
Making Large Language Models Better Data Creators

Dong-Ho Lee1∗, Jay Pujara1, Mohit Sewak2, Ryen W. White2, Sujay Kumar Jauhar2

1Information Sciences Institute, University of Southern California
2Microsoft Research

{dongho.lee}@usc.edu, {jpujara}@isi.edu, {mohit.sewak,ryenw,sjauhar}@microsoft.com

Abstract

Although large language models (LLMs) have
advanced the state-of-the-art in NLP signifi-
cantly, deploying them for downstream appli-
cations is still challenging due to cost, respon-
siveness, control, or concerns around privacy
and security. As such, trainable models are
still the preferred option in some cases. How-
ever, these models still require human-labeled
data for optimal performance, which is ex-
pensive and time-consuming to obtain. In or-
der to address this issue, several techniques
to reduce human effort involve labeling or
generating data using LLMs. Although these
methods are effective for certain applications,
in practice they encounter difficulties in real-
world scenarios. Labeling data requires care-
ful data selection, while generating data ne-
cessitates task-specific prompt engineering. In
this paper, we propose a unified data creation
pipeline that requires only a single formatting
example, and which is applicable to a broad
range of tasks, including traditionally prob-
lematic ones with semantically devoid label
spaces. In our experiments we demonstrate that
instruction-following LLMs are highly cost-
effective data creators, and that models trained
with these data exhibit performance better than
those trained with human-labeled data (by up to
17.5%) on out-of-distribution evaluation, while
maintaining comparable performance on in-
distribution tasks. These results have important
implications for the robustness of NLP systems
deployed in the real-world.

1 Introduction

Large language models (LLMs) have revolution-
ized the field of NLP, yielding impressive perfor-
mance on various conventional natural language
understanding (NLU) and generation (NLG) tasks.
They are able to do this with only a handful (i.e.,
few-shot) or sometimes even no training examples
(i.e., zero-shot) (Brown et al., 2020; Du et al., 2022;

∗Work done during Microsoft Research Internship.

(a) GPT as Labeler

(b) GPT as Generator

(c) GPT with Single-formatting Example

Has the UK been hit
by a hurricane?

Unlabeled
Instances LLMInput

Yes

Output

LLM

Yes

Output

Generate ‘Input’
where the label is yes

Has the UK been hit
by a hurricane?

Input

LLM

Question: Has the UK
been hit by a hurricane?
Option: [yes, no]
Answer: yes

Input / Output
(Single-formatting Example)

Question: Does France
have a Prime Minister?
Option: [yes, no]
Answer: yes

Question: Have the San
Jose Sharks won a
Stanley Cup?
Option: [yes, no]
Answer: yes

…

Following ‘example’ to
generate diverse examples

Figure 1: Existing LLM-based data augmentation needs
unlabeled examples (labeler) or label-specific prompts
(generator), while our framework generates examples
for a variety of tasks in a unified way.

Rae et al., 2021; Thoppilan et al., 2022; Chowdhery
et al., 2022). However, despite their effectiveness,
there is a continued demand for the deployment of
smaller trainable or tunable models in real-world
scenarios due to cost constraints, existing service-
level agreement response times, or privacy and
security concerns around using black-box APIs.
Unfortunately, application-specific custom models
sometimes require large amounts of high-quality
human-labeled data, in order to perform well. Thus,
in order to reduce time and cost in the model de-
ployment cycle, recent work has focused on trying
to obtain training data by leveraging LLMs as ei-
ther labelers to annotate unlabeled data (Yoo et al.,
2021; Wang et al., 2021a; Lang et al., 2022), or
generators to generate new data samples (Meng
et al., 2022; Ye et al., 2022; Gao et al., 2022).

Despite initial successes, constraints for these
techniques continue to hinder their applicability in
broader real-world settings. First, in the context of
using LLMs as labelers, it is essential to have raw

data that closely resembles the distribution of data
in the predictive task. Most previous research has
assumed access to a training dataset from which
the labels are elided; however, for cold-start prob-
lems in the real-world, no such assumptions can be
made. Curating raw data for tasks in specialized
domains, such as those in the biomedical or legal
fields, can be particularly challenging. Conversely,
sampling a large volume of data at random can re-
sult in an imbalanced label distribution due to rare
events (Markov et al., 2022).

Meanwhile, leveraging LLMs as generators
requires careful curation of few-shot exam-
ples (Hartvigsen et al., 2022), or composition of
prompts that highlight the semantic meaning of la-
bels (Wang et al., 2021b; Meng et al., 2022; Ye
et al., 2022; Gao et al., 2022), such as positive v.
negative in sentiment classification. The latter has
been a bottleneck to the broader applicability of
LLMs as generators, however, since not all tasks
have labels that are semantically meaningful, or are
enumerable. Consider, for example the label yes
v. no, which have no meaning when taken without
context; or the options of a multiple choice QA
(see Figure 1), which are an effectively open-ended
label-set that varies from instance to instance. For
these kinds of problems LLMs as generators con-
tinue to be inadequate.

