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ABSTRACT

In the recent years, combinations of graph convolution and recurrent architec-
tures have emerged as a new powerful alternative for multivariate spatio-temporal
forecasting, with applications ranging from biosurveillance to traffic monitoring.
However, such methods often tend to suffer from vulnerability to noise and limited
generalization abilities, especially when semantics and structural properties of time
series evolve over time. To address these limitations, we propose a simple yet
flexible and highly effective framework, i.e., Persistence-based Contrastive Learn-
ing with Graph Neural Recurrent Networks (PCL-GCRN). The key idea behind
PCL-GCRN is the notion of topological invariance that we introduce to contrastive
graph learning for multivariate spatio-temporal processes. PCL-GCRN allows us
to simultaneously focus on multiple most important data shape characteristics at
different granularities that play the key role in the learning performance. As a
result, PCL-GCRN leads to richer data augmentation, improved performance, and
enhanced robustness. Our extensive experiments on a broad range of real-world
datasets, from spatio-temporal forecasting of traffic to monkeypox surveillance,
suggest that PCL-GCRN yields competitive results both in terms of prediction
accuracy and robustness, outperforming 19 competing approaches.

1 INTRODUCTION

Graph neural networks (GNNs) have recently emerged as a new promising approach for multivariate
time series forecasting, allowing for simultaneous modelling of complex spatio-temporal interdepen-
dencies. However, such GNNs tend to be vulnerable to noisy observations and are often limited in
their generalization ability, especially when semantics and structural properties of time series evolve
over time. These limitations can be addressed using the concept of contrastive learning.

Contrastive learning aims to obtain informative representations from unlabelled data which are
consistent under various augmented views. This task is approached by exploiting feature invariance
under certain transformations and maximizing the agreement among the derived representations.
The intuition underlying this idea is to construct representations such that, without relying on the
labelled data, data samples with similar features are close, while samples with different features
are distinguished even prior to performing any task such as classification. This in return not only
improves performance of downstream tasks but also enhances generalization abilities and robustness.

Data augmentation is the key prerequisite for contrastive learning and is arguably its most critical
element, especially in conjunction with the analysis of graphs which exhibit rich structural informa-
tion in a diverse set of contexts, from spread of infectious agent on social networks to predictive
analytics on blockchain transaction graphs. As shown by You et al. (2020), the impact of data
augmentation techniques may vary substantially across types of graph structured data and their
underlying properties. For instance, attribute masking is found to be more beneficial for denser
graphs, while edge perturbation leads to better performance on social networks and tends to dete-
riorate learning results on biochemical graphs. In turn, perturbation of subgraphs which may be
viewed as structural and functional “motifs”, systematically results in the competitive gains, and such
phenomenon sustains across a broad range of datasets. Generally, while the preferred combination of
augmentation techniques tends to be data-specific, fusing multiple augmentation strategies which
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mine different structural and contextual graph properties, appears to be the most promising approach
for self-supervised graph learning (Sun et al., 2020; Jiao et al., 2020). In turn, developing methods for
automatic selection of data augmentation types and their optimal combination is one of the emerging
directions in self-supervised learning (Liu et al., 2022). Finally, while contrastive learning continues
to gain popularity for analysis of multivariate time series (Yue et al., 2022; Yang & Hong, 2022; Woo
et al., 2021), very little remains known on data augmentation of graph-structured representations of
spatio-temporal processes (Opolka et al., 2019; Liu et al., 2021).

Here we make a first step toward fusing these emerging research directions by introducing the
concepts of topological invariance and persistent homology (PH) to contrastive learning of spatio-
temporal graphs. PH is a subfield of topological data analysis (TDA) which tracks evolution of data
shape patterns at various scales, where by shape we broadly mean data properties that are invariant
under continuous transformations. Such common shape patterns include, for example, independent
components, holes, and voids, which are described via associated simplicial complexes and summaries
of thereof. (Note that, for instance, nodes can be viewed as 0-dimensional simplices, edges are 1-
dimensional simplices, and so on.) Inspired by the recent proliferation of TDA into machine learning,
we propose to leverage these ideas on topological invariance and develop a novel persistence-based
data augmentation. The key approach here is to perturb the extracted shape features, targeting the
shape patterns that persist over multiple scales and, as such, are likelier to contain the most valuable
latent information on the underlying object. The benefits of the new methodology are multifold. First,
PH extracts and focuses on the most characteristic shape patterns in an objective manner, thereby
allowing us to systematically account for both local and global structural properties at different
granularities. As a result, we automatically encompass the conventional augmentation types, focusing
on perturbation of nodes, edges, and subgraphs. Second, we simultaneously consider shape patterns
of various dimensions, hence, resulting in a richer data augmentation. Finally, since the extracted
topological features are expected to reflect data properties invariant under continuous transformations,
the resulting shape characteristics are intrinsically more robust than many conventional features. As a
consequence, the persistence-based data augmentation enhances robustness of the downstream tasks.
We apply the proposed methodology to contrastive learning of spatio-temporal graphs, in conjunction
with multivariate time series forecasting, and validate its utility on a diverse set of processes, from
traffic networks to spread of monkeypox.

Significance of our contributions can be summarized as follows:

• This is the first approach to introduce the concepts of topological invariance not only to
contrastive learning of graphs and spatio-temporal processes but to self-supervised learning,
in general. By leveraging the machinery of persistent homology, we propose a novel
persistence-based contrastive learning (PCL) for spatio-temporal graphs which allows us
to systematically extract the most inherent latent data shape characteristics at different
granularities that play the key role in the learning performance.

• The new persistence-based data augmentation simultaneously account for both local and
global structural properties and automatically integrate shape characteristics of various
dimensions, thereby resulting in richer data augmentation.

