust You?": Explaining the Predictions of Any
Classifier, August 2016.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of BERT: Smaller,
faster, cheaper and lighter, February 2020.

Sofia Serrano and Noah A. Smith. Is Attention Interpretable? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 2931–2951, Florence, Italy, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1282.

Lloyd S. Shapley. A Value for N-Person Games. Technical report, RAND Corporation, March 1952.

Avanti Shrikumar, Jocelin Su, and Anshul Kundaje. Computationally Efficient Measures of Internal Neuron Importance,
July 2018.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts.
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In David Yarowsky, Timothy
Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard (eds.), Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for
Computational Linguistics.

Mukund Sundararajan and Amir Najmi. The Many Shapley Values for Model Explanation. In Proceedings of the 37th
International Conference on Machine Learning, pp. 9269–9278. PMLR, November 2020.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep Networks, June 2017.

Dennis Ulmer, Christian Hardmeier, and Jes Frellsen. Deep-significance - Easy and Meaningful Statistical Significance
Testing in the Age of Neural Networks, April 2022.

Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P. Liu, Richard Peng, and Aaron Sidford. Faster
Maxflow via Improved Dynamic Spectral Vertex Sparsifiers, December 2021.

Jan Van Den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Minimum
cost flows, MDPs, and ℓ 1 -regression in nearly linear time for dense instances. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pp. 859–869, Virtual Italy, June 2021. ACM. ISBN 978-1-4503-8053-9.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

doi: 10.1145/3406325.3451108.

Jan van den Brand, Yang P. Liu, and Aaron Sidford. Dynamic Maxflow via Dynamic Interior Point Methods. In
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pp. 1215–1228, New York, NY,
USA, June 2023. Association for Computing Machinery. ISBN 978-1-4503-9913-5. doi: 10.1145/3564246.3585135.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is All you Need. In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing Multi-Head Self-Attention:
Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned. In Anna Korhonen, David Traum, and Lluís
Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
5797–5808, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1580.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite,
Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush.
HuggingFace’s Transformers: State-of-the-art Natural Language Processing, July 2020.

H. P. Young. Monotonic solutions of cooperative games. International Journal of Game Theory, 14(2):65–72, June 1985.
ISSN 1432-1270. doi: 10.1007/BF01769885.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level Convolutional Networks for Text Classification. In Advances
in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level Convolutional Networks for Text Classification, April 2016.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

A PRELIMINARIES

A.1 MAXIMUM FLOW

Definition A.1 (Network Flow). Given a network G = (V,E, s, t,u), where s and t are the source and
target nodes respectively and uij is the capacity for the edge (i, j)∈E, a flow is characterized as a function
f : E → R≥0 s.t.

fij ≤ uij ∀(i, j)∈E (capacity constraints)∑
j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = 0, ∀i ∈ V, i ̸= s, t (flow conservation constraints) (17)

We define |fout(i)| to be the total outflow value of a node i and |fin(i)| to be the total inflow value of a node i.
For a given set K ⊆ V of nodes, we define |f(K)| =

∑
i∈K |fout(i)| for every flow f . The value of a flow in

a given network G = (V,E, s, t,u) is denoted as |f | =
∑

v:(s,v) fsv −
∑

v:(v,s) fvs = |fout(s)| − |fin(s)|,
and a maximum flow is identified as a feasible flow with the highest attainable value.

A.2 MULTI-COMMODITY MAXIMUM FLOW

The multi-commodity flow problem is an important variant of the maximum flow problem. This problem
involves multiple source-sink pairs, unlike the standard maximum flow problem, which only considers one
source and one sink. The goal is to find multiple optimal flows, denoted by f1(·, ·), . . . , fr(·, ·), where each
fk(·, ·) represents a feasible flow from the source sk to the sink tk. The objective is to ensure that all capacity
constraints are satisfied, which are represented by the equation:

r∑
k=1

fk(i, j) ≤ u(i, j) ∀(i, j)∈E (18)

Such a flow is known as a "multi-commodity" flow. A multi-commodity maximum flow problem is to
maximize the function

∑r
k=1

∑
v:(v,sk)

fk(sk, v).

