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Abstract

Gradient descent has proven to be a powerful and effective technique for optimiza-1

tion in numerous machine learning applications. Recent advances in computational2

neuroscience have shown that learning in standard gradient descent optimization3

formulation is not consistent with learning in biological systems. This has opened4

up interesting avenues for building biologically inspired learning techniques. One5

such approach is inspired by Dale’s law, which states that inhibitory and excitatory6

synapses do not swap roles during the course of learning. The resulting exponential7

gradient descent optimization scheme leads to log-normally distributed synaptic8

weights. Interestingly, the density that satisfies the Fokker-Planck equation corre-9

sponding to the stochastic differential equation (SDE) with geometric Brownian10

motion (GBM) is the log-normal density. Leveraging this connection, we start11

with the SDE governing geometric Brownian motion, and show that discretizing12

the corresponding reverse-time SDE yields a multiplicative update rule, which13

surprisingly, coincides with the sampling equivalent of the exponential gradient14

descent update founded on Dale’s law. Proceeding further, we propose a new15

formalism for multiplicative denoising score-matching, which subsumes the loss16

function proposed by Hyvärinen for non-negative data. Indeed, log-normally dis-17

tributed data is positive and the proposed score-matching formalism turns out to18

be a natural fit. This allows for training of score-based models for image data19

and results in a novel multiplicative update scheme for sample generation starting20

from a log-normal density. Experimental results on MNIST, Fashion MNIST, and21

Kuzushiji datasets demonstrate generative capability of the new scheme. To the22

best of our knowledge, this is the first instance of a biologically inspired generative23

model employing multiplicative updates, founded on geometric Brownian motion.24

1 Introduction25

An interesting problem in computational neuroscience is training artificial neural networks (ANNs)26

in a fashion that is consistent with learning and optimization seen in biological systems. Several27

studies [50, 36, 8, 38, 41] have confirmed that synaptic weight distributions in biological systems28

are log-normally distributed and that the neurons obey Dale’s law [15], which states that excitatory29

(inhibitory) neurons stay excitatory (inhibitory) throughout the course of learning without synaptic30

flips. Artificial neural networks trained with gradient descent seldom obey Dale’s law. Recently,31

Cornford et al. [12] proposed the use of exponentiated gradient descent (EGD) to train neural networks32

and have observed that the training is consistent with Dale’s law and leads to log-normally distributed33

synaptic weights, in alignment with experimental findings. Exponentiated gradient descent is derived34

using mirror descent for a particular variant of Bregman divergence.35
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In this paper, we establish a concrete link between exponentiated gradient descent optimization to36

sampling from stochastic differential equations (SDEs) inspired by geometric Brownian motion37

(GBM). Whereas most diffusion modeling and sampling schemes rely on standard Brownian motion,38

to the best of our knowledge, this is the first instance where GBM is used. We show that the proposed39

framework captures the multiplicative nature of updates seen in EGD. The ability of geometric40

Brownian motion to model processes with proportional changes makes it an ideal candidate for41

developing biologically inspired generative models. For the purpose of generation, we need the42

underlying score function used in the reverse-time SDE, for which we develop a novel multiplicative43

score-matching loss. While a large body of contemporary generative modeling literature is based on44

SDEs with additive Gaussian noise, our novel formalism relies on an SDE that governs the forward45

noising process dynamics with multiplicative log-normal noise. We develop the corresponding46

reverse-time SDE and show that it results in a multiplicative update rule that is structurally equivalent47

to the exponential gradient-descent scheme Cornford et al. [12]. The multiplicative update rule48

obtained as a consequence of the discretization of the SDE can be used to sample from the desired49

distribution whose score function is learnt using a neural network. We support the theoretical50

developments with experimental results on MNIST [31], Fashion MNIST [60] and Kuzushiji image51

datasets [10].52

1.1 Related Works53

Recent developments in generative modelling employing generative adversarial networks [18],54

diffusion models [21], score-based models [51, 52, 54], flow-based models [40] have produced55

stunning examples across a variety of modalities spanning images, video, audio, etc.. In the context56

of diffusion models, a seminal contribution has been the early work by Sohl-Dickstein et al. [47].57

Inspired by non-equilibrium thermodynamics, they introduced the diffusion probabilistic model as a58

tractable and flexible model for sampling and inference. They demonstrated generative capability on59

toy datasets in two dimensions and image datasets like binarized MNIST and CIFAR-10. Ho et al.60

[21] demonstrated that denoising diffusion probabilistic models (DDPMs) could be used for high61

quality image synthesis. They vastly improved the results from Sohl-Dickstein et al. [47] and showed62

a performance comparable to state-of-the-art generative models [26, 27] of that time. Progress in63

score-matching by Song et al. [53], Song and Ermon [51, 52] demonstrated the potential of score-64

based generative models to be competitive with diffusion models. In the seminal work of Song65

et al. [55], it was shown that an SDE framework unifies both approaches. These SDEs were based66

on standard Brownian motion. Several alternative formulations that obviate the need for Brownian67

motion were also proposed. In particular, Bansal et al. [2] propose generative models that are68

based on more generic degradation operations and their corresponding restoration operations. They69

consider blurring and masking among others as degradation operators and show that such generalized70

degradations could also be used to formulate generative models. Rissanen et al. [43] proposed that71

generation could be viewed as the time-reversal of a heat equation. Additionally, they showed that72

their approach allows for certain image properties like shape and colour to be disentangled and they73

also discuss spectral properties that reveal inductive biases in generative models. Santos et al. [45]74

developed a discrete state-space diffusion model that relies on a pure-death random process and75

demonstrate competitive generative ability on binarized MNIST, CIFAR-10, and CelebA-64 datasets.76

