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ABSTRACT

The state-of-the-art for membership inference attacks on machine learning models
is a class of attacks based on shadow models that mimic the behavior of the target
model on subsets of held-out nonmember data. However, we find that this class
of attacks is fundamentally limited because of a key assumption—that the shadow
models can replicate the target model’s behavior on the distribution of interest. As
a result, we show that attacks relying on shadow models can fail catastrophically on
critical AI safety applications where data access is restricted due to legal, ethical,
or logistical constraints, so that the shadow models have no reasonable signal on the
query examples. Although this problem seems intractable within the shadow model
paradigm, we find that quantile regression attacks are a promising approach in this
setting, as these models learn features of member examples that can generalize to
unseen classes. We demonstrate this both empirically and theoretically, showing
that quantile regression attacks achieve up to 11× the TPR of shadow model-based
approaches in practice, and providing a theoretical model that outlines the gener-
alization properties required for this approach to succeed. Our work identifies an
important failure mode in existing MIAs and provides a cautionary tale for practi-
tioners that aim to directly use existing tools for real-world applications of AI safety.

1 INTRODUCTION

Membership inference attacks (MIAs) are useful tools to predict whether or not a particular example
was used when training a machine learning model (Shokri et al., 2017; Carlini et al., 2022). They
are commonly used to evaluate various forms of AI safety risk, such as the strength at which a model
preserves privacy or the likelihood that a model was trained on certain unsafe data. MIAs take advantage
of the fact that models tend to memorize training data, so that even when a model generalizes relatively
well, its loss on training examples is likely to be systematically lower than the loss on similar examples
not in the training data. Given a target model f trained on data assumed to be sampled i.i.d. from a
distributionP , a typical MIA operates by training proxy models using a similar architecture and training
procedure on “background” data sampled from P but known to be disjoint from the training data of f .

In practice, an auditor or adversary is unlikely to have sample access to a distribution that is identical
to P and disjoint from the training data of f . Consider, for example, the real-world AI safety scenario
of detecting whether child sexual abuse material (CSAM) was used in a model’s training data (Thiel,
2023; Thiel et al., 2023; Kapoor et al., 2024; Thorn and All Tech is Human, 2024). Here, MIAs could
be useful to flag potentially offending models for further scrutiny (Thorn and All Tech is Human, 2024).
However, due to legal and ethical restrictions, auditors are often unable to directly access examples
of CSAM themselves to train proxy models for membership inference (Thiel, 2023).

This example is part of a broader set of applications that we formalize in this work, in which an auditor
or adversary wants to query membership of samples from some class i in the data, but has no samples
from class iwhen training the attack. This is a new data access model not previously studied in the MIA
literature, which we call the “unseen class” setting. This setting captures not only the CSAM auditing
scenario but also other safety- or resource-critical auditing scenarios: for example, where the target
training data may be proprietary or sensitive (such as auditing models trained on medical records)
or where attack training data may be scarce (e.g. if a third party is auditing a large company’s model).

To perform a membership inference attack, the state-of-the-art approach is to train a large number
of shadow models (Carlini et al., 2022) (models that aim to mimic the behavior of the target model
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but are trained on controlled subsets of data) in order to model the target model’s behavior when a
given sample is or is not in the training data. This attack trains several models on nonmember data
to solve the same task as the target model, and then uses these as proxies to decide whether the point
is more likely to be a member or nonmember in the target.

In this work, we show that shadow model-based attacks can fail catastrophically when performing
membership inference in the unseen class setting. Shadow models crucially rely on training models that
perform the same task as the target model, and with no samples from class i, a classifier may assign zero
probability to label i, causing the classification task to fail on samples from the unseen class. To our
knowledge, we are the first to identify a significant failure mode of shadow model-based attacks, which
are generally considered to be the gold standard for MIA (Carlini et al., 2022; Zarifzadeh et al., 2023).

The failure of shadow model-based attacks shows that the unseen-class setting is challenging. However,
we identify that a simple, computationally efficient baseline—quantile regression attacks (Bertran et al.,
2023; Tang et al., 2023)—significantly outperforms shadow model attacks in this scenario. Quantile
regression attacks were originally proposed as an MIA that can provide a provable guarantee on the
attack’s false-positive rate by predicting anα-quantile of the nonmember score distribution. We observe
that quantile regression attacks also generalize well to unseen classes, because they learn features that
correlate with score across classes. This gives them an unexpected advantage in the unseen-class setting.

We verify this intuition both theoretically and empirically, using a set of benchmarks with image,
language, and tabular data to investigate the unseen class setting in practice.

Overall, we make the following contributions:

• We identify a new MIA data access model, the unseen-class setting. This setting captures concerns
in real-world auditing where data access is limited due to legal, ethical, or logistical constraints, such
as CSAM detection, where the target data is not available when the attack models are being trained.

• We show that, in this setting, the most popular and state-of-the-art approaches based on training
shadow models deteriorate in performance—on par with or worse than a simple baseline based on
global thresholding.

• We evaluate a baseline based on quantile regression attacks and find surprisingly strong results in
the unseen-class setting across data domains:

– On image data, in the 1% FPR regime, quantile regression can achieve up to 11× the TPR
of shadow models on the unseen class (on CIFAR-100). Meanwhile, on ImageNet, we find
that quantile regression can achieve 3.8% TPR at 1% FPR (about half the TPR achieved by
full training) with access to only 10% of training classes.