In this paper, we first present a formal frame-
work for characterizing different approaches for
LLM data creation. Specifically, we use graphical
models as a way to characterize and unify disparate
approaches that include LLMs as either labelers or
generators (Section 2). Next, we propose a novel
data creation pipeline that only requires a single for-
matting example to generate heterogeneous labeled
data for various downstream applications, includ-
ing those that focus on specialized domains. In con-
trast to current methods that require dataset-specific
components (e.g., label description, example selec-
tion), our pipeline serves as a unified solution that
can be applied to a wide range of tasks, includ-
ing those where the label set is either semantically
devoid of meaning, or unenumerable.

Our data creation pipeline leverages an
instruction-following LLM as a generator in con-
junction with a single formatting example as a
simple yet effective way of imposing structured
constraints. Specifically, our approach iteratively
conditions the generator on an instruction and a
unique formatting example in a JSON format to

yield multiple examples that vary in content but are
formatted uniformly (Section 3.1−3.2). Further-
more, as an efficient means of diversifying the gen-
erated data, we propose a “self-reference” strategy,
which iteratively samples from the pool of newly
created examples to seed the prompt for the next
round of generation (Section 3.4). Specifically, we
outline 4 distinct instantiations of “self-reference”
including random, contrastive, similar, and tree
sampling for controlled diversification of data.

We evaluate our data creation pipeline on a bat-
tery of tests involving three distinct types of tasks,
namely multiple-choice question answering (QA),
open-book yes/no QA, and closed-book yes/no QA.
The datasets for these tasks range across a variety
of domains, including specialized ones such as the
biomedical domain. Furthermore, for each cate-
gory of task, we use a minimum of two datasets
in order to compare the out-of-distribution (OOD)
generalization of models using original data to syn-
thetically generated LLM data. Our results demon-
strate that leveraging LLMs as generators using our
formatting-based creation approach is a highly cost-
effective way of creating data that can be effectively
used to train models for a variety of downstream
tasks, including those in specialized domains, and
ones where labels are devoid of semantic meaning
or vary across the data. For in-distribution (ID)
settings, naturally having access to large amounts
of high-quality manually curated and labeled data
is still ideal. However, when only a small amount
of human-labeled data is available, our approach
yields results that are often comparable, and some-
times even better than the original datasets. This
highlights the potential role LLMs can play in the
model development cycle, especially in resource-
poor or specialized domains. Further, for the OOD
settings, models trained on data generated by our
pipeline consistently, and by large margins, outper-
form their counterparts trained on data from human
sources. This robustness and generalizability has
important implications for the deployment of real-
world systems that deal with data that are variable,
chaotic and often very different from curated aca-
demic datasets. We are realeasing our code and
prompts to the community to spur future research
in the area1.

1https://github.com/microsoft/llm-data-creation

https://github.com/microsoft/llm-data-creation

2 Formalization of LLM-based data
creation

In this section, we attempt to draw different data
creation strategies using LLMs into a unified frame-
work, and discuss related research using this frame-
work.

2.1 LLM-based data creation

Assume a large language model M (e.g., GPT-
3) that has been pre-trained to maximize the like-
lihood of generating each token in a sequence
x = [x1, x2, . . . , xn] by conditioning on previous
tokens. Then, M is capable of generating new text
through recursive sampling of tokens from its out-
put probability distribution. Given such a model
M and label space Y , the goal of data creation is
to induce samples (x,y) where y ∈ Y . Based on
different instantiations of this general framework,
other inputs may be included, such as a label de-
scriptive prompt Wy for each y ∈ Y , in-domain
unlabeled example xu ∈ DU , or a small number
of example pairs (xl,yl) ∈ DL along with their
corresponding explanation el.

2.2 Formal Framework and Related Work

Given these basic components, there are two broad
strategies for LLM data creation, namely using an
LLM as a labeler or as generator. Graphical mod-
els for each of these two strategies is presented
in Figure 2 to summarize the conditional interac-
tions and independence assumptions that describe
the relationships between common framework con-
stituents. The rest of this section discusses existing
work using the unified language of these graphical
models.

Using LLMs as labelers. M can be used as a
labeler for unlabeled data (See Figure 2 (a)). Here,
approaches assume that unlabeled data DU is pro-
vided as input and the distribution of DU is similar
to the distribution for the target task. Labeling
can be achieved either by conditioning M on a
few labeled examples (xl,yl) ∈ DL (Brown et al.,
2020; Yoo et al., 2021; Wang et al., 2021a; Lang
et al., 2022), or by leveraging instructive prompts
W describing the task without any labeled exam-
ples (Brown et al., 2020). When providing the
model M with a small number of labeled examples
(xl,yl) ∈ DL, – often referred to as the few-shot
setting (and contrasted with the zero-shot setting,
where no examples are provided) – recent studies

𝑀𝒙! 𝒚

(𝒙", 𝒚")
(a) Labeler

∈ 𝐷#

∈ 𝐷$

𝒆"

𝑀𝒚

𝒙!

