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ABSTRACT

Missing data imputation through distribution alignment has demonstrated advan-
tages for non-temporal datasets but exhibits suboptimal performance in time-series
applications. The primary obstacle is crafting a discrepancy measure that simultane-
ously (1) captures temporal patterns—accounting for patterns such as periodicities
and temporal dependencies inherent in time-series—and (2) accommodates non-
stationarity, ensuring robustness amidst multiple coexisting temporal patterns. In
response to these challenges, we introduce the Proximal Spectrum Wasserstein
(PSW) discrepancy based on the stochastic optimal transport framework, which
incorporates a pairwise spectral distance to encapsulate temporal patterns, coupled
with selective matching regularization to accommodate non-stationarity. Building
upon PSW, we develop the PSW for Imputation (PSW-I) framework, which itera-
tively refines imputation results by minimizing the PSW discrepancy. Extensive
experiments demonstrate that PSW-I effectively addresses these challenges and
significantly outperforms prevailing time-series imputation methods.

1 INTRODUCTION

The incompleteness of time-series data is a critical issue in many fundamental fields, including
healthcare and finance. For instance, in healthcare, patient monitoring devices may intermittently
fail or be disconnected, leading to missing vital signs data. Similarly, in finance, transaction records
may be incomplete due to system outages or reporting delays. The incompleteness hampers data
integrity and hinders advanced data analytics, which underscores the importance of accurate time
series imputation (TSI).

Deep learning methods have attracted substantial attention in TSI due to their ability to model
nonlinearities and temporal dependencies. These methods can be broadly classified into two cate-
gories: predictive methods, which estimate deterministic values for the missing entries within the
time-series (Cao et al., 2018; Du et al., 2023), and generative methods, which generate missing values
conditionally given observed ones (Luo et al., 2018). Despite their effectiveness, they are primarily
challenged by model selection amidst incomplete data (Jarrett et al., 2022), and require masking some
observed entries during training to generate labels (Chen et al., 2024), which can limit performance
especially given high missing ratios.

To counteract the defects with deep imputation methods, alignment-based methods have emerged
as an alternative. These methods eliminate the need for masking observed entries and training
parametric models on incomplete data, offering advantages in sample efficiency and implementation
simplicity. While alignment-based methods have proven effective for imputing missing data in
non-temporal datasets Zhao et al. (2023); Muzellec et al. (2020), applying distribution alignment to
TSI is challenging and remains largely unexplored. Our experiments (see Section 4.2) indicate that
directly applying existing alignment-based methods to temporal data performs poorly. Therefore, how
to adapt distribution alignment methods to TSI remains a challenging and open research problem.

In distribution alignment, the choice of discrepancy measure is critical, which should accommodate
the dataset characteristics (Courty et al., 2017; Wang et al., 2023). Typically, time-series are uniquely
characterized by temporal patterns, such as periodicities and temporal dependencies, and often
exhibit non-stationary fluctuations. Motivated by this, the key to accommodate the alignment-based
imputation methods to TSI is devising a discrepancy measure that captures temporal patterns while
also accommodating non-stationarity in time-series.

1
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To this end, we propose the Proximal Spectrum Wasserstein (PSW) discrepancy, a novel discrepancy
tailored for comparing sets of time-series based on optimal transport. Specifically, PSW integrates
a pairwise spectral distance, which transforms time-series into the frequency domain and then
calculate the pair-wise absolute difference. By comparing time series in the frequency domain, the
underlying temporal dependencies and patterns are captured. Moreover, PSW incorporates selective
matching regularization, which relaxes the hard matching constraints of traditional optimal transport
and allows for flexible mass matching between distributions. This relaxation enhances robustness
to non-stationary. Building upon PSW, we develop the PSW for Imputation (PSW-I) framework,
which iteratively refines the imputed missing values by minimizing the PSW discrepancy. Extensive
experiments demonstrate that PSW-I effectively captures temporal patterns and accommodates
non-stationary behaviors, significantly outperforming existing time-series imputation methods.

Contributions. The key contributions of this study are summarized as follows:

• We propose the PSW discrepancy, which innovatively extends optimal transport to compare distri-
butions of time-series by encapsulating temporal patterns and accommodating non-stationarities.

• We develop PSW-I, the first alignment-based method for TSI. It eliminates the need for masking
observed entries during training and the complexities of training parametric models on incomplete
data, enhancing sample efficiency and ease to operate.

• We conduct comprehensive experiments on publicly available real-world datasets to validate the
effectiveness of PSW-I, demonstrating its superiority over existing TSI methods.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

Suppose X(id) ∈ RN×D is the ideally complete time-series with N chronologically-ordered obser-
vations and D features. The missing entries are indicated by a binary matrix M ∈ {0, 1}N×D,
where Mn,d is set to 1 if the corresponding entry X

(id)
n,d is missing, and 0 otherwise. Conse-

quently, the observed dataset X(obs) can be derived using the Hadamard product: X(obs) :=
X(id)⊙(1−M)+nan⊙M. The goal of TSI is constructing an imputed data matrix X(imp) ∈ RN×D

based on the observed entries in X(obs), such that X(imp) ≈ X(id).

2.2 OPTIMAL TRANSPORT

Optimal Transport (OT) is a mathematical tool that quantifies the discrepancy between two probability
distributions by finding the most cost-effective plan to transform one distribution into the other.
Originally proposed by Monge (1781), the formulation involved finding an optimal mapping between
two continuous distributions. However, this original formulation posed challenges related to the
existence and uniqueness of solutions. Addressing these issues, Kantorovich (2006) proposed a more
computationally feasible formulation below, which is a convex programming problem solvable via
simplex algorithm (Disser and Skutella, 2019):

Definition 2.1. Consider empirical distributions α = α1:n and β = β1:m, each with n and m samples,
respectively; we seek an feasible plan T ∈ Rn×m

+ to transport α to β at the minimum possible cost:

W(α, β) := min
T∈Π(α,β)

⟨D,T⟩ ,

Π(α, β) :=

{
Ti,1 + ...+Ti,m = ai, i = 1, ...,n,
T1,j + ...+Tn,j = bj , j = 1, ...,m,
Ti,j ≥ 0, i = 1, ...,n, j = 1, ...,m,

(1)

whereW(α, β) denotes the minimum transport cost, known as the standard Wasserstein discrepancy;
D ∈ Rn×m

+ represents the pairwise distances calculated as Di,j = ∥αi − βj∥2; a = [a1, . . . ,an]
and b = [b1, . . . ,bm] are the masses of samples in α and β, respectively.
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(a) Discrepancy on ETTh1 and Electricity.
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(b) 8 temporal patches on ETTh1 and their spectra.

Figure 1: Case study on the discrepancies calculated in the time and frequency domains.

3 METHODOLOGY

3.1 MOTIVATION

Distribution alignment has proven effective for imputing missing data in non-temporal datasets
(Muzellec et al., 2020; Zhao et al., 2023), offering advantages in sample efficiency and implementation
simplicity. These methods operate by iteratively sampling subsets of the incomplete dataset and
updating missing entries to minimize distributional discrepancies between these subsets. This ensures
that the imputed values maintain statistical properties consistent with the entire dataset, grounded in
the assumption that different subsets from the same dataset share the same distribution.

However, applying distribution alignment to TSI poses significant challenges. Our experiments (see
Section 4.2) indicate that existing alignment-based methods perform poorly on temporal data. In
fields like domain adaptation (Courty et al., 2017) and representation learning (Wang et al., 2023),
it is well-recognized that the effectiveness of distribution alignment heavily depends on the choice
of discrepancy measure, which must be tailored to the specific properties of the data and the task.
Therefore, we aim to refine the discrepancy measure to accommodate the unique characteristics of
time-series data, for enhancing TSI performance. Importantly, there are several questions that need
to be answered. Do existing discrepancy measures accommodate the characteristics, such as the
temporal patterns and non-stationarity, in time-series data? How to design discrepancy measure for
comparing distributions of time-series? Does crafted discrepancy improve imputation performance?

3.2 PAIRWISE SPECTRUM DISTANCE FOR TEMPORAL PATTERN ENCAPSULATION

Time-series are distinguished by temporal patterns, which reflect dependencies and correlations
between different time steps and provide rich semantic information essential for comparing time-
series and performing imputation. The canonical Wasserstein discrepancy (W) fails to capture
these temporal patterns because the pairwise distance is computed on a step-wise basis, treating the
observations at each step independently and disregarding temporal correlations. A simple modification
might be the patch-wise distance: using a sliding window to generate temporal patches of size T and
subsequently computing distances between patches. However, this method still treats different steps
within patch individually, failing to measure dissimilarity between patches in a way that encapsulates
their temporal patterns.

To address this limitation, we propose the Pairwise Spectrum Distance (PSD), which leverages
the Discrete Fourier Transform (DFT) to convert time-domain data into the frequency domain.
The DFT decomposes each temporal patch into its spectral components, where each component
corresponds to specific temporal patterns in the data. By comparing patches in the frequency domain,
PSD effectively captures and compares the underlying temporal patterns. Building upon PSD, we
introduce the Spectrum-enhanced Wasserstein distance in Definition 3.1.
Definition 3.1 (Spectrum-enhanced Wasserstein Distance). The distance between two distributions
α, β ∈ RB×T×D of temporal patches is defined asW(F)(α, β) = minT∈Π(α,β)

〈
D(F),T

〉
, where

T is the patch size, D(F) is the pairwise distance matrix with elements computed using the Pairwise
Spectrum Distance: D(F)

i,j = ∥F(αi)−F(βj)∥1 , and F denotes the DFT operator.

Case Study. Fig. 1 (a) compares W and W(F). Specifically, W(F) consistently decreases with
increasing batch sizes and achieves comparable performance ofW with smaller batch sizes. For
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(b) Exemplar case 1.
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(c) Exemplar case 2.

Figure 2: The impact of non-stationarity and the resilience of PSW to it. The toy dataset includes two
batches of samples, each distinguished by color. Two modes co-exist due to non-stationarity, which
are differentiated by the vertical positioning of the samples.

instance, the volume of W(F) with a batch size of 128 approximates the volume of W with a
batch size of 1024. This efficiency arises because spectrum captures the consistent patterns across
patches,especially in periodic data where spectral amplitudes are stable despite significant changes in
the time domain in Fig. 1(b). These findings demonstrate the advantage ofW(F) for time-series data,
as it better captures temporal patterns and accelerates convergence in alignment-based imputation
methods.

3.3 SELECTIVE MATCHING REGULARIZATION FOR NON-STATIONARITY ROBUSTNESS

Time-series data often exhibit non-stationarity, characterized by time-varying patterns and sudden
fluctuations. For instance, in the Electricity dataset, consumption patterns differ significantly between
weekdays, weekends, and holidays; similarly, the Weather dataset displays distinct climatological
patterns across different seasons. This non-stationarity produces multiple coexisting patterns or
regimes within the data, complicating the accurate calculation of distributional discrepancies.

The canonical Wasserstein discrepancy (Definition 2.1) struggles in the presence of non-stationarity.
As illustrated in Fig. 2, it may incorrectly pair patches from different modes, leading to inaccurate
distributional discrepancies and misleading imputation updates. This issue arises due to its matching
constraints, which require matching all masses of all samples. Consequently, assuming a patch
from a new mode, denoted as δz , is added to α, the matching constraints force a match between δz
and patches in β, distorting the intended matching strategy and yielding an imprecise discrepancy
estimation. This vulnerability is formalized in Lemma 3.2, which shows that the Wasserstein distance
W increases as the added mode deviates more from the typical elements of β.
Lemma 3.2. Suppose that α̃ = ζδz + (1 − ζ)α is a distribution perturbed by a Dirac mode at z
with relative mass ζ ∈ (0, 1). For an arbitrary sample y∗ in the support of β, Fatras et al. (2021)
demonstrate:

W(α̃, β) ≥ (1− ζ)W(α, β) + ζ

(
D (z, y∗)− g (y∗) +

∫
gdβ

)
where D (z, y∗) is the deviation of δz , (f, g) are the optimal dual potentials ofW(α, β).

