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Abstract

Gradient descent has proven to be a powerful and effective technique for optimiza-
tion in numerous machine learning applications. Recent advances in computational
neuroscience have shown that learning in standard gradient descent optimization
formulation is not consistent with learning in biological systems. This has opened
up interesting avenues for building biologically inspired learning techniques. One
such approach is inspired by Dale’s law, which states that inhibitory and excitatory
synapses do not swap roles during the course of learning. The resulting exponential
gradient descent optimization scheme leads to log-normally distributed synaptic
weights. Interestingly, the density that satisfies the Fokker-Planck equation corre-
sponding to the stochastic differential equation (SDE) with geometric Brownian
motion (GBM) is the log-normal density. Leveraging this connection, we start
with the SDE governing geometric Brownian motion, and show that discretizing
the corresponding reverse-time SDE yields a multiplicative update rule, which
surprisingly, coincides with the sampling equivalent of the exponential gradient
descent update founded on Dale’s law. Proceeding further, we propose a new
formalism for multiplicative denoising score-matching, which subsumes the loss
function proposed by Hyvirinen for non-negative data. Indeed, log-normally dis-
tributed data is positive and the proposed score-matching formalism turns out to
be a natural fit. This allows for training of score-based models for image data
and results in a novel multiplicative update scheme for sample generation starting
from a log-normal density. Experimental results on MNIST, Fashion MNIST, and
Kuzushiji datasets demonstrate generative capability of the new scheme. To the
best of our knowledge, this is the first instance of a biologically inspired generative
model employing multiplicative updates, founded on geometric Brownian motion.

1 Introduction

An interesting problem in computational neuroscience is training artificial neural networks (ANNs)
in a fashion that is consistent with learning and optimization seen in biological systems. Several
studies [50, 36, I8, 138, 41] have confirmed that synaptic weight distributions in biological systems
are log-normally distributed and that the neurons obey Dale’s law [[15]], which states that excitatory
(inhibitory) neurons stay excitatory (inhibitory) throughout the course of learning without synaptic
flips. Artificial neural networks trained with gradient descent seldom obey Dale’s law. Recently,
Cornford et al. [[12] proposed the use of exponentiated gradient descent (EGD) to train neural networks
and have observed that the training is consistent with Dale’s law and leads to log-normally distributed
synaptic weights, in alignment with experimental findings. Exponentiated gradient descent is derived
using mirror descent for a particular variant of Bregman divergence.
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In this paper, we establish a concrete link between exponentiated gradient descent optimization to
sampling from stochastic differential equations (SDEs) inspired by geometric Brownian motion
(GBM). Whereas most diffusion modeling and sampling schemes rely on standard Brownian motion,
to the best of our knowledge, this is the first instance where GBM is used. We show that the proposed
framework captures the multiplicative nature of updates seen in EGD. The ability of geometric
Brownian motion to model processes with proportional changes makes it an ideal candidate for
developing biologically inspired generative models. For the purpose of generation, we need the
underlying score function used in the reverse-time SDE, for which we develop a novel multiplicative
score-matching loss. While a large body of contemporary generative modeling literature is based on
SDEs with additive Gaussian noise, our novel formalism relies on an SDE that governs the forward
noising process dynamics with multiplicative log-normal noise. We develop the corresponding
reverse-time SDE and show that it results in a multiplicative update rule that is structurally equivalent
to the exponential gradient-descent scheme Cornford et al. [12]. The multiplicative update rule
obtained as a consequence of the discretization of the SDE can be used to sample from the desired
distribution whose score function is learnt using a neural network. We support the theoretical
developments with experimental results on MNIST [31]], Fashion MNIST [60] and Kuzushiji image
datasets [10].

