

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 RL BEATS SFT WHILE MITIGATING DEFINITION BIAS IN LLM-BASED INFORMATION EXTRACTION

Anonymous authors

Paper under double-blind review

## ABSTRACT

While large language models (LLMs) have been able to provide generally reasonable answers to complex information extraction (IE) tasks through prompt engineering and supervised fine-tuning (SFT), their performance and safety remain limited. We propose a novel *fuzzy matching* method to reveal that this is largely due to the *definition bias* between the model and the dataset. To mitigate this problem without human intervention, we use Reinforcement Learning with Verifiable Rewards (RLVR) to train the model, enabling it to independently learn the inherent definition of the task from the dataset. Specifically, we use Group Relative Policy Optimization (GRPO) to train LLMs of varying parameter sizes, rewarded with micro F1 scores, and achieve notably higher precision and recall than SFT across all models. We then apply fuzzy matching again to statistically demonstrate that this improvement is mainly primarily to the mitigation of the definition bias between the model and the dataset.

## 1 INTRODUCTION

In recent years, large language models (LLMs) have become a convenient solution for information extraction (IE) tasks (Xu et al., 2024). Due to their powerful generalization and instruction-following capabilities gained from their rich pre-training of general knowledge, current LLMs are already roughly capable of handling complex IE tasks. For example, consumer-level LLMs like GPT-4o OpenAI et al. (2024) can provide answers that human consider generally reasonable off-the-shelf. In addition, through prompt engineering and supervised fine-tuning (SFT), even much smaller LLMs, such as Qwen3-0.6B Yang et al. (2025), are able to generate generally reasonable responses.

However, while the model’s answer may be correct in a general sense, it still falls short of the ground truth in specific scenarios. Even when the model recognizes the correct entity, it may under-extract or over-extract words around the entity, or classify the entity into a different category. For example, for text A in Table 1, the ground truth extracts “Apple” and classifies it as “organization”, but the model may over-extract the “Inc.” after it, or classify it into a different category like “location”. Although the model’s answer is more or less acceptable in general, it doesn’t fully match the ground truth. This may cause serious consequences in some cases. For example, when processing a confidential contract to extract and erase sensitive information in it, the model may under-extract or over-extract information, resulting in privacy leakage or unnecessary information loss. An example would be extracting organizations and locations from text B Table 1 for further erosion. Suppose we want to include floor numbers “30th floor” when extracting locations, but not “Inc.” when extracting organizations. The problem is that no matter how good LLMs are at general language understanding, they may still fail to obey our rules, even after being trained on datasets carefully constructed according to our needs. As a result, it may not include “30th floor” but include “Inc.”, which is the opposite of what we require, causing privacy leakage and unnecessary information loss respectively.

A. Tim Cook is the CEO of Apple Inc.  
[PERSON] [ORGANIZATION]

B. Marlowe Dynamics Inc., located at  
[ORGANIZATION]  
The Virelli Tower, 30th floor, discloses the  
[LOCATION]  
following information under this Agreement.

Table 1: Examples of texts with IE ground truths.



Figure 1: Diagrams of definition bias, the shortcoming of previous solutions and the advantage of RLVR. Green, blue and yellow curves represent the definition of the task implied by the dataset’s ground truth, the model’s prediction, and the human-designed prompt, respectively. Problem: the model and the dataset’s definition differ, causing bias demonstrated as the distance between the blue and green curves. Solution 1: prompt designing with SFT mitigates definition bias (shorter horizontal distance), but also introduces extra bias from human (added vertical distance) after the model learns their definition. Solution 2: RLVR mitigates definition bias without introducing any new bias, since the model learns from the dataset by itself.

This is due to the *definition bias* between the model and the dataset we expect the model to predict (Huang et al., 2024), which we define as the gap between the model’s understanding and the dataset’s implied rules of the task. Since the model is pretrained and fine-tuned on general knowledge, it tends to solve tasks in a common way. However, due to industry norms or preferences, the dataset often specifies a task that differs from the most common scenario. This causes the model to generally understand the task but not strictly follow the dataset’s rules. We further find that even if the model is fine-tuned on a training set with the same distribution, it still may not fully comprehend and conform to the dataset’s definition of the task.

To alleviate this problem, a common practice is to write a clear and thorough system prompt for the model to reference, which may include an overall description of the task, definitions and restrictions for each category, extraction examples, etc., and use it in further supervised fine-tuning. Many relevant research have adopted this approach. Whether they design prompts one-off (Kwak et al., 2024; Neuberger et al., 2025) or refine them based on test results (Hein et al., 2025; Zhang et al., 2025), they share the same idea of manually designing sophisticated prompts for the model to follow.

While this approach is effective to some extent, it requires the system prompt to be designed by humans empirically. This introduces another bias between *humans* and the dataset, making it unable to completely solve the problem. In order to control the extra bias from humans, the system prompt needs to be precisely designed and constantly tested on every possible detail, which is time-consuming and laborious. Even so, since most datasets do not provide detailed rules for information extraction, it is still difficult to ensure the accuracy of the designed system prompt, thus preventing the human-introduced bias from being reliably mitigated.

Therefore, we require an approach that does not introduce extra bias from humans in the first place. In other words, we require the model to learn the inherent definition of the IE task from the dataset itself. Inspired by recent studies (Shao et al., 2024; DeepSeek-AI et al., 2025), we select Reinforcement Learning with Verifiable Rewards (RLVR) as our core approach. During reinforcement learning (RL), the model generates additional data to explore the dataset’s implied rules, which are then scored by a rule-based reward function. By updating on self-generated positive and negative samples, the model learns the definition behind the dataset on its own. This avoids human-introduced bias from the start. It costs no manual system prompt design, and ensures that the model updates towards reducing definition bias. In Figure 1, we visually demonstrate definition bias, how previous methods introduce extra bias from humans, and how RL avoids human-introduced bias.