A recent preprint on image denoising by Vuong and Nguyen [57] is perhaps the closest to the77

multiplicative noise model considered in this paper. They consider a forward process where images are78

corrupted by multiplicative log-normal or gamma distributed noise. However, instead of proceeding79

with the multiplicative noise model, they convert it to an additive one by applying a logarithmic80

transformation. While the log-transformation simplifies the calculations, it reduces the problem to81

the additive noise setting, losing out completely on the richness of the original multiplicative noise82

framework. Vuong and Nguyen [57] remark explicitly that the reverse-time SDE in the multiplicative83

noise setting comes with a lot of complications, which are overcome by converting it to an additive84

noise model. They also restrict the scope of their work to denoising and do not propose a generative85

framework.86

1.2 Organization of the paper87

Section 2 gives an account of Dale’s law and progress in computational neuroscience in deploying88

exponentiated gradient descent to enforce Dale’s law – all of these form the inspiration for this89

work. In Section 3, we present the essential mathematics behind SDEs and generative modeling90
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required for understanding the contributions of this paper. Section 4 introduces Geometric Brownian91

Motion (GBM) and its corresponding reverse-time SDE based sampler for image generation. This92

necessitates a new score-matching framework for multiplicative noise which we define in Section 5.93

Finally, Section 6 presents experiments on MNIST, Fashion-MNIST, and Kuzushiji MNIST datasets,94

demonstrating the effectiveness and potential of the proposed model.95

2 Dale’s Law and Exponentiated Gradients96

In computational neuroscience, Dale’s law [15] has been empirically observed to hold in many97

biological systems barring certain exceptions. Dale’s law states that presynaptic neurons can only98

exclusively affect their corresponding postsynaptic counterparts in an excitatory or inhibitory manner.99

The implication of the law is that the synapses continue to be inhibitory or excitatory during the100

course of learning without flipping. On the contrary, artificial neural networks have synaptic weights101

that can flip from excitatory to inhibitory or vice versa during training. Previous attempts [4, 58, 34]102

to incorporate biologically inspired learning rules to train neural networks have had limited success103

on standard benchmark tasks. Recently, Cornford et al. [11] demonstrated that ANNs that obey104

Dale’s law, which they name Dale’s ANNs (DANNs), can be constructed without loss in performance105

compared to weight updates done using standard gradient descent. They show that the ColumnEI106

models proposed by Song et al. [48] are suboptimal and can potentially impair the ability to learn107

by limiting the solution space of weights. DANNs outperform ColumnEI models on tasks across108

MNIST [31], Fashion-MNIST [60] and Kuzushiji MNIST datasets [10]. Cornford et al. [11] posit109

that the emergence and prevalence of Dale’s law in biological systems is a possible evolutionary110

local minima and that the presence of inhibitory units in learning could help avoid catastrophic111

forgetting [3].112

Li et al. [32] demonstrated that methods such as ColumnEI proposed by Song et al. [48] to incorporate113

Dale’s law into the training of recurrent neural networks (RNNs) lead to suboptimal performance114

on sequence learning tasks, which is primarily attributed to poor spectral properties of the weight115

matrices, in particular, the multimodal, dispersed nature of the singular value spectrum of the116

weight matrix. Li et al. [32] extended the architecture developed by Cornford et al. [11] to handle117

sequences using RNNs and showed that these networks are on par with RNNs that are trained without118

incorporating Dale’s law. The spectral properties of DANN RNNs are also better than the ColumnEI119

networks and the singular value spectrum is unimodal and clustered leading to superior performance120

on tasks such as the adding problem [22], sequential MNIST task [30] and language modelling using121

the Penn Tree Bank [37].122

Cornford et al. [12] demonstrated that gradient descent is a suboptimal phenomenological fit to123

learning experiments in biologically relevant settings. While stochastic gradient descent for training124

ANNs is an exceptionally successful and robust model in general, it violates Dale’s law [15] by125

allowing for synaptic flips. This leads to the distribution of weights not being log-normal, which126

contradicts experimentally observed data. Cornford et al. [12] showed that exponentiated gradient127

descent (EGD) introduced by Kivinen and Warmuth [29] respects Dale’s law and consequently pro-128

duces log-normally distributed weights. In experiments performed on the Mod-Cog framework [28]129

using RNNs, EGD outperforms gradient descent and is superior to GD for synaptic pruning. The130

learning task is formulated utilizing the mirror descent framework [39, 7] as changes to synaptic131

weights in a neural network such that a combination of task error and “synaptic change penalty” must132

be minimized. This leads to the update rule:133

Xk+1 = argmin
X

[
ℓ̄(X) +

1

η
Dϕ(X,Xk)

]
, (1)

where ℓ̄(X) = ℓ(Xk) + ∇ℓ(X)⊤ |X=Xk
(X −Xk) is the linearization of the task error ℓ(X)134

about the point Xk and Dϕ(X,Xk) is the synaptic change penalty. The penalty Dϕ : Rd×Rd → R135

is chosen as the Bregman divergence corresponding to a strictly convex function ϕ : Rd → R.136

Depending on the choice of ϕ, we get different update rules. For instance, when ϕ(X) = ∥X∥22,137

the corresponding synaptic change penalty is Dϕ(X,Xk) = ∥X −Xk∥22, and Eq. (1) results in the138

familiar gradient-descent update Xk+1 = Xk − η∇ℓ(X) |X=Xk
. This update rule for the weights139

does not guarantee that the entries of Xk+1 and Xk have the same sign, which allows for synaptic140

flips during training, as also confirmed by Cornford et al. [12].141
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Cornford et al. [12] chose ϕ(X) =
d∑

i=1

|X(i)| log |X(i)|, where X(i) denotes the ith entry of X ,

which results in Dϕ being the unnormalised relative entropy,

Dϕ(X,Xk) =

d∑
i=1

X(i) log
X(i)

X
(i)
k

−X(i) +X
(i)
k .