1.1 Related Works

Recent developments in generative modelling employing generative adversarial networks [18],
diffusion models [21]], score-based models [51} 52} |54], flow-based models [40] have produced
stunning examples across a variety of modalities spanning images, video, audio, etc.. In the context
of diffusion models, a seminal contribution has been the early work by Sohl-Dickstein et al. [47].
Inspired by non-equilibrium thermodynamics, they introduced the diffusion probabilistic model as a
tractable and flexible model for sampling and inference. They demonstrated generative capability on
toy datasets in two dimensions and image datasets like binarized MNIST and CIFAR-10. Ho et al.
[21] demonstrated that denoising diffusion probabilistic models (DDPMs) could be used for high
quality image synthesis. They vastly improved the results from Sohl-Dickstein et al. [47] and showed
a performance comparable to state-of-the-art generative models [26, 27 of that time. Progress in
score-matching by Song et al. [53]], Song and Ermon [51} 52]] demonstrated the potential of score-
based generative models to be competitive with diffusion models. In the seminal work of Song
et al. [S5], it was shown that an SDE framework unifies both approaches. These SDEs were based
on standard Brownian motion. Several alternative formulations that obviate the need for Brownian
motion were also proposed. In particular, Bansal et al. [2] propose generative models that are
based on more generic degradation operations and their corresponding restoration operations. They
consider blurring and masking among others as degradation operators and show that such generalized
degradations could also be used to formulate generative models. Rissanen et al. [43]] proposed that
generation could be viewed as the time-reversal of a heat equation. Additionally, they showed that
their approach allows for certain image properties like shape and colour to be disentangled and they
also discuss spectral properties that reveal inductive biases in generative models. Santos et al. [45]]
developed a discrete state-space diffusion model that relies on a pure-death random process and
demonstrate competitive generative ability on binarized MNIST, CIFAR-10, and CelebA-64 datasets.

A recent preprint on image denoising by Vuong and Nguyen [57] is perhaps the closest to the
multiplicative noise model considered in this paper. They consider a forward process where images are
corrupted by multiplicative log-normal or gamma distributed noise. However, instead of proceeding
with the multiplicative noise model, they convert it to an additive one by applying a logarithmic
transformation. While the log-transformation simplifies the calculations, it reduces the problem to
the additive noise setting, losing out completely on the richness of the original multiplicative noise
framework. Vuong and Nguyen [S7] remark explicitly that the reverse-time SDE in the multiplicative
noise setting comes with a lot of complications, which are overcome by converting it to an additive
noise model. They also restrict the scope of their work to denoising and do not propose a generative
framework.

1.2 Organization of the paper

Section [2| gives an account of Dale’s law and progress in computational neuroscience in deploying
exponentiated gradient descent to enforce Dale’s law — all of these form the inspiration for this
work. In Section 3] we present the essential mathematics behind SDEs and generative modeling
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required for understanding the contributions of this paper. Section [ introduces Geometric Brownian
Motion (GBM) and its corresponding reverse-time SDE based sampler for image generation. This
necessitates a new score-matching framework for multiplicative noise which we define in Section 5
Finally, Section [6] presents experiments on MNIST, Fashion-MNIST, and Kuzushiji MNIST datasets,
demonstrating the effectiveness and potential of the proposed model.

2 Dale’s Law and Exponentiated Gradients

In computational neuroscience, Dale’s law [[15] has been empirically observed to hold in many
biological systems barring certain exceptions. Dale’s law states that presynaptic neurons can only
exclusively affect their corresponding postsynaptic counterparts in an excitatory or inhibitory manner.
The implication of the law is that the synapses continue to be inhibitory or excitatory during the
course of learning without flipping. On the contrary, artificial neural networks have synaptic weights
that can flip from excitatory to inhibitory or vice versa during training. Previous attempts [4} 58] |34]
to incorporate biologically inspired learning rules to train neural networks have had limited success
on standard benchmark tasks. Recently, Cornford et al. [11] demonstrated that ANNs that obey
Dale’s law, which they name Dale’s ANNs (DANNSs), can be constructed without loss in performance
compared to weight updates done using standard gradient descent. They show that the ColumnEI
models proposed by Song et al. [48] are suboptimal and can potentially impair the ability to learn
by limiting the solution space of weights. DANNs outperform ColumnEI models on tasks across
MNIST [31], Fashion-MNIST [60] and Kuzushiji MNIST datasets [10]. Cornford et al. [11] posit
that the emergence and prevalence of Dale’s law in biological systems is a possible evolutionary
local minima and that the presence of inhibitory units in learning could help avoid catastrophic
forgetting [3]].