In this paper, we first discover how much impact definition bias has on model performance using a novel method, namely *fuzzy matching*. Then, we select Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as our RL algorithm to train models of different parameter sizes on complex IE tasks. Afterwards, we compare the performances between the models trained with RL and SFT, and find that the former achieves better precision and recall under all parameter size settings. Finally, we apply fuzzy matching again to statistically show that such an performance gain is mainly due to

108 the mitigation of the definition bias between the model and the dataset, proving that RL effectively  
 109 achieves our goal.  
 110

111 Our paper is organized as follows: In Section 2, we introduce *fuzzy matching* to evaluate the model’s  
 112 incorrect answers, and find that a large proportion of them results from definition bias, proving that  
 113 definition bias seriously hinders model performance. In Section 3, we discuss the effectiveness of  
 114 RL by designing a preliminary experiment to prove that RL enables the model to explore alternative  
 115 solutions. In Section 4, we describe our training settings, including the datasets and training strate-  
 116 gies. In Section 5, we conduct experiments to demonstrate that RL leads to better performance than  
 117 SFT, and again use *fuzzy matching* to prove that the improvement mainly results from the mitigated  
 118 definition bias between the model and the dataset.  
 119

## 2 SIGNIFICANCE OF DEFINITION BIAS

122 The examples in Table 1 have shown how the definition bias between the model and the dataset  
 123 negatively impacts model performance. However, the extent of its impact remains to be estimated.  
 124 We now explore the extent to which definition bias hinders model performance by measuring the  
 125 improvement in model performance when definition bias is eliminated. If the improvement is large  
 126 compared to the difference between perfect performance and the model’s original performance, we  
 127 conclude that definition bias is the primary factor contributing to the mediocre model performance.  
 128

129 Therefore, we design a *fuzzy matching* method  
 130 to apply to the evaluation of the model’s an-  
 131 swers. For each extracted entity, we slightly  
 132 relax the matching restrictions, and count an-  
 133 swers that are “reasonable” but not exactly the  
 134 same as the ground truth. If the results improve  
 135 significantly, it indicates that definition bias is  
 136 the primary factor hindering the model’s per-  
 137 formance.<sup>1</sup>

138 Specifically, we introduce two aspects in which  
 139 fuzzy matching should be relaxed compared to  
 140 *exact matching*. Firstly, when the model ex-  
 141 tracts the correct entity, it should be allowed to  
 142 classify it into a category different from what  
 143 the ground truth specifies. For example, “Har-  
 144 vard University” can be a “location” or an “or-  
 145 ganization” depending on one’s view, so during  
 146 fuzzy matching, the model is allowed to cate-  
 147 gorize the entity into either. Secondly, when the  
 148 model extracts the correct core entity, it should  
 149 be allowed to extract more or less words around  
 150 the entity. For example, since extracting “Apple  
 151 Inc.” and “Apple” from the text “Tim Cook is  
 152 the CEO of Apple Inc.” are both generally ac-  
 153 ceptable, in this setting, both answers are con-  
 154 sidered correct. The number of mismatched  
 155 words is defined as the *threshold*. See Figure  
 156 2 for more examples.  
 157

158 We select Qwen3-0.6B, Qwen3-1.7B, and Qwen3-8B (Yang et al., 2025) as our models, and perform  
 159 SFT on them using the DWIE (Zaporojets et al., 2021) and DocRED (Yao et al., 2019) datasets.  
 160 Then, we let the models generate answers to the questions in the test data. Afterwards, we apply  
 161 exact matching and different degrees of fuzzy matching on them, calculate the micro F1 scores, and  
 162 show them in Table 2. Finally, we calculate for all incorrectly extracted entities, what percentages of  
 163 them can be fuzzy matched after each relaxation, and draw pie charts shown in Figure 3. From these

| Entity                                   | Exact Matching | Fuzzy Matching (threshold = 1) |
|------------------------------------------|----------------|--------------------------------|
| [LOCATION] Willow Crest                  | ✓              | ✓                              |
| [ORGANIZATION] Willow Chrest             | ✗              | ✓                              |
| [LOCATION] Willow Chrest Hospital        | ✗              | ✓                              |
| [LOCATION] The Willow Chrest Hospital    | ✗              | ✗                              |
| [ORGANIZATION] Evergreen Health Alliance | ✓              | ✓                              |
| [ORGANIZATION] Evergreen Health          | ✗              | ✓                              |

Figure 2: Differences between exact matching and fuzzy matching. Fuzzy matching allows the entity “Willow Chrest” to be classified into any category, including “location”, “organization”, etc. When the threshold is set to 1, fuzzy matching allows the LLM to over-extract or under-extract at most 1 word around the entity, such as “Willow Chrest Hospital” for “Willow Chrest” and “Evergreen Health” for “Evergreen Health Alliance”, but not more than 1 word, such as “The Willow Chrest Hospital” for “Willow Chrest”.

<sup>1</sup>Huang et al. (2024) have also introduced the concept of definition bias and two methods to measure it. However, these methods do not meet our requirements. See Appendix A for our detailed discussion.

statistics, we observe that with unlimited classification and a threshold of 2, models can improve 8.76%, 7.27% and 6.57% in preformance respectively, which are 43.37%, 49.59% and 51.45% of the distance to a 100% F1 score. This suggests that definition bias indeed exists, and is a large impediment to the model's performance.

| Matching Method          | Qwen3-0.6B      | Qwen3-1.7B      | Qwen3-8B        |
|--------------------------|-----------------|-----------------|-----------------|
| Exact Matching           | 79.80%          | 85.34%          | 87.23%          |
| Unlimited Classification | 84.00% (+4.20%) | 88.48% (+3.14%) | 89.84% (+2.61%) |
| + Threshold = 1          | 87.45% (+7.65%) | 91.54% (+6.20%) | 92.84% (+5.61%) |
| + Threshold = 2          | 88.56% (+8.76%) | 92.61% (+7.27%) | 93.80% (+6.57%) |

Table 2: The average micro F1 score of models' answers on DWIE and DocRED when applying exact matching and different degrees of fuzzy matching. With unlimited classification and a threshold of 2, models can improve 6.57%-8.76% in the micro F1 score.



Figure 3: Pie charts showing the percentage of incorrectly extracted entities correctly that can be considered correct via fuzzy matching at each degree of relaxation. With unlimited classification and a threshold of 2, models improve by 6.57%-8.76% in the micro F1 score, which is 43.37%-51.45% from the original score to a 100% score.

### 3 EFFECTIVENESS OF REINFORCEMENT LEARNING

SFT aligns the model to output exactly what the dataset shows. Since it learns from a fixed number of samples, it fails to explore alternate interpretations that might better match the dataset's definition. This means the model's internal definition of "correct extractions" may remain misaligned, hindering the model's performance on the test set, even if token-level accuracy on the training set is high.

In contrast, RL frames extraction as an exploration–feedback process. The model first proposes an extraction under its current policy, and then updates the policy to maximize the expected reward. In this way, the model can learn from a wider range of samples generated by itself, and if the reward can reflect the degree to which the bias is mitigated, we expect the model to fit more accurately to the dataset's definition.

Previous studies (Shao et al., 2024; DeepSeek-AI et al., 2025) have proven the effictiveness of RL on general and mathematical tasks. To preliminarily investigate RL's ability to explore alternative solutions in our task setting, we perform RL on Qwen3-0.6B using the DpcRED dataset, and examine model generations that perfectly match the ground truth, but are textually different.