To enhance robustness to non-stationarity, it is plausible to relax the marginal matching constraints,
allowing for matching a flexible mass of each patch. Inspired by weak transport principles (Chizat
et al., 2018; Séjourné et al., 2019), we introduce the Proximal Spectral Wasserstein (PSW) discrepancy,
which replaces the hard marginal constraints with selective matching regularization. This approach
removes the requirement to match all mass between distributions, thus accommodating the coexistence
of multiple modes and enhancing robustness to non-stationarity.
Definition 3.3 (Proximal Spectral Wasserstein Discrepancy). The PSW discrepancy seeks a transport
plan T ∈ Rn×m

+ that transports the distribution α to β at minimal cost, defined as:

Pκ(α, β) := min
T≥0

〈
D(F),T

〉
+ κ

(
DKL(T1m∥∆n) + DKL(T

T1n∥∆m)
)

(2)
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Figure 3: The workflow of PSW-I with pmiss = 0.3. The batch size (B) is set to 2 and the patch size
(T ) is set to 4. The number of features (D) is omitted for clarity.

where D(F) is the pairwise distance matrix computed using PSD; κ is the matching strength;
∆n = 1n/n and ∆m = 1m/m are uniform simplex vectors; Pκ denotes the PSW discrepancy.

Case Study. To illustrate the limitations of the existing Wasserstein discrepancy and the robustness
of PSW to non-stationarity, we conduct a case study shown in Fig. 2. Ideally, in the absence of non-
stationarity, Wasserstein discrepancy based on OT accurately matches patches within the same mode
and correctly estimate the distributional discrepancy. However, in the presence of non-stationarity,
we investigate two exemplary cases:

• Example 1: When the proportions of different modes vary across batches, standard OT incorrectly
matches patches from different modes due to its force to match all mass. This leads to a biased
Wasserstein discrepancy. In contrast, P employs a selective matching strategy, focusing on typical
patches and effectively avoiding false matches across modes given small matching strength κ ≤ 10.

• Example 2: When a newly emerging mode exists in a non-overlapping area between two modes,
standard OT matches the outlier mode with other patches, leading to inappropriate pairings and
interfering with the matching of other patches. Conversely, P resists the interference as κ decreases.
When κ is reduced to 5, the outlier mode is effectively excluded from the matching process.

Our approach differs from the unbalanced optimal transport methods Séjourné et al. (2019); Fatras
et al. (2021), which also relax matching constraints through regularization, by omitting the entropic
regularization from formulation. This omission is essential because entropic regularization has been
shown to be detrimental to missing value imputation (Chen et al., 2024). We provide a rigorous
comparative study in Section 4.4 to showcase the advantage of PSW in the context of TSI. Moreover,
without entropic regularization, PSW cannot be calculated through Sinkhorn algorithm. A solution
based on majorization-minimization is delineated in Algorithm 2 in appendix.

3.4 PSW-I: PSW FOR TIME-SERIES IMPUTATION

While PSW effectively compares and balances distributions of temporal patches, it does not directly
conduct time-series imputation. To fill this gap, we propose the PSW for Imputation (PSW-I)
framework, which iteratively minimizes the PSW discrepancy between batches of patches to refine
the imputation of missing values. The core steps of PSW-I are outlined in Fig. 3 and explained below.

Initialization. The incomplete dataset X(obs) is initialized by filling each missing entry with the
average of its nearest observed steps, producing an initial imputation matrix Xt=0. The imputed
values are treated as learnable parameters, and their gradients are tracked in subsequent steps.

Forward Pass. Two batches of temporal patches, denoted as α ∈ RB×D×T and β ∈ RB×D×T, are
sampled from the current imputed dataset Xt with batch size B. The PSW discrepancy P is then
computed between these two batches according to Algorithm 2.
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Table 1: Imputation performance in terms of MSE and MAE on 10 datasets.

Datasets
ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather Illness Exchange PEMS03

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Transformer 0.222 0.322 0.221 0.312 0.06 0.16 0.041 0.134 0.12 0.228 0.216 0.214 0.195 0.132 0.24 0.3 0.224 0.186 0.081 0.184

DLinear 0.144 0.267 0.108 0.231 0.103 0.221 0.084 0.201 0.137 0.271 0.251 0.272 0.274 0.185 0.21 0.273 0.261 0.216 0.112 0.261

TimesNet 0.253 0.353 0.133 0.263 0.061 0.173 0.068 0.186 0.129 0.254 0.201 0.243 0.28 0.189 0.231 0.277 0.319 0.264 0.076 0.19

FreTS 0.184 0.312 0.147 0.259 0.055 0.159 0.039 0.135 0.155 0.285 0.234 0.27 0.178 0.12 0.278 0.325 0.228 0.189 0.109 0.252

PatchTST 0.171 0.297 0.126 0.258 0.05 0.149 0.03 0.118 0.138 0.262 0.235 0.238 0.247 0.167 0.605 0.505 0.237 0.197 0.065 0.179

SCINet 0.149 0.275 0.128 0.248 0.067 0.176 0.064 0.179 0.125 0.239 0.29 0.314 0.198 0.136 0.617 0.473 0.298 0.247 0.106 0.249

iTransformer 0.163 0.281 0.101 0.211 0.056 0.156 0.034 0.125 0.128 0.251 0.252 0.269 0.188 0.127 0.316 0.31 0.068 0.056 0.08 0.203

SAITS 0.216 0.305 0.183 0.256 0.056 0.154 0.042 0.129 0.114 0.216 0.224 0.207 0.132 0.089 0.167 0.216 1.005 0.833 0.083 0.189

CSDI 0.151 0.269 0.098 0.263 0.101 0.177 0.158 0.113 0.533 0.269 0.306 0.324 0.158 0.107 0.356 0.384 0.1 0.103 0.115 0.17

Sinkhorn 0.877 0.65 0.807 0.603 0.934 0.698 0.893 0.67 0.986 0.821 1.012 0.729 0.793 0.672 0.549 0.382 0.723 0.599 0.968 0.855

TDM 0.982 0.742 0.971 0.731 0.999 0.752 0.988 0.742 0.939 0.795 0.948 0.698 0.865 0.689 0.841 0.607 0.938 0.776 0.925 0.828

PSW-I (Ours) 0.126 0.231 0.046 0.142 0.047 0.131 0.021 0.094 0.106 0.208 0.197 0.199 0.107 0.072 0.067 0.122 0.031 0.026 0.049 0.149

Kindly Note: Each entry represents the average results at four missing ratios: 0.1, 0.3, 0.5, and 0.7. The best
and second-best results are bolded and underlined, respectively.

Backward Pass. The gradients of the PSW discrepancy P are computed with respect to α and β
using automatic differentiation:

∂P
∂αi

=

m∑
j=1

Ti,jW
(F) · sign(ei,j)⊤, i = 1, 2, . . . , B,

∂P
∂βj

= −
n∑

i=1

Ti,jW
(F) · sign(ei,j)⊤, j = 1, 2, . . . , B,

where W(F) denotes the DFT matrix1, ei,j = (αi − βj)W(F) ∈ RT. These gradients are used to
update the imputed values in α and β via gradient descent with an update rate η. It is important to
note that only the imputed (missing) values are updated, while the observed (non-missing) values
remain unchanged during this process. PSW-I iteratively executes the forward and backward passes
until hitting the early-stopping criteria on the validation dataset.

Theoretical Justification. We demonstrate that the PSW discrepancy is a valid discrepancy measure
and satisfies the properties of a metric under mild conditions (Theorem C.1). Furthermore, we prove
that PSW is robust to non-stationarity in data (Theorem C.2). Thanks to the convexity of the PSW
discrepancy with respect to inputs α and β, the convergence of PSW-I is guaranteed (Theorem C.3)
with bounded errors (Theorem C.4). Detailed proofs are provided in Appendix C.

4 EMPIRICAL INVESTIGATION

4.1 EXPERIMENTAL SETUP

• Datasets: Experiments are performed on public time-series datasets (Wu et al., 2021; Liu et al.,
2024), including ETT, Electricity, Traffic, Weather, PEMS03, Illness, and Exchange. To simulate
point-wise missingness Du et al. (2024), a binary mask matrix is generated by sampling a Bernoulli
random variable with a predetermined mean for missing ratios. Additional missing mechanisms
and their associated results are presented in Appendix D.

• Baselines: PSW-I is compared against representative TSI methods: (1) the predictive TSI methods
(DLinear (Zeng et al., 2023), FreTS (Yi et al., 2023), TimesNet (Wu et al., 2023), iTransformer (Liu
et al., 2024), PatchTST (Nie et al., 2023), Transformer(Vaswani et al., 2017), SAITS Du et al.

1The definition of the DFT matrix is presented in Definition C.5. The derivation of the gradients is elucidated
in Theorem C.6.
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Table 2: Ablation study results.

Electricity ETTh1
Model SMR PSD MSE MAE MSE MAE
PSW-I† % % 0.116±0.004 0.227±0.008 0.096±0.002 0.204±0.006

PSW-I‡ % ! 0.080∗±0.003 0.196∗±0.004 0.085∗±0.001 0.208∗±0.004

PSW-I†† ! % 0.115±0.003 0.218±0.005 0.091∗±0.003 0.194∗±0.006

PSW-I ! ! 0.075∗±0.003 0.180∗±0.004 0.077∗±0.002 0.188∗±0.004

Kindly Note: The best results are bolded. ”*” marks the results that significantly outperform PSW-I†, with p-value
< 0.05 over paired-sample t-test.

(2023) and SCINet (Liu et al., 2022)), (2) the generative TSI methods (CSDI Tashiro et al. (2021)).
Additionally, the performance of distribution alignment methods tailored for non-temporal data
(TDM (Zhao et al., 2023) and Sinkhorn (Muzellec et al., 2020)) is evaluated for comparison.

• Implementation details: To ensure consistency in experimental conditions, the batch size B is
fixed at 256. The Adam optimizer, known for its adaptive update rate and effective convergence, is
employed for training, with an update rate η = 0.01. We leave out 5% indices from the training
data as the validation set. The key hyperparameters involved in PSW-I are tuned to minimize the
MSE in the validation set. The patch size is tuned within {24, 36, 48}; the matching strength is
tuned within {1, 10, 100, 1000}. The experiments are conducted on a platform with two Intel(R)
Xeon(R) Platinum 8383C CPUs @ 2.70GHz and a NVIDIA GeForce RTX 4090 GPU. Performance
is evaluated using modified mean absolute error (MAE) and mean squared error (MSE) following
(Zhao et al., 2023; Jarrett et al., 2022), with a focus on imputation errors over missing entries.
We set Tmax = 200 and ℓmax = 1, 000 to ensure convergence and perform early-stopping on the
validation dataset with patience 10.

4.2 OVERALL PERFORMANCE

Table 1 compares the performance of PSW-I with baseline methods, averaged over four missing
ratios: 0.1, 0.3, 0.5, and 0.7. Key observations from the results are as follows:

• Effectiveness of Existing TSI Methods. Existing TSI methods demonstrate promising perfor-
mance. Notably, fundamental time-series models such as iTransformer and SCINet exhibit very
competitive results, achieving the best performance among baselines in 4 out of 20 cases. These
models effectively capture temporal patterns in the data and leverage them for imputation tasks.
Meanwhile, methods specifically crafted for TSI, such as SAITS and CSDI, achieve comparable
performance, both achieving the best performance among baselines in 4 out of 20 cases. Albeit
with suboptimal structure for capturing temporal patterns, the specialized mechanisms for TSI,
such as the conditional generation strategy in CSDI, effectively raise the performance comparable
to advanced fundamental time-seris models.