Li et al. [32] demonstrated that methods such as ColumnEI proposed by Song et al. [48] to incorporate
Dale’s law into the training of recurrent neural networks (RNNs) lead to suboptimal performance
on sequence learning tasks, which is primarily attributed to poor spectral properties of the weight
matrices, in particular, the multimodal, dispersed nature of the singular value spectrum of the
weight matrix. Li et al. [32]] extended the architecture developed by Cornford et al. [11] to handle
sequences using RNNs and showed that these networks are on par with RNNs that are trained without
incorporating Dale’s law. The spectral properties of DANN RNNs are also better than the ColumnEI
networks and the singular value spectrum is unimodal and clustered leading to superior performance
on tasks such as the adding problem [22]], sequential MNIST task [30] and language modelling using
the Penn Tree Bank [37]].

Cornford et al. [[12] demonstrated that gradient descent is a suboptimal phenomenological fit to
learning experiments in biologically relevant settings. While stochastic gradient descent for training
ANNS is an exceptionally successful and robust model in general, it violates Dale’s law [15] by
allowing for synaptic flips. This leads to the distribution of weights not being log-normal, which
contradicts experimentally observed data. Cornford et al. [12]] showed that exponentiated gradient
descent (EGD) introduced by Kivinen and Warmuth [29] respects Dale’s law and consequently pro-
duces log-normally distributed weights. In experiments performed on the Mod-Cog framework [28]]
using RNNs, EGD outperforms gradient descent and is superior to GD for synaptic pruning. The
learning task is formulated utilizing the mirror descent framework [39} [7] as changes to synaptic
weights in a neural network such that a combination of task error and “synaptic change penalty” must
be minimized. This leads to the update rule:

- 1
Xp+1 = argmin (X)) + 5D¢(X7Xk) ) ey

where ((X) = £(X}) + VX)) T |x=x, (X — X}) is the linearization of the task error /(X))
about the point X, and Dy (X, X},) is the synaptic change penalty. The penalty D : R?xR? = R
is chosen as the Bregman divergence corresponding to a strictly convex function ¢ : R? — R.
Depending on the choice of ¢, we get different update rules. For instance, when ¢(X) = || X|3,
the corresponding synaptic change penalty is D (X, X1) = || X — Xk||3, and Eq. (T) results in the
familiar gradient-descent update X1 = X — nV4(X) |x=x, .- This update rule for the weights
does not guarantee that the entries of X1 and X} have the same sign, which allows for synaptic
flips during training, as also confirmed by Cornford et al. [12].



142

143
144
145
146
147

148
149
150
151
152

154
155
156
157
158
159
160
161

162
163
164
165
166
167
168

169

170
171
172
173
174
175
176
177

178
179
180

d A ,

Cornford et al. [12] chose ¢(X) = > | X@|log|X®
i=1

which results in Dy being the unnormalised relative entropy,

, where X (9 denotes the " entry of X,

d
. x () _ ;
Dy(X, Xy) = E X“)logT—X“)JrX,g).
i—1 Xk
1=

For this choice of Dy, the update rule in Eq. (1) takes the form
Xk+1 = Xk o exp (—UVXE(X) |X=Xk o 51gn(Xk)) y (2)

where o denotes element-wise multiplication. The update in Eq.[2]is different from standard gradient-
descent update in many ways: the update is multiplicative as opposed to additive, involves exponenti-
ation, and preserves the sign of the entries of X, as iterations proceed. Effectively, the entries in X,
for any k have the same sign as those in Xy. The update rule in Eq. (2) is referred to as exponentiated
gradient descent (EGD) [29]).