• Inspired by the notion of landmarks in computer vision and the recent results on PH on
landmarks, we bring the landmark ideas to contrastive graph learning, which enables us to
further enhance robustness and reduce computational costs.

• To validate PCL-GCRN, we perform extensive experiments on 6 benchmark datasets, in
conjunction with spatio-temporal graph contrastive learning and the downstream task of
multivariate time series forecasting. Our results indicate that PCL-GCRN outperforms 19
competitors on 6 datasets both in terms of forecasting performance and robustness.

2 RELATED WORKS

A natural deep learning solution of time-series datasets modeling consists of Recurrent Neural
Networks (RNNs) and its successors such as Long-Short-Term-Memory (LSTM) networks and
Gated Recurrent Unit (GRU) networks. GNNs is an effective framework for hidden representation
learning of graph structures through message passing on the graph. To capture spatial and temporal
dependencies, many studies attempt to use GNNs to incorporate spatial dependencies into the RNN
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framework, especially in traffic prediction problem on transportation networks (Yu et al., 2018b; Guo
et al., 2019; Pan et al., 2019). DCRNN (Li et al., 2018) integrates diffusion graph convolutional
layer into a GRU network for long-term traffic forecasting. Additionally, Guo et al. (2019) employs
attention mechanism to learn spatial and temporal dependencies, so that the dynamic spatio-temporal
correlations can be captured. Furthermore, Wu et al. (2019b) develops a self-adaptive adjacency matrix
to perform graph convolutions without pre-defined graph structure. Song et al. (2020) introduces a
spatio-temporal synchronous graph convolution operation to capture the localized spatial-temporal
correlations by localized spatial-temporal graphs.

Although the aforementioned spatio-temporal graph convolution methods have been proven to be
effective in forecasting tasks in many real-world applications, most existing methods ignore the
complexity of dynamic graph structural information and require external guidance, for example, labels
(which are important but hard to obtain) to learn a promising graph-level representation. Inspired by
the promising performance of self-supervised learning (Hjelm et al., 2018; He et al., 2020), some
efforts have been dedicated to develop contrastive learning with graph augmentations (Velickovic
et al., 2019; You et al., 2020; Qiu et al., 2020; Liu et al., 2022), to tackle spatio-temporal graph
representations (Oord et al., 2018; Eldele et al., 2021). For example, Yue et al. (2022) designs
hierarchical contrasting method in both instance-wise and temporal dimensions to capture contextual
information in time-series data. Similarly, Woo et al. (2021) applies contrastive learning to learn
disentangled seasonal-trend representations through a causal lens. Also, Eldele et al. (2021) proposes
a contrastive learning with two different correlated views to obtain robust representation. In this
paper, we employ persistent homology to capture hidden shape information on the underlying graph
structure and design an efficient persistence-based data augmentation. Additionally, we propose a
novel persistence-based contrastive learning to improve spatio-temporal graph representations of
multivariate time series.

3 METHODOLOGY

Spatio-temporal Data as Graph Structures Spatio-temporal networks have recently proven to be a
promising abstraction to describe complex dependence properties in multivariate time series. The
spatial-temporal networks can be represented as a sequence of discrete snapshots, {G1,G2, . . . ,GT },
where Gt = {Vt, Et, At} is the graph structure at time step t, t = 1, 2, . . . , T . In Gt, Vt is a node
set containing N nodes, i.e., Vt = {vi}Ni and Et ⊆ Vt × Vt is an edge set. For a weighted graph,
each edge is assigned a corresponding weight by function ω : Et 7→ R+. Then the weighted
adjacency matrix At is defined as atuv = ω(u, v). Let F be the number of different node features
associated each node v ∈ Vt (where F ≥ 1); then, a N × F feature matrix Xt serves as the input
to the backbone model for time-series forecasting. The problem of time-series forecasting can be
described as: given τ historical observations X τ = {Xt−τ , Xt−τ+1, . . . , Xt−1}, we aim to find a
multivariate forecasting model M(·) to predict future observations in the next ζ timestamps, i.e.,
{Xt, Xt+1, . . . , Xt+ζ−1} = M(Xt−τ , Xt−τ+1, . . . , Xt−1).

3.1 PRELIMINARIES ON PERSISTENT HOMOLOGY

Persistent homology is a branch in topological data analysis which tracks evolution of the various
data shape patterns along various user-selected geometric dimensions (Edelsbrunner et al., 2000;
Zomorodian & Carlsson, 2005). By utilizing a multi-scale approach to shape description, PH
addresses the intrinsic limitations of classical homology and allows for retrieval of shape patterns
that tend to persist over multiple scales and, hence, are likelier to play the important role for a given
downstream task. The main idea is to select some suitable scale parameters α and then to assess
changes in shape (or more formally homology) that occur to G which evolves with respect to α. That
is, we no longer study G as a single object but consider a filtration Gα1

⊆ . . . ⊆ Gαn
= G, induced

by monotonic changes of α. To make the process of pattern counting more systematic and efficient,
we build an abstract simplicial complex K (Gαj ) on each Gαj , resulting in a filtration of complexes
K (Gα1) ⊆ . . . ⊆ K (Gαn). Due to its computational benefits, one of the most widely used choices
is a Vietoris-Rips (VR) complex. Turing to the choice of the scale parameter, if we select a scale
parameter as a shortest (weighted) path between any two nodes, then the abstract simplicial complex
K (Gα∗) is generated by subgraphs G′

of bounded diameter α∗. In turn, if G is an edge-weighted
graph (V, E , w), with the edge-weight function w : E 7→ R, then for each αj we can consider only
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induced subgraphs of G with maximal degree of αj , leading to a degree sublevel set filtration. (For
the detailed discussion on graph filtrations see Hofer et al. (2020).)