After RL, some cases are shown in Table 3. We see that although the model extracts the entities correctly, it may output them in a different order (in the first case), or output an entity multiple times in a category (in the second case), which is acceptable since they can be easily deduplicated afterwards. Therefore, the model has explored alternative solutions that are equally correct as the ground truth, and these solutions are also closer to the model's current output distribution, since they were generated by the model itself. Motivated by this, we now aim to conduct experiments further verify the effectiveness of RL on IE tasks.

| 216 | Model Answer                                                                                                                                                                   | Ground Truth                                                                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 217 | [PERSON] Shakespeare; Anne; Terry;<br>Jacques Rivette                                                                                                                          | [PERSON] Anne; Jacques Rivette; Shake-<br>speare; Terry                                                                            |
| 220 | [MISC] The Grim Adventures of Billy<br>& Mandy; Evil Con Carne; Grim & Evil;<br>The Grim Adventures of Billy & Mandy;<br>"Cartoon Cartoons; Company Halt; Car-<br>toon Cartoon | [MISC] Evil Con Carne; Cartoon Cartoon;<br>The Grim Adventures of Billy & Mandy;<br>Grim & Evil; Cartoon Cartoons; Company<br>Halt |

226 Table 3: Some cases where the model generates a 100% correct answer that is textually different  
 227 from the ground truth. In the first case, the model extracts all entities correctly, but in a different  
 228 order. In the second case, the model extracts “The Grim Adventures of Billy & Mandy” once more  
 229 than the ground truth, but should still be considered correct since the entities in a category can be  
 230 easily deduplicated afterwards.

## 231 4 TRAINING SETTINGS

234 In this section, we select datasets and training strategies to train the model to compare its perfor-  
 235 mance after SFT and RL on IE tasks.

### 237 4.1 DATASET SELECTION AND PROCESSING

239 For our main experiment, we select DWIE (Zaporojets et al., 2021) and DocRED (Yao et al., 2019)  
 240 as the datasets, which consist of complex named entity recognition (NER) tasks. As shown in  
 241 Appendix C, samples in these datasets consist of multiple sentences and a considerable number of  
 242 words, thus requiring fairly powerful models to handle. In order to demonstrate the LLMs’ ability to  
 243 learn from different datasets simultaneously, we train the models on a mixture of these two datasets.

244 For each sample from the dataset, we add a system prompt before the text, which clarifies the source  
 245 dataset, the categories along with their official descriptions copied from the original paper, and the  
 246 output format, and then input it to the model.

247 In addition, we conduct supplementary experiments on relation extraction (RE) and entity extraction  
 248 (EE) tasks. We use DWIE and DocRED for RE, and choose the DocEE (Tong et al., 2022) dataset  
 249 for EE.

250 Statistics of the datasets, system prompts, and output format are shown in Appendix C.

### 252 4.2 TRAINING STRATEGIES

254 We train the same model with SFT and RL respectively to demonstrate that RL can lead to better  
 255 performance of the model.

256 For RL, we choose Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as our algorithm.  
 257 During each step in GRPO, the model  $\theta$  generates a batch of outputs  $o_1, o_2, \dots, o_G$  given the same  
 258 input. Then, the reward function evaluates the responses and outputs their rewards  $r_1, r_2, \dots, r_G$ .  
 259 Their advantages are then calculated as the rewards normalized, and assigned to each token  $t$ , i.e.

$$261 \hat{A}_{i,t} = \frac{r_i - \text{mean}(\mathbf{r})}{\text{std}(\mathbf{r})} \quad (1)$$

264 Finally, the loss is calculated as follows:

$$266 \mathcal{L}_{\text{GRPO}}(\theta) = -\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} l_{i,t} \quad (2)$$

268 where

$$l_{i,t} = \frac{\pi_\theta(o_{i,t}|q, o_{i,<t})}{[\pi_\theta(o_{i,t}|q, o_{i,<t})]_{\text{no grad}}} \hat{A}_{i,t} - \beta D_{\text{KL}}[\pi_\theta \| \pi_{\text{ref}}] \quad (3)$$

and used by the optimizer to update the model.

For the reward function, we design the following methods, and compare them in the preliminary experiment to find the optimal one:

1. Exact-match reward: use the micro F1 score with exact matching as the reward.

2. Span-aware reward: for each entity in the prediction ( $Pred$ ), find the entity in the ground truth ( $GT$ ) that has the most words overlapped with it. If the entity is classified into a different category in the ground truth, multiply the result by a factor  $\alpha$ . This process can be formulated as follows:

$$MaxOverlap(p) = \max_{g \in GT} (Overlap(p, g) \cdot (\alpha + (1 - \alpha)\mathbb{I}_{category})) \quad (4)$$

$\sum_{p \in Pred} MaxOverlap(p)$  is regarded as the number of true positives. The number of words in the prediction and ground truth are the number of positives and true samples, respectively. We use them to compute the F1 score as the reward.

3. Per-token reward: assign a reward for each token according to the following rules:

- if the answer contains redundant or incorrect entities, apply a -1 reward to the corresponding tokens;
- if the answer contains missing entities, apply a -1 reward to the token containing “]” at the end of the list;
- for other tokens, apply a +1 reward.

For example, with the ground truth being “locations: ['Paris', ‘Berlin’]” and the answer being “locations: ['London', ‘Paris’]”, tokens “London” and “]” are given -1 rewards while the rest are given +1 rewards. Then, the rewards are then normalized to be advantages.

Additionally, through early experiments, we observe that directly applying GRPO to the model makes it difficult to converge to the required response format. To demonstrate this, we run an experiment directly applying GRPO to Qwen3-0.6B in Appendix B. Because of this, before GRPO, we slightly fine-tune the model using ground truths from the dataset, until it stably generates responses that follow the format.

We offer a comparison of training computation costs between SFT and RL in Appendix D.

## 5 EXPERIMENTS

### 5.1 EXPERIMENTAL SETUP

We compare RL (format learning + GRPO) with SFT (format learning + SFT) to demonstrate that the former produces greater performance gains. We select Qwen3-0.6B, Qwen3-1.7B and Qwen3-8B as our models, and run SFT and RL with the same total number of steps on our pre-processed dataset. During GRPO, the group size (i.e. the value of  $G$  in Equation 2) is set to 8, and the length of responses are truncated to 512. After training, we use the precision, recall and micro F1 score to evaluate the performance of the models.