– On tabular data, in the 1% FPR regime, quantile regression achieves up to 2× the TPR of
shadow models and improves AUC by 10 points.

– Attacking a GPT-2 classifier, quantile regression achieves 6× the TPR of shadow models in
text classification (20 Newsgroups) in the 1% FPR regime.

• Finally, we provide a theoretical model illustrating the benefits and potential limitations of quantile
regression in this setting. Our analysis helps to better explain the effectiveness of the approach and
also points to several directions of future study.

The unseen-class problem setting captures important properties of real-world privacy auditing that
have not been captured by previous MIA threat models. This setting is challenging, but our evaluation
shows that quantile regression is a promising approach due to its generalization properties. We hope
that these initial results inspire the community to develop further MIAs that address the real constraints
of privacy auditing in highly sensitive settings.

2 BACKGROUND AND PRELIMINARIES

We first formalize the membership inference attack (MIA) setting and introduce relevant attack methods.

We begin with the supervised learning setup. Let D∈∆(X×Y) denote the data distribution over input
features X and labels Y . The target model f is trained on a dataset Dpriv∼D consisting of npriv labeled
examples (xi,yi). In the classification setting, we assume Y is a finite label set with |Y|=c. The model
f outputs a vector of logits, i.e., f :X →Rc.
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In a membership inference attack, the adversary aims to determine whether a given target example
(x,y) was part of the private training dataset Dpriv. The adversary is typically assumed to have access to
an auxiliary datasetDpub∼D, which is disjoint from the private dataset, i.e.,Dpub∩Dpriv=∅. However,
in this work we consider a practical setting where Dpub is drawn from a more restricted sub-population.

Setting: MIA with limited access to classes. In practice, the adversary may only have access to
samples from a subset of the classes used to train the target model. This can happen for a number of
reasons. For example, the background data may be drawn from a public source such as data available
on the Internet, while the target model may include samples from private or proprietary data sources.
For auditors who want to run MIA to audit a model for potentially harmful content (as in the CSAM
example described above (Thiel, 2023)), that content may not be legally available to the auditor at
large enough scale to train the attack. Alternatively, the adversary may simply be resource-limited
and unable to collect representative samples covering the space of data used to train the target model.

Let Yd⊆Y denote the set of unseen classes. In this setting, the adversary has access to a public dataset
D′

pub drawn from the conditional distribution D¬Yd
:=D | y /∈Yd, which contains only seen classes.

Despite this restriction, we aim to evaluate the performance of the membership inference attack (MIA)
on target examples drawn from the full distribution D. This setup allows us to study whether MIA
methods trained on a restricted subset of classes can generalize to previously unseen classes from
the original distribution.

We now introduce three classes of MIA methods. Each method relies on a score function s that assigns
a numeric score to a target example (x,y), intended to reflect the likelihood that (x,y) was included in
the training set for the model f . For example, in Bertran et al. (2023); Carlini et al. (2022), an example
of such a score function is based on logit differences:

s(x,y,f)=f(x)y−max
y′ ̸=y

f(x)y′ (1)

1) Marginal baseline attack with a single threshold. The marginal baseline attack(Yeom et al.,
2018) (which we refer to as “LOSS” throughout the paper in keeping with (Carlini et al., 2022))
is a simple yet widely used baseline for membership inference. Here, the attacker chooses a single
threshold τ such that any example (x,y,f) with s(x,y)>τ is predicted to be a member of Dpriv, and
otherwise it is predicted to be a non-member. In our setting, we compute this threshold based on the
held-out public dataset D′

pub. Specifically, the threshold τ is chosen to control the false positive rate
(FPR) over D′

pub. Note that the FPR computed over D′
pub may not accurately reflect the FPR under

the distribution D due to the distribution shift.

2) Shadow model-based attacks. Unlike the simple marginal baseline attack, shadow model attacks
consider performing MIA with per-example thresholds. In particular, each shadow model (Shokri
et al., 2017; Carlini et al., 2022) constructs a reference distribution over model outputs to evaluate
membership of a target example. Formally, the adversary trains k shadow models g1,...,gk, each solving
the same classification task as the target model f , with architecture and training procedure identical to
that of f , and trained using the same algorithm as f . Most SoTA attacks use such shadow models as a
core component of the attack (Carlini et al., 2022; Choquette-Choo et al., 2021; Zarifzadeh et al., 2023).

In our setting, each shadow model is trained on random subsets drawn independently from the public
dataset D′

pub. In keeping with the computationally tractable “offline” attack in Carlini et al. (2022), for
each target point, we only use the set of shadow models for which the training point is a nonmember. 1

The collection of shadow models allows the attacker to learn the conditional distribution of the scores:

Pout :s(x,y,g) |(x,y) is not used in training g

Given the target model f , the attacker decides membership based on the probability of the score
s(x,y,f) under Pout.

3) Quantile regression attack. The quantile regression attack (Bertran et al., 2023; Tang et al.,
2023) offers an efficient alternative to shadow model approaches for membership inference. Rather
than fitting a distribution over shadow model outputs, the attacker directly learns a function that maps

1 Carlini et al. (2022) evaluate both the online and offline attacks and show that the difference in the ROC
curves is minimal.
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(a) Results for CINIC-10.