Armed with this construction, we can now monitor data shape patterns such as independent com-
ponents, holes, and cavities which (dis)appear as scale α changes (i.e., for each topological feature
ρ we record the indices bρ and dρ of K (Gbρ) and K (Gdρ), where ρ is first and last observed,
respectively). We say that a pair (bρ, dρ) represents the birth and death times of ρ, and (dρ − bρ)
is its corresponding lifespan (or persistence). Intuitively, shape features with longer lifespans are
considered more valuable, while features with shorter lifespans are often associated with topological
noise. The extracted topological information over the filtration {Kαj

} can be summarized in a form
of a multiset in R2 called persistence diagram (PD) D = {(bρ, dρ) ∈ R2 : dρ > bρ} ∪ ∆ (here
∆ = {(t, t)|t ∈ R} is the diagonal set containing points counted with infinite multiplicity; including
∆ allows us to compare different PDs based on the cost of the optimal matching between their points).

Finally, inspired by the recent results on PH on witness complexes and landmarks on graphs (Arafat
et al., 2019), we construct K (Gα∗) on a set of landmark nodes. Here we select landmarks based on
the node degree centrality. This approach allows us both to reduce computational costs and to focus
only on the most intrinsic shape properties, thereby reducing the impact of topological noise.

3.2 TWO-STREAM SPATIAL GRAPH CONVOLUTION

To systematically incorporate both global topological information and node features from the spatial
dimension, in this section, we introduce the components of our proposed two-stream spatial graph
convolution as follows.

K-[multi-hop] Chebyshev convolution The multi-hop Chebyshev convolution aims to learn higher-
order structural information encoded in the graph topology by taking multi-hop neighborhood of
every node as guidance. Here, we adopt a random walk-based Chebyshev convolution to implement
this module.

Given a graph Laplacian L, the multi-hop Chebyshev polynomial with the neighborhood radius
γ = K, i.e., Tr(L̃K) is recursively defined as

Tr(L̃
K) = 2L̃KTr−1(L̃

K)− Tr−2(L̃
K), (1)

where T0 = 1, T1 = L̃K , L̃K = (2L/λmax − IN )K represents the K-hop renormalized graph
Laplacian (which is normalized to [−1, 1], λmax is the maximum eigenvalue of the graph Laplacian,
and IN is an identity matrix), and K ≥ 1 denotes the power of the renormalized graph Laplacian.
With the power order K ≥ 1, for each node u, we can extend the message passing process from
a larger neighborhood when applying the graph convolution operation. However, it is impossible
to manually tune the optimal neighborhood size at each timestamp. Our K-[multi-hop] Chebyshev
convolution technique is then motivated by the following question: can we design an operator to
comprehensively collect spatial and spectral information across a wider range? We answer this
affirmative by concatenating K weighted multi-hop Chebyshev polynomial graph filter tensor to make
multi-level global topological information available to graph convolution operation, and empowering
graph convolution to capture neighbors’ information from time-dependent graph representations.
Definition 3.1 (Weighted Multi-hop Chebyshev Polynomial Graph Filter Tensor (WMCheby-GFT)).
Given the spatial network Gt at timestamp t, let L̃K denote K-hop renormalized graph Laplacian
(K ∈ {1, 2, . . . ,K}). The weighted multi-hop Chebyshev polynomial graph filter tensor is defined as

⃗̃L = [IN , α1 · Tr(L̃), α2 · Tr(L̃2), . . . , αK · Tr(L̃K), . . . , αK · Tr(L̃K)] ∈ R(K+1)×N×N , (2)

where the attentional coefficient αu
K = Softmax(θuK) = exp (θuK)/

∑K
K=1 exp (θ

u
K) indicates the

importance of node u in Tr(L̃K), θuK = MLP(σ(MLP(Tr(L̃K)))) (here MLP denotes the multilayer
perceptron), and σ(·) is a non-linear function, i.e., the tanh function.

WMCheby-GFT allows us to adaptively capture the global topological information and partial
similarities between neighborhoods with various radii γ ∈ {1, 2, . . . ,K}. Finally, the K-[multi-hop]
Chebyshev convolution can be formulated as

Z
(ℓ)
C = (⃗̃LZ

(ℓ−1)
C )⊤ΘC , (3)
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where (·)⊤ denotes transpose, ΘC ∈ R(K×dC
in)×dC

out is the trainable weight matrix to perform feature
transformation in each layer (where dCin and dCout are the input and output dimensions of (ℓ− 1)-th
layer respectively), and Z(ℓ−1)

C ∈ RN×dC
in and Z(ℓ)

C ∈ RN×dC
out are the input and output of the

(ℓ − 1)-th layer, respectively. (Note that, Z(0)
C = Xt ∈ RN×F is the node features of graph at

timestamp t; for simplicity, we omit the subscript t for notations in Eq. 3.)