• Limitations of Alignment-Based Methods in TSI. Alignment-based methods, including Sinkhorn
and TDM, demonstrate strong performance on non-temporal data (Zhao et al., 2023) but fall
short in TSI tasks. Specifically, their performance in Table 1 is significantly inferior to that of
prevailing TSI methods. This discrepancy can be attributed to their inability to capture temporal
patterns inherent in time-series data and vulnerability to non-stationarity due to their inherent i.i.d.
assumption (Muzellec et al., 2020), resulting in suboptimal imputation results.

• Superiority of the Proposed PSW-I Method. PSW-I counteracts the limitations of alignment-
based methods and successfully adapts them to the TSI task. It effectively captures temporal patterns
and accommodates non-stationarity, leading to significant performance improvements. Moreover,
PSW-I inherits the advantages of alignment-based methods: it does not require masking observed
entries during training or training parametric models on incomplete data. This distinguishes it from
prevailing TSI methods and positions it as a promising alternative. Overall, PSW-I achieves the
best performance across all 10 datasets, and in most cases, it surpasses the best baseline by large
margins (e.g., on PEMS03), showcasing its efficacy in real-world applications.
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Figure 4: Varying patch length and matching strength results with missing ratios 0.1, 0.3, 0.5 and 0.7.

Table 3: Varying pairwise distance results.
Electricity

Distances MSE ∆MSE MRE ∆MRE MAE ∆MAE
PSW-T 0.080 - 0.233 - 0.193 -
PSW-A 0.079 1.3%↓ 0.231 0.9%↓ 0.191 1.0%↓
PSW-P 0.079 1.3%↓ 0.229 1.7%↓ 0.189 2.1%↓
PSW 0.075 6.7%↓ 0.218 6.9%↓ 0.180 7.2%↓

ETTh1
Distances MAE ∆MAE MSE ∆MSE MRE ∆MRE
PSW-T 0.082 - 0.268 - 0.202 -
PSW-A 0.081 1.2%↓ 0.265 1.1%↓ 0.200 1.0%↓
PSW-P 0.081 1.2%↓ 0.263 1.9%↓ 0.198 2.0%↓
PSW 0.077 6.5%↓ 0.250 7.2%↓ 0.188 7.4%↓

Table 4: Varying discrepancy results.
Electricity

Discrepancies MSE ∆MSE MRE ∆MRE MAE ∆MAE
OT 0.082 - 0.239 - 0.196 -
EMD 0.080 2.5%↓ 0.225 6.2%↓ 0.184 6.5%↓
UOT 0.077 6.5%↓ 0.226 5.8%↓ 0.186 5.4%↓
Ours 0.075 9.3%↓ 0.218 9.6%↓ 0.180 8.9%↓

ETTh1
Discrepancies MSE ∆MSE MRE ∆MRE MAE ∆MAE
OT 0.084 - 0.273 - 0.206 -
EMD 0.079 6.3%↓ 0.264 3.4%↓ 0.202 2.0%↓
UOT 0.081 3.7%↓ 0.263 3.8%↓ 0.198 4.0%↓
Ours 0.077 9.1%↓ 0.250 9.2%↓ 0.188 9.6%↓

4.3 ABLATIVE ANALYSIS

Table 2 presents an ablation study dissecting the contributions of the Pairwise Spectrum Distance
(PSD) and Selective Matching Regularization (SMR), the two key components of the proposed
PSW-I framework. The baseline model without PSD and SMR computes the Sinkhorn discrepancy
using the Euclidean distance between patches. While this naive model performs suboptimally, it still
outperforms the standard Sinkhorn imputation method (as shown in Table 1) because the patch-wise
distance somewhat captures more temporal patterns than the step-wise distance.

Incorporating PSD and SMR significantly improves imputation performance by effectively encap-
sulating temporal patterns through spectral representation, and accommodating non-stationarity by
matching a flexible set of samples. The PSW-I framework, which integrates both PSD and SMR,
achieves the best performance, demonstrating the effectiveness of combining these two components.

4.4 GENERALITY ANALYSIS

In this section, we explore some alternative implementations to the key components of PSW-I to
justify its rationale and advantages. Tables 3 and 4 present the results, where ∆ denotes the relative
performance reduction. The primary observations are summarized as follows.

• Effects of the Discrepancy Measure. Our approach accommodates the non-stationarity by
replacing the matching constraints in OT with a soft regularizer (SMR), leading to significant
performance improvements over standard OT in Table 3. Notably, the UOT method in domain
adaptation Fatras et al. (2021); Séjourné et al. (2019) also relaxes matching constraints and can be
adapted to TSI, similarly enhancing imputation performance compared to standard OT. However,
our method differs from the standard UOT formulation by omitting entropic regularization, which
has been shown to be detrimental to missing value imputation (see the discussion by Chen et al.
(2024) and the results comparing OT versus EMD with and without entropic regularization in
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Figure 5: Varying batch size and update rate results with missing ratios 0.1, 0.3, 0.5 and 0.7.

Table 3). By avoiding entropic regularization, our method maintains rectified transport plans that
are more effective for imputation tasks.

• Effects of the Distance Metric. The proposed Pairwise Spectrum Distance (PSD) computes
the patch-wise distance by measuring the difference of their spectrum. Compared to calculating
the patch-wise distance in the time domain (PSW-T in Table 3), using distance metrics that
consider amplitude characteristics (PSW-A) or phase characteristics (PSW-P) individually leads to
performance improvements, as they capture distinct aspects of temporal patterns. Specifically, PSW-
A focuses on the strength of frequency components, while PSW-P captures the timing information
inherent in the phase. Combining both amplitude and phase characteristics in PSW provides a
comprehensive encapsulation of temporal patterns and achieves the best performance.

4.5 PARAMETER SENSITIVITY ANALYSIS

In this section, we examine the impact of critical hyperparameters on the performance of PSW-I. The
results are presented in Figures 4 and 5. The primary observations are summarized as follows:

• The patch length (T) determines the scale of temporal patterns that PSD captures. When T is
reduced to 1, the model effectively degrades to naive alignment-based models (Muzellec et al., 2020)
that overlook temporal patterns. Increasing T to 24 leads to substantial performance improvements,
underscoring the importance of temporal patterns for TSI. However, further increasing T beyond 24
deteriorates performance, which could be attributed to the curse of dimensionality in the Wasserstein
discrepancy, reducing its discriminability in high-dimensional spaces (Chizat et al., 2020).

• The matching strength (κ) controls the flexibility of matching mass in SMR. As κ decreases, the
robustness to non-stationarity property is enhanced. The consistent performance gains underscore
the importance of accommodating non-stationarity for TSI and the efficacy of SMR.

• The batch size (B) determines the scale of the optimization problem when calculating PSW
discrepancy. Overall, model performance is not highly sensitive to it in cases with low missing
ratios. However, in cases with high missing ratios, a smaller batch size is beneficial, as it enables
more fine-grained comparisons between distributions and can improve sample efficiency. Therefore,
choosing a smaller batch size is advantageous for both accuracy and efficiency in such scenarios.

• The learning rate (η) controls the model convergence. As η increases, the imputation error initially
decreases and then increases, indicating the presence of an optimal value. A learning rate of 0.01
yields the best overall results, effectively balancing convergence stability and speed.

5 CONCLUSION

This study introduces the PSW-I approach, offering a fresh perspective from OT to time-series
imputation. The core innovation is the PSW discrepancy, meticulously designed to encapsulate
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temporal patterns and accommodate non-stationarity in time series, providing a more suitable
discrepancy measure for comparing distributions of temporal data. Based on the proposed PSW
discrepancy, we further derive a novel time-series imputation approach termed ‘PSW-I’, which
significantly enhances performance for time-series imputation, establishing itself as an effective tool
for completing real-world time-series datasets.

Limitations and Future Work. This work employs the DFT to encapsulate temporal patterns, which
primarily captures global frequency components and may not effectively represent local or transient
patterns. Future work could explore advanced spectral methods, such as wavelet transforms, to
enhance temporal resolution. Additionally, due to the curse of dimensionality, there is a bottleneck
when increasing the patch size to improve performance. Enhancing the scalability of PSW-I to
exceedingly long-term patterns remains a challenging yet promising direction for future research.
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Thibault Séjourné, Jean Feydy, François-Xavier Vialard, Alain Trouvé, and Gabriel Peyré. Sinkhorn
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A RELATED WORKS

A.1 MISSING VALUE IMPUTATION FOR TABULAR DATA

In this section, we review the predominant methodologies for missing data imputation in tabular
datasets, which differ from time-series data due to the absence of temporal patterns and dependencies.
Broadly, these methods can be categorized into four paradigms, each offering unique strengths and
limitations (Jarrett et al., 2022).

The simple direct paradigm involves basic statistical methods such as mean, median, and mode
imputation to replace missing values. These techniques are fast and easy to implement but often
fall short in capturing the complex dependencies present in real-world datasets (Malarvizhi and
Thanamani, 2012; Mazumder et al., 2010). As a result, this approach frequently leads to oversimplified
and inadequate imputations that may not perform well in practice.

The round-robin paradigm (Stekhoven and Bühlmann, 2012; Royston and White, 2011), originally
developed from the Iterative Conditional Expectation (ICE) algorithm (Royston and White, 2011), im-
putes missing values for each feature by utilizing other observable features as predictors. Building on
ICE, modern approaches incorporate advanced parametric models, including neural networks (Mattei
and Frellsen, 2019; Kyono et al., 2021), Bayesian models (Royston and White, 2011), and random
forests (Stekhoven and Bühlmann, 2012), to better handle intricate missing patterns. Furthermore,
diverse training strategies such as multiple imputation (Royston and White, 2011), ensemble learn-
ing (Stekhoven and Bühlmann, 2012), and multitask learning (Mattei and Frellsen, 2019) have
been explored to improve performance across different contexts. Although this paradigm enhances
flexibility and imputation accuracy, the necessity of careful model selection poses a challenge since
the complete data is unavailable for validation (Jarrett et al., 2022).

The generative paradigm approaches imputation as a conditional generation problem, leveraging
advanced neural architectures and generative models such as Generative Adversarial Networks
(GANs) (Yoon et al., 2018; Sun et al., 2024; Li et al., 2024) and diffusion models (Tashiro et al.,
2021; Xu et al., 2024; Ouyang et al., 2023; Chen et al., 2024) to estimate the underlying data
distribution and generate plausible values for missing entries. This approach can capture complex
relationships and dependencies, leading to high-quality imputations, especially when sufficient data is
available. However, the generative paradigm inherits the challenges of generative models, including
the instability of adversarial training and the significant data requirements of diffusion models.
These issues are further exacerbated by the high missing ratios and complex missing patterns often
encountered in industrial settings, limiting their practical utility.

A more recent innovation in this field is the distribution matching paradigm (Zhao et al., 2023;
Muzellec et al., 2020). This paradigm samples subsets of dataset and update the missing entries
to minimize the discrepancy between the sampled subsets. The underlying assumption is that,
under the i.i.d. principle, any two batches of data should follow the same distribution, allowing for
effective imputation by reducing distributional divergence. Our research extends this methodology by
addressing its vulnerability to outliers and enhancing its capability to account for temporal patterns,
thus adapting it for time-series imputation tasks.

A.2 MISSING VALUE IMPUTATION FOR TIME-SERIES DATA

Deep learning-based imputation methods have attracted substantial attention in TSI due to their ability
to model complex nonlinearities and temporal dependencies in time-series. The literature can be
broadly classified into two categories: predictive methods and generative methods (Du, 2023; Du
et al., 2024; Wang et al., 2024).

The predictive methods focus on estimating deterministic values for the missing entries within the
time-series. These methods leverage various neural network architectures to capture nonlinearities
and temporal dependencies, such as RNNs (e.g., DeepAR (Salinas et al., 2020), S4 (Gu et al., 2021),
GRU-D (Che et al., 2018), BRITS (Cao et al., 2018)), CNNs (e.g., TimesNet (Wu et al., 2023)), and
Transformers (e.g., iTransformer (Liu et al., 2024), SAITS (Du et al., 2023)). For example, GRU-
D (Che et al., 2018) introduces a decay mechanism that effectively addresses irregularities arising
from missing values, while TimesNet (Wu et al., 2023) transforms time-series data into an image-like
representation using spectral analysis, allowing the application of vision models for imputation tasks.
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Despite their ability to provide effective imputation, predictive methods are challenged by model
selection amidst incomplete data. Additionally, these models typically require masking of some
observed entries during training to generate labels, which can reduce sample efficiency, reducing
performance especially when the proportion of missing values is high.