(b) Generator

∈ 𝐷$
𝑊𝒚

𝒙

Figure 2: Graphical models for using LLM M as
(a) labeler which outputs label y for unlabeled data
xu ∈ DU using instructive prompt Wy or few-shot
examples (xl,yl) ∈ DL with or without explanation el,
and as (b) generator which generates multiple data x
for label y with label-descriptive prompt W or using
in-domain unlabeled example xu ∈ DU .

have shown that curating diverse and representa-
tive samples is critical to the ability of the model
to label new samples (Liu et al., 2022; Rubin et al.,
2022; Su et al., 2022). This can be challenging,
particularly in specialized domains such as, for ex-
ample, the legal or biomedical domain – where
only a small number of samples may be curated.
Our paper proposes a pipeline (Section 3 capable of
tackling these challenges, and is particularly useful
in resource-poor domains (Section 5.1). Further-
more, providing intermediate reasoning steps (i.e.,
chains-of-thought) as explanations el in prompts
enables better labeling in both few-shot (Wei et al.,
2022; Zhou et al., 2022; Lampinen et al., 2022) and
zero-shot setting (Kojima et al., 2022).

Using LLMs as generators. An altogether dif-
ferent data creation approach uses the LLM M
directly as generator (See Figure 2 (b)). While
a labeler predicts y by conditioning on an input
x, a generator does the reverse by generating x
given y. However, like with LLMs as labelers, a
small number of relevant samples can be used to
condition M for generating data. Hartvigsen et al.
(2022) feeds human-curated examples of the target
label (e.g., implicit hate speech) into M to generate
human-like examples for the target label. In con-
trast, Wang et al. (2021b) conditions M on both
in-domain unlabeled examples and target label y
to generate domain-related data for y. Meanwhile
a number of different efforts (Meng et al., 2022;

𝑀𝑊𝑰 (𝒙, 𝒚)

(𝒙", 𝒚")
Ours

Figure 3: Framework Overview of example-based data
creation which outputs multiple complete data (x,y)
starting with an initial seed formatting example (xf ,yf)
and the instruction WI.

Ye et al., 2022; Gao et al., 2022) condition M on
in-domain unlabeled example and well-formatted
descriptive prompts Wy for target label y to gen-
erate data. One important caveat with all these
approaches is that the label y, upon which outputs
are conditioned, needs to be inherently meaningful
in order for instructions to be formulated in a way
that prompt the model M into generating coherent
outputs. For example, when y is an entailement
relationship, a corresponding prompt Wy might
include “xu ∈ DU . In other words...”; or when
y is the sentiment of a movie review, Wy might
include “The movie review is...”. Contrast this with
the scenario where y is an index or binary response,
which has no semantic meaning without context
and is therefore difficult to condition on. In this pa-
per, we devise a unified approach to tackling these
scenarios (Section 3), yielding a method for data
creation that is broadly applicable.

Differences with Instruction-following Data
Generation. Recent studies use M to create data
for training instruction-following models (Wang
et al., 2023b; Taori et al., 2023; Xu et al., 2023;
Chiang et al., 2023; Mukherjee et al., 2023). Such
studies leverage M as a labeler, producing a coher-
ent response y for a given instruction x. The main
focus is on covering a wide range of inputs x and
their corresponding responses y to encompass the
diversity of instructions potentially encountered in
real-world interactions with users. While recent
studies have indicated that such models trained
with auto-generated instruction-response pairs can
yield logical and coherent responses to user instruc-
tions, their performance on NLU tasks remains
sub-par (Wang et al., 2023a). Meanwhile, the focus
of our work is the generation of data specifically
tailored for natural language understanding (NLU)
tasks with a focus on accurate responses.

Instruction

- You are creating {number_of_examples} examples that
follow the format of the example provided,
but with a different content.

- The created examples **must** all have different answers.

- The output **must** be in unnumbered JSON format.

- [fixed_only] The created examples **must** have
the same options as the provided example.

Table 1: Instruction WI used in the paper.

3 Example-based Data Creation

This paper proposes a unified data creation ap-
proach using LLMs, which does not need in-
domain unlabeled examples xu ∈ DU or data-
specific label-descriptive prompts Wy. As illus-
trated in Figure 3, our framework iteratively cre-
ates data DG beginning with a single initial for-
matting example (xf ,yf) and an instruction WI

(Section 3.1). The process begins by converting
(xf ,yf) into a structured prompt Wf (Section 3.2-
3.3). After conditioning M on [WI ;Wf] to gener-
ate data, we sample an instance from the pool of
newly created data to serve as formatting example
for the next iteration (Section 3.4). We continue
to iterate in this manner until the required number
of instances k is obtained, after discarding dupli-
cate and ill-formatted data. This is done by caching
data and checking newly created candidates against
previously generated ones for duplicates, and by
using the python json.loads() method for veri-
fying the validity of the json output. The resulting
data creation pipeline is generally suitable for most
classification tasks. Although, in this paper we
specifically focus on tasks where the label set is
potentially open-ended (e.g., multiple-choice QA),
or lacks inherent semantic meaning (e.g., binary
QA) – problem spaces that have posed challenges
to past work in LLM data creation.