Q-[multi-hop] adaptive spatial graph convolution However, the K-[multi-hop] Chebyshev con-
volution based on the pre-defined graph structure above may suffer from two limitations. First, the
topological relationship among nodes may change dynamically over time for time-evolving graphs.
Second, using the binary correlation matrix based on the pre-defined graph structure may limit gener-
alization ability. To overcome these limitations, inspired by the recent success of adaptive dependency
matrix (Wu et al., 2019a; Bai et al., 2020), we propose to use the node embedding dictionary to design
a Q-[self-adaptive] spatial graph convolution. Let Eϕ = (e1,ϕ, e2,ϕ, . . . , eN,ϕ) ∈ RN×dE , which is
a trainable node embedding dictionary for all N nodes (dE is the dimension of node embedding).
Then, computed by the inner product between Eϕ and E⊤

ϕ , i.e., L̈ = Softmax(σ(< Eϕ, E
⊤
ϕ >)), we

can obtain the self-adaptive adjacency matrix (where the non-linear function σ(·) is empirically set to
ReLU function). Similar to WMCheby-GFT, in order to exploit the global topological information of
the spatio-temporal graphs and to further improve the learning performance, we propose to employ
a weighted multi-hop self-adaptive adjacency matrix tensor for aggregation of information from
different neighborhood radii.
Definition 3.2 (Weighted Multi-hop Self-adaptive Adjacency Matrix Tensor (WMS-AMT)). Given
the spatial network Gt at timestamp t, let L̈K denote K-hop self-adaptive adjacency matrix, where
K ∈ {1, 2, . . . ,Q}. The weighted multi-hop self-adaptive adjacency matrix tensor is then defined as

⃗̈L = [IN , β1 · L̈, β2 · L̈2, . . . , βK · L̈K , . . . , βQ · L̈Q] ∈ R(Q+1)×N×N , (4)

where the attentional coefficient βu
K = Softmax(θuK) = exp (θuK)/

∑Q
K=1 exp (θ

u
K) indicates the

importance of node u in L̈K , θuK = MLP(σ(MLP(L̈K))).

Armed with WMS-AMT as designed above, we define a graph convolution working on the adaptive

graph structure representation as Z(ℓ)
A = (⃗̈LZ

(ℓ−1)
A )⊤EϕΘA. Here ΘA ∈ RN×(Q×dA

in)×dA
out denotes

learnable parameters (where dAin and dAout are the input and output dimensions of (ℓ − 1)-th layer
respectively), and Z(ℓ−1)

A ∈ RN×dA
in and Z(ℓ)

A ∈ RN×dA
out are the input and output of the (ℓ− 1)-th

Q-[multi-hop] adaptive spatial graph convolutional layer, respectively. (Here Z(0)
A = Xt ∈ RN×F ).

As such, by setting the attention mechanism for self-adaptive adjacency matrix tensor, we allow to
use a large K for long-range modeling with controllable oversmoothing. Lastly, we get the final
embedding matrix used for spatial information modeling as

Z(ℓ) = fC · Z(ℓ)
C + fA · Z(ℓ)

A , (5)

where fC and fA are importance weights for outputs of K-[multi-hop] Chebyshev convolution and
Q-[multi-hop] adaptive spatial graph convolution, i.e., Z(ℓ)

C and Z(ℓ)
A respectively. It is worth to note

that, in our experiments, the importance weight f (i.e., ∈ {C,A}) can be considered as either
attention mechanism (which can perform adaptive aggregation based on a multi-head aggregation
module) or weighting factor (which can be set either as a hyperparameter or a fixed scalar). To
capture both spatial and temporal correlations in time-series, we feed the final embedding Z(ℓ) into
Gated Recurrent Units (GRU) for future time points forecasting (see more details in Appendix A). For
each timestamp t, the loss function of GRU with two-stream spatial graph convolution is formulated
as L0 = ||X̂t −Xt||22, where Xt is the ground truth value at timestamp t to forecast, and X̂t is the
predicted value for the timestamp t.

3.3 PERSISTENCE-BASED CONTRASTIVE LEARNING

Before diving into our proposed persistence-based contrastive learning, we first introduce graph
data augmentations (You et al., 2020), and then we present how to develop persistence-based data
augmentation and corresponding persistence-based contrastive learning (i.e., contrastive learning
with topological signatures of PH) with application to spatio-temporal forecasting. We further
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perform ablation studies (see Table 7) on both topological and graph contrastive learning to judge
the usefulness and effectiveness of each contrastive learning strategy in spatio-temporal forecasting
tasks. Given a graph Gt (t = 1, 2, . . . , T ) with its adjacency matrix At and node feature matrix Xt,

Figure 1: The visualization
of persistence-based data aug-
mentation (see Appendix B for
more details.)

in practice, there are three different ways to perturb the Gt, i.e., (i)
DropNode, (ii) edge perturbation, and (iii) node feature shuffling.
Specifically, (i) in DropNode: DropNode technique randomly drops
out a certain rate of nodes (also removes all edges connected to
the dropping nodes; we denote the resulting perturbed adjacency
matrix from DropNode as

...
A

V
t ), (ii) in edge perturbation: it adds

(+) or drops out (-) a certain rate of edges of the input graph by
random (we denote the resulting perturbed adjacency matrices from
edge perturbations as

...
A

E−
t and

...
A

E+
t respectively), and (iii) in node

feature shuffling, the perturbed node feature
...
Xt is obtained by the

row-wise shuffling of Xt. With such design of graph augmenta-
tion strategy, we have positive sample (X,A) and negative sample
(

...
X,

...
A) (spoiler alert: we do not use negative sample!) (for simplic-

ity, we omit the timestamp t and the layer ℓ for convenience), and
we will now summarize the procedure of topological contrastive learning which can be decomposed
into seven steps

S1 Obtain node embedding Z by feeding positive sample (X,A) into backbone model (e.g., our
proposed two-stream spatial graph convolution; see Section 3.2).

S2 Reconstruct an adjacency matrix Â via node embedding Z (derived from the two-stream spatial
graph convolution in Eq. 5), i.e., Â = σ(ZZ⊤). Note that, since Â is reconstructed based on
Z (i.e., fusing representations of adaptive learned graph structure (ZA) and pre-defined graph
structure (ZC)), and hence is close to ground truth.