The generative methods aim to generate missing values conditionally given observed ones (Chen et al.,
2023; Luo et al., 2018). Notable generative approaches include variational autoencoders (VAEs),
generative adversarial networks (GANs), and diffusion models. For instance, Fortuin et al. (2020)
proposed GP-VAE, a model that integrates a Gaussian process prior with a variational autoencoder
to model incomplete time-series data. Similarly, Miao et al. (2021) introduced US-GAN, which
improves the masking matrix to facilitate the generator during imputation. Tashiro et al. (2021)
proposed CSDI, a diffusion model that employs a conditioned training strategy to guide the imputation
of missing entries. While generative methods offer a more probabilistic framework and can capture
the inherent uncertainty in the imputation process, they are often more computationally intensive
and complex to train, which can present scalability issues. Similar to predictive methods, generative
models also require masking observed entries to construct training labels, leading to reduced sample
efficiency, particularly in cases with a high proportion of missing data.

B BACKGROUND ON DISCRETE OPTIMAL TRANSPORT

This section introduces the foundational concepts and algorithms necessary for computing OT
between discrete measures. Consider a scenario involving n warehouses and m factories, where the
i-th warehouse holds ai units of material and the j-th factory requires bj units of material (Peyré
and Cuturi, 2019). The objective is to establish a mapping from warehouses to factories that: (1)
completely allocates all warehouse materials, (2) fulfills all factory demands, and (3) restricts the
transportation from each warehouse to at most one factory. Each potential mapping is evaluated based
on a global cost, which aggregates the local costs incurred from transporting a unit of material from
warehouse i to factory j.
Definition B.1. The Monge problem for discrete measures, where α =

∑n
i=1 aiδxi

and β =∑m
j=1 bjδxj , seeks a mapping T : {xi}ni=1 → {xj}mj=1 that optimally redistributes the mass from α

to β. Specifically, for each j, it must hold that bj =
∑

i:T(xi)=xj
ai and T♯α = β. The goal is to

minimize the transportation cost, represented by c(x, y), leading to the following formulation:

min
T:T♯α=β

{∑
i

c(xi,T(xi))

}
.

The original Monge formulation does not guarantee the existence or uniqueness of solutions (Peyré
and Cuturi, 2019). Therefore, Kantorovich (Kantorovich, 2006) extended this framework by relaxing
the one-to-one mapping constraint, allowing transportation from a single warehouse to multiple
factories, and reformulated the problem as a linear programming problem.
Definition B.2. The Kantorovich problem for discrete measures α and β defines a cost-minimization
task over feasible transport plans π ∈ Rn×m

+ . The objective is to find a plan that minimizes the
overall transport cost:

W(α, β) := min
π∈Π(α,β)

⟨D, π⟩ ,

Ω(α, β) :=
{
π ∈ Rn×m

+ : π1m = a, πT1n = b
}
,

whereW(α, β) represents the Wasserstein discrepancy between α and β; D denotes the distance
matrix computed using the squared Euclidean metric (Courty et al., 2017), and a, b are vectors
describing the mass distribution in α and β, respectively.

The subsequent research in discrete OT primarily follows two trajectories. The first aims to reduce the
computational complexity of solving OT problems. While exact solutions can be obtained through
linear programming algorithms, these come with cubic complexity in relation to the number of
samples (Bonneel et al., 2011). To address this, various approximate algorithms for acceleration have
been developed, such as the Sinkhorn and sliced OT algorithm (Altschuler et al., 2017) with quadratic
and linear complexity, respectively. The second line of research focuses on modifying the transport
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problem to suit specific applications. Examples include the weak transport problem in domain
adaptation (Chizat et al., 2018), the Schrödinger bridge problem in generative modeling (Marino and
Gerolin, 2020), the Gromov problem in graph matching (Xu et al., 2019), the unbalanced transport
problem in causal inference (Wang et al., 2023), and the adversarial formulation in GANs (Yoon
et al., 2018; Spinelli et al., 2020; Li et al., 2024).

B.1 DERIVATION OF SOLUTION TO PSW PROBLEM

In this subsection, we derive the solution procedure to the PSW problem defined in (2). The solution
procedure generally follows Chapel et al. (2021) but differs in distance and divergence calculation,
so we derive it based on our notations and distances for rigor consideration. Before conducting
concerning derivation, we can first reformulate the KL divergence term DKL (a∥b) ,a ∈ R1×m,b ∈
R1×m as follows for discrete measure:

DKL (a∥b) =
m∑
i=1

dKL (ai∥bi) =

m∑
i=1

[ψ(ai)− ψ(bi)−∇ψ(bi)(ai − bi)], (3)

where ψ(·) is called Bregman potential according to Bonet et al. (2024), and for KL divergence it
is defined as ψ(x) := x log (x) − x. Based on this, it is easy to obtain that ∇ψ(x) = log (x). It
should be pointed out that, based on the property of Bregman divergence, the functional dKL(ai∥bi)
is convex with respect to ai.

On this foundation, we can reformulate the problem (2) as follows:

Pκ := argmin
T≥0

〈
D(F),T

〉
+ κ(DKL(T1m∥∆m) + DKL(T

T1n∥∆n))

=

n∑
i=1

m∑
j=1

D
(F)
i,j Ti,j + κ[

n∑
i=1

dKL(

m∑
j=1

Ti,j∥
1

n
)︸ ︷︷ ︸

:=Term 1

+

m∑
j=1

dKL(

n∑
i=1

Ti,j∥
1

m
)︸ ︷︷ ︸

:=Term 2

]. (4)

To optimize this function within the framework defined by Majorization-Minimization (MM) algo-
rithm, we should first find an upper bound of the objective function Pκ, which is tight at the current
estimation of T. In the context of MM, this upper bound is referred to as ‘auxiliary function’. To this
end, let us denote the current estimation of T as T̃, we can define the following notations:

ãi :=

m∑
j=1

T̃i,j , (5)

b̃j :=

n∑
i=1

T̃i,j , (6)

α̃i,j :=
T̃i,j

ãi
, (7)

β̃i,j :=
T̃i,j

b̃i

, (8)

where (5) and (6) indicates the approximated marginal of ith row and jth column, respectively.

Consequently, based on the fact that function dKL(ai∥bi) is convex with respect to ai, we can obtain
the following inequalities for ‘Term 1’ and ‘Term 2’ of (4) according to the celebrated Jensen’s
inequality:

Term 1 := dKL(

m∑
j=1

Ti,j∥
1

n
) ≤

m∑
j=1

α̃i,jdKL(
Ti,j

α̃i,j
∥1
n
), (9)

Term 2 := dKL(

n∑
i=1

Ti,j∥
1

m
) ≤

n∑
i=1

β̃i,jdKL(
Ti,j

β̃i,j

∥ 1
m
), (10)
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Algorithm 1 Majorization-Minimization algorithm for the PSW problem.

Input: D(F): the cost matrix for transporting mass.
Parameters: κ: the matching strength; ℓmax: the max iterations.
Output: Pκ: the Proximal Spectral Wasserstein discrepancy.

1: Initialize T(0) with feasible starting values.
2: Define ∆n = 1

n1n, ∆m = 1
m1m.

3: while ℓ < ℓmax do
4: Calculate row and column sums r = T(ℓ)1m, c =

(
T(ℓ)

)T
1n.

5: Update T(ℓ+1) using MM updates:

6: T(ℓ+1) ← diag(e
−D(F)+κ(log ∆m−log r)

κ )T(ℓ) diag(e
κ(log ∆n−log c)

κ )
7: Check convergence criteria; if met, break.
8: ℓ← ℓ+ 1.
9: Pκ ←

〈
D(F),T(ℓ)

〉
+ κ

(
DKL(T

(ℓ)1m∥∆n) + DKL(T
(ℓ),⊤1n∥∆m)

)
.

Algorithm 2 The imputation workflow of PSW-I.

Input: X(obs): the incomplete data; M: the mask matrix.
Parameter: κ: the matching strength; ε the entropic regularization strength; ℓmax: the max number
of iterations to solve PSW; Tmax: the max number of epochs; B: the batch size; η: the update rate.
Output: X(imp): the imputed dataset.

1: t← 0.
2: Xt ← Pre-Impute(X(obs))
3: while t < Tmax do
4: α, β,Mα,Mβ ← Sample(Xt,M; B).
5: α(F) ← F(α), β(F) ← F(β)
6: D

(F)
ij = ∥α(F)

i − β(F)
j ∥1, 1 ≤ i, j ≤ B

7: P ← Algorithm1(D(F); ε, κ, ℓmax).
8: α′ ← α− η∇αP ⊙M.
9: β′ ← β − η∇βP ⊙M.

10: Xt+1 ← Update(α′, β′,Xt).
11: t← t+ 1.
12: if

∥∥Xt −Xt−1
∥∥
F
< 1e−4 then

13: break.
14: X(imp) ← Xt.

where the equality can be realized when T = T̃. And thus, the auxiliary function Qκ can be induced
based on (4) as follows:

Pκ ≤ Qκ :=

n∑
i=1

m∑
j=1

{
D

(F)
i,j Ti,j + κ[α̃i,jdKL(

Ti,j

α̃i,j
∥1
n
) + β̃i,jdKL(

Ti,j

β̃i,j

∥ 1
m
)]

}
. (11)

Finally, take the gradient of Qκ with respect to Ti,j , and set the derivative as 0, we can get the
following equation:

∇Ti,j
Qκ = D

(F)
i,j + κ[log

Ti,jn

α̃i,j
+ 1 + log

Ti,jm

β̃i,j
+ 1] = 0. (12)

Based on this, we can get the solution to T in the matrix form as follows:

T = diag(e
−D(F)+κ(log ∆m−log r)

κ )T̃diag(e
κ(log ∆n−log c)

κ ), (13)

and consequently, the line 6 of Algorithm 1 can be obtained.
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C THEORETICAL ANALYSIS

C.1 THEORETICAL JUSTIFICATIONS

Theorem C.1 (Metric Properties). PSW defines a valid divergence on the space of probability
measures over time series. For any probability measures α, β ∈ RT , PSW satisfies:

(i) Non-negativity: P(α, β) ≥ 0,

(ii) Identity of Indiscernibles: P(α, β) = 0 if and only if α = β,

(iii) Symmetry: P(α, β) = P(β, α).

Moreover, when κ = 0, PSW satisfies the triangle inequality and thus constitutes a metric.

Proof. The proof proceeds by verifying each of the four metric properties for the PSW discrepancy
P(α, β).
Non-Negativity: The PSW discrepancy is defined via an optimal transport formulation incorporating
the spectral distance metric dspectral, the transport strategy, and a selective matching regularizer.
All these components are non-negative. Consequently, P(α, β), being the infimum of a sum of
non-negative terms, satisfies P(α, β) ≥ 0.

Identity of Indiscernibles: If α = β, the optimal coupling γ is the identity coupling, and
dspectral(αi, βj) = 0 for all αi, βj in the support of α. The selective mass regularizer contributes zero
or a minimal constant that can be canceled based on its formulation. Thus, P(α, β) = 0. Conversely,
if P(α, β) = 0, the spectral distance metric dspectral(x, y) must vanish almost surely under the
optimal coupling γ. Assuming the Discrete Fourier Transform (DFT) is injective for sufficiently rich
and non-degenerate time series, this implies x = y almost everywhere, leading to α = β.