By design, EGD doesn’t allow synaptic flips and automatically respects Dale’s law during the course
of training. The update rule also leads to the weights being distributed log-normally as demonstrated
by Pogodin et al. [41]. Exponentiated gradient-descent has been shown to perform on par with
gradient descent for models trained on Mod-Cog tasks, although the final weight distributions
are different. The networks for both updates are initialized with log-normal weights to adhere to
experimental data that shows that the synaptic strengths of neurons in the brain are log-normally
distributed [[14}135]]. The network trained with gradient descent had a final weight distribution that was
different from log-normal whereas the network trained with exponentiated gradient was log-normally
distributed. Additionally, Cornford et al. [[12] have shown that learning with EGD is more robust to
synaptic weight pruning and EGD outperforms gradient descent when relevant inputs are sparse and in
particular, for continuous control tasks. Pogodin et al. [41]] showed that the distribution of converged
weights depends on the geometry induced by the choice of the update algorithm. Gradient-descent
updates implicitly assume Euclidean geometry, which is inconsistent with the log-normal weight
distribution that is experimentally observed and is ill-suited to data arising in neuroscience.

A quick glance at Eq. (Z) prompts the question: Does there exist a sampling equivalent for the
exponentiated gradient-descent update rule? This is inspired by the link between gradient-descent
and Langevin dynamics as enunciated by Wibisono [59]. In pursuit of an answer to this question,
we realised the connection between the log-normally distributed weights observed at the end of
exponentiated gradient descent and the sampling equation lies in geometric Brownian motion. The
equilibrium distribution of GBM is the log-normal density and its time-reversal would give us the
sampling formula we seek (discussed in Sec. {4)).

3 Stochastic Differential Equations and Generative Modelling

Recent generative models such as diffusion models [21},49] and score-based models rely heavily on
the SDE framework. These models have been immensely successful in generating realistic samples
across different data modalities such as images [53)] and audio [42]. The key idea is to construct a
stochastic process such that one starts with samples from the true, unknown density and progressively
transforms them to samples from a noisy, easy-to-sample-from density such as the isotropic Gaussian.
The task of generation requires inverting the forward process which goes beyond mere time reversal
due to the stochastic nature of the dynamics. Theoretical results [[1} 9, 55] show that there exists a
corresponding reverse-time SDE for the forward process. The forward process is represented as

dXt = h(Xt,t) dt—i—g(Xt,t) th, (3)

where h(-,t) : RY — R? is the drift function, g(-,t) : R? — R9*4 is the diffusion function, and W,
denotes the standard Wiener process. We follow the Itd interpretation of SDEs throughout this paper.
The corresponding reverse-time SDE for Eq. (3) is given by

dXt = (h(Xtat) -V [g(Xtvt)g(Xht)T] _g(Xtat)g(Xtat)TVIngX(Xtat)) dt
+9(X¢, t)dW,, 4)
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where dW, is the standard Brownian motion and V-F(z) := (V- f1(z), V- f*(z),---, V-fi(x)) T
is the row-wise divergence of the matrix-valued function F(x) := (f!(z), f2(z),---, fi(z))" €
R?*4, The issue with generating new samples from Eq. (@) is that we usually do not have access
to the score function V log fx (X¢,t) and this quantity is approximated using a neural network
se : R% x [0,1] — R9, which is trained by optimizing the denoising score-matching loss [53]

2
L£(0) = tNZ/IIE[IO,l] [ Xolpro [)\(t) l|se(X¢,t) — V1og px,|x, (Xt|X(])||2] ] , )

Xi~px,|x,
where Vlog px,| x,(X:|Xo) is determined by the forward SDE (Eq. (3)) [46]]) and A(t) is designed
to stabilise training.