S3 Employ persistent homology on the reconstructed graph structure (based on Â) and extract
corresponding topological signature, e.g., persistence diagram D, persistence image PI (see
Section 3.1). In practice, we choose a set of landmark points (nodes) from the graph (e.g.,
Â[indices, indices] where indices denote the indices of landmark points in the graph) and then
build the abstract simplicial complex on this set.

S4 Perturb topological signature of PH (e.g., persistence diagram D = {(bρ, dρ) ∈ R2|bρ < dρ})
by adding Gaussian noise, i.e.,

...
D = {(b′ρ, d′ρ) ∈ R2} where b′ρ = bρ + ηb and d′ρ = dρ + ηd

and ηb, ηd ∼ U(aU , bU ) (where aU and bU are hyperparameters in the uniform distribution). As
illustrated in Figure 3, substantial changes are seen for both persistence diagram and persistence
image after performing persistence-based data augmentation.

S5 Positive and negative topological signatures D and
...
D are fed into a MLP respectively, and

we obtain latent topological representations H = MLP(D) ∈ RN×dT
out and

...
H = MLP(

...
D) ∈

RN×dT
out .

S6 The topological representations from positive and negative topological signatures are summa-
rized through READOUT function R(·), i.e., from obtained local patches to the global content
s = R(H) = 1

N (
∑

u∈V hu) ∈ RdT
out and ...

s = R(
...
H) = 1

N (
∑

v∈V hv) ∈ RdT
out .

S7 Use a standard binary cross-entropy (BCE) loss as contrastive loss (i) L1: between positive pairs
and negative ones and (ii) L2: between negative pairs and positive ones, where

L1 = − 1

2N

(∑
u∈V

ED[log(Ξ(hu, s))] +
∑
v∈V

E ...
D [log(1− Ξ(

...
h v, s))]

)
,

L2 = − 1

2N

(∑
v∈V

E ...
D [log(Ξ(

...
h v,

...
s ))] +

∑
u∈V

ED[log(1− Ξ(hu,
...
s ))]

)
,

(6)

where Ξ(·, ·) is a contrastive discriminator, which is defined as Ξ(hu, s) = Sigmoid(h⊤uΘΞs)
(where ΘΞ denotes the learnable weight matrix).

The key benefits of topological contrastive learning are twofold: (i) hidden information: compared
to traditional graph contrastive learning, conducting contrastive learning on topological representation
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instead of graph itself allows for learning and incorporating hidden shape characteristics - higher-
order structural information - that cannot be accurately captured by GNNs (since GNNs only
collate information over neighborhoods of each node) and (ii) Less computational costs: to obtain
augmented representation

...
HGraph of graph contrastive learning, we need to feed negative sample

(
...
X,

...
A) to the backbone model (typically, GNN-based encoder is considered), i.e.,

...
HGraph =

GNN(
...
X,

...
A); however, graph-level representation can be conveniently obtained by applying MLP on

augmented topological signature, i.e.,
...
HTopo = MLP(

...
D); for instance, on monkeypox dataset, under

PCL-GCRN model, the total number of parameters of topological contrastive learning is 4966201
and the total number of parameters of graph contrastive learning is 6231161. Eventually, we present
the final objective function L for the spatio-temporal forecasting task, which can be written as follows

L = π0 × L0 + π1 × L1 + π2 × L2, (7)

where π0, π1, π2 are hyperparameters which balance the contributions of multi-step prediction
task and different contrastive tasks. The overall architecture of the PCL-GCRN model is shown in
Figure 2.

Figure 2: The overall architecture of PCL-GCRN.

4 EXPERIMENTS

Datasets We conduct experiments on 6 benchmark spatio-temporal graphs, i.e., (i) two real-world
traffic flow datasets: PeMSD3 and PeMSD4, (ii) the spread of coronavirus disease COVID-19 at
county-level in states of California (CA) and Pennsylvania (PA), (iii) the spread of monkeypox
in the United States, and (iv) the COVID-19 dataset records the daily global confirmed cases of
states/provinces in United States, Australia, Canada, and China. More details and the detailed
statistics of datasets are described in the Appendix C.1 (Table 6).
Baselines We compare our PCL-GCRN model with 19 state-of-the-art (SOAs) baselines: HA,
VAR (Hamilton, 2020), FC-LSTM (Sutskever et al., 2014b), GRU-ED (Cho et al., 2014), TCN (Bai
et al., 2018), DCRNN (Li et al., 2018), STGCN (Yu et al., 2018b), GraphWaveNet (Wu et al.,
2019b), ASTGCN (Guo et al., 2019), MSTGCN (Guo et al., 2019), STSGCN (Song et al., 2020),
AGCRN (Bai et al., 2020), StemGNN Cao et al. (2020), LSGCN (Huang et al., 2020), STFGNN (Li
& Zhu, 2021), TCVAE He et al. (2022), Z-GCNETs (Chen et al., 2021), STGODE (Fang et al., 2021),
and TS2Vec Yue et al. (2022). For more details, please refer to Appendix C.2.
Experiment settings In our experiments, (i) for PeMSD3 and PeMSD4, we use traffic flow data
from the past 1 hour to predict the flow for the next hour with batch size as 64 (i.e., we consider
the window size τ = 12 and horizon ζ = 12); (ii) for COVID-19 biosurveillance and monkeypox
datasets, we set the window size τ as 5, set the horizon ζ as 15, and set the batch size as 8. Note
that, for fair comparison, we split the data into training set, validation set, and test set in the same
way as the baselines, i.e., 6 : 2 : 2 on PeMSD3, PeMSD4, and COVID-19 datasets, and we only
consider traffic flow as node feature (i.e., F = 1; without involving traffic speed and occupancy rate).
For CA, PA, and monkeypox datasets, we split into training and test sets with the split ratio 8 : 2.
We evaluate the performances by the mean absolute error (MAE), root mean squared error (RMSE),
mean absolute percentage error (MAPE (%)). For more details, please refer to Appendix C.3.