Symmetry: The spectral distance metric satisfies dspectral(x, y) = dspectral(y, x). Therefore, swap-
ping α and β does not change P(α, β). Moreover, transposing γ does not change the value of
selective mass regularizer, which immediately follows from the common assumption that the sample
masses are uniformly distributed in each distribution, ensuring P(α, β) = P(β, α).
Triangle Inequality (when κ = 0): Consider three probability distributions α, β, and ξ. Let
γα,β ∈ γ(α, β) and γβ,ξ ∈ γ(β, ξ) be the optimal couplings that minimize P(α, β) and P(β, ξ),
respectively. Utilizing the concept of transitivity in optimal transport, define the coupling γα,ξ by

γα,ξ(x, z) =

∫
γα,β(x, y)γβ,ξ(y, z) dy.

Next, we compare the PSW discrepancy between α and ξ with the discrepancy based on γα,ξ:

P(α, ξ) ≤
∫
dspectral(x, z) dγα,ξ(x, z).

Substituting the expression for γα,ξ, we have:

P(α, ξ) ≤
∫
dspectral(x, z)

(∫
γα,β(x, y)γβ,ξ(y, z) dy

)
dx dz.

Applying Fubini’s theorem to interchange the order of integration, the above expression becomes:

P(α, ξ) ≤
∫ (∫

dspectral(x, z)γβ,ξ(y, z) dz

)
γα,β(x, y) dy dx.

By the triangle inequality property of the spectral distance metric dspectral, we have:

dspectral(x, z) ≤ dspectral(x, y) + dspectral(y, z).

Substituting this into the integral, we obtain:

P(α, ξ) ≤
∫

(dspectral(x, y) + dspectral(y, z)) γα,β(x, y)γβ,ξ(y, z) dy dx dz.
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This expression can be separated into two distinct integrals:

P(α, ξ) ≤
∫
dspectral(x, y)γα,β(x, y) dy dx+

∫
dspectral(y, z)γβ,ξ(y, z) dy dz.

Recognizing that the first integral corresponds to P(α, β) and the second to P(β, ξ), we have:

P(α, ξ) ≤ P(α, β) + P(β, ξ).

Thus, P satisfies the triangle inequality when κ = 0.

Theorem C.2 (Robustness of PSW to Outlier modes). Suppose that α̃ = ζδz + (1 − ζ)α is a
distribution disturbed by a Dirac mode at z with relative mass ζ ∈ (0, 1). We have:

Pκ(α̃, β) ≤ (1− ζ)Pκ(α, β) + 2κζ(1− e−d(z)/2κ).

where d(z) =
〈
D(F)(z, β),∆m

〉
is the average distance of z and samples in β.

Proof. This theorem builds upon the foundation of Lemma 1.1 by Fatras et al. (2021) and extends its
applicability to our proximal spectrum wasserstein discrepancy. Let T∗ be the optimum transport
plan associated with Pκ(α, β) in (2). For the disturbed distribution α̃, suppose the transport plan
is T̃∗ = (1 − ζ)T∗ + ζδz × β, where ϕ is a parameter to be optimized. The marginals of T̃∗ are
respective T̃∗

1 = (1− ζ)T∗
1 + ζϕδz and T̃∗

2 = (1− ζ)T∗
2 + ζϕβ. The KL divergence of them to α

and β satisfies
DKL(T̃

∗
1∥α̃) ≤ (1− ζ)DKL(T

∗
1∥α) + ζDKL(ϕδz∥δz)

DKL(T̃
∗
2∥β) ≤ (1− ζ)DKL(T

∗
2∥β) + ζDKL(ϕβ∥β)

which immediately follows from the joint convexity of KL divergence. Therefore, we have:

Pκ(α̃, β) ≤ (1− ζ)

Pκ(α,β)︷ ︸︸ ︷〈
D(F),T∗

〉
+ κDKL(T

∗
1∥α) + κDKL(T

∗
2∥β)

+ ζ

e(ϕ)︷ ︸︸ ︷[
ϕ
〈
D(F)(z, β),∆m

〉
+DKL(ϕδz∥δz) + DKL(ϕβ∥β)

]
,

where d(z) =
〈
D(F)(z, β),∆m

〉
can be viewed as the average from the distance of z and samples in

β. According to the first order condition, the term e(ϕ) achieves the minimum when ϕ = e−d(z)/2κ.
Substituting it into the above inequality, we have:

Pκ(α̃, β) ≤ (1− ζ)Pκ(α, β) + 2κζ(1− e−d(z)/2κ).

Theorem C.3 (Convergence of the PSW-I Framework). Let the step size η satisfy 0 < η < 2
L .

Assuming the PSW discrepancy P(α, β) has a Lipschitz continuous gradient with Lipschitz constant
L > 0, then the iterative minimization process of PSW-I converges almost surely to the minimizer
(α∗, β∗) of P(α, β). Specifically,

lim
k→∞

θk = θ∗ almost surely,

where θk = (αk, βk) and θ∗ = (α∗, β∗).

Proof. The result immediately follows from the convergence properties of gradient descent applied
to convex functions. Assume that P(α, β) is convex and possesses a Lipschitz continuous gradient
with constant L > 0. Choose the step size η such that 0 < η < 2

L .

The gradient descent updates are given by

αk+1 = αk − η∇αP(αk, βk), βk+1 = βk − η∇βP(αk, βk).
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Under the chosen step size, these updates ensure that the sequence (αk, βk) converges to the optimal
solution (α∗, β∗) of P(α, β) almost surely. This result is guaranteed by the standard convergence
theorem for gradient descent on convex functions with Lipschitz continuous gradients. Consequently,

lim
k→∞

θk = θ∗ almost surely.

Theorem C.4 (Error Bounds of PSW-I). Suppose θk = (αk, βk) is the imputation values at the k-th
iteration, and θ∗ = (α∗, β∗) be the optimum imputation values that minimizes P(α, β). Assume that
P satisfies the following regularity conditions:

1. Convexity: P(θ) is convex with respect to (θ), which naturally holds since it is an composition of
affine functions and 1-norms.

2. Smoothness: P(θ) has Lipschitz continuous gradients with Lipschitz constant L > 0, i.e.,

∥∇θP(θk)−∇θP(θk+1)∥ ≤ L∥θk+1 − θk∥,

3. Initialization Proximity: The initial distributions satisfy ∥θ0 − θ∗∥ ≤ ϵ for some constant ϵ > 0.

Under these conditions, for all iterations K ≥ 0, the PSW-I framework ensures:

P(αk, βk)− P(α∗, β∗) ≤ 1

2ηK
ϵ2.

Proof. Given that P(α, β) is convex with respect to (α, β) and has L-Lipschitz continuous gradients,
we can follow the standard steps for deriving the error bound for optimizations.

Suppose θk = (αk, βk) is the imputation values at the k-th iteration, and θ∗ = (α∗, β∗) be the
optimum imputation values that minimizes P(α, β). Consider the iterative update rules of the PSW-I
framework using gradient descent:

θk+1 = θk − η∇θP(θk),

For a L-Lipschitz convex function P , we have

P(θk+1) ≤ P(θk) +∇θP(θk)(θk+1 − θk) +
L

2
∥θk+1 − θk∥2

= P(θk)− η∥∇θP(θk)∥2 +
Lη2

2
∥∇θP(θk)∥2

= P(θk)− η(1−
Lη

2
)∥∇θP(θk)∥2

≤ P(θk)−
η

2
∥∇θP(θk)∥2

≤ P(θ∗) +∇θP(θk)(θk − θ∗)−
η

2
∥∇θP(θk)∥2

= P(θ∗) + 1

2η
∥θk − θ∗∥2 −

1

2η
∥θk − θ∗∥2 +∇θP(θk)(θk − θ∗)−

η

2
∥∇θP(θk)∥2

= P(θ∗) + 1

2η
∥θk − θ∗∥2 −

1

2η
∥θk − θ∗ − η∇θP(θk)∥2

= P(θ∗) + 1

2η
(∥θk − θ∗∥2 − ∥θk+1 − θ∗∥2),

(14)
where the first line is a well-known property of Lipschitz convex functions; the second line incorpo-
rates the update rules of the gradient descent, the fourth line holds as we set η ≤ 1

L which makes

−η + Lη2

2 ≤ −
η
2 .

Summing up the inequality above with k = 0, 1, ...,K:
K∑

k=1

P(θk)−KP(θ∗) ≤ 1

2η
(∥θ0 − θ∗)∥2 − ∥θk − θ∗∥2) ≤

1

2η
∥θ0 − θ∗∥2.
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According to the 4-th line of (14), we have P(θk+1) ≤ P(θk) ≤ ... ≤ P(θ0). Therefore, KP(θK) ≤∑K
k=1 P(θk) holds, which immediately follows by

KP(θK)−KP(θ∗) ≤
K∑

k=1

P(θk)−KP(θ∗) ≤ 1

2η
∥θ0 − θ∗∥2 ≤

1

2η
ϵ2.

Therefore, we have:

P(θK)− P(θ∗) ≤
1

2ηK
ϵ2.

Definition C.5 (DFT). Let x = [x0, x1, . . . , xT−1] denote a T-length sequence, the DFT of x is a
T-length sequence with the k-th component defined as:

x
(F)
k =

T−1∑
t=0

xte
−j2πkt/T = [x0, ..,xT−1] ·


W

(F)
0,k

W
(F)
1,k

W
(F)
n−1,k


where j is the imaginary unit, W(F)

t,k := e−j2πkt/T. On the basis, the DFT sequence x(F) =

[x
(F)
0 , ..,x

(F)
T−1] can be calculated as:

x(F) = [x0, ..,xn−1] ·


W

(F)
0,0 W

(F)
0,1 · · · W

(F)
0,T−1

W
(F)
1,0 W

(F)
1,1 · · · W

(F)
1,T−1

...
...

. . .
...

W
(F)
T−1,0 W

(F)
T−1,1 · · · W

(F)
T−1,T−1

 = x ·W(F)

where W(F) is defined as the DFT matrix.

Theorem C.6 (Gradient calculation). The gradients of the PSW discrepancy with respect to α and β
can be expressed as

∂P
∂αi

=

m∑
j=1

Ti,jW
(F) · sign(ei,j)⊤,

∂P
∂βj

= −
n∑

i=1

Ti,jW
(F) · sign(ei,j)⊤.

Proof. After acquiring the optimum transport matrix, denoted as T, by solving the optimization
problem in (2), the PSW is calculated as

P(α, β) :=
〈
D(F),T

〉
+ κ

(
DKL(T1m∥∆n) + DKL(T

T1n∥∆m)
)

which depends on α and β through the distance matrix D
(F)
i,j = ∥α(F)

i −β
(F)
j ∥1 = ∥(αi−βj)W(F)∥1,

where W(F) is the DFT matrix in Definition C.5. Using the chain rule, we have:

∂P
∂αi

=

m∑
j=1

∂P
∂D

(F)
i,j

∂D
(F)
i,j

∂αi
=

m∑
j=1

Ti,j

∂D
(F)
i,j

∂αi
=

m∑
j=1

Ti,jW
(F) · sign(ei,j)⊤,

∂P
∂βj

=

n∑
i=1

∂P
∂D

(F)
i,j

∂D
(F )
i,j

∂βj
=

n∑
i=1

Ti,j

∂D
(F)
i,j

∂βj
= −

n∑
i=1

Ti,jW
(F) · sign(ei,j)⊤.

where ei,j = (αi − βj)W(F) ∈ RT, T is the sequence length. Suppose ei,j,k denotes the k-th

element of ei,j , we detail the derivation of
∂D

(F)
i,j

∂αi
and

∂D
(F)
i,j

∂βj
as follows:
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∂D
(F)
i,j

∂αi
=

∑
k

∂D
(F)
i,j

ei,j,k

∂ei,j,k
∂αi

=
∑
k

sign(ei,j,k)
∂ei,j,k
∂αi

=
∑
k

sign(ei,j,k)W
(F)
:,k = [W

(F)
:,0 , ...,W

(F)
:,n−1][sign(ei,j,0), ..., sign(ei,j,n−1)]

⊤

= W(F)sign(ei,j)
⊤.