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Class

0.00

0.05

0.10

0.15

0.20

0.25

Tr
ue

 P
os

iti
ve

 R
at

e

1% TPR by Class
Full training
Dropped class
Marginal baseline

(b) Results for CIFAR-100 (coarse labels).
Figure 1: True positive rates for shadow model attacks in the 1% false positive rate regime for CINIC-10 and
CIFAR-100 (we defer the 0.1% regime to Appendix B). Each bar represents the TPR on the indicated class. “Full
training” refers to the TPR on class i when no classes are excluded from shadow model training. In yellow, we
plot the TPR when that class is excluded from shadow model training. The attack success degrades significantly
under class exclusion, often performing worse than the marginal baseline (global threshold).

input examples to score thresholds—thereby enabling per-example thresholds. Given a target FPR
α, the attacker trains a model qα :X×Y→R to estimate the (1−α)-quantile of the score distribution,
conditioned on the input (x,y). The model qα is trained via minimizing the pinball loss over a function
class H on the public dataset

qα∈argmin
q′∈H

E(x,y)∼D′
pub
[PB1−α(q

′(x),s(x,y,f))] (2)

where PB1−α is defined as PB1−α(ŝ,s)=max{α(ŝ−s),(1−α)(s− ŝ)}. This loss function is well
known to elicit quantiles, in the same way that squared loss elicits means. Then the MIA predicts
membership if s(x,y,f)>qα(x).

Notably, this approach requires training only a single, lightweight model unlike shadow model attacks,
which often demand replicating the full training pipeline and architecture of the target model.

Evaluation metrics. Across our main results, we use true positive rate at low false-positive rate as
our main metric, where low false positive rates are 1% and 0.1%. This is in keeping with best practices
recommended by Carlini et al. (2022).

3 SHADOW MODELS FAIL ON UNSEEN CLASSES

We first show that attacks that use shadow models fail in the unseen-class setting. Shadow models
underpin the most popular and rigorous membership inference attacks, from the first proposals for
membership inference (Shokri et al., 2017) up to the current state of the art (Zarifzadeh et al., 2023).

Setup. We assume a setting where the target model is trained on half the training data, the adversary
has access to all but one class (from the remaining training data) to train the attack, and the query points
are drawn from the unseen class.

For each attack, we train 16 shadow models using the “offline” variant of the LiRA algorithm with
a fixed, global variance estimate (following Carlini et al. (2022)). We use the LiRA attack unmodified
except that the shadow models’ training data excludes examples from the unseen class.

We train shadow models on CINIC-10 and CIFAR-100 (using the superclass label set consisting of
20 classes). In Figure 1 we report the performance of shadow models on queries from each class before
and after dropping a single class at a time. We find that for both datasets, shadow models perform
on par with a much weaker marginal baseline that does not learn per-example thresholds but rather
fits a single threshold across all classes.

Intuitively, a model that does not see a class at training time will assign zero probability to that class
label. As a result, the shadow models’ confidences for the true label on the missing class will be zero,
resulting in many false positives at test time—any higher confidence reported by the target model
would be considered significant. This applies to both the LiRA attack as well as other more recent
attacks (such as RMIA (Zarifzadeh et al., 2023)) that judge membership using the score of the query
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on the target model relative to the score on reference models that have never seen the query class. In
the next section, we demonstrate a similar failure for RMIA.

For completeness, in Appendix B we also include shadow model results using the difference between
the top two logits (rather than the correct label) as the score function. We find that this score function
reduces the baseline performance of the attack. Thus, for the remainder of our comparisons, we use
the true label confidence as the score function for shadow models.

4 QUANTILE REGRESSION ATTACKS FOR UNSEEN CLASSES

Shadow models are fundamentally constrained because they must solve the same learning problem as the
target model in order to estimate the score distribution of the target model on a given example. Quantile
regression attacks (Bertran et al., 2023) were originally proposed as an MIA that can provide a provable
guarantee on the attack’s false-positive rate by predicting an α-quantile of the score distribution.

In this section, we make a novel observation – that quantile regression attacks also generalize well
to unseen classes, because they learn features that distinguish members from nonmembers. Unlike
shadow model-based attacks, which judge membership by evaluating the score of the target model
relative to the score of a reference model, quantile regression attacks directly predict thresholds from
target model scores on the background distribution. This gives them an unexpected advantage in the
unseen-class setting.

Our results give a new perspective on the strengths and weaknesses of shadow models and indicate
that attacks that learn membership predictors, including but not limited to quantile regression attacks,
may be much stronger candidates for real-world membership inference settings where the data to
query is sensitive and not available for training.

4.1 UNSEEN CLASSES FOR IMAGE DATASETS.

Our first set of results is on image classification models. This setting models scenarios such as detecting
child sexual abuse material (CSAM) in image models.
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(a) TPR for the dropped out superclass, CIFAR-100

0 1 2 3 4 5 6 7 8 9
Class

0.00

0.02

0.04

0.06

0.08

Tr
ue

 P
os

iti
ve

 R
at

e

Quantile Regression RMIA LiRA LOSS

(b) TPR for the dropped out class, CINIC-10

Figure 2: True positive rates in the low false positive regime for CINIC-10 and CIFAR-100 (superclass set) on
each unseen class. Each bar represents the true positive rate on class i when class i is dropped from the attack
training set. We only report results at 1% FPR; the results at 0.1% FPR are not meaningful due to the small sample
size of the validation set on a single class (1000 samples). While quantile regression attacks have only a small
advantage over shadow models on CINIC-10 (see Figure 5), they achieve up to 11× higher TPR than shadow
models on CIFAR-100.
Setup. We first study an identical setting where the target Resnet50 base model is trained on half
the training data, the adversary has access to all but one class from the remaining training data to train
the attack, and the query points are drawn from the unseen class.