4.1 EXPERIMENTAL RESULTS

Table 1 summarizes all results of SOAs and our proposed PCL-GCRN on PeMSD3 and PeMSD8
datasets. We reuse the metrics of the baselines already reported in the corresponding papers. The
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experimental results show that PCL-GCRN achieves better performance across both datasets. Specifi-
cally, for both PeMSD3 and PeMSD4 datasets, (i) the improvement gain of PCL-GCRN over the
runner-ups range from 0.92% to 1.12% in MAE, (ii) the improvement gain of PCL-GCRN over the
runner-ups range from 0.32% to 2.26% in RMSE, and (iii) the improvement gain of PCL-GCRN
over the runner-ups range from 0.55% to 2.63% in MAPE. Table 2 demonstrates COVID-19 hos-
pitalization prediction results on CA and PA, and confirmed monkeypox cases prediction result
in the United States. We find that PCL-GCRN achieves state-of-the-art performance on all three
datasets. Specifically, PCL-GCRN yields 5.55%, 8.87%, and 16.56% relative gains in RMSE over
the runner-ups (i.e., Z-GCNETs and STGODE). The results of COVID-19 confirmed cases prediction
are shown in Table 3. As expected, we see that our PCL-GCRN model outperforms all baselines on
MAPE. Specifically, PCL-GCRN, i.e., our model equipped with topological contrastive learning can
improve upon TS2VEC (i.e., model based on graph contrastive learning) by a margin of 238.75%.

Table 1: Forecasting performance on PeMSD3 and PeMSD4 datasets.

Model PeMSD3 PeMSD4
MAE RMSE MAPE (%) MAE RMSE MAPE (%)

HA 31.58 52.39 33.78 38.03 59.24 27.88
VAR Hamilton (2020) 23.65 38.26 24.51 24.54 38.61 17.24
FC-LSTM Sutskever et al. (2014b) 21.33 35.11 23.33 26.77 40.65 18.23
GRU-ED Cho et al. (2014) 19.12 32.85 19.31 23.68 39.27 16.44
TCN Bai et al. (2018) 18.87 32.24 18.63 26.31 39.59 17.20
DCRNN Li et al. (2018) 17.99 30.31 18.34 21.20 37.23 14.15
STGCN Yu et al. (2018a) 17.55 30.42 17.34 21.16 35.69 13.83
GraphWaveNet Wu et al. (2019a) 19.12 32.77 18.89 28.15 39.88 18.52
ASTGCN Guo et al. (2019) 17.34 29.56 17.21 22.81 34.33 16.60
MSTGCN Guo et al. (2019) 19.54 31.93 23.86 23.96 37.21 14.33
STSGCN Song et al. (2020) 17.48 29.21 16.78 21.23 33.69 13.90
AGCRN Bai et al. (2020) 16.10 28.18 15.23 19.83 32.30 12.97
LSGCN Huang et al. (2020) 17.94 29.85 16.98 21.53 33.86 13.18
Z-GCNETs Chen et al. (2021) 16.64 28.15 16.39 19.50 31.61 12.78
STGODE Fang et al. (2021) 16.50 27.84 16.69 20.84 32.82 13.77
STFGNN Li & Zhu (2021) 16.77 28.34 16.30 19.83 31.88 13.02

PCL-GCRN (ours) 15.93 27.21 14.83 19.32 31.51 12.71

Table 2: Forecasting performance on COVID-19 hospitalizations in CA, PA, and monkeypox in USA.

Model CA PA Monkeypox

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

FC-LSTM (Sutskever et al., 2014a) 167.86 502.29 90.71 47.60 108.74 69.37 320.89 835.51 92.23
DCRNN (Li et al., 2018) 107.20 492.10 69.83 47.49 107.21 67.15 390.12 899.10 100.37
STGCN (Yu et al., 2018b) 102.88 470.52 69.73 52.69 106.78 69.36 390.59 880.59 81.87
TCN (Bai et al., 2018) 110.82 492.82 70.00 49.80 105.07 69.86 323.43 846.02 76.25
AGCRN (Bai et al., 2020) 87.24 448.27 66.30 44.69 103.79 63.45 283.39 787.46 32.44
Z-GCNETs (Chen et al., 2021) 81.22 356.35 62.81 43.52 106.22 65.89 247.67 743.33 35.33
STGODE Fang et al. (2021) 82.93 368.07 45.19 44.75 100.88 67.23 218.12 749.55 32.20

PCL-GCRN (ours) 72.78 336.59 44.87 35.50 91.93 63.25 183.62 620.25 22.41

Table 3: Forecasting performance on COVID-19 confirmed cases in the whole world (MAPE (%)).

Dataset StemGNN AGCRN TCVAE TS2VEC PCL-GCRN (ours)

COVID-19 335.37 180.96 198.12 341.08 102.33

4.2 ABLATION STUDIES

Different components in PCL-GCRN We conduct an ablation study to examine the contributions
of different components in PCL-GCRN and results are presented in Table 4. We compare our PCL-
GCRN model with three ablated variants, i.e., (i) PCL-GCRN without K-[multi-hop] Chebyshev
convolution (i.e., W/o K-[multi-hop] Chebyshev convolution), (ii) PCL-GCRN without Q-[multi-
hop] adaptive spatial graph convolution (i.e., W/o Q-[multi-hop] adaptive spatial graph convolution),
and (iii) PCL-GCRN without topological contrastive learning (i.e., W/o Topological contrastive
learning). From Table 4, we can observe that our PCL-GCRN consistently achieves large-margin
outperformance over all variants on both CA and monkeypox datasets, suggesting that all three
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designed components contribute to the success of PCL-GCRN. Moreover, we find that Q-[multi-hop]
adaptive spatial graph convolution always improve the performance, i.e., the reason is that Q-[multi-
hop] adaptive spatial graph convolution can capture the hidden spatial information through time in
spatio-temporal datasets.