4 Geometric Brownian Motion

Brownian motion, originally introduced to model random particle motion [[16], is widely used in
physics, biology, and signal processing to describe processes with independent and identically
distributed (i.i.d.) increments. The resulting distribution is Gaussian following the Central Limit
Theorem. For example, the Ornstein-Uhlenbeck SDE (OU-SDE) [[13] models the position Y; of a
Brownian particle as dY; = p dt+o dW;, where W} is a Wiener process, yielding Y; = Yo+ut+oWs,
a Gaussian process with mean y and variance o2. Alternatively, when the relative increments (or
ratios) follow the Brownian motion, the resulting stochastic process is called the Geometric Brownian
Motion (GBM). Black and Scholes [6] pioneered the use of GBM for modeling the evolution of stock
prices and financial assets in mathematical finance. Just as the normal distribution plays a crucial role
in Brownian motion, the log-normal distribution plays a vital role in the analysis of GBM. Formally,
a random process X; is said to follow a Geometric Brownian Motion if it satisfies the SDE:

dXt :/JXt dt+JXt th, (6)

where W, is the Wiener process, and i and o are known as the percentage drift representing a general
trend and volatility coefficients representing the inherent stochasticity, respectively. The solution of
Eq. (@) X; evolves to follow a log-normal distribution with parameters z and 02, i.e.,

1
Xy = Xgexp ((,u — 202> t+ UWt) .

There exist several multivariate extensions of GBM [23]]. We consider the element-wise extension of
Eq. (6) for image data with the forward SDE for time ¢ € [0, 1]:

dXt:[LOXtdt+0XtOth, (7)

where o denotes element-wise multiplication, u € R%, o > 0 and W; denotes the multivariate
Wiener process. This can be written equivalently, using Ito’s lemma, as

2
dlog X; = (u - 021> dt + AW, 8)

where log is applied element-wise. The distribution of X, as it evolves according to Eq. (8], has
i.i.d. entries that are log-normally distributed with parameters p and o2I, I being the d x d identity
matrix. Starting from a sample X from the unknown density px,, the solution to Eq. is

2
X :Xooexp<(u—021>t+UWt).

This closed-form expression allows us to easily generate samples from the forward process at arbitrary
time instants ¢ € [0, 1]. The samples at the end of the forward process are log-normally distributed.
We now seek to derive the corresponding reverse-time SDE that would enable us to generate samples
from the unknown density px, starting from samples from the log-normal density. While one could
use Eq. {@) to derive the corresponding reverse-time SDE, we propose a simpler approach by defining
an auxiliary stochastic process Y; = log X, and leveraging score change-of-variables formula [44].
This allows us to rewrite Eq. (8] as

2
ay; = (u— ”21) dt + dAW,. )
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Forward SDE: dX; = po X; dt + 0 X; o AW,

2
—) X1 = Xj 0 exp (5 (u - %1) + a\/SZk)

2
Xi_1 =X oexp (—(5 ([.L— 3%1) +(50’2Xk OVIngXk(Xk::k) + \/SO’Z]C) @

Reverse-Time SDE: dX; = X, o exp (—(p — 0%1) + 0°X; 0 Vlogpx, (Xy, 1)) dt + 0X, 0 AW,

Figure 1: The forward and reverse-time SDEs for Geometric Brownian Motion (GBM). The forward
SDE describes the evolution of a clean image sample to a noisy one that eventually becomes log-
normally distributed, while the reverse-time SDE captures the dynamics of the process and generates
new samples from the unknown density starting from log-normal noise. This is enabled by the
knowledge of the unknown density manifesting through the score function.

The reverse-time SDE corresponding to the forward SDE in Eq. (9) can be obtained by invoking
Eq. @) and is given by

2
dy; = (H — %1 - 02V10gpyt(Yt,t)> dt + cdW,, (10)

where V log py (Y%, t) is the score function corresponding to Y; and 1 is a vector of all ones. We
invoke the score change-of-variables formula [44] that allows us to represent V log py, (Y3, t) in terms
of Vlegpx, (X, t) as Vlog py, (Yi,t) = 1 4+ X, o Viegpx, (X, t). Thus, we rewrite Eq. (T0) in
terms of X and simplify it to obtain

2
dlog X; = (u — 3%1 — 02X, 0 Viegpx, (Xt,t)) dt + cdW;,. (11)