To find the optimal experiment settings, we conduct some preliminary experiments. First, to find the best-performing reward function, we apply each of the three reward functions designed on Qwen3-0.6B with DWIE and DocRED datasets, and evaluate the model’s performance using the average precision, recall and micro F1. The results are shown in Table 4. We find that the exact-match reward function achieves the best F1 score, while the span-aware and per-token reward functions underperform in precision and recall, respectively. To investigate the reason, we observe the responses, and find that the span-aware reward function encourages the model to output an entity multiple times and in different categories, while the per-token reward function resulted in responses

324 exceeding the maximum length due to consecutively repeating the last entity or entities. Since the  
 325 exact-match reward function performs the best, we use it in further experiments.  
 326

| Metric    | Exact-Match   | Span-Aware    | Per-Token |
|-----------|---------------|---------------|-----------|
| Precision | <b>86.19%</b> | 53.01%        | 85.50%    |
| Recall    | 83.78%        | <b>86.45%</b> | 53.72%    |
| F1        | <b>84.97%</b> | 65.52%        | 65.21%    |

327  
 328  
 329  
 330  
 331  
 332 Table 4: Performance of Qwen3-0.6B after RL with different reward functions measured by precision,  
 333 recall and micro F1 on DWIE and DocRED. Exact-match reward achieves the best F1 score.  
 334

335 Next, to find a proper group size ( $G$ ), we run GRPO on Qwen3-0.6B with  $G = 4, 8, 16$  with DWIE  
 336 and DocRED datasets, and evaluate the model’s performance. The results are shown in Table 5.  
 337 While the results of different settings of  $G$  do not differ much,  $G = 8$  achieves the best F1 score  
 338 overall. Therefore, we set  $G$  to 8 in subsequent experiments.  
 339

| Metric    | DWIE          |               |          | DocRED  |               |               |
|-----------|---------------|---------------|----------|---------|---------------|---------------|
|           | $G = 4$       | $G = 8$       | $G = 16$ | $G = 4$ | $G = 8$       | $G = 16$      |
| Precision | 88.19%        | <b>88.73%</b> | 87.67%   | 82.29%  | <b>83.64%</b> | 83.40%        |
| Recall    | <b>86.70%</b> | 86.28%        | 86.66%   | 80.67%  | 81.29%        | <b>81.35%</b> |
| F1        | 87.44%        | <b>87.49%</b> | 87.16%   | 81.47%  | <b>82.45%</b> | 82.36%        |

340  
 341  
 342  
 343  
 344  
 345 Table 5: Performance of Qwen3-0.6B after RL with different number of generations per input ( $G$ )  
 346 measured by precision, recall and micro F1 on DWIE and DocRED. While results of different  $G$   
 347 settings are close,  $G = 8$  achieves the best F1 score on both datasets.  
 348  
 349

## 350 5.2 BASIC RESULTS

351 The results of our main experiment on the DWIE and DocRED datasets are shown in Table 6. From  
 352 the table, we observe that among all models, those after RL consistently perform notably better than  
 353 those after SFT, with a micro F1 score increase of 2.38%-3.24% on DWIE and 1.46%-7.09% on  
 354 DocRED. This indicates that using RL to train the model can lead to greater performance gains than  
 355 SFT.  
 356

357 We also conduct an experiment on the full DWIE and DocRED splits. Due to computational limita-  
 358 tions, we only run the experiment on Qwen3-0.6B. The results are shown in Appendix E.  
 359

360 For the additional experiments on RE and EE tasks, the results are shown in Appendix F.  
 361

| Metric     | DWIE   |                        | DocRED |                         | SFT    | RL                     | Average |
|------------|--------|------------------------|--------|-------------------------|--------|------------------------|---------|
|            | SFT    | RL                     | SFT    | RL                      |        |                        |         |
| Qwen3-0.6B |        |                        |        |                         |        |                        |         |
| Precision  | 84.44% | <b>88.73%</b> (+4.29%) | 83.56% | <b>83.64%</b> (+0.08%)  | 84.00% | <b>86.19%</b> (+2.19%) |         |
| Recall     | 84.06% | <b>86.28%</b> (+2.22%) | 68.62% | <b>81.29%</b> (+12.67%) | 76.34% | <b>83.78%</b> (+7.44%) |         |
| F1         | 84.25% | <b>87.49%</b> (+3.24%) | 75.36% | <b>82.45%</b> (+7.09%)  | 79.81% | <b>84.97%</b> (+5.16%) |         |
| Qwen3-1.7B |        |                        |        |                         |        |                        |         |
| Precision  | 86.05% | <b>91.25%</b> (+5.20%) | 85.63% | <b>86.44%</b> (+0.81%)  | 85.84% | <b>88.84%</b> (+3.00%) |         |
| Recall     | 87.47% | <b>88.77%</b> (+1.30%) | 82.30% | <b>84.36%</b> (+2.06%)  | 84.88% | <b>86.56%</b> (+1.68%) |         |
| F1         | 86.75% | <b>89.99%</b> (+3.24%) | 83.93% | <b>85.39%</b> (+1.46%)  | 85.34% | <b>87.69%</b> (+2.35%) |         |
| Qwen3-8B   |        |                        |        |                         |        |                        |         |
| Precision  | 88.92% | <b>92.80%</b> (+3.88%) | 86.22% | <b>87.83%</b> (+1.61%)  | 87.57% | <b>90.31%</b> (+2.75%) |         |
| Recall     | 89.54% | <b>90.46%</b> (+0.92%) | 84.28% | <b>86.97%</b> (+2.69%)  | 86.91% | <b>88.72%</b> (+1.81%) |         |
| F1         | 89.23% | <b>91.61%</b> (+2.38%) | 85.28% | <b>87.40%</b> (+2.12%)  | 87.25% | <b>89.50%</b> (+2.25%) |         |

375  
 376 Table 6: Performance of SFT and RL measured by precision, recall and micro F1 on DWIE and  
 377 DocRED. Models of different parameter sizes all achieve better results after RL than after SFT.