Table 4: Ablation study of the PCL-GCRN architecture.

Dataset Architecture MAE RMSE MAPE (%)

CA

PCL-GCRN 72.78 336.59 44.87
W/o K-[multi-hop] Chebyshev convolution 72.83 358.10 45.52
W/o Q-[multi-hop] adaptive spatial graph convolution 82.19 395.08 53.29
W/o Topological contrastive learning 72.87 354.74 47.90

Monkeypox

PCL-GCRN 183.62 620.25 22.41
W/o K-[multi-hop] Chebyshev convolution 186.54 627.38 25.75
W/o Q-[multi-hop] adaptive spatial graph convolution 380.06 793.02 69.50
W/o Topological contrastive learning 188.01 620.98 35.72

Persistence-based data augmentation vs. graph augmentation To demonstrate the effectiveness of
our proposed persistence-based data augmentation strategy, we conduct experiments of PCL-GCRN
on PeMSD4, CA, and monkeypox datasets that compare it to its ablated variant, i.e., GCL-GCRN
(i.e., topological contrastive learning is replaced by graph contrastive learning). Furthermore, for
GCL-GCRN, we consider 4 types of graph augmentation, i.e., node dropping, attribute perturbation
(i.e., node feature shuffling), edge perturbation (+) by adding random edges, and edge perturbation
(-) by removing existing edges. In our experiments, we set the node/edge dropping rate and edge
noise rate to 10%. Results are summarized in Table 7 (see Appendix D). Clearly, our PCL-GCRN
model convincingly outperforms GCL-GCRN with different graph augmentation strategies across
all three datasets. Specifically, persistence-based data augmentation can improve upon attribute
perturbation (in terms of RMSE) by a margin of 0.92, 3.10, and 13.25 on PeMSD4, CA, and
monkeypox respectively. From above ablation study, it is evident that the performance gain is due to
our proposed persistence-based data augmentation.

4.3 ROBUSTNESS ANALYSIS

To assess robustness of PCL-GCRN, we consider adding two types of random noise to the spatio-
temporal dataset, i.e., Gaussian noise Norm(0, δ2) (where δ = 1) and Poisson noise Poisson(λ)
(where λ = 1). For each random noise, we add 50% noises to the training set. As Table 5 suggests,
compared with the most recent baseline (i.e., AGCRN) and the variant model (i.e., GCL-GCRN
which is based on graph contrastive learning), our PCL-GCRN achieves superior performances across
two types of random noise. Specifically, PCL-GCRN can improve upon the runner-up by a margin
of 3.98 and 2.28 on monkeypox datasets with Gaussian noise and Poisson noise respectively. As a
result, we can conclude that PCL-GCRN is noticeably more robust to different types of noise than its
competitors and hence may be viewed as a preferred choice for real-world applications under the
scenarios of limited, incomplete, or corrupted data records.

Table 5: Robustness study on monkeypox dataset (MAE).

Dataset Noise GCL-GCRN AGCRN PCL-GCRN (ours)

Monkeypox
Norm(0,1) 205.34 249.03 201.36
Poisson(1) 208.69 230.65 206.31

5 CONCLUSION

By capitalising on the concepts of persistent homology and the associated notion of topological
invariance, we have introduced a novel persistence-based data augmentation approach for contrastive
learning of spatio-temporal graphs. The new augmentation approach simultaneously accounts for
multiple structural characteristics of the observed data at both local and global levels, resulting in
competitive performance gains and substantially higher robustness. In the future we will explore the
utility of topological metrics for assessing semantic similarity of graph-structured data.
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A GATE RECURRENT UNIT WITH TWO-STREAM SPATIAL GRAPH
CONVOLUTION

Following Li et al. (2018), equipped with the final embedding Z(ℓ)
t derived from our two-stream

spatial graph convolution, we employ Gated Recurrent Units (GRU) to learn the spatio-temporal
correlations among time series and predict the attributes at each node at a future timestamp,

ℜt = ψ
(
Θℜ

[
Ωt−1, Z

(ℓ)
t

]
+ bℜ

)
,

ℑt = ψ
(
Θℑ

[
Ωt−1, Z

(ℓ)
t

]
+ bℑ

)
,

Ωt = tanh
(
ΘΩ

[
ℑt ⊙ Ωt−1, Z

(ℓ)
t

]
+ bΩ

)
,

Ω̃t = ℜt ⊙ Ωt−1 + (1−ℜt)⊙ Ωt,

(8)

where ψ(·) is a non-activation function (e.g., ReLU), ⊙ is the elementwise product, ℜt is the update
gate and ℑt is the reset gate. bℜ, bℑ, bΩ, Θℜ, Θℑ, and ΘΩ are learnable parameters.

[
Ωt−1, Z

(ℓ)
t

]
and Ωt are the input and output of GRU model, respectively. Then, we can obtain Ω̃t which contains
both the spatio-temporal and time-aware information.