3.1 Instruction

The goal of our framework is to have the model
M generate a diverse set of examples in the
same format as the input formatting example
(xf ,yf). To ensure format consistency and ex-
ample diversity, we use the system instruction
WI in Table 1. We generate data in batches of
{number_of_examples}, not only to account for
the token generation limits of LLMs, but also to
encourage content diversity through subsequent
sampling of Wf (Sec 3.4). In this paper, we set
{number_of_examples} to 5 and do not vary it.
In order to mitigate label bias, we encourage mod-

els to strive for maximal variance in their generated
responses, avoiding repetitions in data where the
answer is consistently “yes”, for example.

3.2 Formatting Example
The only assumed input to our example-based data
creation pipeline is a single formatting example
(xf ,yf) and its corresponding label space Y . This
example is formatted as a JSON-structured prompt
Wf as shown in Figure 4. Given the one-shot JSON
structured format prompt, it is expected that the
model yields a syntactically correct output that con-
forms to the JSON schema. While generating a
complex structured output like JSON can be chal-
lenging, its easy parsing acts as a way to validate
outputs at creation time and for effective usage in
training downstream models.

3.3 Structure of Formatting Example
Recall that our focus in this paper is on data cre-
ation for tasks that are challenging because their
output label space is open-ended, or because they
lack inherent semantic meaning. We refer to these
distinct settings using the shorthand variable and
fixed, and note that the input formatting example
(xf ,yf) is different for each of these label space
settings. Specifically, the major difference is the
order of presentation of prompt components.

Variable Option. The variable option format is
structured in a logical sequence beginning with the
question xf , followed by a list of answer candidates
Y , and finally the correct answer yf .

Fixed Option. In contrast, for the variable op-
tion, the expected format consists of the answer
candidates Y first, followed by the correct answer
yf , and finally the question xf . This inversion
of prompt components is added to ensure that the
auto-regressive model creates questions with pre-
determined optionssince the model, as a free gen-
erator, can produce inconsistent output, resulting
in answer options Y that do not belong to the fixed
pre-determined set.

3.4 Self-Reference
Relying on a single formatting example (xf ,yf)
as a reference point for all iterations of data cre-
ation may limit the ability of the pipeline to yield
data that is broad coverage, diverse and balanced.
To overcome this, we propose “self-reference”,
wherein the formatting example fi = (xfi ,yfi) for
all subsequent generation steps i > 0 are sampled

{
“Options”: [“yes”, “no”, “maybe”],
“Answer”: “yes”,
“Question”: “Is batman and robin a sequel to batman

forever?”,
“Context”: “With the box office success of Batman Forever

in June 1995, Warner Bros. immediately
commissioned a sequel. …”

}

{
"Question": "I am black when you buy me, red when you

use me. When I turn white, you know it's time
to throw me away. What am I?",

"Options": ["charcoal", "rose flower", "ink", "fruit", "shoe"],
"Answer": "charcoal"

}

(a) Variant (multiple-choice QA)

(b) Fixed (yes-no QA)

Figure 4: Example of formatting example prompt
Wf where “options” contain the label space Y of the
task, “answer” contains yf and “question” contains xf .
“Context” is optional and depends on the task.

from the outputs (xgi−1 ,ygi−1) ∈ DGi−1 generated
at iteration i−1. We experiment with four different
sampling strategies.

Random selection. During each iteration, a for-
matting example for the next step is randomly cho-
sen from the output of the current step.

Contrastive selection. For each iteration, we se-
lect the example that displays the greatest semantic
contrast to the preceding formatting example. In
this approach, we use a pre-trained bidirectional-
encoder (Reimers and Gurevych, 2019) to generate
embeddings for examples, and compute the cosine
similarity between xf and xgi−1 , selecting the in-
stance xgi−1 with the lowest similarity.

Similar selection. This sampling approach
works analogously to Contrastive selection, except
that instead of selecting the xgi−1 with the lowest
cosine similarity to xf , we select the one with the
highest similarity.

Tree selection. Iterative sampling of data may
result in significant domain drift from the first seed
example to data generated in later steps of the gen-
eration pipeline, due to unexpected content varia-
tions produced by the model. To avoid this issue,
we use all the generated outputs from one step
as formatting examples for subsequent iterations.
This approach can be viewed as a breadth-first tree
traversal over generated examples, and is in con-
trast with the other three sampling approaches that
use a depth-first exploration strategy. Our hypoth-

esis is that the minimum height of the exploration
tree yields samples that are more topically coher-
ent.

4 Experimental Setup

In this section we describe the experimental setup
that we use to evaluate our single-shot example-
based data creation framework.

4.1 Datasets

We evaluate on three types of different tasks:
multiple-choice question answering (QA), open-
book yes/no QA, and closed-book yes/no QA – as
shown in Table 2. Multiple-choice QA is used
evaluate our data creation pipeline in a variable
label space setting, while the other tasks are used
for fixed label space settings. In order to demon-
strate the domain generalization capability of our
approach, we additionally use a minimum of two
datasets for each category of task. The datasets
range broadly in the reasoning abilities they de-
mand from models, requiring them to solve diverse
problems such as filling in the blank in a sentence
(PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi
et al., 2021)), choosing the most suitable option
among multiple choices (CommonsenseQA (Tal-
mor et al., 2019), RiddleSense (Lin et al., 2021)),
comprehending a given passage to make a pre-
diction (BoolQ with context (Clark et al., 2019),
PubMedQA (Jin et al., 2019), BioASQ (Tsatsa-
ronis et al., 2015)), and answering based on in-
herent knowledge (BoolQ without context (Clark
et al., 2019), StrategyQA (Geva et al., 2021),
CREAK (Onoe et al., 2021)). Details of the various
datasets are presented in Appendix A.1.