For this choice of Dϕ, the update rule in Eq. (1) takes the form142

Xk+1 = Xk ◦ exp (−η∇Xℓ(X) |X=Xk
◦ sign(Xk)) , (2)

where ◦ denotes element-wise multiplication. The update in Eq. 2 is different from standard gradient-143

descent update in many ways: the update is multiplicative as opposed to additive, involves exponenti-144

ation, and preserves the sign of the entries of Xk as iterations proceed. Effectively, the entries in Xk145

for any k have the same sign as those in X0. The update rule in Eq. (2) is referred to as exponentiated146

gradient descent (EGD) [29].147

By design, EGD doesn’t allow synaptic flips and automatically respects Dale’s law during the course148

of training. The update rule also leads to the weights being distributed log-normally as demonstrated149

by Pogodin et al. [41]. Exponentiated gradient-descent has been shown to perform on par with150

gradient descent for models trained on Mod-Cog tasks, although the final weight distributions151

are different. The networks for both updates are initialized with log-normal weights to adhere to152

experimental data that shows that the synaptic strengths of neurons in the brain are log-normally153

distributed [14, 35]. The network trained with gradient descent had a final weight distribution that was154

different from log-normal whereas the network trained with exponentiated gradient was log-normally155

distributed. Additionally, Cornford et al. [12] have shown that learning with EGD is more robust to156

synaptic weight pruning and EGD outperforms gradient descent when relevant inputs are sparse and in157

particular, for continuous control tasks. Pogodin et al. [41] showed that the distribution of converged158

weights depends on the geometry induced by the choice of the update algorithm. Gradient-descent159

updates implicitly assume Euclidean geometry, which is inconsistent with the log-normal weight160

distribution that is experimentally observed and is ill-suited to data arising in neuroscience.161

A quick glance at Eq. (2) prompts the question: Does there exist a sampling equivalent for the162

exponentiated gradient-descent update rule? This is inspired by the link between gradient-descent163

and Langevin dynamics as enunciated by Wibisono [59]. In pursuit of an answer to this question,164

we realised the connection between the log-normally distributed weights observed at the end of165

exponentiated gradient descent and the sampling equation lies in geometric Brownian motion. The166

equilibrium distribution of GBM is the log-normal density and its time-reversal would give us the167

sampling formula we seek (discussed in Sec. 4).168

3 Stochastic Differential Equations and Generative Modelling169

Recent generative models such as diffusion models [21, 49] and score-based models rely heavily on170

the SDE framework. These models have been immensely successful in generating realistic samples171

across different data modalities such as images [55] and audio [42]. The key idea is to construct a172

stochastic process such that one starts with samples from the true, unknown density and progressively173

transforms them to samples from a noisy, easy-to-sample-from density such as the isotropic Gaussian.174

The task of generation requires inverting the forward process which goes beyond mere time reversal175

due to the stochastic nature of the dynamics. Theoretical results [1, 9, 55] show that there exists a176

corresponding reverse-time SDE for the forward process. The forward process is represented as177

dXt = h(Xt, t) dt+ g(Xt, t) dWt, (3)

where h(·, t) : Rd → Rd is the drift function, g(·, t) : Rd → Rd×d is the diffusion function, and Wt178

denotes the standard Wiener process. We follow the Itô interpretation of SDEs throughout this paper.179

The corresponding reverse-time SDE for Eq. (3) is given by180

dXt =
(
h(Xt, t)−∇ · [g(Xt, t)g(Xt, t)

⊤]− g(Xt, t)g(Xt, t)
⊤∇ log fX(Xt, t)

)
dt

+g(Xt, t)dW̄t, (4)
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where dW̄t is the standard Brownian motion and∇·F (x) := (∇·f1(x), ∇·f2(x), · · · , ∇·fd(x))⊤181

is the row-wise divergence of the matrix-valued function F (x) := (f1(x), f2(x), · · · , fd(x))⊤ ∈182

Rd×d. The issue with generating new samples from Eq. (4) is that we usually do not have access183

to the score function ∇ log fX(Xt, t) and this quantity is approximated using a neural network184

sθ : Rd × [0, 1]→ Rd, which is trained by optimizing the denoising score-matching loss [55]185

L(θ) = E
t∼U [0,1]

[
E

X0∼pX0
Xt∼pXt|X0

[
λ(t)

∥∥sθ(Xt, t)−∇ log pXt|X0
(Xt|X0)

∥∥2
2

] ]
, (5)

where∇ log pXt|X0
(Xt|X0) is determined by the forward SDE (Eq. (3) [46]) and λ(t) is designed186

to stabilise training.187

4 Geometric Brownian Motion188

Brownian motion, originally introduced to model random particle motion [16], is widely used in189

physics, biology, and signal processing to describe processes with independent and identically190

distributed (i.i.d.) increments. The resulting distribution is Gaussian following the Central Limit191

Theorem. For example, the Ornstein-Uhlenbeck SDE (OU-SDE) [13] models the position Yt of a192

Brownian particle as dYt = µdt+σ dWt, where Wt is a Wiener process, yielding Yt = Y0+µt+σWt,193

a Gaussian process with mean µ and variance σ2. Alternatively, when the relative increments (or194

ratios) follow the Brownian motion, the resulting stochastic process is called the Geometric Brownian195

Motion (GBM). Black and Scholes [6] pioneered the use of GBM for modeling the evolution of stock196

prices and financial assets in mathematical finance. Just as the normal distribution plays a crucial role197

in Brownian motion, the log-normal distribution plays a vital role in the analysis of GBM. Formally,198

a random process Xt is said to follow a Geometric Brownian Motion if it satisfies the SDE:199

dXt = µXt dt+ σXt dWt, (6)

where Wt is the Wiener process, and µ and σ are known as the percentage drift representing a general
trend and volatility coefficients representing the inherent stochasticity, respectively. The solution of
Eq. (6) Xt evolves to follow a log-normal distribution with parameters µ and σ2, i.e.,

Xt = X0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
.

There exist several multivariate extensions of GBM [23]. We consider the element-wise extension of200

Eq. (6) for image data with the forward SDE for time t ∈ [0, 1]:201

dXt = µ ◦Xt dt+ σXt ◦ dWt, (7)

where ◦ denotes element-wise multiplication, µ ∈ Rd, σ > 0 and Wt denotes the multivariate202

Wiener process. This can be written equivalently, using Itô’s lemma, as203

d logXt =

(
µ− σ2

2
1

)
dt+ dWt, (8)

where log is applied element-wise. The distribution of Xt, as it evolves according to Eq. (8), has
i.i.d. entries that are log-normally distributed with parameters µ and σ2I, I being the d× d identity
matrix. Starting from a sample X0 from the unknown density pX0 , the solution to Eq. (8) is

Xt = X0 ◦ exp
((

µ− σ2

2
1

)
t+ σWt

)
.