As baselines, we use the LiRA attack described above, as well as the state of the art RMIA
attack (Zarifzadeh et al., 2023). 2

2Notably, in addition to training reference models, the RMIA attack also uses samples from the background
distribution when evaluating the score function at query time. It is generally unrealistic to assume that the
adversary has access to enough unseen-class, nonmember samples to perform this evaluation. However, in order
to give RMIA the most advantage, we include unseen class samples at evaluation time (but not when training
reference models, as is the case for shadow models and quantile regression).
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For each attack, we train a single quantile regression model on the remaining training data, excluding
the unseen class and keeping the validation set as heldout public data for evaluating FPR. Pinball loss
is notoriously difficult to minimize, so for training stability, we follow Bertran et al. (2023) and train
the network to fit a Gaussian (mean and variance) conditioned on each sample instead of directly using
pinball loss to predict quantiles.

Our final models for the CINIC-10 and CIFAR-100 attacks are ConvNext-Tiny-224 models trained
for 30 epochs, with the Adam optimizer, batch size 16, and learning rate of 1e-4. We find that early
stopping does not improve the attacks. To make our attack agnostic to the true label, we modify the
attack from Bertran et al. (2023) and use the difference between the top two logits as our score function:

s(x,y,g)=maxf(x)− max
y′ ̸=maxf(x)

f(x)y′ .

Using this score function improves quantile regression performance in the class dropout setting as
the learned attack no longer requires knowledge of the true label.

Class dropout: CINIC-10 and CIFAR-100. We find that for both CINIC-10 and CIFAR-100 (using
the superclass label set), quantile regression strictly outperforms the marginal baseline and shadow
models under class dropout at 1% FPR. In this setting, we train the attack model on all classes except
the unseen class. The TPR and FPR are evaluated on the held-out class.

Results are similar on CIFAR-100 but even more pronounced. On average across all 20 superclasses,
LiRA achieves only 1.4% TPR at 1% FPR on unseen data while quantile regression achieves 3.8%
TPR at 1% FPR (a 2.7× improvement). In the unseen class setting, quantile regression takes less
time to train and outperforms LiRA. We find that RMIA often performs worse than the LiRA attack.
This is because RMIA’s score function exaggerates the target model’s confidence on the unseen class,
resulting in more false positives in this setting and very low TPRs in the low-FPR regime.

These trends also hold on ResNet-18 and Vision Transformer base models; detailed results are found
in Appendix E.

Data scarcity: ImageNet. Our results on CINIC-10 and CIFAR-100 are limited to a single unseen
class at a time, which models the impact of a minority subpopulation (such as sensitive or harmful
content) missing from the attack data. Another realistic scenario where the auditor or adversary might
not have access to subclasses is the data scarcity setting, where the model might be trained using a
much larger and potentially proprietary dataset while a resource-limited auditor only has a fraction
of similar data available.

10 4 10 3 10 2 10 1 100

False Positive Rate
10 4

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e Full training set
10 missing classes
30 missing classes
50 missing classes
100 missing classes
200 missing classes
500 missing classes
750 missing classes
900 missing classes
950 missing classes
990 missing classes
Marginal baseline
Random

(a) ROC curve for class drop
experiment on ImageNet.
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class drop experiment on ImageNet.
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(c) ROC curve for sample drop
experiment on ImageNet.

Figure 3: ROC curves for class and sample drop experiments on ImageNet. Enlarged versions of the plots are
provided in Appendix H.

To simulate this, we attack a model trained on the much larger ImageNet dataset. We use the same
quantile regression architecture and hyperparameters as described for CINIC-10 and CIFAR-100.
In Figure 3a, we show the ROC curves for ImageNet (on the full data distribution) with a sweep from
10 to 990 classes missing from the attack training set. Perhaps surprisingly, the quantile regression
attack outperforms the marginal baseline with as many as 990 out of 1000 classes left unseen.

One might ask whether this effect is simply due to averaging over both missing and in-distribution
classes. In Figure 3b, we plot attack performance for the missing classes alone. The performance on
unseen classes remains fixed around 3.8% TPR at 1% FPR (0.4% TPR at 0.1% FPR) when anywhere
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from 100 to 900 classes are removed, and remains significantly above the marginal baseline even with
990 classes removed.

Finally, another realistic setting of data scarcity is one where examples from all classes are available,
but where the auditor only has very few samples from each class. We also evaluate ImageNet in
this scarce-sample setting where only k samples are retained from each class. Quantile regression
outperforms the marginal baseline (Figure 3c) even when training data is severely limited, retaining
3.9% TPR at 1% FPR given as few as 10 samples per class (compared to 9.0% TPR at 1% when trained
on all the data; on average, 401 samples per class).

We present similar results for data scarcity on CIFAR-10 and CIFAR-100 in Appendix D. Quantile
regression achieves, for example, 3% TPR at 1% FPR even when half of the classes are dropped from
CIFAR-100.