378 5.3 CASE STUDY  
379380 To demonstrate the reason why RL performs better in the main experiment, we show some cases in  
381 the test set where the answer of the model after RL corrects the answer of the model after SFT in  
382 Table 7.  
383

| 385 <b>Text with Ground Truth</b>                                                                                          | 386 <b>Answer after SFT</b>       | 387 <b>Answer after RL</b>        |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|
| 388 ... Rhysently Granted won an open mic contest<br>389 at the <u>Southern Blues Bar</u> ...<br>390 [LOCATION]            | 391 [MISC] Southern Blues Bar     | 392 [LOCATION] Southern Blues Bar |
| 393 ... the lake that gave the municipality its name<br>394 was drained in the early <u>20th century</u> ...<br>395 [TIME] | 396 [TIME] the early 20th century | 397 [TIME] 20th century           |

398 Table 7: Some cases where RL outperforms SFT by mitigating definition bias. The first case shows  
399 that the model after RL correctly classifies the entity “Southern Blues Bar” as “location”, while the  
400 model after SFT incorrectly classifies it as “misc”. The second case shows that the model after RL  
401 correctly extracts “20th century”, while the model after SFT over-extracts “the early” before it.  
402403 **The model after RL classifies the extracted entity into the correct category.** In the first case,  
404 “Southern Blues Bar” is classified as “misc” (miscellaneous) by the model after SFT, and “location”  
405 by the model after RL. While these can both be considered correct depending on the scenario, the  
406 ground truths in the dataset always classify a bar as “location” instead of “misc”, implying that the  
407 model after RL has a better understanding of the definitions implied by the dataset.  
408409 **The model after RL extracts the entity more accurately.** In the second case, when recognizing  
410 the century in the text, the model after SFT extracts “the early 20th century”, while the model after  
411 RL extracts “20th century”. Although both are reasonable answers, we scan through the DocRED  
412 dataset, and find that the ground truths never include “the early” before the century. Therefore, the  
413 answer of the model after RL aligns better to the dataset’s definition of the IE task.  
414415 5.4 EFFECTIVENESS OF RL IN MITIGATING DEFINITION BIAS  
416417 We now statistically prove that the improvement of each model after RL is mainly due to the reduced  
418 definition bias between the model and the dataset. To achieve this, we collect the entities that are  
419 correctly extracted by the model after RL but incorrectly extracted by the model after SFT, and count  
420 how many of them becomes correct due to reduced definition bias. Specifically, for each entity, we  
421 again apply different degrees of *fuzzy matching* to find out its counterpart in the answer given by  
422 the model after SFT. We first allow entities to be categorized into any category, and then gradually  
423 increase the number of mismatched words before and after the entity (i.e. the threshold), while  
424 counting the number of new entities that find their counterparts after each degree of relaxation. If  
425 most of the entities match a counterpart after slight relaxations, it indicates that the model after SFT  
426 is actually able to recognize most of these entities, but fails to extract them in the way the dataset  
427 does. Therefore, we can conclude that the difference in definition bias is the main contributor to the  
428 performance gap.  
429430 After counting the number of new matches after each degree of relaxation, we obtain a pie chart for  
431 each model shown in Figure 4. From the pie charts, we see that more than half (specifically, 51.04%–  
432 56.80%) of the entities in the RL model’s answer after RL find their counterpart in the SFT model’s  
433 answer after unlimited classification and no more than 2 mismatched words. This indicates that  
434 more than half of the performance improvement of RL is caused by the mitigation of the definition  
435 bias.  
436437 To demonstrate that fuzzy matching and splitting by a threshold of 2 is an effective attribution  
438 method, we randomly sample a subset of cases and perform human audit on them. See appendix G  
439 for details.  
440



Figure 4: Pie charts showing the percentage of entities correctly extracted only by the model after RL that finds its corresponding entity in the answer of the model after SFT via fuzzy matching at each degree of relaxation. With unlimited classification and a threshold of 2, 51.04%-56.80% of the entities are corrected by the model after RL.

## 5.5 RESULTS ON SYNTHETIC DATASET

To further explore the effectiveness of RL in helping models learn implicit rules from datasets, we manually tweak DWIE and DocRED to synthesize a dataset that includes our own rules, and train Qwen3-0.6B with SFT and RL on it. Specifically, we add the following rules for each category:

- Location: enforce extractions of “in” before entities; disallow extractions of “on” or “at” before entities.
- Organization: enforce extractions of “Inc.” after entities.
- Person: enforce extractions of “Mr.”, “Mrs.” and “Dr.” before entities.
- Value: enforce extractions of “€” before entities; disallow extractions of “\$” before entities.
- Misc: disallow extractions of “the” before entities.

After SFT and RL, we compute the recall of the entities related to each group of keywords.

The results are shown in Table 8. While for some keywords like “in” and “€”, RL achieves the same recall or a slightly lower recall than SFT, for other keywords like “Inc.”, “Mr. / Mrs. / Dr.” and “the”, RL achieves significantly higher recall scores, resulting in a higher score in average. This suggests that RL does help models learn implied rules from datasets.

| Category     | Keywords         | SFT           | RL                      |
|--------------|------------------|---------------|-------------------------|
| Location     | in               | <b>86.86%</b> | 86.48% (-0.38%)         |
|              | on / at          | 82.63%        | <b>84.74%</b> (+2.11%)  |
| Organization | Inc.             | 63.17%        | <b>83.91%</b> (+20.74%) |
| Person       | Mr. / Mrs. / Dr. | 68.71%        | <b>82.53%</b> (+13.82%) |
| Value        | €                | 100.00%       | 100.00% (+0.00%)        |
|              | \$               | 96.15%        | 96.15% (+0.00%)         |
| Misc         | the              | 61.68%        | <b>72.55%</b> (+10.87%) |
| Average      |                  | 79.89%        | <b>87.67%</b> (+7.78%)  |

Table 8: Recall of entities related to each keyword after SFT and RL on the synthetic dataset. RL achieves significantly better recall scores on adjusted entities in the “organization”, “person” and “misc” categories, leading to a better average score compared to SFT.

## 6 RELATED WORK

**Definition bias between LLMs and datasets.** LLMs are already able to give generally reasonable answers to IE tasks after SFT. However, there have been studies (Huang et al., 2024) that demon-

486 strate notable definition bias between LLMs and datasets regarding the IE task. While they showed  
 487 that prompt engineering and SFT can mitigate the bias to a certain extent, they also stressed the  
 488 complexity of creating comprehensive prompts to accurately describe the tasks. Proceeding from  
 489 this, we systematically investigate the significance of definition bias, and show that by reinforcement  
 490 learning, LLMs can comprehensively learn the dataset’s definition of the task, and thus effectively  
 491 mitigate the bias.