B ADDITIONAL DETAILS OF PERSISTENCE-BASED DATA AUGMENTATION

In Figure 3, Upper part (before augmentation) shows the persistence diagram D (left) and its
corresponding persistence image PI (right) of the graph in PeMSD3 dataset. Lower part (after
augmentation) shows the perturbed persistence diagram

...
D (left; i.e., adding Gaussian noises on above

clean D) and its corresponding persistence image
...
PI (right).
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Figure 3: The visualization of persistence-based data augmentation.

C REPRODUCIBILITY

C.1 DATASETS

We conduct experiments on 6 benchmark spatio-temporal graphs, i.e., (i) two real-world traffic flow
datasets: PeMSD3 and PeMSD4 (Guo et al., 2019; Song et al., 2020), (ii) the spread of coronavirus
disease COVID-19 at county-level (i.e., number of COVID-19 hospitalizations) in states of California
(CA) and Pennsylvania (PA) (Segovia Dominguez et al., 2021), (iii) the spread of monkeypox in the
United States (recorded by the Centers for Disease Control and Prevention), and (iv) the COVID-19
dataset records the daily global confirmed cases of states/provinces in United States, Australia,
Canada, and China (provided by the Center for Systems Science and Engineering at Johns Hopkins
University).

Table 6: Summary of datasets used in multi-step spatio-temporal forecasting tasks. †We construct
monkeypox and COVID-19 graph structures through applying Euclidean distance function on corre-
sponding training sets.

Dataset # Nodes # Edges Time range
PeMSD3 358 547 09/01/2018 - 11/30/2018
PeMSD4 307 340 01/01/2018 - 02/28/2018
CA 55 535 02/01/2020 - 12/31/2020
PA 60 278 02/01/2020 - 12/31/2020
Monkeypox 52 197† 07/20/2022 - 09/14/2022
COVID-19 289 2250† 01/22/2020 - 11/25/2021

C.2 BASELINES

We compare our PCL-GCRN model with 19 state-of-the-art (SOAs) baselines: (i) statistical time series
models: HA and VAR (Hamilton, 2020), (ii) RNN-based models: FC-LSTM (Sutskever et al., 2014b)
and GRU-ED (Cho et al., 2014), (iii) generic temporal convolutional network: TCN (Bai et al., 2018),
(iv) GCN-based models: DCRNN (Li et al., 2018), STGCN (Yu et al., 2018b), GraphWaveNet (Wu
et al., 2019b), ASTGCN (Guo et al., 2019), MSTGCN (Guo et al., 2019), STSGCN (Song et al., 2020),
AGCRN (Bai et al., 2020), StemGNN Cao et al. (2020), LSGCN (Huang et al., 2020), STFGNN (Li
& Zhu, 2021), and TCVAE He et al. (2022), (v) topological-based GCN model: Z-GCNETs (Chen
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et al., 2021), (vi) ordinary differential equation (ODE)-based neural networks: STGODE (Fang et al.,
2021), and (vii) time-series contrastive learning framework: TS2Vec Yue et al. (2022).

C.3 EXPERIMENTAL SETTINGS

We implement our PCL-GCRN model with Pytorch framework on NVIDIA GeForce RTX 3090
GPU. We optimize all the models by Adam optimizer for maximum of 150 epochs. The learning rate
is searched in {0.001, 0.003, 0.005, 0.01, 0.05, 0.1} with weight decay rate of 0.3. The embedding
dimension of node embedding dictionary Eϕ is searched in {1, 2, 5, 10} and the power orders K and
Q in WMCheby-GFT and WMS-AMT are searched in {1, 2, 3, 4, 5}. Note that, we use Gumbel
Softmax trick (Jang et al., 2016; Maddison et al., 2016) to sparsify the adaptive graph structure, and
we search for hidden layer dimensions dCout and dAout of K-[multi-hop] Chebyshev convolution and
Q-[multi-hop] adaptive spatial graph convolution in range of {16, 32, 64, 128, 256, 512}. Hyperpa-
rameters π0, π1, π2 (in Eq. 7) are searched in {0.1, 0.5, 1.0}, {0.1, 0.5, 1.0}, and {0.1, 0.5, 1.0}.
Furthermore, we perform grid-search for the number of landmark points selection within the
range of {⌈0.1N⌉, ⌈0.2N⌉, ⌈0.3N⌉, ⌈0.4N⌉, ⌈0.5N⌉} and landmark points are selected based on
node degree centrality scores. The source code is available at www.dropbox.com/scl/fo/
g5riw7kurppu39fxw02eh/h?dl=0&rlkey=b99xnxvaqllg38k21fhuacalf.

D ADDITIONAL ABLATION STUDY

Table 7: Ablation study of augmentations in contrastive learning.

Dataset Model Augmentation MAE RMSE MAPE (%)

PeMSD4

PCL-GCRN Persistence-based data augmentation 19.32 31.51 12.71

GCL-GCRN

Node dropping 19.33 31.59 12.75
Attribute perturbation 19.50 32.43 12.87
Edge perturbation (+) 19.47 31.95 12.83
Edge perturbation (-) 19.37 31.78 12.79

CA

PCL-GCRN Persistence-based data augmentation 72.78 336.59 44.87

GCL-GCRN

Node dropping 72.95 342.31 48.52
Attribute perturbation 73.07 339.69 45.76
Edge perturbation (+) 73.29 352.25 46.99
Edge perturbation (-) 76.44 344.74 46.92

Monkeypox

PCL-GCRN Persistence-based data augmentation 183.62 620.25 22.41

GCL-GCRN

Node dropping 193.76 629.83 45.56
Attribute perturbation 189.17 633.50 33.45
Edge perturbation (+) 191.18 640.02 34.92
Edge perturbation (-) 188.34 633.19 28.78
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