4.2 UNSEEN CLASSES FOR TABULAR AND TEXT DATASETS.

The unseen class scenario also arises in tabular and text settings. For example, consider auditing
medical records in which subsets of records may be inaccessible to the auditor due to privacy, legal,
or ethical restrictions (Tramèr et al., 2022), or population survey data in which some records might
belong to sensitive minority groups and cannot be made public (Steed et al., 2024).

Next, we show that shadow models and global thresholding fail on unseen classes in tabular and text
classification settings as well. For these experiments, we compare quantile regression to RMIA, the
state-of-the-art shadow model approach from Zarifzadeh et al. (2023).
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Figure 4: True positive rates in the low false positive regime for Texas (tabular) and 20 Newsgroups (text) on
sets of unseen classes. Each bar represents the true positive rate on classes C when C are dropped from the attack
training set. We only report results at 1% FPR; the results at 0.1% FPR are not meaningful due to the small sample
size of the validation set on a single class. Quantile regression attacks achieve up to 2× higher TPR than shadow
models on Texas and up to 6× higher TPR on 20 Newsgroups.

Setup. For text classification, we fine-tune GPT-2 (Radford et al., 2019) for 20-NewsGroups
classification. Inputs are tokenized with truncation and padding to a fixed length of 256 tokens. We
train with AdamW, batch size 32, learning rate 1e-3, weight decay 5e-4, 500 warmup steps, for 30
epochs. For Texas tabular classification, we follow Zarifzadeh et al. (2023) and train a 2-layer MLP
base model. For text and tabular, our attack models are also 2-layer MLPs (hidden sizes 256, 128).
For text, the input is an embedding bag over the 256 input tokens. The hyperparameters and score
function match the image auditing attacks described above.

Class dropout: Texas and 20-NewsGroups. We find that on tabular and text data, quantile
regression again strictly outperforms the marginal baseline and RMIA shadow models under class
dropout at 1% FPR. The same is true for AUC, and full results can be found in Appendix C. We drop
10% of classes for both datasets (10/100 for Texas, 2/20 for 20-NewsGroups). As described above,
the TPR and FPR are evaluated on the held-out class.

4.3 DEFENSES

In general, models that one would wish to audit are not deployed with typical MIA defenses such as
differential privacy (Thorn and All Tech is Human, 2024). Nevertheless, for completeness, we evaluate
our method in the unseen-class setting on models trained with one of two defenses: weight decay
(equivalent to ℓ2 regularization for SGD) and differential privacy. We note that differential privacy has
been noted by several previous works to be a strong (provable) MIA defense that prevents most MIA

7
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methods from succeeding, but is highly impractical (Leino and Fredrikson, 2020; Choquette-Choo
et al., 2021; Carlini et al., 2022; Li and Zhang, 2021) due to the difficulty of achieving reasonable
test accuracy on models trained from scratch.

We provide these results in Appendix F. Predictably, we find that weight decay is less effective than
DP at preventing MIA from succeeding and more regularization leads to worse MIA success. In
reasonable defense regimes where the TPR at low FPR exceeds random guessing, quantile regression
still outperforms the baseline in the unseen class setting.

5 THEORETICAL MODEL

Our empirical results show that the quantile regression attack can achieve nontrivial accuracy even
under extreme data scarcity when training the attack model. However, it is not clear from our empirical
results when we might expect quantile regression to succeed.

As a step toward understanding our results, we prove a “transferability” theorem for quantile regressors.
Intuitively, this theorem states that if the distribution of sample embeddings under the quantile
regression model with and without the unseen classes is “similar,” then the FPR guarantee of the
quantile regressor trained on only the seen classes should also hold on the full query set.
Definition 5.1 (Pinball loss). For a quantile level α∈(0,1), the pinball loss (also known as the check
loss) for a prediction ŝ and true outcome s is defined as:

ℓα(ŝ,s)=(α−1{s<ŝ})(s−ŝ)=

{
α(s−ŝ) if s≥ ŝ,

(1−α)(ŝ−s) if s<ŝ.

Quantile Regression Predictor. We consider a class of linear quantile regression predictors:

qα(x)=⟨ϕ(x),w⟩,

where ϕ :X →Rd is a fixed feature mapping, and w∈W is a weight vector. For any distribution P
over X×S, we will write Pϕ to denote its induced distribution over (ϕ(x),s).

We will focus on the case where W =Rd, but should generalize to more constrained set of weights
later. We adapt the multi-accuracy definition (Roth, 2022; Hebert-Johnson et al., 2018) to our specific
setting with a feature mapping.
Definition 5.2 (Multi-Accuracy for Quantile Prediction). A predictor qα : X → R is said to be
(W,ϕ,ε)-multi-accurate for quantile level α with respect to distribution P if, for every w∈W ,∣∣E(x,s)∼P [⟨w,ϕ(x)⟩·(1{s<qα(x)}−α)]

∣∣≤ε.

We now show that multi-accuracy, when instantiated for quantile prediction, provides a sufficient
condition for calibration to transfer across distributions. We consider the setting where a quantile
predictor is trained on distribution P and deployed on a shifted distribution Q. The theorem below
shows that if the feature representation captures the density ratio between P and Q via a linear function,
then the learned predictor remains calibrated at the target quantile level under Q. This result can be
viewed as a specialized instance of the universal adaptability framework of Kim et al. (2022), tailored
to multi-accurate quantile predictors derived from empirical risk minimization.
Theorem 5.3 (Transferability of Quantile Predictors). Let P and Q be distributions over (x,s), and
let ϕ :X →Rd be a fixed feature map. Suppose we learn a linear quantile predictor qα(x)=⟨ϕ(x),w∗⟩
by minimizing the expected pinball loss under P :

w∗∈argmin
w∈W

E(x,s)∼P [ℓα(⟨ϕ(x),w⟩,s)].