492 **Prompt engineering and SFT to mitigate definition bias.** Current studies often rely on prompt  
 493 design to mitigate definition bias and improve the model’s performance on IE tasks. Kwak et al.  
 494 (2024) and Neuberger et al. (2025) manually design task descriptions, restrictions, extraction exam-  
 495 ples, etc. in one go, while the latter also adds detailed definitions of each category in the prompt.  
 496 Hein et al. (2025) iteratively review the test results and manually refine the prompt to induce the de-  
 497 sired behavior of the LLM. Zhang et al. (2025) start from human-designed prompts, and use LLMs  
 498 to iteratively refine them based on test results. While these methods can mitigate the definition bias  
 499 between the model and the dataset to some extent, they all require human intervention, which is la-  
 500 borious and introduces extra bias between humans and the dataset. In contrast, our method does not  
 501 depend on the prompt. Instead, it lets the model learn the dataset’s definition by itself, thus ensuring  
 502 that no additional bias is introduced.

503 **Reinforcement learning for IE tasks.** Recent work has shown that reinforcement learning can  
 504 substantially enhance LLMs’ structured information extraction capabilities by providing verifiable,  
 505 domain-aligned reward signals. Li et al. (2025) introduce MimicSFT and R<sup>2</sup>GRPO, combining  
 506 template-guided supervision with relevance- and rule-based RL to improve scientific relation ex-  
 507 traction and reduce reasoning errors. Similarly, Dai et al. (2025) leverage RLVR to train models  
 508 to follow annotation-style reasoning procedures, yielding strong cross-domain robustness for rela-  
 509 tion extraction. While our methodology also includes applying RL on IE tasks, we focus more on  
 510 diagnostics, exploring definition bias in IE tasks and how RL mitigates it.

## 511 7 CONCLUSION

512 Large language models (LLMs) are able to provide generally acceptable answers for information  
 513 extraction tasks, but these answers may not follow the recognition logic implied by the dataset. In  
 514 this paper, we use reinforcement learning (RL) with the micro F1 score as the reward to train LLMs  
 515 to learn the implied definition behind the data on their own. Our experiments demonstrate that  
 516 compared to supervised fine-tuning (SFT), RL achieves better results for all selected model sizes.  
 517 By gradually loosening the restrictions when evaluating the RL model’s answers, we statistically  
 518 demonstrate that these performance gains are mainly due to the mitigation of the definition bias  
 519 between the model’s understanding and the dataset’s inherent definition of the task.

## 520 ACKNOWLEDGMENTS

521 LLMs were used to polish writing, find proper datasets used in experiments (DWIE, DocRED and  
 522 DocEE), and generate examples in Table 1 and Figure 2.

## 523 REFERENCES

524 Runpeng Dai, Tong Zheng, Run Yang, Kaixian Yu, and Hongtu Zhu. R1-re: Cross-domain relation  
 525 extraction with rlrv, 2025. URL <https://arxiv.org/abs/2507.04642>.

526 DeepSeek-AI et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learn-  
 527 ing, 2025. URL <https://arxiv.org/abs/2501.12948>.

528 David Hein, Alana Christie, Michael Holcomb, Bingqing Xie, AJ Jain, Joseph Vento, Neil Rakheja,  
 529 Ameer Hamza Shakur, Scott Christley, Lindsay G. Cowell, James Brugarolas, Andrew Jamieson,  
 530 and Payal Kapur. Prompts to table: Specification and iterative refinement for clinical information  
 531 extraction with large language models, February 2025. URL [10](https://www.medrxiv.org/</a><br/>
  532 content/early/2025/04/01/2025.02.11.25322107.</p>
<p>533 Wenhao Huang, Qianyu He, Zhixu Li, Jiaqing Liang, and Yanghua Xiao. Is there a one-model-<br/>
  534 fits-all approach to information extraction? revisiting task definition biases. In Yaser Al-</p>
</div>
<div data-bbox=)

540 Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 10274–10287, Miami, Florida, USA, November 2024.  
 541 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.601. URL  
 542 <https://aclanthology.org/2024.findings-emnlp.601/>.  
 543

544 Alice Kwak, Clayton Morrison, Derek Bambauer, and Mihai Surdeanu. Classify first, and then ex-  
 545 tract: Prompt chaining technique for information extraction. In Nikolaos Aletras, Ilias Chalkidis,  
 546 Leslie Barrett, Cătălina Goanță, Daniel Preotiu-Pietro, and Gerasimos Spanakis (eds.), *Proceed-  
 547 ings of the Natural Legal Language Processing Workshop 2024*, pp. 303–317, Miami, FL, USA,  
 548 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.nllp-1.25.  
 549 URL <https://aclanthology.org/2024.nllp-1.25/>.  
 550

551 Ran Li, Shimin Di, Yuchen Liu, Chen Jing, Yu Qiu, and Lei Chen. Beyond path selection: Better  
 552 llms for scientific information extraction with mimicsft and relevance and rule-induced( $r^2$ )grpo,  
 553 2025. URL <https://arxiv.org/abs/2505.22068>.  
 554

555 Julian Neuberger, Lars Ackermann, Han van der Aa, and Stefan Jablonski. A universal prompting  
 556 strategy for extracting process model information from natural language text using large language  
 557 models. In Wolfgang Maass, Hyoil Han, Hasan Yasar, and Nick Multari (eds.), *Conceptual Mod-  
 558 eling*, pp. 38–55, Cham, 2025. Springer Nature Switzerland. ISBN 978-3-031-75872-0.  
 559

560 OpenAI et al. Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.  
 561

562 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,  
 563 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-  
 564 cal reasoning in open language models, February 2024.  
 565

566 MeiHan Tong, Bin Xu, Shuai Wang, Meihuan Han, Yixin Cao, Jiangqi Zhu, Siyu Chen, Lei Hou,  
 567 and Juanzi Li. DocEE: A large-scale and fine-grained benchmark for document-level event ex-  
 568 traction. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.),  
 569 *Proceedings of the 2022 Conference of the North American Chapter of the Association for Com-  
 570 putational Linguistics: Human Language Technologies*, pp. 3970–3982, Seattle, United States,  
 571 July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.nacl-main.291.  
 572 URL <https://aclanthology.org/2022.nacl-main.291/>.  
 573

574 Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong Xu, Xiangyu Zhao, Xian Wu, Yefeng  
 575 Zheng, Yang Wang, and Enhong Chen. Large language models for generative information extrac-  
 576 tion: A survey. *Frontiers of Computer Science*, 18(6):186357, 2024.  
 577

578 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang  
 579 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,  
 580 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin  
 581 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,  
 582 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui  
 583 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang  
 584 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger  
 585 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan  
 586 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.  
 587

588 Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin, Zhenghao Liu, Zhiyuan Liu, Lixin Huang,  
 589 Jie Zhou, and Maosong Sun. DocRED: A large-scale document-level relation extraction dataset.  
 590 In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual  
 591 Meeting of the Association for Computational Linguistics*, pp. 764–777, Florence, Italy, July  
 592 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1074. URL <https://aclanthology.org/P19-1074/>.  
 593