To solve the problem of multi-commodity maximum flow, we can simplify it by transforming it into a standard
maximum flow problem. This can be achieved by introducing two new nodes, a "super-source" node ss and a
"super-target" node st. The "super-source" node ss should be connected to all the original sources si through
edges of finite capacities, while the "super-target" node st should be connected to all the original sinks ti with
edges of finite capacities:

• Each outgoing edge from the "super-source" node ss to each source node si gets assigned a capacity
that is equal to the total capacity of the outgoing edges from the source node si.

• Each incoming edge from an original "super-target" node st to each sink node ti gets assigned a
capacity that is equal to the total capacity of the incoming edges to the sink node ti.

It is easy to demonstrate that the maximum flow from ss to st is equivalent to the maximum sum of flows in a
feasible multi-commodity flow in the original network.

A.3 SHAPLEY VALUES

The Shapley value, introduced by Shapley (1952), concerns the cooperative game in the coalitional form
(N,ϑ), where N is a set of n players and ϑ : 2N → R with ϑ(∅) = 0 is the characteristic (payoff)
function. In the game, the marginal contribution of the player i to any coalition S with i /∈S is considered as

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

ϑ(S ∪ i)− ϑ(S). These Shapley values are the only constructs that jointly satisfy the efficiency, symmetry,
nullity, and additivity axioms (Shapley, 1952; Young, 1985):

Efficiency: The Shapley values must add up to the total value of the game, which means
∑

i∈N ϕi(ϑ) = ϑ(N).

Symmetry: If two players are equal in their contributions to any coalition, they should receive the same
Shapley value. Mathematically, if ϑ(S ∪ {i}) = ϑ(S ∪ {j}) for all S ⊆ N\{i, j}, then ϕi(ϑ) = ϕj(ϑ).

Nullity (Dummy): If a player has no impact on any coalition, their Shapley value should be zero. Mathemati-
cally, if ϑ(S ∪ {i}) = ϑ(S) for all S ⊆ N\{i}, then ϕi(ϑ) = 0.

Linearity: If the game ϑ(·) is a linear combination of two games ϑ1(·), ϑ2(·) for all S ⊆ N , i.e. ϑ(S) =
ϑ1(S) + ϑ2(S) and (c · ϑ)(S) = c · ϑ(S),∀c ∈ R, then the Shapley value in the game ϑ is also a linear
combination of that in the games ϑ1 and ϑ2, i.e. ∀i∈N,ϕi(ϑ1) = ϕi(ϑ1) + ϕi(ϑ2) and ϕi(c · ϑ) = c · ϕi(ϑ).
Considering these axioms, the attribution of a player j is uniquely given by (Shapley, 1952; Young, 1985):

ϕj(ϑ) =
∑

S⊆N\{j}

|S|!(n− |S| − 1)!

n!
(ϑ(S ∪ {j})− ϑ(S)) (19)

where the difference ϑ(S ∪ {j})− ϑ(S) represents the i-th feature’s contribution to the subset S, and the
summation represents a weighted average across all subsets that do not include i.

Initially, a payoff function based on model accuracy was suggested (Lundberg & Lee, 2017). Since then,
various alternative coalition functions have been proposed (Jethani et al., 2022; Sundararajan & Najmi, 2020),
each resulting in a different feature importance score. Many of these alternative approaches are widely used
and have been shown to outperform the basic SHAP method (Lundberg & Lee, 2017) in empirical studies.

(a) Network flow with multiple sources and targets. (b) Network flow including super-source and super-target.

(c) Network flow defined for MCC problem.

Figure 2: Initial network flow to be used in our proposed method, the multi-commodity flow with multiple sources and
targets, and the network flow for MCC problems.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

B NETWORK FLOW GENERATION

Fig. 2 will detail the process of defining a graph network and its parameters using Algorithm 1 for use in
our proposed method. It is worth noting that the same method can be used for Algorithm 2. To solve the
maximum flow or MCC problem within this graph network, we must compute network flow with multiple
sources and targets, assigning all nodes in the first and last layers of transformers as sources and targets,
respectively (Fig. 2a).

To solve this problem, we leverage the concept of multi-commodity flow (multiple-sources multiple-targets
maximum flow) by introducing a super-source node ss and a super-target node st (Fig. 2b). To define
the upper-bound and lower-bound capacities of this new graph network, we utilize the procedure defined
in Sec. 3.2. In the last step, we add a new edge from the super-target node st to the super-source node
ss and define the cost vector, upper-bound capacities, and lower-band capacities according to Fig. 2c.
Subsequently, we can input all derived parameters into eq. 12, solve the optimization problem, and evaluate
feature attributions.