∂D
(F)
i,j

∂βj
=

∑
k

∂D
(F)
i,j

ei,j,k

∂ei,j,k
∂αi

=
∑
k

sign(ei,j,k)
∂ei,j,k
∂βj

= −
∑
k

sign(ei,j,k)W
(F)
:,k = −[W(F)

:,0 , ...,W
(F)
:,n−1][sign(ei,j,0), ..., sign(ei,j,n−1)]

⊤

= −W(F)sign(ei,j)
⊤.

D ADDITIONAL EXPERIMENTS

D.1 RESULTS WITH NOISE INTERFERENCE

In this section, we analyze the performance of imputation methods with noise interference and
propose an extension of PSW-I to counteract it. Specifically, we introduce Gaussian noise to the
observed data in frequency components above 100 while keeping the test data clean. As shown in
Table 5, most models experience a performance decline.

Nevertheless, we observe that noise primarily resides in the high-frequency components, whereas the
essential semantic information is contained in the low-frequency regions. By applying a low-pass
filter before calculating the spectrum distance between patches, we can attenuate the noise while
preserving the critical semantic information. Based on this approach, we propose PSW-I+, which
applies a low-pass filter with a cutoff frequency of 20 prior to computing PSW. Experimental results
demonstrate that PSW-I+ consistently outperforms PSW across all cases. However, the improvement
at this stage is modest, potentially because the benefits of noise reduction are offset by the loss
of semantic information in the high frequencies. Further performance enhancements may entail
optimizing the low-pass filter, particularly the cutoff frequency.

D.2 RUNNING TIME ANALYSIS

In this section, we analyze the computational demands of the proposed PSW-I method. We delve into
the time required for each update, specifically the time to execute Algorithm 1 to calculate the PSW
distance. Results are detailed in Fig. 6 and delineated below.

• Increasing B from 64 to 512, while keeping T = 8, leads to a predictable increase in running time.
This is due to the enlargement of the transport matrix (T), which escalates the complexity of the
optimization problem. Nevertheless, the running time remains manageable, with durations near
1.2 seconds even at the largest batch size of 512. Therefore, while larger batch sizes do increase
computational load, they do not significantly impede practical application.

• Holding B = 128, we observe a direct, but modest, positive correlation between (T) and running
time. Nevertheless, an increase in T does not alter the size of the transport matrix which is primarily
influenced by B. Therefore, the impact of T on the computation cost is relatively minor.
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Table 5: Imputation performance in terms of MSE and MAE on 5 datasets under noisy setting.

Datasets
ETTh1 ETTh2 ETTm1 ETTm2 Illness

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DLinear 0.172 0.27 0.109 0.233 0.105 0.222 0.079 0.197 0.25 0.298

TimesNet 0.23 0.338 0.121 0.251 0.064 0.175 0.07 0.188 0.299 0.322

FreTS 0.197 0.319 0.108 0.227 0.051 0.152 0.039 0.135 0.306 0.36

PatchTST 0.182 0.278 0.14 0.271 0.053 0.154 0.045 0.147 0.91 0.584

SCINet 0.178 0.285 0.123 0.247 0.069 0.178 0.061 0.170 1.147 0.711

iTransformer 0.182 0.275 0.100 0.211 0.053 0.151 0.036 0.128 0.429 0.355

SAITS 0.217 0.304 0.194 0.259 0.057 0.154 0.047 0.135 0.264 0.273

CSDI 0.222 0.322 0.154 0.243 0.052 0.135 0.117 0.123 0.335 0.419

Sinkhorn 1.002 0.754 1.009 0.752 1.004 0.755 0.996 0.749 1.034 0.721

TDM 1.018 0.753 1.007 0.75 1.003 0.755 0.995 0.748 1.018 0.711

PSW-I 0.169 0.257 0.051 0.145 0.049 0.131 0.023 0.092 0.111 0.157

PSW-I+ 0.168 0.247 0.047 0.144 0.048 0.129 0.022 0.089 0.11 0.153

Kindly Note: Each entry represents the average results at four missing ratios: 0.1, 0.3, 0.5, and 0.7.
The best and second-best results are bolded and underlined, respectively.
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Figure 6: Running time of each epoch of PSW-I in relation to batch size (B), patch length (T) and
matching strength (κ). Each color indicates a distinct maximum of iterations. The colored lines
indicate the mean values of 100 trials, with the shadowed areas representing 99.9% confidence
intervals.
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• An interesting observation is the effect of varying κ. As κ decreases, the running time increases.
This trend likely arises from the complexity of achieving a more flexible transport strategy, which
requires more iterations to reach a plateau.

D.3 FULL RESULTS

Table 6 presents a comprehensive comparison of PSW-I’s performance against baseline methods
across various missing ratios: 0.1, 0.3, 0.5, and 0.7. The standard deviation from 5 random seeds is
presented in Table 7.

• Effectiveness of Existing TSI Methods. The results highlight the strong performance of exist-
ing time-series imputation (TSI) methods. Notably, fundamental models such as iTransformer
and SCINet demonstrate exceptional results, particularly iTransformer, which excels across a
broader range of missing ratios. SAITS also showcases remarkable performance in specific cases,
particularly in the ETTm1 and Electricity datasets. These models adeptly capture and leverage
temporal patterns for effective imputation. Specialized TSI methods, including SAITS and CSDI,
achieve competitive results, with each securing the top performance among baselines in 4 out
of 20 scenarios. Despite their suboptimal structures for temporal pattern capture, these methods,
particularly through mechanisms like CSDI’s conditional generation strategy, effectively elevate
performance to levels comparable to advanced fundamental models.

• Limitations of Alignment-Based Methods in TSI. In contrast, alignment-based methods such as
Sinkhorn and TDM show strong performance in non-temporal contexts (Zhao et al., 2023), yet they
fall short in TSI applications. Their significantly lower performance relative to leading TSI methods
stems from their inability to adequately capture the temporal patterns inherent in time-series data
and their susceptibility to non-stationarity due to the inherent i.i.d. assumption (Muzellec et al.,
2020). This limitation leads to suboptimal imputation results.

• Superiority of the Proposed PSW-I Method. The PSW-I method effectively addresses the
shortcomings of alignment-based approaches, adapting them to the TSI context with remarkable
success. It captures temporal patterns and accommodates non-stationarity, yielding substantial
performance enhancements. Additionally, PSW-I retains the benefits of alignment-based methods,
eliminating the need for masking observed entries during training or training parametric models on
incomplete data. This distinction positions PSW-I as a compelling alternative to prevailing TSI
methods. Overall, PSW-I achieves the best performance across all 10 datasets, often surpassing the
best baseline methods by significant margins (e.g., on PEMS03), underscoring its effectiveness in
real-world applications.

D.4 PARAMETER SENSITIVITY ANALYSIS

In this section, we examine the impact of critical hyperparameters on the performance of PSW-I
on Electricity, ETTh1, ETTh2, Illness. The results are presented in Figures 8 and 7. The primary
observations are summarized as follows:

• The patch length (T) significantly influences the scale of temporal patterns captured by the Pairwise
Spectrum Distance (PSD). When T is reduced to 1, the model effectively degrades to naive
alignment-based models (Muzellec et al., 2020), which fail to account for temporal patterns.
Increasing T to 24 leads to substantial performance improvements, emphasizing the importance
of capturing temporal dynamics for time-series imputation (TSI). However, further increasing T
beyond 24 results in performance deterioration, likely due to the curse of dimensionality affecting
the Wasserstein discrepancy, which reduces its effectiveness in high-dimensional spaces (Chizat
et al., 2020).

• The matching strength (κ) governs the flexibility of mass matching in Selective Matching Regular-
ization (SMR). As κ decreases, the model demonstrates enhanced robustness to non-stationarity.
The consistent performance gains highlight the importance of accommodating non-stationarity for
TSI and the efficacy of SMR.

• The batch size (B) determines the scale of the optimization problem when calculating PSW
discrepancy. Overall, model performance shows limited sensitivity to batch size in scenarios with
low missing ratios. However, in cases with high missing ratios, a smaller batch size proves beneficial,
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Table 6: Full results on the time series imputation task with missing ratios: 0.1, 0.3, 0.5, 0.7. The
length of history window is set to 96 for all baselines. Avg. indicates the results averaged over missing
ratios.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather Illness Exchange PEMS03

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Tr
an

sf
or

m
er 0.1 0.096 0.223 0.164 0.193 0.027 0.119 0.017 0.088 0.101 0.209 0.188 0.184 0.161 0.109 0.135 0.232 0.122 0.102 0.06 0.158

0.3 0.116 0.244 0.157 0.288 0.042 0.13 0.033 0.129 0.108 0.215 0.199 0.192 0.19 0.129 0.216 0.271 0.137 0.113 0.063 0.159
0.5 0.249 0.359 0.25 0.36 0.069 0.173 0.032 0.122 0.12 0.229 0.237 0.239 0.192 0.129 0.292 0.336 0.261 0.215 0.079 0.179
0.7 0.426 0.461 0.313 0.405 0.1 0.219 0.08 0.199 0.149 0.26 0.239 0.242 0.236 0.16 0.316 0.362 0.378 0.313 0.121 0.239

avg 0.222 0.322 0.221 0.312 0.06 0.16 0.041 0.134 0.12 0.228 0.216 0.214 0.195 0.132 0.24 0.3 0.224 0.186 0.081 0.184

D
L

in
ea

r 0.1 0.088 0.213 0.073 0.201 0.067 0.182 0.053 0.163 0.101 0.237 0.244 0.269 0.251 0.17 0.121 0.18 0.225 0.189 0.108 0.259
0.3 0.117 0.242 0.081 0.202 0.083 0.201 0.07 0.188 0.125 0.262 0.253 0.277 0.276 0.187 0.149 0.243 0.246 0.201 0.113 0.267
0.5 0.148 0.272 0.117 0.24 0.11 0.229 0.089 0.206 0.142 0.274 0.249 0.268 0.271 0.182 0.284 0.323 0.252 0.208 0.114 0.259
0.7 0.225 0.341 0.159 0.283 0.152 0.27 0.125 0.248 0.181 0.31 0.257 0.273 0.296 0.2 0.286 0.346 0.323 0.267 0.114 0.258

avg 0.144 0.267 0.108 0.231 0.103 0.221 0.084 0.201 0.137 0.271 0.251 0.272 0.274 0.185 0.21 0.273 0.261 0.216 0.112 0.261

Ti
m

es
N

et 0.1 0.173 0.291 0.084 0.214 0.032 0.127 0.031 0.135 0.1 0.226 0.159 0.217 0.251 0.17 0.084 0.185 0.238 0.2 0.057 0.168
0.3 0.154 0.291 0.154 0.284 0.043 0.147 0.053 0.17 0.114 0.239 0.175 0.225 0.252 0.17 0.31 0.311 0.296 0.243 0.06 0.167
0.5 0.163 0.297 0.126 0.26 0.061 0.179 0.072 0.197 0.124 0.249 0.205 0.246 0.272 0.183 0.278 0.304 0.343 0.283 0.077 0.194
0.7 0.523 0.532 0.168 0.295 0.11 0.238 0.114 0.243 0.18 0.302 0.266 0.283 0.344 0.233 0.252 0.306 0.401 0.332 0.109 0.23

avg 0.253 0.353 0.133 0.263 0.061 0.173 0.068 0.186 0.129 0.254 0.201 0.243 0.28 0.189 0.231 0.277 0.319 0.264 0.076 0.19

Fr
eT

S

0.1 0.127 0.256 0.18 0.271 0.053 0.16 0.041 0.143 0.135 0.27 0.23 0.275 0.168 0.114 0.092 0.186 0.233 0.196 0.126 0.283
0.3 0.145 0.282 0.091 0.211 0.043 0.141 0.034 0.126 0.133 0.263 0.229 0.27 0.169 0.114 0.196 0.294 0.221 0.181 0.097 0.239
0.5 0.229 0.358 0.141 0.261 0.048 0.149 0.037 0.134 0.168 0.292 0.236 0.27 0.174 0.117 0.295 0.349 0.256 0.211 0.116 0.259
0.7 0.236 0.351 0.176 0.294 0.074 0.187 0.042 0.137 0.185 0.315 0.241 0.267 0.2 0.135 0.532 0.472 0.201 0.166 0.097 0.227

avg 0.184 0.312 0.147 0.259 0.055 0.159 0.039 0.135 0.155 0.285 0.234 0.27 0.178 0.12 0.278 0.325 0.228 0.189 0.109 0.252