Assume that the density ratio between Q and P satisfies:

dQϕ(ϕ(x),s)

dPϕ(ϕ(x),s)
=⟨ϕ(x),v⟩ for some v∈W, and for all (ϕ(x),s)∈supp(Qϕ).

Then the learned predictor qα is calibrated under distribution Q at quantile level α:

E(x,s)∼Q[1{s<qα(x)}−α]=0.

8
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(a) Gaussian mixtures fit to CIFAR-
100 data with one unseen class.

(b) Gaussian mixtures fit to Ima-
genet data with ten unseen classes.

(c) Gaussian mixtures fit to CINIC-
10 data with one unseen class.

Figure 5: Visualization of Gaussian mixture models fit to the (dimension-reduced) embeddings learned by the
quantile regression models trained on on subsets of CINIC-10, CIFAR-100, and Imagenet. Dropping a class
largely does not change the distribution over embeddings for CIFAR-100 and Imagenet, where we observe that
quantile regression is the most effective.

We defer the proof to Appendix G.

Intuitively, the transferability theorem states that when there exists a linear transformation between the
feature representation of the (unseen-class) training distribution and the feature representation of the
full distribution, the false-positive-rate guarantee of the quantile regressor over the training distribution
will also hold for the test (full) distribution. The assumption of optimality in the last layer is mild,
since the pinball loss is convex in w given fixed features.

5.1 EMPIRICAL ESTIMATES

To understand the implications of this theorem in our setting, we can treat the quantile regressor as
a feature extractor using the final layer before the prediction step to generate embeddings ϕ(x) for each
sample in the dataset. We compare the distribution over last-layer embeddings in the attack training
set (the seen subset of classes) with the distribution over last-layer embeddings in the evaluation set.

Thus, in order to show that the theorem statement holds, we need to measure the density ratio between
the attack training distribution and the test distribution. In practice, we approximate the density ratio
using Gaussian mixture models trained over a low-dimensional projection of the embeddings (the
top two PCA components) rather than the original embeddings due to the relatively low sample size.
These Gaussians are visualized in Figure 5.

Using these approximations, we explicitly measure the density ratio over the test set and fit a linear
layer on top of the representation learned by the quantile regressor. We find that the linear fit improves
as the dataset size and diversity increases: the MSE of the linear model on CINIC-10 is 8.11e-3,
on CIFAR-100 is 2.10e-3, and on Imagenet 1.85e-3. This experiment provides some validation of
the empirical results we see in practice and may expect based on the visual representation of the
image embeddings: the results of quantile regression are weakest on CINIC-10 (where the linear fit
is comparatively worse) and best on ImageNet (where the linear fit is best).

6 RELATED WORK

Membership inference attacks. Shadow models were initially proposed by Shokri et al. (2017)
and refined by Carlini et al. (2022). Membership inference attacks based on quantile regression
were introduced by Bertran et al. (2023) for classification tasks. Follow-up work (Tang et al., 2023;
Carlini et al., 2023) extended this approach to the diffusion model setting using a score metric inspired
by Duan et al. (2023). Others (Zhang et al., 2024; Hayes et al., 2025) have made progress towards
applying these methods to large language models.

A number of earlier works propose using a single global score threshold across examples rather
than fitting per-example thresholds (Shokri et al., 2017; Yeom et al., 2018; Song et al., 2019; Duan
et al., 2023). Later work (Watson et al., 2021; Carlini et al., 2022) has shown that these global score
thresholds perform poorly compared to thresholds calibrated to example difficulty, particularly in
the low-false positive rate regime.

MIA under distribution shift. A number of prior works have studied the effectiveness of shadow
model attacks under varying distribution shift, although none of these study the unseen class setting
that we study in our work. Yichuan et al. (2024) study a setting in which the attacker has access to data
encompassing a superset of the target labels, as well as attribute shift corresponding to subpopulation
reweighting. Liu et al. (2022) study distribution shift between CIFAR-10 and CINIC-10, which have
the same label set. Earlier works (Carlini et al., 2022; Shokri et al., 2017) have empirically studied
how shadow models perform when the target architecture or training procedure are not known exactly.

9
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A EXPERIMENTS AND IMPLEMENTATION DETAILS

Shadow models were trained on 2 NVIDIA A100 GPUs using the code released by Carlini et al. (2022).
The code was used unmodified except to drop the relevant classes from the attack model training data.

The quantile regression models were trained on 4 A800 nodes, taking about 3000MB per node to train
ConvNext-Tiny-224 models. Each model took as input a 224x224x3 image and returned 2 outputs,
the predicted Gaussian mean and variance. Each model was trained for 30 epochs. For CINIC-10,
training with no class dropout took approximately 40 minutes per model. For CIFAR-100, training took
approximately 12 minutes per model. For ImageNet, training took approximately 5 hours per model.
Under class dropout and sample dropout, the training dataset was smaller and training time reduced.