4.2 Evaluation Details

In order to demonstrate the efficacy of our data
creation framework, we present a comparison of
a downstream model when it is trained on (1) the
original train dataset denoted by DL; and (2) an
LLM created dataset, denoted by DG, where a
single seed formatting example is randomly se-
lected from DL. We are unable to conduct a
comparative analysis with other LLM-based data
generation methods as they do not provide solu-
tions or prompts engineered for the tasks listed
in Table 2. The base model used in this paper is
RoBERTa-large (Liu et al., 2019).

Task Label Space Domain Dataset

multiple-choice QA Variant (2) Commonsense
PIQA
Winogrande

multiple-choice QA Variant (5) Commonsense
CommonsenseQA
RiddleSense

open-book yes/no Fixed (2)
Knowledge BoolQ (w/ context)
Biomedical PubMedQA
Biomedical BioASQ

closed-book yes/no Fixed (3)
Knowledge BoolQ (w/o context)
Knowledge StrategyQA
Knowledge CREAK

Table 2: Datasets used in the paper. The numbers
enclosed in parentheses indicate the number of labels
within the label space.

4.3 Implementation Details

Throughout the entire process of data creation, we
use gpt-3.5-turbo language model, as of June
2023, with specific settings of temperature and
topp set to 1. When conducting fine-tuning experi-
ments, we leverage the Adam optimizer (Kingma
and Ba, 2014) with a maximum sequence length of
256. In each experiment, we perform a grid search
on development data for the optimal learning rate
in [3e-4, 1e-4, 5e-5, 2e-5, 1e-5, 5e-6, 3e-6, 1e-6,
5e-7], and batch size in [4, 8, 16]. All experiments
are conducted on an RTX A5000 with FP32.

5 Experimental Results

We conduct a comprehensive set of experiments
that seek to evaluate the effectiveness of data cre-
ated by LLMs for focused downstream applica-
tion modeling. Our first evaluation involves exam-
ining the performance of models trained on data
generated by variants of our single-shot data cre-
ation pipeline and comparing them against man-
ually curated training data. We investigate both
in-distributed (ID) and out-of-distribution test data
settings, each of which are explained in greater
detail below.

5.1 Performance Comparison

ID Performance. In the ID setting the test data
is drawn from the same distribution as the train-
ing data; specifically, a portion of the full human-
sourced dataset is held out as a test set to evaluate
models trained on either human-labeled or LLM
created data. Table 3 summarizes the performance
of models trained on two types of datasets: the orig-
inal dataset, denoted by DL, and datasets created
using the different “self-reference” variants of our
single-shot pipeline – the corresponding rows in
the table marked as DG. In both settings, and for a

MCQA (2) MCQA (5) Open Yes/No Closed Yes/No

Trained on ↓ PIQA WinoGrande CommonsenseQA RiddleSense BoolQ PubMedQA BioASQ BoolQ StrategyQA CREAK

Examples in D 14,113 160 8,500 3,510 9,427 450 670 9,427 2,061 10,176

DL 80.95 51.41 68.17 56.48 85.62 55.20 87.14 65.68 49.56 81.19

DG (Random) 66.20 51.26 42.06 37.85 68.99 59.80 80.71 52.23 53.04 67.93
DG (Contrastive) 66.15 52.36 41.57 38.43 66.66 59.20 67.14 61.28 49.56 67.93

DG (Similar) 67.15 52.05 47.62 42.09 69.60 60.60 83.57 61.28 49.56 69.24
DG (Tree) 68.35 52.81 48.50 42.26 69.66 61.60 85.71 61.28 56.52 72.74

(DG - DL)/DL −18.43% +2.65% −40.55% −33.64% −22.91% +10.38% −1.66% −7.18% +12.31% −11.61%

Table 3: ID Performance (Accuracy) comparison between models trained on original train dataset DL (First group)
and LLM-created train dataset DG (Second group). The optimal variant for data-creation in the second group is
shown in bold, and the second best is underlined. The third group of the table presents the percentage difference
between the best variant in the second group and the first group.