This closed-form expression allows us to easily generate samples from the forward process at arbitrary204

time instants t ∈ [0, 1]. The samples at the end of the forward process are log-normally distributed.205

We now seek to derive the corresponding reverse-time SDE that would enable us to generate samples206

from the unknown density pX0
starting from samples from the log-normal density. While one could207

use Eq. (4) to derive the corresponding reverse-time SDE, we propose a simpler approach by defining208

an auxiliary stochastic process Yt = logXt and leveraging score change-of-variables formula [44].209

This allows us to rewrite Eq. (8) as210

dYt =

(
µ− σ2

2
1

)
dt+ dWt. (9)
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Figure 1: The forward and reverse-time SDEs for Geometric Brownian Motion (GBM). The forward
SDE describes the evolution of a clean image sample to a noisy one that eventually becomes log-
normally distributed, while the reverse-time SDE captures the dynamics of the process and generates
new samples from the unknown density starting from log-normal noise. This is enabled by the
knowledge of the unknown density manifesting through the score function.

The reverse-time SDE corresponding to the forward SDE in Eq. (9) can be obtained by invoking211

Eq. (4) and is given by212

dYt =

(
µ− σ2

2
1− σ2∇ log pYt

(Yt, t)

)
dt+ σdWt, (10)

where ∇ log pY (Yt, t) is the score function corresponding to Yt and 1 is a vector of all ones. We213

invoke the score change-of-variables formula [44] that allows us to represent∇ log pYt
(Yt, t) in terms214

of∇ log pXt
(Xt, t) as∇ log pYt

(Yt, t) = 1+Xt ◦ ∇ log pXt
(Xt, t). Thus, we rewrite Eq. (10) in215

terms of Xt and simplify it to obtain216

dlogXt =

(
µ− 3σ2

2
1− σ2Xt ◦ ∇ log pXt

(Xt, t)

)
dt+ σdWt. (11)

To simulate the reverse-time SDE on a computer, it must be discretized in time. We chose the time217

range [0, 1] with N steps, which results in a step-size of δ = 1
N and for brevity, denote Xkδ as Xk,218

for k = 0, . . . , N − 1. In particular, we choose the Euler-Maruyama discretization scheme [20] for219

Eq. (11) to get220

logXk−1 = logXk − δ

(
µ− 3σ2

2
1− σ2 (Xt ◦ ∇ log pXt

(Xt, t))
∣∣
t=kδ

)
+
√
δσZk, (12)

where Zk ∼ N (0, I) (the standard normal distribution), and since the log operates element-wise,221

exponentiating both sides gives222

Xk−1 = Xk ◦ exp
(
−δ

(
µ− 3σ2

2
1

)
+ δσ2Xk ◦ ∇ log pXk

(Xk, k) +
√
δσZk

)
. (13)

The update rule in Eq. (13) is similar to the EGD update rule in Eq. (2). Consider the optimization223

problem with a modification of the task error as224

Xt+1 = argmin
X

[
ℓ̄(ξ(X)) +

1

η
Dϕ(X,Xt)

]
, (14)
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with the choice of ξ : Rd → Rd as ξ(i)(X) = 0.5
(
X(i)

)2
for i = 1, 2, · · · , d. This leads to the225

following multiplicative update rule226

Xk+1 = Xk ◦ exp (−ηXk ◦ ∇Xℓ(X) |X=Xk
) . (15)

Interestingly, if we assume that the density pXk
(Xk, k) is of the form pXk

(Xk, k) =227

1
Z exp (−ℓ(Xk)), with η = δσ2 and µ = 3σ2

2 , then the corresponding sampling step in Eq. (13) is228

of the form229

Xk−1 = Xk ◦ exp (−ηXk ◦ ∇Xℓ(X) |X=Xk
+
√
ηZk) , (16)

where Zk ∼ N (0, I). Therefore, the proposed sampler is structurally equivalent to the modified230

exponential gradient descent step in Eq. (15).231

5 Multiplicative Score Matching232

Following the definitions of explicit score-matching (ESM) loss and denoising score-matching (DSM)233

loss for the additive noise case [56], we propose the multiplicative counterparts LM-ESM(θ) and234

LM-DSM(θ) as follows:235

LM-ESM(θ) = E
Xt∼pXt

[
1

2
∥Xt ◦ ∇ log pXt(Xt)−Xt ◦ sθ(Xt, t)∥22

]
, and (17)

236

LM-DSM(θ) = E
X0∼pX0

Xt∼pXt|X0

[
1

2
∥Xt ◦ ∇ log pXt|X0

(Xt|X0)−Xt ◦ sθ(Xt, t)∥22
]
. (18)

The two types of score-matching loss functions are related as follows.237

Theorem 5.1 (Multiplicative Denoising Score-Matching). Under standard assumptions on the238

density and the score function [24, 53] over the positive orthant R+d, the multiplicative explicit score-239

matching (M-ESM) loss given in Eq. (17) and multiplicative denoising score-matching (M-DSM) loss240

given in Eq. (18) are equivalent up to a constant, i.e., LM-DSM(θ) = LM-DSM(θ) + C, where C is241

independent of θ.242

The proof is provided in the supplementary material. The usefulness of this result is explained next.243

We need the marginal score function∇ log pXt
(Xt) in the reverse-time SDE Eq. (13) but optimizing244

Eq. (17) is intractable since we do not have access to the “true” marginal score. The theorem provides245

us with a means to optimize for sθ in terms of the conditional score∇ log pXt|X0
(Xt|X0), which246

can be derived from the forward SDE. The challenge in leveraging Eq. (13) to generate new samples247

arises from our lack of knowledge of ∇ log pXt(Xt). This function must be estimated by some form248

of score-matching. To this end, we propose the following score-matching loss249

LM-DSM(θ) = E
X0∼pX0

Xt∼pXt|X0

[
1

2
∥Xt ◦ ∇ log pXt|X0

(Xt |X0)−Xt ◦ sθ(Xt, t)∥22
]
. (19)