We also experimented with running ConvNext-Large-224, which took 11000MB per node to train,
and significantly longer, i.e. 4 hours per model for CINIC-10.

B ADDITIONAL SHADOW MODEL RESULTS

We provide additional results in the FPR 0.1% regime to supplement Figure 1.
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(a) Results for CINIC-10.
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(b) Results for CIFAR-100 (coarse labels).

Figure 6: True positive rates for shadow model attacks in the 0.1% false positive rate regime for CINIC-10 and
CIFAR-100. Each bar represents the TPR on the indicated class. In yellow, we plot the TPR when that class is
excluded from shadow model training. The attack success degrades significantly under class exclusion, often
performing worse than the marginal baseline (global threshold).

As described in Section 3, one possible explanation for shadow models’ underperformance is due
to the true logit score function which fails in an unseen class setting. However, we also test the top-two
logit difference as a score function, and find that shadow models perform even worse in this setting.
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Figure 7: Comparison between shadow model attack success (with class i dropped) with true label confidence
as the score metric and top-two logit difference as the score metric on CINIC-10. Although the top-two logit
difference does not use the true (dropped) label that was not seen by the shadow models, the attack performs
even worse than with the true label confidence.
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C AUC RESULTS

We provide AUC results to supplement the TPR at low FPR results provided in the paper. However,
we note that AUC is not the best-practice metric for measuring MIA success (see, e.g., Carlini
et al. (2022)) because AUC integrates over all false-positive rates. Quoting Carlini et al. (2022):
“[...] the AUC is not an appropriate measure of an attack’s efficacy, since the AUC averages over all
false-positive rates, including high error rates that are irrelevant for a practical attack. The TPR of
an attack when the FPR is above 50% is not meaningfully useful, yet this regime accounts for more
than half of its AUC score.” Nevertheless, we provide AUC results for completeness here.

We find that results are inconclusive for AUC as compared to the low-FPR regime, where quantile
regression definitively wins across datasets and domains. On image datasets, RMIA outperforms
qunatile regression on CIFAR-10, but results are inconclusive on CIFAR-100. On the Texas tabular
dataset and 20 Newsgroups text dataset, quantile regression outperforms all other methods.
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(a) AUC for the dropped out class, CIFAR-10
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(b) AUC for the dropped out superclass, CIFAR-100.
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(c) AUC for the dropped out class, Texas
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(d) AUC for the dropped out superclass, 20 Newsgroups.

Figure 8: AUCs for CINIC-10, CIFAR-100, Texas (tabular) and 20 Newsgroups (text) on sets of unseen classes.
Each bar represents the AUC on classes C when C are dropped from the attack training set.
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D CINIC-10 AND CIFAR-100 MULTICLASS DROPOUT RESULTS

We additionally provide AUC and TPR at FPR=1% for settings in CINIC-10 and CIFAR-100 where
multiple classes are dropped. In this setting, quantile regression continues to outperform the LOSS
baseline, achieving TPR of 3% at low FPR even when half of the superclasses are dropped from
CIFAR-100. AUC scores are comparable or better for quantile regression and LOSS.
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(a) TPR for the dropped out classes, CIFAR-10.
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(b) TPR for the dropped out superclasses, CIFAR-100.

Figure 9: TPRs for CINIC-10 and CIFAR-100 on sets of unseen classes. Each bar represents the TPR on classes
C when C are dropped from the attack training set. We only report results at 1% FPR; the results at 0.1% FPR
are not meaningful due to the small sample size of the validation set on a single class.
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(a) AUC for the dropped out classes, CINIC-10.
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(b) AUC for the dropped out superclasses, CIFAR-100.

Figure 10: AUCs for CINIC-10 and CIFAR-100 on sets of unseen classes. Each bar represents the AUC on
classes C when C are dropped from the attack training set.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E CINIC-10 AND CIFAR-100 ALTERNATE BACKBONE RESULTS

The CINIC-10 and CIFAR-100 in the main paper audit a ResNet-50 architecture classi-
fier, so here we show quantile regression results for ResNet-18 and Vision Transformer
(vit-base-patch16-224). Again, quantile regression has a striking advantage at low
FPR while AUC scores are comparable or better across the board.
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(a) TPR, CIFAR-100, ViT.
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(b) TPR, CIFAR-100, ResNet-18.
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(c) AUC, CIFAR-100, ViT.
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(d) AUC, CIFAR-100, ResNet-18.
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(f) TPR, CINIC-10, ResNet-18.
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Figure 11: AUC and TPR for CINIC-10 and CIFAR-100 on sets of unseen classes. Each bar represents the metric
on classes C when C are dropped from the attack training set. We only report results at 1% FPR; the results at
0.1% FPR are not meaningful due to the small sample size of the validation set on a single class.
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F RESULTS ON MODELS TRAINED WITH DEFENSES

L2 Regularization. For completeness, we study the unseen-class membership inference setting
under common defenses. First, we measure the effect of L2 regularization, a known MIA defense,
e.g., (Li and Zhang, 2021), (Choquette-Choo et al., 2021), (Leino and Fredrikson, 2020), on our
method. Since our models are trained with vanilla SGD, L2 regularization is equivalent to weight
decay Loshchilov and Hutter (2017), so we proceed by modifying weight decay.