594 Klim Zaporozets, Johannes Deleu, Chris Develder, and Thomas Demeester. Dwie: An entity-centric  
 595 dataset for multi-task document-level information extraction. *Information Processing & Manage-  
 596 ment*, 58(4):102563, 2021. ISSN 0306-4573. doi: 10.1016/j.ipm.2021.102563. URL <https://www.sciencedirect.com/science/article/pii/S0306457321000662>.  
 597

594 Tian Zhang, Lianbo Ma, Shi Cheng, Yikai Liu, Nan Li, and Hongjiang Wang. Automatic  
 595 prompt design via particle swarm optimization driven llm for efficient medical information ex-  
 596 traction. *Swarm and Evolutionary Computation*, 95:101922, 2025. ISSN 2210-6502. doi:  
 597 <https://doi.org/10.1016/j.swevo.2025.101922>. URL <https://www.sciencedirect.com/science/article/pii/S221065022500080X>.

600 **A INAPPLICABILITY OF THE MEASUREMENT METHODS FOR DEFINITION  
 601 BIAS IN PREVIOUS WORK**

603 While Huang et al. (2024) have also introduced the concept of definition bias with two methods  
 604 to measure it, these methods do not meet our requirement. Their first method, *sentence similarity*,  
 605 measures the bias between the pieces of text between datasets, rather than the bias between the  
 606 dataset’s ground truths and the model’s answer. Their second method, *Fleiss’ Kappa*, measures the  
 607 difference between the answer and the ground truth based on exact matching, which can serve as  
 608 a coarse-grained metric for the model’s performance, but cannot distinguish the “close matches”  
 609 which are caused by definition bias. For example, when the ground truth is “Apple Inc.”, answers  
 610 “Apple” and “Google” receive the same *Fleiss’ Kappa* score, but the former reflects definition bias,  
 611 while the latter is simply due to the model’s poor performance.

613 **B DEMONSTRATION OF PURE RL FAILING TO FOLLOW THE THE OUTPUT  
 614 FORMAT**

616 We directly apply GRPO to Qwen3-0.6B on DWIE and DocRED for 5 epochs, and show the average  
 617 results in Table 9, compared to the method used in our main experiment (supervised format learning  
 618 + GRPO).

| Metric    | SFT    | Format Learning + GRPO | Pure GRPO |
|-----------|--------|------------------------|-----------|
| Precision | 84.00% | 86.19%                 | 86.53%    |
| Recall    | 76.34% | 83.78%                 | 50.82%    |
| F1        | 79.81% | 84.97%                 | 64.16%    |

625 Table 9: Average performance of SFT, supervised format learning + GRPO and pure GRPO mea-  
 626 sured by precision, recall and micro F1 on DWIE and DocRED. GRPO without format learning  
 627 performs poorly on recall.

629 We observe that the model outputs indented JSON objects instead of compact ones as the prompt  
 630 asked, resulting in a waste of tokens. Worse still, it often (17.51% of the cases) outputs garbled text  
 631 and/or consecutively repeat the last few tokens, leading to poor performance. For example:

```

632 {
633     "location": ["India", "US", "Afghanistan", "Qatar", "Switzerland",
634                 "Mexico", "New Delhi", "Beijing", "South China Sea", "Japan", "Australia",
635                 "Vietnam", "India", "China", "Pakistan", "Isle
636                 Country Country Country Country Country Country Country Country
637                 Country Country Country Country Country Country Country Country
638                 Country Country Country Country Country Country Country Country
639                 Country Country Country Country Country Country Country Country
640                 Country Country Country Country Country Country Country Country
641                 Country Country Country Country Country Country Country Country
642                 Country Country Country Country Country Country Country Country",
643                 "Gvincial",
644                 "Gvincial",
645                 "Gvincial",
646                 Gvincial:
647                 Gvincial,
648                 Gvincial:
649                 .....
  
```

## 648 C DETAILS IN DATASET SELECTION AND PROCESSING

650 Statistics of all datasets used in the experiments are shown in Table 10. For efficiency, instead of  
 651 using the entire datasets, we randomly select samples from the original datasets to form the datasets  
 652 for our experiments. Therefore, the sizes of some training and test sets in the table are the result of  
 653 random selection, not their original sizes.

654 Specifically, for our main experiment using DWIE and DocRED, we randomly select 702 samples  
 655 from the DocRED dataset to match the number of training samples in DWIE so that the model learns  
 656 from them evenly. We use the full sets for the rest.

657 For the DocEE dataset, we only select samples whose events are related to “Famous Person”, e.g.  
 658 “Famous Person - Give a Speech”, “Famous Person - Divorce”, etc. The number of categories in  
 659 DocEE includes the number of event types.

| 661 Statistics                  | 662 DWIE   | 663 DocRED | 664 DocEE  |
|---------------------------------|------------|------------|------------|
| 663 Training set size           | 664 702    | 665 702    | 666 1281   |
| 664 Test set size               | 665 100    | 666 1000   | 667 323    |
| 665 Average number of sentences | 666 22.43  | 667 8.14   | 668 34.60  |
| 666 Average number of words     | 667 532.02 | 668 167.46 | 669 646.11 |
| 667 Number of categories        | 668 8      | 669 6      | 670 41     |

671 Table 10: Statistics of all datasets used.

672 The system prompt clarifies the following:

- 673 • The source dataset.
- 674 • The categories: location, organization etc., along with their descriptions copied from the  
 675 original paper.
- 676 • The response format: a JSON object where each key is a category name and the corre-  
 677 sponding value is a list of recognized entities.

678 For example, the system prompt for DWIE is as follows:

679 The user will provide you with a document from the DWIE dataset. From the  
 680 document, extract all the entities of the following types:

681 location: entities referring to a particular geographical location.  
 682 organization: organizations such as companies, governmental organizations  
 683 , etc.  
 684 person: entities referring to people in general such as politicians,  
 685 artists, sport players, etc.  
 686 misc: miscellaneous entity types such as names of work of arts, treaties,  
 687 product names, etc.  
 688 event: events such as sport competitions, summits, etc.  
 689 ethnicity: entity type used to identify different ethnic groups.  
 690 value: values in general such as time, money, etc.  
 691 other: includes the nominal variations of entity types (e.g., includes  
 692 variations of country names such as ‘‘German’’, which is a variation  
 693 of ‘‘Germany’’).