C NON-UNIQUENESS OF MAXIMUM FLOW

Fig. 3 visually describes our proposed approach for computing feature attributions. Using maximum flow to
derive these attributions produces a convex set containing all optimal flows, which makes it unsuitable as
a feature attribution technique. In contrast, our proposed approach, which utilizes the log barrier method,
generate a unique optimal flow and provides an interpretable set of feature attributions.

Figure 3: Overview of how the proposed method evaluates the unique optimal flow computed using the log barrier method,
attention weights, and their gradients in Transformers.

Fig. 4 shows the capacities and optimal flows obtained by solving maximum flows on the network, constructed
with the synthetic information tensor Ā∈R4×3×3 as input, using Algorithm 1 and Algorithm 2. While the
maximum flows are the same for both algorithms, their optimal flows differ. Notably, significant differences in

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

flows between node pairs {v4,v8} and {v3,v5} are visible in Fig. 4c and Fig. 4d. Additionally, we evaluated
the maximum flow and its optimal flow generated by both algorithms across various combinations of token
numbers t and Transformer layers l. Our findings indicate that the optimal flows from the two algorithms do
not coincide in any scenario.

3.
0

3.0

3.0

0.685

0.
11

5
0.

2

0.0725

0.6625

0.
26

5

0.1025
0.165

0.7325

0.795
0.

08
75

0.
11

5

0.155

0.5875

0.
25

75

0.155
0.2275

0.6175

0.695

0.
1

0.
20

5

0.17

0.615

0.
21

5

0.1
0.15

0.75

0.5575

0.
11

25
0.

33
5

0.0725

0.7775

0.
15

0.13
0.1175

0.755

3.0

3.0

3.
0

vt

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

vs

(a) Network flow created via Algorithm 1
3.

0

3.0

3.0

0.685

0.0725
0.1025

0.
11

5

0.6625

0.165

0.
2

0.
26

5

0.7325

0.795

0.155
0.155

0.
08

75

0.5875

0.2275

0.
11

5
0.

25
75

0.6175

0.695

0.17
0.1

0.
1

0.615

0.15

0.
20

5
0.

21
5

0.75

0.5575
0.0725

0.13

0.
11

25

0.7775

0.1175

0.
33

5
0.

15

0.755

3.0

3.0

3.
0

vs

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

vt

(b) Network flow created via Algorithm 2

0.
85

0.93

0.93

0.68

0.
11

0.
19

0.07

0.66

0.
15

0.1
0.16

0.59

0.75

0.
08

0.
11

0.1

0.58

0.
13

0.13
0.22

0.61

0.69

0.
05

0.16

0.61

0.
21

0.09
0.15

0.75

0.55

0.
11

0.
33

0.07

0.77

0.
15

0.12
0.1

0.51

0.99

0.99

0.
73

vt

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

vs

(c) Maximum flow in the graph created from Algorithm 1

0.
85

0.93

0.93

0.68

0.07
0.1

0.
11

0.66

0.16

0.
19

0.
14

0.6

0.77

0.07
0.14

0.
07

0.58

0.22

0.
1

0.
16

0.6

0.69

0.16
0.09

0.
05

0.61

0.15

0.
21

0.75

0.55

0.07
0.12

0.
11

0.77

0.1

0.
33

0.
15

0.51

0.99

0.99

0.
73

vs

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

vt

(d) Maximum flow in the graph created from Algorithm 2

Figure 4: Network flow, maximum flow, and residual flow created by Algorithm 1 and Algorithm 2. The optimal flows
and residual flows evaluated using Algorithm 1 and Algorithm 2 are different.

Fig. 5a and Fig. 5b display the normalized feature attributions evaluated across three information tensors
introduced in Sec. 3.1 for sentiment analysis of the sentence "although this dog is not cute, it is very smart."
employing both Algorithm 1 and Algorithm 2. Across each of the three information tensors, the resulting
optimal flows and their corresponding normalized attributions differ depending on whether Algorithm 1 or
Algorithm 2 is used.