Pa
tc

hT
ST

0.1 0.118 0.247 0.102 0.237 0.044 0.152 0.029 0.124 0.099 0.224 0.223 0.228 0.241 0.164 0.115 0.217 0.299 0.252 0.054 0.165
0.3 0.133 0.264 0.116 0.251 0.044 0.137 0.024 0.106 0.116 0.243 0.228 0.233 0.232 0.157 0.321 0.443 0.196 0.161 0.056 0.164
0.5 0.153 0.284 0.137 0.269 0.046 0.139 0.029 0.116 0.136 0.259 0.235 0.24 0.182 0.122 1.045 0.695 0.204 0.169 0.093 0.224
0.7 0.278 0.392 0.15 0.275 0.064 0.166 0.036 0.127 0.203 0.32 0.253 0.249 0.332 0.224 0.942 0.663 0.25 0.206 0.059 0.163

avg 0.171 0.297 0.126 0.258 0.05 0.149 0.03 0.118 0.138 0.262 0.235 0.238 0.247 0.167 0.605 0.505 0.237 0.197 0.065 0.179

SC
IN

et

0.1 0.085 0.209 0.084 0.21 0.039 0.136 0.029 0.121 0.084 0.198 0.297 0.329 0.178 0.12 0.135 0.136 0.261 0.219 0.099 0.244
0.3 0.121 0.249 0.085 0.208 0.053 0.16 0.057 0.173 0.129 0.247 0.249 0.295 0.206 0.139 0.335 0.438 0.281 0.231 0.1 0.241
0.5 0.169 0.3 0.176 0.285 0.062 0.173 0.077 0.206 0.139 0.253 0.303 0.328 0.178 0.12 1.128 0.7 0.28 0.231 0.113 0.257
0.7 0.22 0.341 0.168 0.29 0.113 0.234 0.093 0.216 0.15 0.259 0.309 0.304 0.229 0.165 0.87 0.617 0.371 0.307 0.111 0.252

avg 0.149 0.275 0.128 0.248 0.067 0.176 0.064 0.179 0.125 0.239 0.29 0.314 0.198 0.136 0.617 0.473 0.298 0.247 0.106 0.249

iT
ra

ns
fo

rm
er 0.1 0.101 0.219 0.069 0.175 0.044 0.141 0.028 0.113 0.084 0.209 0.178 0.23 0.131 0.089 0.131 0.215 0.042 0.036 0.058 0.171

0.3 0.141 0.263 0.087 0.197 0.044 0.137 0.024 0.104 0.106 0.234 0.221 0.249 0.162 0.109 0.375 0.317 0.057 0.048 0.07 0.191
0.5 0.168 0.289 0.095 0.21 0.054 0.154 0.029 0.117 0.144 0.267 0.271 0.279 0.208 0.14 0.356 0.333 0.058 0.045 0.088 0.216
0.7 0.244 0.353 0.155 0.263 0.082 0.191 0.057 0.167 0.177 0.295 0.34 0.319 0.252 0.17 0.403 0.376 0.116 0.095 0.103 0.233

avg 0.163 0.281 0.101 0.211 0.056 0.156 0.034 0.125 0.128 0.251 0.252 0.269 0.188 0.127 0.316 0.31 0.068 0.056 0.08 0.203

SA
IT

S

0.1 0.119 0.226 0.109 0.191 0.027 0.109 0.021 0.088 0.1 0.202 0.217 0.207 0.099 0.067 0.078 0.154 1.003 0.843 0.078 0.191
0.3 0.173 0.276 0.151 0.227 0.04 0.131 0.029 0.109 0.106 0.208 0.22 0.204 0.131 0.089 0.122 0.178 1.003 0.823 0.083 0.19
0.5 0.229 0.321 0.184 0.264 0.064 0.169 0.057 0.156 0.115 0.215 0.225 0.205 0.138 0.093 0.245 0.273 1.007 0.831 0.084 0.188
0.7 0.343 0.395 0.287 0.341 0.094 0.207 0.061 0.164 0.137 0.237 0.234 0.21 0.159 0.107 0.223 0.261 1.006 0.833 0.085 0.187

avg 0.216 0.305 0.183 0.256 0.056 0.154 0.042 0.129 0.114 0.216 0.224 0.207 0.132 0.089 0.167 0.216 1.005 0.833 0.083 0.189

C
SD

I

0.1 0.098 0.223 0.087 0.25 0.043 0.14 0.263 0.074 0.174 0.188 0.278 0.316 0.099 0.067 0.092 0.186 0.049 0.041 0.045 0.141
0.3 0.132 0.246 0.092 0.258 0.051 0.15 0.049 0.076 0.5 0.235 0.282 0.288 0.101 0.068 0.475 0.417 0.085 0.069 0.301 0.225
0.5 0.161 0.293 0.096 0.269 0.059 0.139 0.186 0.126 0.602 0.293 0.323 0.342 0.21 0.141 0.506 0.444 0.125 0.139 0.051 0.148
0.7 0.213 0.312 0.117 0.273 0.252 0.277 0.136 0.174 0.855 0.359 0.342 0.351 0.224 0.152 0.351 0.487 0.143 0.161 0.063 0.167

avg 0.151 0.269 0.098 0.263 0.101 0.177 0.158 0.113 0.533 0.269 0.306 0.324 0.158 0.107 0.356 0.384 0.1 0.103 0.115 0.17

Si
nk

ho
rn 0.1 0.758 0.585 0.712 0.55 0.885 0.67 0.846 0.642 0.974 0.816 0.982 0.729 0.677 0.562 0.422 0.299 0.641 0.539 0.941 0.843

0.3 0.878 0.643 0.761 0.575 0.921 0.689 0.874 0.66 0.984 0.819 1.012 0.729 0.738 0.653 0.577 0.358 0.684 0.561 0.96 0.851
0.5 0.91 0.669 0.82 0.614 0.95 0.708 0.905 0.678 0.992 0.823 1.05 0.729 0.819 0.722 0.557 0.395 0.74 0.611 0.978 0.86
0.7 0.962 0.701 0.934 0.673 0.979 0.725 0.948 0.702 0.997 0.825 1.001 0.729 0.939 0.751 0.64 0.476 0.826 0.684 0.992 0.867

avg 0.877 0.65 0.807 0.603 0.934 0.698 0.893 0.67 0.986 0.821 1.012 0.729 0.793 0.672 0.549 0.382 0.723 0.599 0.968 0.855

T
D

M

0.1 0.941 0.722 0.932 0.71 0.994 0.748 0.971 0.731 0.898 0.775 0.913 0.68 0.692 0.583 0.763 0.552 0.886 0.745 0.87 0.8
0.3 1.006 0.75 0.958 0.725 0.997 0.751 0.985 0.742 0.93 0.79 0.943 0.694 0.98 0.661 0.887 0.601 0.926 0.76 0.915 0.823
0.5 0.993 0.749 0.978 0.738 1.002 0.754 0.995 0.746 0.954 0.801 0.961 0.704 0.823 0.712 0.862 0.622 0.957 0.79 0.946 0.838
0.7 0.989 0.749 1.017 0.751 1.004 0.757 1.001 0.749 0.975 0.812 0.976 0.713 0.965 0.798 0.852 0.651 0.981 0.812 0.969 0.851

avg 0.982 0.742 0.971 0.731 0.999 0.752 0.988 0.742 0.939 0.795 0.948 0.698 0.865 0.689 0.841 0.607 0.938 0.776 0.925 0.828

PW
S-

I(
O

ur
s) 0.1 0.079 0.188 0.035 0.124 0.034 0.112 0.016 0.083 0.073 0.177 0.152 0.175 0.092 0.062 0.029 0.086 0.026 0.022 0.044 0.142

0.3 0.105 0.213 0.041 0.133 0.04 0.12 0.018 0.088 0.089 0.196 0.173 0.186 0.098 0.066 0.056 0.109 0.028 0.023 0.046 0.146
0.5 0.125 0.234 0.047 0.145 0.048 0.133 0.021 0.096 0.115 0.22 0.205 0.204 0.107 0.072 0.07 0.124 0.032 0.026 0.049 0.15
0.7 0.194 0.289 0.059 0.165 0.066 0.158 0.029 0.11 0.148 0.239 0.26 0.237 0.131 0.088 0.114 0.17 0.039 0.033 0.056 0.159

avg 0.126 0.231 0.046 0.142 0.047 0.131 0.021 0.094 0.106 0.208 0.197 0.199 0.107 0.072 0.067 0.122 0.031 0.026 0.049 0.149
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Table 7: The standard deviation of Table 6.
Datasets ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather Illness Exchange PEMS03

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Tr
an

sf
or

m
er 0.1 0.0 0.004 0.008 0.008 0.009 0.005 0.007 0.005 0.004 0.005 0.009 0.009 0.01 0.008 0.0 0.004 0.004 0.004 0.002 0.001

0.3 0.003 0.005 0.002 0.003 0.003 0.008 0.007 0.005 0.003 0.001 0.008 0.004 0.003 0.008 0.006 0.008 0.0 0.002 0.001 0.0
0.5 0.007 0.005 0.007 0.008 0.009 0.005 0.008 0.008 0.006 0.003 0.0 0.009 0.009 0.003 0.005 0.007 0.009 0.003 0.007 0.003
0.7 0.005 0.002 0.004 0.0 0.007 0.008 0.002 0.007 0.002 0.0 0.001 0.002 0.007 0.007 0.006 0.001 0.006 0.0 0.003 0.002

avg 0.004 0.004 0.005 0.005 0.007 0.007 0.006 0.006 0.004 0.002 0.005 0.006 0.005 0.006 0.004 0.005 0.004 0.002 0.003 0.002

D
L

in
ea

r 0.1 0.005 0.007 0.002 0.008 0.01 0.003 0.0 0.007 0.009 0.007 0.001 0.008 0.006 0.001 0.002 0.003 0.001 0.008 0.004 0.002
0.3 0.006 0.005 0.008 0.0 0.008 0.004 0.001 0.007 0.003 0.009 0.01 0.002 0.007 0.006 0.005 0.003 0.007 0.006 0.005 0.003
0.5 0.008 0.003 0.004 0.007 0.01 0.001 0.005 0.002 0.004 0.003 0.004 0.004 0.009 0.008 0.001 0.005 0.01 0.003 0.008 0.002
0.7 0.009 0.001 0.002 0.008 0.007 0.007 0.007 0.003 0.01 0.009 0.007 0.004 0.004 0.001 0.008 0.005 0.007 0.006 0.007 0.008

avg 0.007 0.004 0.004 0.006 0.009 0.004 0.003 0.005 0.007 0.007 0.005 0.005 0.005 0.004 0.004 0.004 0.003 0.006 0.006 0.004

Ti
m

es
N

et 0.1 0.008 0.006 0.009 0.006 0.004 0.009 0.005 0.006 0.001 0.009 0.004 0.01 0.005 0.002 0.003 0.007 0.009 0.006 0.003 0.009
0.3 0.004 0.001 0.007 0.01 0.005 0.007 0.004 0.001 0.007 0.006 0.006 0.002 0.01 0.005 0.009 0.007 0.002 0.001 0.004 0.002
0.5 0.008 0.005 0.005 0.0 0.002 0.0 0.001 0.01 0.003 0.004 0.007 0.002 0.003 0.001 0.005 0.006 0.008 0.007 0.005 0.007
0.7 0.007 0.01 0.002 0.005 0.005 0.002 0.002 0.005 0.002 0.006 0.002 0.001 0.004 0.002 0.01 0.003 0.009 0.004 0.001 0.004

avg 0.007 0.005 0.006 0.005 0.004 0.005 0.003 0.006 0.003 0.006 0.005 0.004 0.003 0.003 0.007 0.006 0.007 0.005 0.003 0.005