Table 1: Comparison of MIA on CIFAR-100 under Weight Decay

TPR @ FPR = 1% AUC
Model 1cls 2cls 5cls 1cls 2cls 5cls

QMIA (wd = 5×10−4) 4.59 3.38 3.04 0.709 0.726 0.686
LOSS (wd = 5×10−4) 2.00 1.28 0.96 0.690 0.711 0.663

QMIA (wd = 5×10−3) 2.50 1.73 1.95 0.576 0.591 0.612
LOSS (wd = 5×10−3) 1.59 1.53 1.38 0.573 0.583 0.588

QMIA (wd = 5×10−2) 1.25 1.16 0.81 0.520 0.505 0.512
LOSS (wd = 5×10−2) 0.92 0.95 0.86 0.527 0.518 0.512

As L2 regularization (i.e. weight decay) increases, both QMIA and LOSS become less effective.
However, the resulting model also has significantly lower test accuracy (76% → 65% → 55%), so
in general, sufficient L2 regularization is impractical.

Differential Privacy (DP). We additionally analyze unseen-class membership inference under
epsilon-delta DP guarantees; however, as shown in Leino and Fredrikson (2020); Carlini et al. (2022);
Li and Zhang (2021); Choquette-Choo et al. (2021), DP is an unrealistic defense when training models
from scratch, as even modest guarantees require significantly degrading model performance.

In the below experiments, we train DP models from scratch on CIFAR-10 and CIFAR-100 with one
class dropped out.

Following Leino and Fredrikson (2020), we evaluate DP at ε=1.0,4.0,16.0. Our training and test
accuracies on CIFAR-10 and CIFAR-100 are comparable to the results in Leino and Fredrikson (2020).
We find that DP in fact prevents quantile regression (as well as the LOSS baseline) from achieving
meaningful TPR or AUCs in these settings.

Table 2: Performance Metrics Under Differential Privacy Settings for CIFAR10 and CIFAR100

TPR @ FPR = 1% AUC
Dataset ϵ Train Acc. Test Acc. QMIA LOSS QMIA LOSS

CIFAR10
1 0.1005 0.0998 0.0056 0.0110 0.51 0.50
4 0.1029 0.1007 0.0127 0.0123 0.52 0.52
16 0.0975 0.1008 0.0076 0.0100 0.49 0.49

CIFAR100
1 0.0522 0.0537 0.0025 0.0042 0.49 0.49
4 0.0509 0.0498 0.0184 0.0067 0.51 0.51
16 0.0494 0.0500 0.0025 0.0109 0.51 0.50

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G PROOF OF THEOREM 5.3

Proof. As a first step, we prove by contradiction that the learned predictor q∗α is (W,ϕ,0)-multi-accurate
under P . Suppose not, then, by the definition of multi-accuracy, there exists some w′∈W such that

E(x,s)∼Q[⟨w′,ϕ(x)⟩·(1{s<q∗α(x)}−α)] ̸=0.

Without loss of generality, suppose this expectation is strictly positive.

Since the pinball loss is convex and differentiable almost everywhere, its subgradient with respect
to the weights at w∗ is:

∇wE(x,s)∼P [ℓα(⟨w,ϕ(x)⟩,s)]
∣∣
w=w∗ =−E(x,s)∼P [(α−1{s<q∗α(x)})ϕ(x)].

Taking the inner product of this gradient with w′, we obtain:〈
w′,∇wEP [ℓα(⟨w,ϕ(x)⟩,s)]

∣∣
w=w∗

〉
=−EP [⟨w′,ϕ(x)⟩·(α−1{s<q∗α(x)})]<0,

by assumption. Therefore, moving in the direction −w′ decreases the expected pinball loss objective,
contradicting the optimality of w∗.

Thus, we must have:∣∣E(x,s)∼P [⟨w,ϕ(x)⟩·(1{s<q∗α(x)}−α)]
∣∣=0 for all w∈W,

i.e., q∗α is (W,0)-multi-accurate under P .

Finally, given that dQ
dP (x) satisfies:

dQϕ

dPϕ
(ϕ(x),s)=⟨ϕ(x),v⟩ for some v∈W, with ⟨ϕ(x),v⟩>0 for all x∈supp(Q),

we can perform a change of measure from P to Q:

E(x,s)∼Q[(1{s<q∗α(x)}−α)]=E(ϕ(x),s)∼Qϕ
[(1{s<⟨ϕ(x),w∗⟩}−α)]

=E(ϕ(x),s)∼Pϕ

[
dQϕ(ϕ(x),s)

dPϕ(ϕ(x),s)
(1{s<⟨ϕ(x),w∗⟩}−α)

]
=E(ϕ(x),s)∼Pϕ

[⟨ϕ(x),v⟩(1{s<⟨ϕ(x),w∗⟩}−α)]

=E(x,s)∼P [⟨ϕ(x),v⟩(1{s<q∗α(x)}−α)]=0

This completes the proof.
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H ENLARGED PLOTS
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Figure 12: ROC curve for class drop experiment on ImageNet (Figure 3a enlarged).
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Figure 13: Unseen class ROC curve for class drop experiment on ImageNet (Figure 3b enlarged).
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Figure 14: ROC curve for sample drop experiment on ImageNet. (Figure 3c enlarged).
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I LLM USAGE

LLMs were used in writing boilerplate experiment code, debugging, and writing boilerplate plotting
code. No LLMs were used for paper writing, research ideation, or related work discovery.
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