The layer-wise normalized feature attributions, obtained through the same process, are displayed in Fig. 6.
For each information tensor type and layer, the resulting optimal flows and their normalized attributions differ
based on whether Algorithm 1 or Algorithm 2 is utilized. We also computed the optimal flow and its feature

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

attributions for various input sentences using both algorithms for each of the information tensors AF, GF,
and AGF. Our findings reveal that the optimal flows and corresponding feature attributions generated by
Algorithm 1 and Algorithm 2 differ for all sentences.

although this dog is not cute , it is very smart .

GF

AGF

AF

(a) Normalized feature attributions for Transformer’s input layer evaluated by Algorithm 1 for different information tensors.

although this dog is not cute , it is very smart .

GF

AGF

AF

(b) Normalized feature attributions for Transformer’s input layer evaluated by Algorithm 2 different information tensors.

Figure 5: Normalized feature attributions for Transformer’s input layer and different information tensors.

[CLS] although this dog is not cute , it is very smart . [SEP]

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

(a) AF method:Algorithm 1

[CLS] although this dog is not cute , it is very smart . [SEP]

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

(b) AF method:Algorithm 2.

[CLS] although this dog is not cute , it is very smart . [SEP]

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

(c) GF method:Algorithm 1.

[CLS] although this dog is not cute , it is very smart . [SEP]

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

(d) GF method:Algorithm 2.

[CLS] although this dog is not cute , it is very smart . [SEP]

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

(e) AGF method:Algorithm 1.

[CLS] although this dog is not cute , it is very smart . [SEP]

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

(f) AGF method:Algorithm 2.

Figure 6: Normalized feature attributions for all Transformer layers evaluated by Algorithm 1 and Algorithm 2.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

D RESULTS

D.1 QUALITATIVE VISUALIZATIONS

This section visually examines the feature attributions derived from our proposed methods, applied to
information tensors as defined in Sec. 3.1. Fig. 7 illustrates feature attributions obtained from our proposed
methods applied to two graphs generated by either Algorithm 1 or Algorithm 2. Remarkably, our approaches
consistently yield identical results for both graphs. The outcomes vividly demonstrate the superiority of AGF
over AF and GF, offering more insightful and reasonable feature attributions. Specifically, both AGF and GF
effectively highlight the importance of tokens like ’smart’ and ’cute’, while assigning lower values to less
significant tokens such as ’this’, ’it’, and ’and’. In contrast, AF fails to capture the expected feature attribution
of ’smart’ and tends to produce an almost uniform distribution for feature attributions.

although this dog is not cute , it is very smart .

GF

AGF

AF

Figure 7: Visualizations of the feature attributions generated by running our proposed method on the three introduced
information tensors on the showcase example.

D.2 ADDITIONAL RESULTS

Fig. 8 presents a detailed comparison of the performance dynamics of various feature attribution methods
under different corruption rates across three distinct datasets: IMDB, Amazon, and Yelp. The efficacy of
these methods is evaluated using two key metrics, AOPC and LOdds, which measure how well each method
identifies important tokens that influence model predictions. Notably, our proposed AGF method consistently
outperforms the other techniques, maintaining the highest average AOPC and LOdds scores across a range of
corruption levels, particularly for both the IMDB and Amazon datasets. This consistent superiority highlights
the robustness of AGF in pinpointing the most important tokens, which significantly affect the model’s
decision-making process.

We also evaluated various explanation methods by analyzing their performance on classification metrics,
with results summarized in Tab. 3, which details the average Accuracy, F1, Precision, and Recall scores
across multiple k values. On the SST2 dataset, our proposed methods AGF and GD, in conjunction with
KernelShap, achieved the highest overall performance. For the IMDB dataset, AGF and GF, along with
Integrated Gradients (IG), showed significant improvement over other methods. In the Amazon dataset,
AGF and GF, when combined with TransAtt, outperformed all competitors. For the AG News dataset, AGF
and AF, paired with AttGrads, demonstrated superior performance. The consistently strong performance of
AGF across diverse datasets and evaluation metrics highlight its versatility and effectiveness in accurately
identifying important tokens, reinforcing its reliability as a feature attribution method in NLP models.