To simulate the reverse-time SDE on a computer, it must be discretized in time. We chose the time
range [0, 1] with IV steps, which results in a step-size of § = % and for brevity, denote X5 as Xk,
fork =0,..., N — 1. In particular, we choose the Euler-Maruyama discretization scheme [20] for

Eq. (IT) to get
3 2
log Xj,_1 = log X5 — & (u - %1 — 02 (X, 0 Vlogpx, (Xt,t))‘t_ké) \ooZy, (12)

where Z), ~ N(0,T) (the standard normal distribution), and since the log operates element-wise,
exponentiating both sides gives

2

X1 = X, oexp (—5 (,u — 3;1) + 602X} 0 Viegpx, (Xk, k) + \/SO'Z]@> . (13)

The update rule in Eq. is similar to the EGD update rule in Eq. (Z). Consider the optimization
problem with a modification of the task error as

n

- 1
Ko = argngn |A6(X) + 1 Do(X. X0 (14)
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with the choice of ¢ : R? — R% as ¢()(X) = 0.5 (X(“)2 fori = 1,2,---,d. This leads to the
following multiplicative update rule

X1 = Xpoexp (—nXy o Vxl(X) [x=x,) - (15)

Interestingly, if we assume that the density px, (X, k) is of the form px, (Xi, k) =
- exp (—0(X},)), with g = do2 and p = %, then the corresponding sampling step in Eq. is
of the form

X1 =Xpoexp(—nX, o VxUX) |x=x, +vV1Zk), (16)

where Z;, ~ N(0,1). Therefore, the proposed sampler is structurally equivalent to the modified
exponential gradient descent step in Eq. (T3).

S Multiplicative Score Matching

Following the definitions of explicit score-matching (ESM) loss and denoising score-matching (DSM)
loss for the additive noise case [56], we propose the multiplicative counterparts Ly gsm(6) and
Lyvpsm(0) as follows:

1
Lyesm(0) = < E [2|Xt oVlegpx, (X:) — X o0 se(Xt,t)g} , and a7
1
EM-DSM(O) = XULE;DX |:2||Xf o VIngXL\XD(Xt|XO) — Xt e} Sg(Xt,t)||§:| . (18)
0

Xi~px, X
The two types of score-matching loss functions are related as follows.

Theorem 5.1 (Multiplicative Denoising Score-Matching). Under standard assumptions on the
density and the score function [24)[53]] over the positive orthant R*%, the multiplicative explicit score-
matching (M-ESM) loss given in Eq. (I7) and multiplicative denoising score-matching (M-DSM) loss
given in Eq. (I8) are equivalent up to a constant, i.e., Lypsu(0) = Lypsu(0) + C, where C'is
independent of 6.

The proof is provided in the supplementary material. The usefulness of this result is explained next.
We need the marginal score function V log px, (X) in the reverse-time SDE Eq. (I3)) but optimizing
Eq. is intractable since we do not have access to the “true” marginal score. The theorem provides
us with a means to optimize for sg in terms of the conditional score V log px, | x, (X¢|Xo), which
can be derived from the forward SDE. The challenge in leveraging Eq. (I3) to generate new samples
arises from our lack of knowledge of V log px, (X}). This function must be estimated by some form
of score-matching. To this end, we propose the following score-matching loss

1
Lunn(®) = B [§1X0 0 Viogs x, (X | Xo) ~ Xioso(Xe 0] (19
XthX”[))(O

In practice, this choice of the loss function allows us to train the score network sg using samples from
the forward SDE in Eq. (7) and the corresponding conditional score V log px,| x, (X¢|Xo) evaluated
at discrete instants of time t = kJ can be computed using the forward SDE and the expression for the
target in the loss function is given by