In practice, this choice of the loss function allows us to train the score network sθ using samples from250

the forward SDE in Eq. (7) and the corresponding conditional score∇ log pXt|X0
(Xt|X0) evaluated251

at discrete instants of time t = kδ can be computed using the forward SDE and the expression for the252

target in the loss function is given by253

Xt ◦ ∇ log pXt|X0
(Xt|X0) = −

(
1+

1

σ2tδ

(
logXk − logX0 − tδ

(
µ− σ2

2
1

)))
. (20)

The proposed loss function in Eq. (19) is the multiplicative noise counterpart of the denoising score-254

matching loss proposed by Song et al. [55] for additive noise. To the best of our knowledge, this255

formulation of the score-matching loss and its manifestation in the multiplicative noise setting is new.256

It would be appropriate to remark here that the score term in Eq. (13) also arises in the score-matching257

loss proposed by Hyvärinen [25] for non-negative real data given by258

LNN(θ) =
1

2
E

X0∼pX0

[
∥X0 ◦ ∇ log pX0

(X0)−X0 ◦ sθ(X0)∥22
]
, (21)
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Figure 2: Uncurated sample images generated from MNIST, Fashion-MNIST and Kuzushiji MNIST
datasets, corresponding to the score model with minimum score-matching loss during training.

where ∇ log pX0
(X0) is the true score. Hyvärinen [25]’s formulation is static in the sense that it259

does not leverage the SDE, whereas we do. Hyvärinen [25]’s score-matching loss can also be seen as260

an instance of the multiplicative explicit score-matching loss (M-ESM) for t = 0. Hyvärinen [25]’s261

motivation for introducing this loss function is to avoid the singularity at the origin for non-negative262

data. Our framework encapsulates this variant of the score-matching loss as a special case. This263

is primarily due to the structure of GBM that assumes the log-normal distribution which implicitly264

restricts the samples to be positive. Thus, our framework generalizes the score-matching loss proposed265

by Hyvärinen [25] to the case of multiplicative noise.266

Algorithm 1 Multiplicative updates for generation using Geometric Brownian Motion (GBM).
Require: σ, δ,µ, trained score network sθ

1: for k ← 0 to N − 1 do
2: Zk ∼ N (0, I)
3: Xk−1 = Xk ◦ exp

(
−δ

(
µ− σ2

2 1
)
+ δσ2Xk ◦ sθ(Xk, k) + σ

√
δZk

)
4: end for

5.1 Image Generation using Multiplicative Score Matching267

The goal in diffusion-based image generative modeling is to construct two stochastic processes, as268

illustrated in Fig. 1 – the forward process to generate a noisy version of a clean image and the reverse269

process to enable us to sample from the unknown density pX0
. For the forward model, starting from270

an image X0 coming from the unknown density, the forward SDE in Eq. (8) can be used to generate271

noisy versions of X0 as follows272

Xk+1 = Xk ◦ exp
(
δ

(
µ− σ2

2
1

)
+
√
δσZk

)
, (22)

for k = 0, . . . , N − 2, and XN−1 is log-normally distributed and Zk ∼ N (0, I). For the reverse273

process, i.e., generation, we can generate samples from the reverse-time SDE in Eq. (11) using the274

discretized version of the reverse-time SDE in Eq. (13) and the score model sθ(·) trained with the loss275

defined in Eq. (19) in place of the true score function ∇ log pXt(·). The new generation/sampling276

procedure is summarized in Algorithm 1. The algorithm takes as input the parameters σ, δ,µ and277

the trained score network sθ and generates samples from the unknown density pX0 by iterating over278

N steps. The algorithm starts with a sample XN−1 from the log-normal distribution and iteratively279

updates the sample using the reverse-time SDE in Eq. (13). The final output should be a sample280

X0 ∼ pX0
.281
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6 Experiments282

We evaluate the generative performance of the proposed model1 by training the score model on283

standard datasets such as MNIST, Fashion-MNIST and Kuzushiji MNIST dataset used by Cornford284

et al. [11]. The datasets are split as 60, 000 images for training and 10, 000 images for testing. All285

images are rescaled to have pixel values in the range [1, 2]. Note that the proposed framework286

requires a non-negative dynamic range of pixel values. We choose N = 1000 discretization levels287

for the forward SDE (7) and leads to the step size δ = 1/N . During sampling, we observed that288

the same step-size did not always work and we had to work with smaller step-sizes for each of the289

three datasets. The model is trained using the M-DSM loss defined in Eq. (19). The hyperparameters290

µ = σ2

2 1, σ and δ are set to 0.8 and 0.001, respectively. The model is trained for 200000 iterations291

and the checkpoints are saved every 5000 iterations as mentioned in [52] on two NVIDIA RTX 4090292

and two A6000 GPUs. We perform exponential moving average for the saved checkpoints every293

50000 iterations. The generated samples are shown in Figure 2, from where we observe that the294

visual quality of the generated images matches is on par with that of the ground truth. For quantitative295

assessment, we use Fréchet Inception Distance (FID) [19] and Kernel Inception Distance (KID) [5]296

measured between 10, 000 images from the test dataset and the same number of generated images.297

Lower FID and KID values indicate superior generative performance. While both these metrics are298

not commonly used to quantify the generative performance for grayscale images, we follow Xu et al.299

[61] and report these numbers for transparency and reproducibility (cf. Supplementary Material).300

7 Conclusions301

We proposed a novel generative model based on Geometric Brownian Motion (GBM) and a new302

technique for score-matching. We showed that the GBM framework is a natural setting for modeling303

non-negative data and that the new multiplicative score-matching loss can be used effectively to train304

the model. The model is capable of generating new samples from image datasets like MNIST, Fashion305

MNIST and Kuzushiji MNIST. The results are promising from a generative modeling perspective.306

The multiplicative score matching framework can also be suitably adapted for image denoising and307

restoration tasks where the forward model has multiplicative noise as opposed to the widely assumed308

additive noise. While this work focuses on log-normal noise, other distributions such as the gamma309

distribution, could also be considered with associated SDEs. This would broaden the applicability310

of the model to datasets and domains where various types of multiplicative noise are prevalent such311

as optical coherence tomography [33] and synthetic aperture radar [17], enabling more robust and312

versatile generative and restoration capabilities. Starting off with the results shown in the paper, one313

could also extend applicability of the proposed model to high-resolution images. Application to314

non-image data, such as financial time-series, is another potential direction for further research.315