However, the Yelp dataset poses a distinct challenge where our proposed methods, including AGF, do not
consistently achieve optimal results across all evaluation metrics. This performance discrepancy is likely due
to the unique characteristics inherent to the Yelp dataset, which frequently contains a higher concentration
of informal language, colloquialisms, and typographical errors. The prevalence of such linguistic noise in
Yelp reviews is notably higher compared to other datasets like IMDB or Amazon. These textual irregularities

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

introduce complexity that AGF, with its current configuration, may be less equipped to handle effectively.
Consequently, AGF’s performance suffers, as it appears to have a lower tolerance for handling noisy or
non-standard text inputs, which compromise its ability to accurately attribute features and identify the most
influential tokens within these reviews.

Fig. 9 compare the feature attribution methods evaluated on the aforementioned sentence using a model
trained on SST2. In all instances, the feature attribution methods predict positive sentiment for the showcased
example. Our methods, AGF and GF, effectively capture the most important tokens, such as ’cute’ and ’smart’
(indicated in dark orange shading), which significantly contribute to the positive sentiment prediction. Some
other methods, including Grads, LIME, RawAtt, and PartialLRP, also exhibit some capability in identifying
important tokens. However, certain methods like AF, AttCAT, CAT, Rollout, KernelShap, and IG struggle to
correctly identify important tokens.

Table 3: The average of F1, Accuracy, Precision, and Recall scores of all methods in explaining the Transformer-based
model on each dataset when we mask top k% tokens. Lower scores are desirable for all metrics (indicated by ↓),
indicating a strong ability to mark important tokens.

Methods SST2 IMDB Yelp Amazon AG News

F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓
RawAtt 0.75 0.75 0.72 0.79 0.69 0.67 0.70 0.69 0.68 0.72 0.74 0.63 0.67 0.68 0.67 0.66 0.65 0.68 0.68 0.68
Rollout 0.81 0.82 0.80 0.82 0.74 0.67 0.65 0.84 0.80 0.83 0.88 0.74 0.71 0.73 0.71 0.72 0.61 0.63 0.64 0.63
Grads 0.78 0.75 0.72 0.79 0.69 0.67 0.70 0.69 0.68 0.72 0.74 0.63 0.67 0.68 0.67 0.66 0.65 0.68 0.68 0.68
AttGrads 0.78 0.78 0.75 0.82 0.76 0.75 0.78 0.76 0.91 0.91 0.89 0.93 0.79 0.82 0.80 0.78 0.58 0.61 0.60 0.60
CAT 0.68 0.65 0.61 0.76 0.56 0.49 0.51 0.65 0.70 0.70 0.68 0.73 0.68 0.64 0.67 0.70 0.63 0.64 0.64 0.64
AttCAT 0.68 0.65 0.62 0.76 0.57 0.48 0.50 0.64 0.67 0.66 0.65 0.70 0.67 0.62 0.66 0.68 0.64 0.64 0.65 0.64
PartialLRP 0.75 0.75 0.71 0.78 0.66 0.65 0.67 0.67 0.65 0.70 0.71 0.61 0.65 0.66 0.65 0.64 0.65 0.68 0.68 0.68
TransAtt 0.73 0.72 0.69 0.76 0.61 0.58 0.60 0.62 0.62 0.66 0.66 0.60 0.62 0.63 0.63 0.61 0.63 0.66 0.66 0.66
LIME 0.61 0.63 0.62 0.63 0.55 0.55 0.55 0.55 0.72 0.73 0.72 0.73 0.72 0.73 0.72 0.73 0.67 0.67 0.68 0.67
KernelShap 0.53 0.52 0.53 0.53 0.67 0.69 0.68 0.69 0.77 0.78 0.77 0.78 0.67 0.68 0.67 0.68 0.74 0.74 0.75 0.74
IG 0.56 0.57 0.56 0.57 0.48 0.50 0.48 0.50 0.72 0.72 0.72 0.72 0.73 0.74 0.73 0.74 0.67 0.68 0.67 0.67
AF 0.72 0.72 0.71 0.71 0.65 0.68 0.70 0.68 0.71 0.71 0.71 0.70 0.69 0.71 0.71 0.71 0.64 0.62 0.65 0.64
GF 0.56 0.57 0.56 0.56 0.45 .0.48 0.45 0.48 0.70 0.71 0.70 0.71 0.65 0.67 0.66 0.67 0.67 0.68 0.67 0.67
AGF 0.54 0.52 0.54 0.54 0.46 0.47 0.47 0.47 0.70 0.72 0.70 0.70 0.67 0.67 0.67 0.67 0.64 0.63 0.65 0.64

D.3 STATISTICAL SIGNIFICANCE TEST

To implement a statistical significance test, we employ the ASO (Almost Stochastic Order) method (Ulmer
et al., 2022; Dror et al., 2019; del Barrio et al., 2017), which compares the cumulative distribution functions
(CDFs) of two score distributions to determine stochastic dominance. Notably, ASO imposes no assumptions
about score distributions, making it applicable to any metric where higher scores indicate better performance.