MCQA (2) MCQA (5) Open Yes/No Closed Yes/No

Train → PIQA WinoGrande CommonsenseQA RiddleSense BoolQ PubMedQA BioASQ PubMedQA StrategyQA CREAK
Trained on ↓ Test → WinoGrande PIQA RiddleSense CommonsenseQA PubMedQA BoolQ PubMedQA BioASQ CREAK StrategyQA

DL 52.05 44.65 41.51 40.93 62.80 58.65 67.14 56.20 49.27 48.69

DG (Random) 51.57 49.10 38.51 41.33 59.00 55.77 66.42 59.40 49.27 48.69
DG (Contrastive) 50.31 49.50 32.94 42.35 59.00 59.87 75.00 55.20 49.27 46.95

DG (Similar) 48.42 52.25 43.42 42.62 64.60 62.50 77.85 63.00 49.27 51.30
DG (Tree) 50.31 49.55 40.09 43.35 64.60 61.28 81.42 66.00 57.72 54.78

(DG - DL)/DL −0.93% +14.54% +4.39% +5.58% +2.78% +6.16% +17.53% +14.84% +14.63% +11.11%

Table 4: OOD Performance (Accuracy) comparison between models trained on original train dataset DL (First
group) and LLM-created train dataset DG (Second group). The best dataset for each OOD experiment is shown in
bold, and the second best is underlined. The third group of the table presents the percentage difference between the
best variant in the second group and the first group.

given task, the number of samples for each dataset
is identical. We also compute the percentage dif-
ferential between the two types of datasets, shown
in the table as (DG - DL)/DL. These findings
confirm that while there is no substitute for large
amounts of hand-crafted data, – demonstrated by
drops of up to −40.55% when using synthetically
created data – LLMs can play an important role
when access is only available to very little data, and
in specialized domains. This is demonstrated by the
similar or often better performance of DG models
on WinoGrande, PubMedQA, BioASQ and Strate-
gyQA. Meanwhile, a comparison between different
“self-reference” sampling strategies demonstrates
the importance of mitigating domain drift in our
single-shot approach, where the sole true format-
ting example is the only anchor point to the data
distribution we seek to generate. The Tree-based
exploration strategy limits the semantic distance
between the seed sample and instances created later
in the generation process and therefore yield higher
performance on ID data.

OOD Performance. While ID data is useful to
gain insights of a system in controlled settings, real-
world applications must deal with data that is often
far more variable and chaotic. Therefore, we com-
pare manually curated data (i.e., original training
data) to LLM generated data in an OOD setting.

Specifically, since we have used at least two eval-
uation datasets for each category of downstream
application, we use one dataset for training and
evaluate on a different dataset. Note that in this
setting, while the training data can either be manu-
ally curated (i.e. DL), or generated by an LLM (i.e.
DG), the test dataset is always manually curated
(i.e., original test data). Table 4 presents a compre-
hensive analysis of the OOD performance of mod-
els trained on DL and DG. The results show that
models trained on LLM data are consistently and
sometimes significantly better at OOD predictive
performance than their hand-crafted counterparts.
This has important implications for the robustness
and generalizability of real-world systems that of-
ten deal with inputs that are very different from
carefully curated academic datasets. We note that
a combination of human and LLM created data
may yield even higher gains in OOD performance
and leave a comprehensive evaluation of this to fu-
ture work. Finally, a comparison of “self-reference”
strategies on the OOD setting shows that while the
Tree-based exploration approach is still a consis-
tently strong one, other sampling approaches are
sometimes comparable or better. This is under-
standable since some degree of controlled noise is
helpful, and can be viewed as a regularizer, when
trying to generalize to OOD test data.

0-10% 0-20% 0-30% 0-40% 0-50% 0-60% 0-70% 0-80% 0-90% 0-100%0

10

20

30

40

50

60 Accuracy on Riddlesense by each accumuulated data percentage
Human
Random
Contrast
Similar
Tree

Figure 5: Performance (Accuracy) on RiddleSense us-
ing cumulative data splits of the full data.

5.2 Distribution shift during creation.

One natural question about the different “self-
reference” strategies is whether the domain drift
that they induce from iterative sampling detrimen-
tally impacts samples generated later in the cre-
ation process. In other words does inclusion of
parts of the dataset generated later lead to perfor-
mance drops or plateaus? In order to answer this
question we perform an evaluation of cumulative
data splits on one of our benchmark datasets (Rid-
dlesense). Specifically we use incremental per-
centages of training data – in 10% blocks – for all
human labeled and synthetically generated datasets,
and evaluate the performance of these models on
the corresponding test set. The results of this ex-
periment are shown in Figure 5.

There are several interesting insights to be
gained from these results. Firstly, using human-
labeled data leads to much faster convergence; this
makes sense since the evaluation is performed on
ID test data. Random and Contrastive sampling
strategies – both of which performed less well on
our main evaluation – do exhibit drops in perfor-
mance with later cumulative splits. Meanwhile,
Similar and Tree approaches – which were consis-
tently better sampling strategies – demonstrate a
steady rise in performance with added data. Jointly
these results indicate that judicious selection of ex-
amples for subsequent prompts is needed to counter
domain drift. Lastly, the final upward trend of all
datasets is meaningful because they indicate that
models trained on all the datasets do generally ben-
efit from more data. While this additional data is
likely difficult and expensive to obtain from human
annotators, LLMs can create arbitrarily more data
at a fraction of the cost.