Limitations316

The proposed generative model requires a large amount of training data and computational resources317

to achieve good performance, which can be a constraint in some applications. In the true spirit of318

data-driven generation, some of the generated images do not have the same semantic meaning as319

samples from the source dataset. Incorporating semantics into generative modeling is a research320

direction by itself. Instead of cherry-picking the results, we reported them as obtained to highlight321

both the strengths and limitations of the proposed approach. The choice of hyperparameters, such as322

the noise schedule and learning rate, which are carefully tuned, can affect the performance of the323

model. However, this limitation is true of all deep generative models and not unique to ours.324

Broader Impact: The proposed approach of leveraging the GBM and multiplicative score-matching325

is novel and has the potential to advance the field of generative modeling along new lines. The model326

may find natural applicability in financial time-series modeling, forecasting, and generation. Ethical327

concerns pertaining to the use of generative models and the potential for misuse by generating biased,328

fake, or misleading content are all pervasive and the proposed framework is no exception.329

1Code for this paper is available at https://anonymous.4open.science/r/gbm_dale-CC20
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NeurIPS Paper Checklist534

The checklist is designed to encourage best practices for responsible machine learning research,535

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove536

the checklist: The papers not including the checklist will be desk rejected. The checklist should537

follow the references and follow the (optional) supplemental material. The checklist does NOT count538

towards the page limit.539

Please read the checklist guidelines carefully for information on how to answer these questions. For540

each question in the checklist:541

• You should answer [Yes] , [No] , or [NA] .542

• [NA] means either that the question is Not Applicable for that particular paper or the543

relevant information is Not Available.544

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).545

The checklist answers are an integral part of your paper submission. They are visible to the546

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it547

(after eventual revisions) with the final version of your paper, and its final version will be published548

with the paper.549

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.550

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a551

proper justification is given (e.g., "error bars are not reported because it would be too computationally552

expensive" or "we were unable to find the license for the dataset we used"). In general, answering553

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we554

acknowledge that the true answer is often more nuanced, so please just use your best judgment and555

write a justification to elaborate. All supporting evidence can appear either in the main paper or the556

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification557

please point to the section(s) where related material for the question can be found.558

IMPORTANT, please:559

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",560

• Keep the checklist subsection headings, questions/answers and guidelines below.561

• Do not modify the questions and only use the provided macros for your answers.562

1. Claims563

Question: Do the main claims made in the abstract and introduction accurately reflect the564

paper’s contributions and scope?565

Answer: [Yes]566

Justification: Yes. Our contributions are clearly stated in the abstract and introduction in567

Sec. 1. The claims made in the paper are supported by theoretical results and experimental568

evaluations in Sec. 4 and Sec. 6.569

Guidelines:570

• The answer NA means that the abstract and introduction do not include the claims571

made in the paper.572

• The abstract and/or introduction should clearly state the claims made, including the573

contributions made in the paper and important assumptions and limitations. A No or574

NA answer to this question will not be perceived well by the reviewers.575

• The claims made should match theoretical and experimental results, and reflect how576

much the results can be expected to generalize to other settings.577

• It is fine to include aspirational goals as motivation as long as it is clear that these goals578

are not attained by the paper.579

2. Limitations580

Question: Does the paper discuss the limitations of the work performed by the authors?581

Answer: [Yes]582
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Justification: Yes. Please refer to page 9 for a discussion of the limitations of the proposed583

model.584

Guidelines:585

• The answer NA means that the paper has no limitation while the answer No means that586

the paper has limitations, but those are not discussed in the paper.587

• The authors are encouraged to create a separate "Limitations" section in their paper.588

• The paper should point out any strong assumptions and how robust the results are to589

violations of these assumptions (e.g., independence assumptions, noiseless settings,590

model well-specification, asymptotic approximations only holding locally). The authors591

should reflect on how these assumptions might be violated in practice and what the592

implications would be.593

• The authors should reflect on the scope of the claims made, e.g., if the approach was594

only tested on a few datasets or with a few runs. In general, empirical results often595

depend on implicit assumptions, which should be articulated.596

• The authors should reflect on the factors that influence the performance of the approach.597

For example, a facial recognition algorithm may perform poorly when image resolution598

is low or images are taken in low lighting. Or a speech-to-text system might not be599

used reliably to provide closed captions for online lectures because it fails to handle600

technical jargon.601

• The authors should discuss the computational efficiency of the proposed algorithms602

and how they scale with dataset size.603

• If applicable, the authors should discuss possible limitations of their approach to604

address problems of privacy and fairness.605

• While the authors might fear that complete honesty about limitations might be used by606

reviewers as grounds for rejection, a worse outcome might be that reviewers discover607

limitations that aren’t acknowledged in the paper. The authors should use their best608

judgment and recognize that individual actions in favor of transparency play an impor-609

tant role in developing norms that preserve the integrity of the community. Reviewers610

will be specifically instructed to not penalize honesty concerning limitations.611

3. Theory assumptions and proofs612

Question: For each theoretical result, does the paper provide the full set of assumptions and613

a complete (and correct) proof?614

Answer: [Yes]615

Justification: Yes, please refer to the supplementary material for the proof of Theorem 5.1.616

Guidelines:617

• The answer NA means that the paper does not include theoretical results.618

• All the theorems, formulas, and proofs in the paper should be numbered and cross-619

referenced.620

• All assumptions should be clearly stated or referenced in the statement of any theorems.621

• The proofs can either appear in the main paper or the supplemental material, but if622

they appear in the supplemental material, the authors are encouraged to provide a short623

proof sketch to provide intuition.624

• Inversely, any informal proof provided in the core of the paper should be complemented625

by formal proofs provided in appendix or supplemental material.626

• Theorems and Lemmas that the proof relies upon should be properly referenced.627