Fr
eT

S

0.1 0.007 0.003 0.004 0.007 0.005 0.005 0.002 0.009 0.005 0.005 0.002 0.005 0.001 0.01 0.001 0.002 0.008 0.006 0.002 0.003
0.3 0.002 0.008 0.007 0.003 0.005 0.009 0.004 0.005 0.0 0.01 0.001 0.008 0.007 0.008 0.003 0.001 0.007 0.001 0.001 0.003
0.5 0.008 0.003 0.004 0.001 0.001 0.0 0.007 0.005 0.003 0.008 0.001 0.008 0.001 0.003 0.007 0.0 0.002 0.002 0.009 0.005
0.7 0.003 0.006 0.006 0.009 0.008 0.007 0.008 0.002 0.001 0.008 0.005 0.007 0.008 0.006 0.0 0.006 0.002 0.009 0.009 0.007

avg 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.002 0.008 0.002 0.007 0.007 0.007 0.003 0.002 0.004 0.005 0.005 0.004

Pa
tc

hT
ST

0.1 0.01 0.004 0.006 0.01 0.01 0.0 0.006 0.006 0.002 0.009 0.0 0.009 0.009 0.002 0.004 0.002 0.01 0.006 0.009 0.004
0.3 0.008 0.006 0.001 0.007 0.008 0.007 0.0 0.001 0.006 0.008 0.001 0.001 0.0 0.0 0.01 0.006 0.003 0.004 0.005 0.009
0.5 0.003 0.008 0.003 0.003 0.006 0.004 0.006 0.001 0.001 0.001 0.004 0.007 0.001 0.005 0.002 0.006 0.009 0.007 0.008 0.003
0.7 0.001 0.004 0.005 0.008 0.009 0.001 0.005 0.002 0.007 0.001 0.005 0.003 0.004 0.003 0.001 0.004 0.005 0.009 0.002 0.005

avg 0.006 0.006 0.004 0.007 0.008 0.003 0.004 0.003 0.004 0.005 0.003 0.005 0.005 0.003 0.004 0.005 0.002 0.007 0.006 0.005

SC
IN

et

0.1 0.004 0.0 0.009 0.004 0.002 0.0 0.009 0.01 0.005 0.007 0.0 0.004 0.007 0.005 0.008 0.006 0.001 0.004 0.003 0.003
0.3 0.0 0.002 0.008 0.007 0.009 0.006 0.006 0.0 0.0 0.002 0.003 0.006 0.01 0.002 0.006 0.002 0.008 0.007 0.006 0.005
0.5 0.001 0.005 0.004 0.008 0.001 0.004 0.001 0.0 0.006 0.008 0.006 0.001 0.009 0.001 0.005 0.008 0.001 0.003 0.004 0.007
0.7 0.001 0.006 0.001 0.007 0.005 0.009 0.007 0.004 0.001 0.001 0.002 0.009 0.0 0.005 0.003 0.006 0.007 0.006 0.01 0.009

avg 0.002 0.003 0.006 0.006 0.004 0.005 0.006 0.004 0.003 0.005 0.003 0.005 0.004 0.003 0.005 0.005 0.004 0.005 0.006 0.006

iT
ra

ns
fo

rm
er 0.1 0.004 0.008 0.005 0.009 0.001 0.008 0.005 0.001 0.006 0.0 0.007 0.001 0.004 0.0 0.004 0.004 0.006 0.003 0.008 0.002

0.3 0.005 0.008 0.006 0.001 0.005 0.006 0.008 0.005 0.007 0.009 0.003 0.001 0.008 0.005 0.01 0.003 0.007 0.006 0.009 0.003
0.5 0.007 0.009 0.004 0.004 0.003 0.002 0.009 0.01 0.004 0.007 0.009 0.006 0.005 0.002 0.003 0.001 0.002 0.007 0.004 0.005
0.7 0.004 0.007 0.007 0.003 0.003 0.008 0.001 0.004 0.007 0.01 0.005 0.0 0.003 0.003 0.004 0.006 0.008 0.005 0.01 0.005

avg 0.005 0.008 0.005 0.004 0.003 0.006 0.006 0.005 0.006 0.007 0.006 0.002 0.005 0.003 0.005 0.004 0.006 0.005 0.008 0.004

SA
IT

S

0.1 0.007 0.008 0.008 0.007 0.008 0.007 0.007 0.001 0.003 0.007 0.001 0.006 0.003 0.008 0.002 0.004 0.008 0.009 0.009 0.001
0.3 0.007 0.009 0.005 0.009 0.007 0.006 0.002 0.007 0.01 0.006 0.004 0.006 0.005 0.003 0.007 0.007 0.007 0.006 0.008 0.005
0.5 0.009 0.008 0.004 0.01 0.001 0.008 0.001 0.008 0.009 0.006 0.005 0.001 0.009 0.009 0.004 0.005 0.004 0.004 0.002 0.001
0.7 0.005 0.004 0.001 0.004 0.002 0.002 0.009 0.009 0.001 0.003 0.001 0.009 0.001 0.007 0.003 0.002 0.01 0.0 0.005 0.007

avg 0.007 0.007 0.005 0.008 0.005 0.006 0.005 0.006 0.006 0.006 0.003 0.005 0.004 0.007 0.004 0.005 0.005 0.005 0.006 0.004

C
SD

I

0.1 0.003 0.005 0.009 0.003 0.0 0.005 0.001 0.001 0.004 0.001 0.006 0.003 0.005 0.008 0.005 0.01 0.008 0.004 0.005 0.005
0.3 0.002 0.01 0.005 0.007 0.008 0.002 0.007 0.003 0.001 0.0 0.003 0.004 0.009 0.004 0.002 0.004 0.002 0.009 0.001 0.009
0.5 0.005 0.001 0.001 0.0 0.009 0.009 0.002 0.008 0.001 0.003 0.005 0.008 0.002 0.004 0.004 0.006 0.0 0.008 0.002 0.003
0.7 0.002 0.01 0.004 0.002 0.004 0.006 0.002 0.005 0.006 0.001 0.006 0.004 0.009 0.002 0.008 0.009 0.005 0.01 0.001 0.008

avg 0.003 0.007 0.005 0.003 0.005 0.005 0.003 0.004 0.003 0.001 0.005 0.005 0.005 0.005 0.005 0.007 0.004 0.008 0.002 0.006

Si
nk

ho
rn

0.1 0.002 0.007 0.001 0.005 0.002 0.006 0.004 0.003 0.003 0.006 0.009 0.001 0.001 0.006 0.01 0.002 0.009 0.008 0.01 0.002
0.3 0.001 0.008 0.009 0.003 0.002 0.002 0.01 0.006 0.002 0.009 0.002 0.001 0.006 0.01 0.0 0.01 0.003 0.001 0.009 0.001
0.5 0.008 0.007 0.002 0.01 0.005 0.003 0.001 0.008 0.009 0.002 0.005 0.002 0.008 0.008 0.008 0.005 0.005 0.001 0.005 0.004
0.7 0.009 0.004 0.008 0.001 0.005 0.01 0.002 0.003 0.0 0.001 0.002 0.009 0.009 0.008 0.004 0.003 0.002 0.005 0.005 0.001

avg 0.005 0.006 0.005 0.005 0.004 0.005 0.004 0.005 0.003 0.005 0.005 0.003 0.005 0.008 0.006 0.005 0.007 0.004 0.007 0.002

T
D

M

0.1 0.003 0.006 0.007 0.009 0.0 0.007 0.004 0.003 0.006 0.001 0.002 0.002 0.008 0.001 0.002 0.007 0.004 0.001 0.005 0.002
0.3 0.0 0.0 0.004 0.004 0.005 0.005 0.006 0.005 0.01 0.009 0.003 0.004 0.0 0.0 0.009 0.009 0.008 0.001 0.006 0.002
0.5 0.004 0.008 0.007 0.009 0.003 0.005 0.0 0.004 0.005 0.007 0.009 0.004 0.002 0.006 0.007 0.007 0.005 0.006 0.003 0.007
0.7 0.008 0.008 0.007 0.007 0.003 0.006 0.008 0.0 0.01 0.001 0.002 0.006 0.004 0.008 0.007 0.004 0.001 0.009 0.0 0.001

avg 0.004 0.005 0.006 0.007 0.003 0.006 0.005 0.003 0.008 0.004 0.004 0.004 0.003 0.004 0.006 0.007 0.003 0.004 0.003 0.003

PS
W

-I
(O

ur
s) 0.1 0.008 0.004 0.007 0.002 0.001 0.002 0.003 0.003 0.008 0.005 0.007 0.005 0.005 0.01 0.005 0.005 0.0 0.002 0.008 0.009

0.3 0.004 0.008 0.005 0.002 0.009 0.009 0.004 0.009 0.002 0.001 0.002 0.004 0.004 0.003 0.007 0.004 0.001 0.005 0.009 0.0
0.5 0.003 0.009 0.006 0.003 0.0 0.008 0.008 0.007 0.003 0.002 0.002 0.003 0.0 0.009 0.006 0.007 0.005 0.005 0.003 0.006
0.7 0.004 0.006 0.001 0.003 0.003 0.009 0.006 0.002 0.002 0.009 0.002 0.005 0.002 0.001 0.007 0.006 0.009 0.004 0.009 0.007

avg 0.005 0.007 0.005 0.003 0.003 0.007 0.005 0.005 0.004 0.004 0.003 0.004 0.004 0.006 0.006 0.005 0.006 0.004 0.007 0.005
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Figure 7: Varying update results with missing ratios 0.1, 0.3, 0.5 and 0.7.
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Figure 8: Varying batch size results with missing ratios 0.1, 0.3, 0.5 and 0.7.

enabling more precise comparisons between distributions and improving sample efficiency. Thus,
opting for a smaller batch size is advantageous for both accuracy and efficiency in such situations.

• The learning rate (η) plays a crucial role in model convergence. As η increases, the imputation
error initially decreases before increasing again, indicating the presence of an optimal value. A
learning rate of 0.01 yields the best overall results, effectively balancing convergence stability and
speed.

D.5 DOWNSTREAM TASK

In this subsection, we evaluate the prediction performance of the iTransformer trained on datasets
imputed using various methods. As shown in Table 8, all methods demonstrate comparable perfor-
mance; however, our PSW-I method achieves the best results, particularly on the ETTh2 dataset. This
highlights the effectiveness of our approach in downstream tasks. The superior performance of PSW-I
can be attributed to its ability to effectively capture temporal patterns and adapt to non-stationarity in
the data. By leveraging these characteristics, PSW-I enhances the iTransformer’s predictive accuracy
on imputed datasets, allowing it to perform better across various datasets.
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Figure 9: Varying patch length results with missing ratios 0.1, 0.3, 0.5 and 0.7.
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Figure 10: Varying matching strength results with missing ratios 0.1, 0.3, 0.5 and 0.7.

Table 8: Imputation performance in terms of MSE and MAE on 10 datasets.

Datasets
ETTh1 ETTh2 Exchange Weather

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

Transformer 0.389 0.406 0.299 0.385 0.093 0.215 0.177 0.218

DLinear 0.389 0.406 0.299 0.386 0.091 0.212 0.178 0.219

TimesNet 0.390 0.407 302 0.388 0.098 0.222 0.179 0.218

SCINet 0.389 0.406 0.296 0.383 0.098 0.222 0.179 0.219

iTransformer 0.389 0.406 0.293 0.381 0.093 0.215 0.179 0.219

SAITS 0.389 0.406 0.293 0.381 0.097 0.220 0.176 0.216

CSDI 0.389 0.405 0.297 0.384 0.098 0.222 0.176 0.216

PSW-I(Ours) 0.387 0.401 0.279 0.371 0.091 0.212 0.175 0.215
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