5.3 Data creation cost

Table 5 presents the expenses incurred by lever-
aging an instruction-following LLM APIs in our

Dataset # Train Random Diverse Similar Tree

PIQA 14,113 3.60 2.82 3.62 3.97
WinoGrande 160 0.02 0.02 0.03 0.02
CommonsenseQA 8,500 2.73 2.71 2.77 1.73
RiddleSense 3,510 0.95 0.95 1.00 1.05
BoolQ 9,427 5.13 2.24 4.95 4.2
PUbMedQA 450 0.17 0.15 0.17 0.17
BioASQ 670 0.24 0.23 0.33 0.22
BoolQ 9,427 3.13 4.10 3.22 3.11
StrategyQA 2,061 0.66 0.70 0.81 0.66
CREAK 10,176 3.24 3.20 4.14 3.50

Table 5: API Usage Cost (USD) of data creation strat-
egy. The cost of utilizing API is calculated in USD,
based on the current pricing of gpt-3.5-turbo as of
June 2023, with a rate of 0.002 USD per 1K tokens. The
cheapist strategy is shown in bold.

data creation pipeline for each dataset in our evalu-
ation benchmark. The results demonstrate that data
creation with LLMs is highly cost-effective, and
costs well under $5 USD for every single dataset
we created. Factored into this is the cost for data
rejected because it was duplicated or ill-formed.
Furthermore, our Tree-based “self-reference” strat-
egy – which was the most performant on quantita-
tive analyses – was also among the more econom-
ical ones. It was the most economical on half the
datasets, while the Contrastive strategy incurred
the lowest cost on the others. These expenses are
based on the pricing of gpt-3.5-turbo from Ope-
nAI as of June 2023.

6 Conclusion

In this paper, we have presented a formal frame-
work for data creation using LLMs and proposed a
single-shot formatting example-based data creation
pipeline that leverages an instruction-following
LLM. Specifically, we showed how multiple var-
ied examples can be generated from a single seed
example in a machine-friendly JSON format by
conditioning the LLM on a structured prompt con-
sisting of instructions and a formatted example. We
further expand the diversity of the output by intro-
ducing a “self-reference” mechanism that selects
formatting examples for subsequent iterations of
generation from newly created data, and present
four different instantiations of the sampling strat-
egy. While prior efforts at LLM data creation in
the literature have avoided domains where the la-
bel space is open-ended and varies from instance
to instance, or is semantically devoid of inherent
meaning, our structured prompts are able to tackle
both. On a battery of evaluations our findings indi-
cate that LLMs can act as highly cost-effective data

generators for the development of small trainable
or tunable models in downstream applications. For
example, a budget of $5 USD is enough to generate
2M tokens with gpt-3.5-turbo, and depending
on the task can yield several thousand data samples.
These models exhibit noteworthy predictive abili-
ties in generalizing to out-of-distribution data, a key
desiderata in real-world systems where data can be
messy, variable and evolving. The impact of these
findings are meaningful in a number of enterprise
scenarios, including for applications that require
strict governance on predictive models due to pri-
vacy and security concerns, or due to response-time
service-level agreements, or indeed for small busi-
nesses where human annotation costs, especially
from domain experts, can be prohibitively high.

7 Limitation

Despite the capability of our pipeline to inte-
grate with a variety of other instruction-following
LLMs, our testing is restricted to ChatGPT (i.e.,
gpt-3.5-turbo) due to performance bottlenecks
and time-out issues with LLM APIs in general.
While we also experimented with several recent
open-source instruction-following models that dis-
till ChatGPT responses, their abilities to generate
well-formatted JSON and comprehend instructions
were limited. We expect that the integration of
our pipeline with other open-source LLMs will be
possible in time, as the open-source community
attains a performance standard commensurate with
commercial products.

An important consideration in our single-shot
example-based data creation pipeline is the selec-
tion of the initial seed formatting sample. We did
not perform an exhaustive analysis to understand
the impact of this seed selection on data creation
quality, again due to performance bottlenecks with
LLM APIs. While we select this seed at random in
this paper, it is possible that a more carefully con-
sidered approach for crafting or selection of this
example may yield better results.

8 Acknowledgement

This work was funded in part by the Defense Ad-
vanced Research Projects Agency (DARPA) and
Army Research Office (ARO) under Contract No.
N660011924033, Contract No. W911NF-21-C-
0002 and Contract No. HR00112390061, and with
support from the Keston Exploratory Research
Award. The views and conclusions contained

herein are those of the authors and should not be
interpreted as necessarily representing the official
policies, either expressed or implied, of DARPA,
ARO or the U.S. Government.

References
Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng

Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.
Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference on
Machine Learning, pages 5547–5569. PMLR.

Jiahui Gao, Renjie Pi, LIN Yong, Hang Xu, Jiacheng
Ye, Zhiyong Wu, WEIZHONG ZHANG, Xiaodan
Liang, Zhenguo Li, and Lingpeng Kong. 2022. Self-
guided noise-free data generation for efficient zero-
shot learning. In The Eleventh International Confer-
ence on Learning Representations.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.
ToxiGen: A large-scale machine-generated dataset
for adversarial and implicit hate speech detection.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3309–3326, Dublin, Ireland.
Association for Computational Linguistics.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. PubMedQA: A
dataset for biomedical research question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2567–
2577, Hong Kong, China. Association for Computa-
tional Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY
Chan, Kory Matthewson, Michael Henry Tessler,
Antonia Creswell, James L McClelland, Jane X
Wang, and Felix Hill. 2022. Can language models
learn from explanations in context? arXiv preprint
arXiv:2204.02329.