1 2
X o Vliogpx, x,(Xt|Xo) = — <1 + Y- <long —log Xy —t6 (u — 21))) . (20

The proposed loss function in Eq. (I9) is the multiplicative noise counterpart of the denoising score-
matching loss proposed by Song et al. [55] for additive noise. To the best of our knowledge, this
formulation of the score-matching loss and its manifestation in the multiplicative noise setting is new.
It would be appropriate to remark here that the score term in Eq. (I3)) also arises in the score-matching
loss proposed by Hyvérinen [25] for non-negative real data given by

1
Lnn(0) = E [ Xo o Vlegpx,(Xo) — Xo o se(Xo)3] . 21

2 Xo~px,
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Figure 2: Uncurated sample images generated from MNIST, Fashion-MNIST and Kuzushiji MNIST
datasets, corresponding to the score model with minimum score-matching loss during training.

where V log px, (X)) is the true score. Hyvirinen [23]’s formulation is static in the sense that it
does not leverage the SDE, whereas we do. Hyvirinen [25]’s score-matching loss can also be seen as
an instance of the multiplicative explicit score-matching loss (M-ESM) for ¢ = 0. Hyviérinen [25]’s
motivation for introducing this loss function is to avoid the singularity at the origin for non-negative
data. Our framework encapsulates this variant of the score-matching loss as a special case. This
is primarily due to the structure of GBM that assumes the log-normal distribution which implicitly
restricts the samples to be positive. Thus, our framework generalizes the score-matching loss proposed
by Hyvirinen [25] to the case of multiplicative noise.

Algorithm 1 Multiplicative updates for generation using Geometric Brownian Motion (GBM).

Require: o, 6, p, trained score network sg
1: fork<«< Oto N —1do
2: Zp ~N(0,I)
32 Xp_1=Xpoexp (—5 (u — "—221) + 002X}, 0 59( Xy, k) + U\/SZk)
4: end for

5.1 Image Generation using Multiplicative Score Matching

The goal in diffusion-based image generative modeling is to construct two stochastic processes, as
illustrated in Fig. [T]- the forward process to generate a noisy version of a clean image and the reverse
process to enable us to sample from the unknown density px,. For the forward model, starting from
an image X coming from the unknown density, the forward SDE in Eq. (8) can be used to generate
noisy versions of X as follows

2
Xii1 = Xg o exp (5 <u - 21) + \/Eazk) , (22)

fork =0,...,N —2,and X_; is log-normally distributed and Zj, ~ A(0,T). For the reverse
process, i.e., generation, we can generate samples from the reverse-time SDE in Eq. (IT) using the
discretized version of the reverse-time SDE in Eq. (T3)) and the score model sg(+) trained with the loss
defined in Eq. (T9) in place of the true score function Vlog px, (-). The new generation/sampling
procedure is summarized in Algorithm[I} The algorithm takes as input the parameters o, §, s and
the trained score network sg and generates samples from the unknown density px, by iterating over
N steps. The algorithm starts with a sample X ;1 from the log-normal distribution and iteratively
updates the sample using the reverse-time SDE in Eq. (T3). The final output should be a sample
Xo ~ px,-
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6 Experiments

We evaluate the generative performance of the proposed modeﬂ by training the score model on
standard datasets such as MNIST, Fashion-MNIST and Kuzushiji MNIST dataset used by Cornford
et al. [11]. The datasets are split as 60, 000 images for training and 10, 000 images for testing. All
images are rescaled to have pixel values in the range [1, 2]. Note that the proposed framework
requires a non-negative dynamic range of pixel values. We choose N = 1000 discretization levels
for the forward SDE and leads to the step size § = 1/N. During sampling, we observed that
the same step-size did not always work and we had to work with smaller step-sizes for each of the
three datasets. The model is trained using the M-DSM loss defined in Eq. (T9). The hyperparameters
n= "721, o and § are set to 0.8 and 0.001, respectively. The model is trained for 200000 iterations
and the checkpoints are saved every 5000 iterations as mentioned in [52] on two NVIDIA RTX 4090
and two A6000 GPUs. We perform exponential moving average for the saved checkpoints every
50000 iterations. The generated samples are shown in Figure[2] from where we observe that the
visual quality of the generated images matches is on par with that of the ground truth. For quantitative
assessment, we use Fréchet Inception Distance (FID) [19] and Kernel Inception Distance (KID) [5]]
measured between 10, 000 images from the test dataset and the same number of generated images.
Lower FID and KID values indicate superior generative performance. While both these metrics are
not commonly used to quantify the generative performance for grayscale images, we follow Xu et al.
[61] and report these numbers for transparency and reproducibility (cf. Supplementary Material).