4. Experimental result reproducibility628

Question: Does the paper fully disclose all the information needed to reproduce the main ex-629

perimental results of the paper to the extent that it affects the main claims and/or conclusions630

of the paper (regardless of whether the code and data are provided or not)?631

Answer: [Yes]632

Justification: Yes. We use publicly-accessible datasets such as MNIST [31], Fashion633

MNIST [60] and Kuzushiji MNIST [10]. The code is available at https://anonymous.634

4open.science/r/gbm_dale-CC20 and includes instructions to reproduce the results.635
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Guidelines:636

• The answer NA means that the paper does not include experiments.637

• If the paper includes experiments, a No answer to this question will not be perceived638

well by the reviewers: Making the paper reproducible is important, regardless of639

whether the code and data are provided or not.640

• If the contribution is a dataset and/or model, the authors should describe the steps taken641

to make their results reproducible or verifiable.642

• Depending on the contribution, reproducibility can be accomplished in various ways.643

For example, if the contribution is a novel architecture, describing the architecture fully644

might suffice, or if the contribution is a specific model and empirical evaluation, it may645

be necessary to either make it possible for others to replicate the model with the same646

dataset, or provide access to the model. In general. releasing code and data is often647

one good way to accomplish this, but reproducibility can also be provided via detailed648

instructions for how to replicate the results, access to a hosted model (e.g., in the case649

of a large language model), releasing of a model checkpoint, or other means that are650

appropriate to the research performed.651

• While NeurIPS does not require releasing code, the conference does require all submis-652

sions to provide some reasonable avenue for reproducibility, which may depend on the653

nature of the contribution. For example654

(a) If the contribution is primarily a new algorithm, the paper should make it clear how655

to reproduce that algorithm.656

(b) If the contribution is primarily a new model architecture, the paper should describe657

the architecture clearly and fully.658

(c) If the contribution is a new model (e.g., a large language model), then there should659

either be a way to access this model for reproducing the results or a way to reproduce660

the model (e.g., with an open-source dataset or instructions for how to construct661

the dataset).662

(d) We recognize that reproducibility may be tricky in some cases, in which case663

authors are welcome to describe the particular way they provide for reproducibility.664

In the case of closed-source models, it may be that access to the model is limited in665

some way (e.g., to registered users), but it should be possible for other researchers666

to have some path to reproducing or verifying the results.667

5. Open access to data and code668

Question: Does the paper provide open access to the data and code, with sufficient instruc-669

tions to faithfully reproduce the main experimental results, as described in supplemental670

material?671

Answer: [Yes]672

Justification: Yes. The code is available at https://anonymous.4open.science/r/673

gbm_dale-CC20 and includes instructions to reproduce the results. The datasets used in the674

experiments are publicly available.675

Guidelines:676

• The answer NA means that paper does not include experiments requiring code.677

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/678

public/guides/CodeSubmissionPolicy) for more details.679

• While we encourage the release of code and data, we understand that this might not be680

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not681

including code, unless this is central to the contribution (e.g., for a new open-source682

benchmark).683

• The instructions should contain the exact command and environment needed to run to684

reproduce the results. See the NeurIPS code and data submission guidelines (https:685

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.686

• The authors should provide instructions on data access and preparation, including how687

to access the raw data, preprocessed data, intermediate data, and generated data, etc.688

• The authors should provide scripts to reproduce all experimental results for the new689

proposed method and baselines. If only a subset of experiments are reproducible, they690

should state which ones are omitted from the script and why.691
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• At submission time, to preserve anonymity, the authors should release anonymized692

versions (if applicable).693

• Providing as much information as possible in supplemental material (appended to the694

paper) is recommended, but including URLs to data and code is permitted.695

6. Experimental setting/details696

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-697

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the698

results?699

Answer: [Yes]700

Justification: Yes, please refer to Sec. 6 for the details of the experimental setup.701

Guidelines:702

• The answer NA means that the paper does not include experiments.703

• The experimental setting should be presented in the core of the paper to a level of detail704

that is necessary to appreciate the results and make sense of them.705

• The full details can be provided either with the code, in appendix, or as supplemental706

material.707

7. Experiment statistical significance708

Question: Does the paper report error bars suitably and correctly defined or other appropriate709

information about the statistical significance of the experiments?710

Answer: [No]711

Justification: We cannot afford to report error bars for experiments since they are computa-712

tionally extremely expensive.713

Guidelines:714

• The answer NA means that the paper does not include experiments.715

• The authors should answer "Yes" if the results are accompanied by error bars, confi-716

dence intervals, or statistical significance tests, at least for the experiments that support717

the main claims of the paper.718

• The factors of variability that the error bars are capturing should be clearly stated (for719

example, train/test split, initialization, random drawing of some parameter, or overall720

run with given experimental conditions).721

• The method for calculating the error bars should be explained (closed form formula,722

call to a library function, bootstrap, etc.)723

• The assumptions made should be given (e.g., Normally distributed errors).724

• It should be clear whether the error bar is the standard deviation or the standard error725

of the mean.726

• It is OK to report 1-sigma error bars, but one should state it. The authors should727

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis728

of Normality of errors is not verified.729

• For asymmetric distributions, the authors should be careful not to show in tables or730

figures symmetric error bars that would yield results that are out of range (e.g. negative731

error rates).732

• If error bars are reported in tables or plots, The authors should explain in the text how733

they were calculated and reference the corresponding figures or tables in the text.734

8. Experiments compute resources735

Question: For each experiment, does the paper provide sufficient information on the com-736

puter resources (type of compute workers, memory, time of execution) needed to reproduce737

the experiments?738

Answer: [Yes]739

Justification: Please refer to the supplementary material.740

Guidelines:741

• The answer NA means that the paper does not include experiments.742
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,743

or cloud provider, including relevant memory and storage.744

• The paper should provide the amount of compute required for each of the individual745

experimental runs as well as estimate the total compute.746

• The paper should disclose whether the full research project required more compute747

than the experiments reported in the paper (e.g., preliminary or failed experiments that748

didn’t make it into the paper).749

9. Code of ethics750

Question: Does the research conducted in the paper conform, in every respect, with the751