When comparing model A with model B using the ASO method, we obtain the value ϵmin, which is an upper
bound on the violation of stochastic order. If ϵmin ≤ τ (with τ ≤ 0.5), model A is considered stochastically
dominant over model B, implying superiority. This value can also be interpreted as a confidence score; a
lower ϵmin suggests greater confidence in model A’s superiority. The null hypothesis for ASO is defined as:

H0 : ϵmin ≥ τ (20)

where the significance level α is an input parameter that influences ϵmin.

In this study, we conduct 500 independent runs per method to perform comprehensive statistical tests,
comparing the AOPC and LOdds metrics between our best-performing proposed method, AGF, and the top
benchmark methods outlined in Tab. 1 and Tab. 2, using τ = 0.5. As illustrated in Tab. 4 and Tab. 5, the AGF
method stochastically dominates the performance of these benchmark methods across all datasets, with the
exception of the Yelp dataset.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

10 20 30 40 50 60 70 80 90
K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A

O
P

C
KernelShap
IG
LIME
AF
GF
AGF
AttCAT
CAT
RawAtt
Rollout
Grads
AttGrads
PartialLRP
TransAtt

(a) AOPC score for IMDB dataset

10 20 30 40 50 60 70 80 90
K

2.5

2.0

1.5

1.0

0.5

0.0

L
O

d
d
s

KernelShap
IG
LIME
AF
GF
AGF
AttCAT
CAT
RawAtt
Rollout
Grads
AttGrads
PartialLRP
TransAtt

(b) LOdds score for IMDB dataset

10 20 30 40 50 60 70 80 90
K

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
O

P
C

KernelShap
IG
LIME
AF
GF
AGF
AttCAT
CAT
RawAtt
Rollout
Grads
AttGrads
PartialLRP
TransAtt

(c) AOPC score for Amazon dataset

10 20 30 40 50 60 70 80 90
K

3.0

2.5

2.0

1.5

1.0

0.5
L
O

d
d
s

KernelShap
IG
LIME
AF
GF
AGF
AttCAT
CAT
RawAtt
Rollout
Grads
AttGrads
PartialLRP
TransAtt

(d) LOdds score for Amazon dataset

10 20 30 40 50 60 70 80 90
K

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
O

P
C

KernelShap
IG
LIME
AF
GF
AGF
AttCAT
CAT
RawAtt
Rollout
Grads
AttGrads
PartialLRP
TransAtt

(e) AOPC score for Yelp dataset

10 20 30 40 50 60 70 80 90
K

2.5

2.0

1.5

1.0

0.5

L
O

d
d
s

KernelShap
IG
LIME
AF
GF
AGF
AttCAT
CAT
RawAtt
Rollout
Grads
AttGrads
PartialLRP
TransAtt

(f) LOdds score for Yelp dataset

Figure 8: AOPC and LOdds scores of different methods in explaining BERT across the varying corruption rates k on
IMDB, Amazon, and Yelp datasets. The x-axis illustrates masking the k% of the tokens in an order of decreasing saliency.

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

although this dog is not cute , it is very smart .
AGF
although this dog is not cute , it is very smart .

GF
although this dog is not cute , it is very smart .

AF
although this dog is not cute , it is very smart .

Grads
although this dog is not cute , it is very smart .

PartialLRP
although this dog is not cute , it is very smart .

CAT
although this dog is not cute , it is very smart .

AttCAT
although this dog is not cute , it is very smart .

IG
although this dog is not cute , it is very smart .

KernelShap
although this dog is not cute , it is very smart .

Rollout
although this dog is not cute , it is very smart .

RawAtt
although this dog is not cute , it is very smart .

LIME
although this dog is not cute , it is very smart .

TransAtt
although this dog is not cute , it is very smart .

Figure 9: Visualizations of the normalized feature attributions generated by the selected methods on the binary classifica-
tion task.