7 Conclusions

We proposed a novel generative model based on Geometric Brownian Motion (GBM) and a new
technique for score-matching. We showed that the GBM framework is a natural setting for modeling
non-negative data and that the new multiplicative score-matching loss can be used effectively to train
the model. The model is capable of generating new samples from image datasets like MNIST, Fashion
MNIST and Kuzushiji MNIST. The results are promising from a generative modeling perspective.
The multiplicative score matching framework can also be suitably adapted for image denoising and
restoration tasks where the forward model has multiplicative noise as opposed to the widely assumed
additive noise. While this work focuses on log-normal noise, other distributions such as the gamma
distribution, could also be considered with associated SDEs. This would broaden the applicability
of the model to datasets and domains where various types of multiplicative noise are prevalent such
as optical coherence tomography [33]] and synthetic aperture radar [[L7], enabling more robust and
versatile generative and restoration capabilities. Starting off with the results shown in the paper, one
could also extend applicability of the proposed model to high-resolution images. Application to
non-image data, such as financial time-series, is another potential direction for further research.

Limitations

The proposed generative model requires a large amount of training data and computational resources
to achieve good performance, which can be a constraint in some applications. In the true spirit of
data-driven generation, some of the generated images do not have the same semantic meaning as
samples from the source dataset. Incorporating semantics into generative modeling is a research
direction by itself. Instead of cherry-picking the results, we reported them as obtained to highlight
both the strengths and limitations of the proposed approach. The choice of hyperparameters, such as
the noise schedule and learning rate, which are carefully tuned, can affect the performance of the
model. However, this limitation is true of all deep generative models and not unique to ours.

Broader Impact: The proposed approach of leveraging the GBM and multiplicative score-matching
is novel and has the potential to advance the field of generative modeling along new lines. The model
may find natural applicability in financial time-series modeling, forecasting, and generation. Ethical
concerns pertaining to the use of generative models and the potential for misuse by generating biased,
fake, or misleading content are all pervasive and the proposed framework is no exception.

'Code for this paper is available at https : //anonymous . 4open.science/r/gbm_dale-CC20
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes. Our contributions are clearly stated in the abstract and introduction in
Sec.|l] The claims made in the paper are supported by theoretical results and experimental
evaluations in Sec. @ and Sec.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Yes. Please refer to page 9 for a discussion of the limitations of the proposed
model.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Yes, please refer to the supplementary material for the proof of Theorem 5.1]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. We use publicly-accessible datasets such as MNIST [31], Fashion
MNIST [60] and Kuzushiji MNIST [10]]. The code is available at https://anonymous,
4open.science/r/gbm_dale-CC20|and includes instructions to reproduce the results.
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Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes. The code is available at https://anonymous.4open.science/r/
gbm_dale-CC20 and includes instructions to reproduce the results. The datasets used in the
experiments are publicly available.

Guidelines:

The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, please refer to Sec. [6]for the details of the experimental setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We cannot afford to report error bars for experiments since they are computa-
tionally extremely expensive.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes. We adhere to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes. Please see page 9.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
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Justification: The code is publicly available and is subject to the discretion of the user, also
see page 9.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets, code and models used are cited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes. The link to code to reproduce our experimental observations has been
provided in the footnote on page 9.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects were involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects were involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM has been used only for minor editing and formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Organization of the paper

	Dale's Law and Exponentiated Gradients
	Stochastic Differential Equations and Generative Modelling
	Geometric Brownian Motion
	Multiplicative Score Matching
	Image Generation using Multiplicative Score Matching

	Experiments
	Conclusions