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?752

Answer: [Yes]753

Justification: Yes. We adhere to the NeurIPS Code of Ethics.754

Guidelines:755

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.756

• If the authors answer No, they should explain the special circumstances that require a757

deviation from the Code of Ethics.758

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-759

eration due to laws or regulations in their jurisdiction).760

10. Broader impacts761

Question: Does the paper discuss both potential positive societal impacts and negative762

societal impacts of the work performed?763

Answer: [Yes]764

Justification: Yes. Please see page 9.765

Guidelines:766

• The answer NA means that there is no societal impact of the work performed.767

• If the authors answer NA or No, they should explain why their work has no societal768

impact or why the paper does not address societal impact.769

• Examples of negative societal impacts include potential malicious or unintended uses770

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations771

(e.g., deployment of technologies that could make decisions that unfairly impact specific772

groups), privacy considerations, and security considerations.773

• The conference expects that many papers will be foundational research and not tied774

to particular applications, let alone deployments. However, if there is a direct path to775

any negative applications, the authors should point it out. For example, it is legitimate776

to point out that an improvement in the quality of generative models could be used to777

generate deepfakes for disinformation. On the other hand, it is not needed to point out778

that a generic algorithm for optimizing neural networks could enable people to train779

models that generate Deepfakes faster.780

• The authors should consider possible harms that could arise when the technology is781

being used as intended and functioning correctly, harms that could arise when the782

technology is being used as intended but gives incorrect results, and harms following783

from (intentional or unintentional) misuse of the technology.784

• If there are negative societal impacts, the authors could also discuss possible mitigation785

strategies (e.g., gated release of models, providing defenses in addition to attacks,786

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from787

feedback over time, improving the efficiency and accessibility of ML).788

11. Safeguards789

Question: Does the paper describe safeguards that have been put in place for responsible790

release of data or models that have a high risk for misuse (e.g., pretrained language models,791

image generators, or scraped datasets)?792

Answer: [Yes]793
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Justification: The code is publicly available and is subject to the discretion of the user, also794

see page 9.795

Guidelines:796

• The answer NA means that the paper poses no such risks.797

• Released models that have a high risk for misuse or dual-use should be released with798

necessary safeguards to allow for controlled use of the model, for example by requiring799

that users adhere to usage guidelines or restrictions to access the model or implementing800

safety filters.801

• Datasets that have been scraped from the Internet could pose safety risks. The authors802

should describe how they avoided releasing unsafe images.803

• We recognize that providing effective safeguards is challenging, and many papers do804

not require this, but we encourage authors to take this into account and make a best805

faith effort.806

12. Licenses for existing assets807

Question: Are the creators or original owners of assets (e.g., code, data, models), used in808

the paper, properly credited and are the license and terms of use explicitly mentioned and809

properly respected?810

Answer: [Yes]811

Justification: All datasets, code and models used are cited.812

Guidelines:813

• The answer NA means that the paper does not use existing assets.814

• The authors should cite the original paper that produced the code package or dataset.815

• The authors should state which version of the asset is used and, if possible, include a816

URL.817

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.818

• For scraped data from a particular source (e.g., website), the copyright and terms of819

service of that source should be provided.820

• If assets are released, the license, copyright information, and terms of use in the821

package should be provided. For popular datasets, paperswithcode.com/datasets822

has curated licenses for some datasets. Their licensing guide can help determine the823

license of a dataset.824

• For existing datasets that are re-packaged, both the original license and the license of825

the derived asset (if it has changed) should be provided.826

• If this information is not available online, the authors are encouraged to reach out to827

the asset’s creators.828

13. New assets829

Question: Are new assets introduced in the paper well documented and is the documentation830

provided alongside the assets?831

Answer: [Yes]832

Justification: Yes. The link to code to reproduce our experimental observations has been833

provided in the footnote on page 9.834

Guidelines:835

• The answer NA means that the paper does not release new assets.836

• Researchers should communicate the details of the dataset/code/model as part of their837

submissions via structured templates. This includes details about training, license,838

limitations, etc.839

• The paper should discuss whether and how consent was obtained from people whose840

asset is used.841

• At submission time, remember to anonymize your assets (if applicable). You can either842

create an anonymized URL or include an anonymized zip file.843

14. Crowdsourcing and research with human subjects844
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Question: For crowdsourcing experiments and research with human subjects, does the paper845

include the full text of instructions given to participants and screenshots, if applicable, as846

well as details about compensation (if any)?847

Answer: [NA]848

Justification: No human subjects were involved.849

Guidelines:850

• The answer NA means that the paper does not involve crowdsourcing nor research with851

human subjects.852

• Including this information in the supplemental material is fine, but if the main contribu-853

tion of the paper involves human subjects, then as much detail as possible should be854

included in the main paper.855

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,856

or other labor should be paid at least the minimum wage in the country of the data857

collector.858

15. Institutional review board (IRB) approvals or equivalent for research with human859

subjects860

Question: Does the paper describe potential risks incurred by study participants, whether861

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)862

approvals (or an equivalent approval/review based on the requirements of your country or863

institution) were obtained?864

Answer: [NA]865

Justification: No human subjects were involved.866

Guidelines:867

• The answer NA means that the paper does not involve crowdsourcing nor research with868

human subjects.869

• Depending on the country in which research is conducted, IRB approval (or equivalent)870

may be required for any human subjects research. If you obtained IRB approval, you871

should clearly state this in the paper.872

• We recognize that the procedures for this may vary significantly between institutions873

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the874

guidelines for their institution.875

• For initial submissions, do not include any information that would break anonymity (if876

applicable), such as the institution conducting the review.877

16. Declaration of LLM usage878

Question: Does the paper describe the usage of LLMs if it is an important, original, or879

non-standard component of the core methods in this research? Note that if the LLM is used880

only for writing, editing, or formatting purposes and does not impact the core methodology,881

scientific rigorousness, or originality of the research, declaration is not required.882

Answer: [NA]883

Justification: LLM has been used only for minor editing and formatting purposes.884

Guidelines:885

• The answer NA means that the core method development in this research does not886

involve LLMs as any important, original, or non-standard components.887

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)888

for what should or should not be described.889
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