Table 4: ASO test to compare AGF method with the best benchmark method when we mask bottom k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.054 0.039 0.078 0.061 0.813 0.924 0.053 0.043 0.091 0.076

Table 5: ASO test to compare AGF method with the best benchmark method when we mask bottom k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.348 -0.973 0.329 -1.393 0.383 -1.985 0.353 -1.593 0.301 -1.105

E PROOFS

Corollary 3.1. While Shapley values are inherently unique, our findings in Sec. 3.3 and App. C expose a
critical inconsistency. We demonstrate that the optimal solution of the maximum flow problems defined
in eq. 8 is not necessarily unique, thereby disproving the claim that the feature attributions proposed by
Ethayarajh & Jurafsky (2021) are Shapley values.

The non-uniqueness of these attributions, as evidenced by our proof, fundamentally conflicts with the defining
properties of Shapley values. If these attributions defined by Ethayarajh & Jurafsky (2021) were indeed

23

Figure 9: Visualizations of the normalized feature attributions generated by the methods on the binary classification task.

Table 4: ASO test to compare AGF method with the best benchmark method when we mask top k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.054 0.039 0.078 0.061 0.813 0.924 0.053 0.043 0.091 0.076

Table 5: ASO test to compare AGF method with the best benchmark method when we mask bottom k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.049 0.037 0.113 0.085 0.913 0.824 0.062 0.053 0.091 0.067

E PROOFS

Corollary 3.1. While Shapley values are inherently unique, our findings in Sec. 3.3 and App. C expose a
critical inconsistency. We demonstrate that the optimal solution of the maximum flow problems defined
in eq. 8 is not necessarily unique, thereby disproving the claim that the feature attributions proposed by
Ethayarajh & Jurafsky (2021) are Shapley values.

The non-uniqueness of these attributions, as evidenced by our proof, fundamentally conflicts with the defining
properties of Shapley values. If these attributions defined by Ethayarajh & Jurafsky (2021) were indeed
Shapley values, they would necessarily be unique. However, our observations demonstrate that since the
optimal solution of the maximum flow problem is not necessarily unique, for each optimal solution of the
maximum flow problem, we can derive corresponding feature attributions that differ from one another.

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Theorem 3.1. Since the optimal flow f∗ is computed once for the entire graph and not for each potential
subgraph, and the players (tokens) are all disjoint without any connections in S, blocking the flow through
one player does not impact the outflow of any other players. Therefore, for every S ⊆ N where i /∈S, we
have |fout(i)| = v(S ∪ {i})− v(S). Utilizing the definition of Shapley values in eq. 14, we obtain:

ϕi(ϑ) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (ϑ(S ∪ {i})− ϑ(S))

=
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (|fout(i)|)

= |fout(i)|
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!

= |fout(i)|

It is also evident that the defined function meets all four fairness-based axioms of efficiency, symmetry,
linearity, and additivity.

Figure 10: Visualizations of the procedure to define the cooperative game (N,ϑ) using the solution of barrier-regularized
maximum flow or its corresponding MCC problem.

F IMPLEMENTATION DETAILS

F.1 DATASETS

Tab. 6 illustrates comprehensive statistics of the datasets utilized for the classification task. We randomly
extracted 5, 000 sentences from each test section of the datasets, except for those with a test size less than
5, 000, where we retained all samples. Furthermore, we prioritized diversity in our sampling process by
incorporating sentences of varying lengths, with an equal distribution between those shorter and longer than
the mode size of the test dataset.

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Table 6: Statistical information and the pre-trained models employed for each dataset.

Datasets # Test Samples # Classes ℓmode ℓmin ℓmax ℓavg Pre-trained Model
SST2 1,821 2 108 5 256 103.3 textattack/bert-base-uncased-SST-2

Amazon 5,000 2 127 15 1009 404.9 fabriceyhc/bert-base-uncased-amazon_polarity

IMDB 5,000 2 670 32 12988 1293.8 fabriceyhc/bert-base-uncased-imdb

Yelp 5,000 2 313 4 5107 723.8 fabriceyhc/bert-base-uncased-yelp_polarity

AG News 5,000 4 238 100 892 235.3 fabriceyhc/bert-base-uncased-ag_news

F.2 TIME COMPLEXITY OF PROPOSED METHODS

In the minimum-cost circulation problem, we are given a directed graph G = (V,E) with |V | = n vertices
and |E| = m edges, upper and lower edge capacities u, l ∈ Rm, and edge costs c ∈ Rm. Our objective is to
find a circulation f ∈ Rm satisfying:

argmin
B⊤f=0
l≤f≤u

c⊤f

where B ∈ Rm×n is the edge-vertex incidence matrix.