Hunter Lang, Monica N Agrawal, Yoon Kim, and
David Sontag. 2022. Co-training improves prompt-
based learning for large language models. In Inter-
national Conference on Machine Learning, pages
11985–12003. PMLR.

Bill Yuchen Lin, Ziyi Wu, Yichi Yang, Dong-Ho Lee,
and Xiang Ren. 2021. RiddleSense: Reasoning
about riddle questions featuring linguistic creativ-
ity and commonsense knowledge. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 1504–1515, Online. Association
for Computational Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Todor Markov, Chong Zhang, Sandhini Agarwal, Tyna
Eloundou, Teddy Lee, Steven Adler, Angela Jiang,
and Lilian Weng. 2022. A holistic approach to un-
desired content detection in the real world. arXiv
preprint arXiv:2208.03274.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han.
2022. Generating training data with language models:
Towards zero-shot language understanding. arXiv
preprint arXiv:2202.04538.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707.

Yasumasa Onoe, Michael JQ Zhang, Eunsol Choi, and
Greg Durrett. 2021. Creak: A dataset for com-
monsense reasoning over entity knowledge. arXiv
preprint arXiv:2109.01653.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655–2671, Seattle, United States.
Association for Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99–106.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec-
tive annotation makes language models better few-
shot learners. arXiv preprint arXiv:2209.01975.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/2021.findings-acl.131
https://doi.org/10.18653/v1/2021.findings-acl.131
https://doi.org/10.18653/v1/2021.findings-acl.131
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the bioasq large-scale
biomedical semantic indexing and question answer-
ing competition. BMC bioinformatics, 16(1):1–28.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang
Zhu, and Michael Zeng. 2021a. Want to reduce la-
beling cost? GPT-3 can help. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 4195–4205, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A Smith,
Iz Beltagy, et al. 2023a. How far can camels go?
exploring the state of instruction tuning on open re-
sources. arXiv preprint arXiv:2306.04751.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao.
2021b. Towards zero-label language learning. arXiv
preprint arXiv:2109.09193.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao
Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
2022. Zerogen: Efficient zero-shot learning via
dataset generation. arXiv preprint arXiv:2202.07922.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo
Lee, and Woomyoung Park. 2021. GPT3Mix: Lever-
aging large-scale language models for text augmen-
tation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2225–2239,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.18653/v1/2021.findings-emnlp.192

A Appendix

A.1 Details of Dataset

• PIQA (Bisk et al., 2020) is a binary-choice
question answering task, which chooses the
most suitable solution for questions related to
physical commonsense.

• WinoGrande (Sakaguchi et al., 2021) is a
task that involves selecting the correct binary
option to fill in a given sentence that requires
commonsense reasoning.

• CommonsenseQA (Talmor et al., 2019) is
a multiple-choice question answering task,
which picks the most appropriate answer on
general commonsense questions.

• Riddlesense (Lin et al., 2021) is a multiple-
choice questions answering task, which picks
the most appropriate answer on riddle-style
questions that need cognitive process.

• BoolQ (Clark et al., 2019) is a question an-
swering task that answering questions with
a simple “yes” or “no” response. Questions
are naturally occurring queries sourced from
the Google search engine. In an open-book
setting, the model must comprehend the given
context in order to provide an answer, whereas
in a closed-book setting, the answer must be
provided directly without any context.

• PubmedQA (Jin et al., 2019) is a task that
involves answering research questions pertain-
ing to the corresponding abstracts of biomedi-
cal research papers, and the answers are pro-
vided in the form of “yes”, “no”, or “maybe”.
In our study, we treat “maybe” as “no” to
ensure consistent output format with other
datasets.

• BioASQ (Tsatsaronis et al., 2015) offers a
range of question answering tasks, covering
various categories such as factoid, list, sum-
mary, and yes/no questions based on the con-
tent of biomedical research papers that have
been reviewed by experts in the field. For the
purpose of this study, our focus will be re-
stricted to questions that have binary answers
of “yes” or “no”.

• StrategyQA (Geva et al., 2021) is a bench-
mark for question-answering that specifically

targets open-domain questions where the nec-
essary reasoning path is not explicitly stated in
the question, and needs to be inferred through
a strategic approach. The answers to these
questions are either “yes” or “no”.

• CREAK (Onoe et al., 2021) has been specifi-
cally formulated for the purpose of common-
sense reasoning pertaining to entity knowl-
edge. The dataset comprises assertions of en-
tities, for which the answers need to be speci-
fied as either True or False.

A.2 Data Statistics

Dataset # Train # Valid # Test

PIQA 14,113 1,838 2,000
WinoGrande (XS) 160 633 634
CommonsenseQA 8,500 1,221 1,241
Riddlesense 3,510 1,021 1,202
BoolQ 9,27 1,35 1,365
PubmedQA 450 50 500
BioASQ 670 75 140
StrategyQA 2,061 114 115
CREAK 10,176 685 686

Table 6: Data statistics. Each dataset. We use in-house
test set which is randomly splitted from the train set for
those dataset that do not provide test set.