To compare running times, we assume that l̃, ũ, c̃ represent the integral versions of l,u, c obtained from
either Algorithm 1 or Algorithm 2, and define U = ∥ũ∥∞ and C = ∥c̃∥∞. Tab. 7 compares the latest iterative
algorithms for solving the maximum flow and minimum-cost circulation problems. While the most efficient
algorithm achieves nearly linear running time relative to the number of edges m, the runtime can still be
significant with long input sequences. To solve the minimum-cost circulation problem, we implemented the
algorithm by (Lee & Sidford, 2014) using CVXPY (Agrawal et al., 2018; Diamond & Boyd, 2016).

Table 7: Overview of recent iterative algorithms for maximum flow and minimum-cost circulation problems.

Year MCC Bound Max-Flow Bound Author

2014 O
(
m

√
n polylog(n) log2(U)

)
O

(
m

√
n polylog(n) log2(U)

)
Lee & Sidford (2014)

2022 O
(
m

3
2
− 1

762 polylog(n) log(U + C)
)

O
(
m

10
7 polylog(n)U

1
7

)
Axiotis et al. (2022)

2023 O
(
m

3
2
− 1

58 polylog(n) log2(U)
)

O
(
m

3
2
− 1

58 polylog(n) log2(U)
)

van den Brand et al. (2023)

2023 O
(
m1+o(1) log(U) log(C)

)
O

(
m1+o(1) log(U) log(C)

)
Chen et al. (2023a)

Table 8: Runtime of all methods
for the showcase example.

Methods Runtime (seconds)
RawAtt 0.123
Rollout 0.154
Grads 1.554
AttGrads 1.571
CAT 1.684
AttCAT 1.660
PartialLRP 1.571
TransAtt 1.620
LIME 1.462
KernelShap 2.342
IG 2.701
AF 2.301
GF 2.305
AGF 2.306

Experiments were conducted on a computing device running Ubuntu 20.04.4
LTS, equipped with an Intel(R) Xeon(R) Platinum 8368 CPU at 2.40GHz,
featuring 12 cores and 24 threads for parallel processing. Graphics processing
was handled by an NVIDIA RTX 3090 Ti with 40GB of dedicated memory.
The device also had 230GB of system memory, ensuring ample computational
resources for efficient and effective experimentation.

Tab. 8 compares the runtime of benchmark methods for analyzing the sentence
"although this dog is not cute, it is very smart." Methods like RawAtt and
Rollout, which rely on raw attention weights, have the shortest runtime. In
contrast, methods requiring complex post-processing to evaluate feature at-
tributions have longer runtime. Our proposed methods’ runtime is comparable
to others in this latter group.

26

https://huggingface.co/textattack/bert-base-uncased-SST-2
https://huggingface.co/fabriceyhc/bert-base-uncased-amazon_polarity
https://huggingface.co/fabriceyhc/bert-base-uncased-imdb
https://huggingface.co/fabriceyhc/bert-base-uncased-yelp_polarity
https://huggingface.co/fabriceyhc/bert-base-uncased-ag_news

	Introduction
	Preliminaries
	Multi-Head Attention Mechanism
	Minimum-Cost Circulation & Maximum Flow Problem
	Barrier Methods for Constrained Optimization

	Methods
	Information Tensor
	Generalized Attention Flow
	Non-uniqueness of Maximum Flow
	Log Barrier Regularization of Maximum Flow
	Axioms of Feature Attributions

	Experiments
	Transformer Models
	Datasets
	Benchmark Methods
	Evaluation Metric

	Results
	Limitations
	Conclusion
	Reproducibility
	Preliminaries
	Maximum Flow
	Multi-Commodity Maximum Flow
	Shapley values

	Network Flow Generation
	Non-uniqueness of Maximum Flow
	Results
	Qualitative Visualizations
	Additional Results
	Statistical Significance Test

	Proofs
	Implementation Details
	Datasets
	Time Complexity of Proposed Methods