694 You should answer in the following JSON format: {"location": [...], "  
 695 "organization": [...], "person": [...], "misc": [...], "event": [...],  
 696 "ethnicity": [...], "value": [...], "other": [...]}

697 Below is an example of a valid output:

698 {"location": ["White House", "United States", "Iraq", "Middle East", "  
 699 Fallujah", "Washington, D.C"], "organization": ["Senate", "House of  
 700 Representatives", "American Institute for Contemporary German Studies  
 701 ", "Johns Hopkins University"], "person": ["George W. Bush", "Jackson

702        "Janes", "Nixon", "Reagan", "Clinton", "Saddam"], "misc": [], "event  
 703        ": ["State of the Union", "Watergate", "Iran-Contra Affair", "World  
 704        War II"], "ethnicity": [], "value": ["President", "Jan. 20", "  
 705        Wednesday"], "other": ["Americans", "Iraqi", "American"]}

## 707 D COMPARISON OF TRAINING COMPUTATION COSTS BETWEEN SFT AND 708        RL

710        We offer a computational cost comparison using standard analytic FLOP estimations widely used in  
 711        LLM literature. Since FLOPs for Transformer blocks are deterministic, this method gives accurate  
 712        relative compute without requiring runtime measurement. Under this formulation, SFT requires  
 713        roughly  $3F$  FLOPs per training sample (1 forward + 1 backward), whereas GRPO with group size  
 714         $G$  requires  $(G + 3)F$  FLOPs. For  $G = 8$ , RL therefore uses approximately 3.7x more compute per  
 715        optimization step than SFT.

717        While RL appears to be more computationally intensive, we believe this is a reasonable cost. Al-  
 718        though the raw F1 improvements appear modest (2–5%), given the task setting, their impact is  
 719        significant due to reducing key errors such as missing a sensitive entity, over-extracting personally  
 720        identifiable information, and misclassifying an entity that triggers downstream actions, especially  
 721        given that current LLMs are already operating near a high baseline. Moreover, the additional cost  
 722        of RL exists only during training. During inference, latency, memory footprint, and deployment  
 723        cost remain identical to SFT. RL yields a one-time computational cost that produces a more robust,  
 724        definition-aligned model without any inference-time penalty. Therefore, the performance gains are  
 725        both practically meaningful and cost-effective in deployment settings.

## 726 E EXPREIMENTS ON FULL DWIE AND DOCRED DATASETS

728        We conduct an additional experiment on Qwen3-0.6B using the full DWIE and DocRED training  
 729        sets (702 and 3053 samples, respectively). The only difference between this experiment and our  
 730        main experiment is the number of samples in the DocRED training set (3053 and 702, respectively).

732        The results are shown in Table 11. To our surprise, even with an uneven sample distribution favor-  
 733        ing DocRED, DWIE’s results are still higher than those in the original setting. We speculate that  
 734        this is due to the similarity between the two datasets, making DWIE’s low proportion of influence  
 735        negligible.

| Metric    | DWIE   |                        | DocRED |                         | Average |                         |
|-----------|--------|------------------------|--------|-------------------------|---------|-------------------------|
|           | SFT    | RL                     | SFT    | RL                      | SFT     | RL                      |
| Precision | 85.05% | <b>89.11%</b> (+4.72%) | 83.29% | <b>87.09%</b> (+4.56%)  | 84.17%  | <b>88.10%</b> (+4.67%)  |
| Recall    | 83.75% | <b>87.16%</b> (+4.07%) | 76.23% | <b>86.82%</b> (+13.89%) | 79.99%  | <b>86.99%</b> (+8.75%)  |
| F1        | 84.40% | <b>88.12%</b> (+4.41%) | 79.61% | <b>86.96%</b> (+9.23%)  | 82.00%  | <b>87.54%</b> (+56.76%) |

742        Table 11: Performance of SFT and RL measured by precision, recall and micro F1 on the full DWIE  
 743        and DocRED datasets. Models of different parameter sizes all achive better results after RL than  
 744        after SFT.

## 746 F EXPREIMENTS ON OTHER TASKS

748        Table 12 shows the results on relation extraction (RE) and event extraction (EE). DWIE and DocRED  
 749        datasets are used for RE, their results averaged, while DocEE is used for EE. The results demonstrate  
 750        that RL still outperforms SFT on RE and EE.

## 752 G HUMAN AUDIT TO PROVE THE EFFECTIVENESS OF OUR ATTRIBUTION

754        We design a human audit to bound potential over-attribution. Specifically, we randomly sample 420  
 755        cases where the RL model gives the correct answer while the SFT model is judged incorrect under

|     | Model      | Metric    | DWIE+DocRED (RE) |               | DocEE (EE)    |               |
|-----|------------|-----------|------------------|---------------|---------------|---------------|
|     |            |           | SFT              | RL            | SFT           | RL            |
| 759 | Qwen3-0.6B | Precision | 67.06%           | <b>73.17%</b> | 48.42%        | <b>50.70%</b> |
|     |            | Recall    | <b>56.33%</b>    | 54.86%        | 48.49%        | <b>57.56%</b> |
|     |            | F1        | 61.22%           | <b>62.46%</b> | 48.46%        | <b>53.91%</b> |
| 762 | Qwen3-1.7B | Precision | 71.36%           | <b>77.05%</b> | 50.99%        | <b>51.90%</b> |
|     |            | Recall    | 59.88%           | <b>60.90%</b> | 50.49%        | <b>59.47%</b> |
|     |            | F1        | 64.99%           | <b>67.90%</b> | 50.74%        | <b>55.43%</b> |
| 766 | Qwen3-8B   | Precision | 74.97%           | <b>79.62%</b> | <b>54.79%</b> | 53.51%        |
|     |            | Recall    | 63.73%           | <b>64.98%</b> | 61.02%        | <b>65.38%</b> |
|     |            | F1        | 68.84%           | <b>71.50%</b> | 57.74%        | <b>58.85%</b> |

Table 12: Performance of SFT and RL measured by precision, recall and micro F1 on RE using DWIE+DocRED and on EE using DocEE. RL outperforms SFT on both tasks.

exact matching but receives credit under a fuzzy matching level (class-permissive only,  $\pm 1$ , 2, 3, 4 and  $>4$ -token span tolerance). Human annotators, blinded to the threshold level, assess whether each SFT extraction is (1) semantically correct and (2) a "reasonable" extraction of the entity. We then report the agreement rate between human judgments and fuzzy matching decisions for each threshold in Table 13

| Fuzzy Matching Level | Human-Validated Precision |
|----------------------|---------------------------|
| Class-Permissiveness | 86.21%                    |
| Threshold=1          | 82.46%                    |
| Threshold=2          | 75.76%                    |
| Threshold=3          | 58.33%                    |
| Threshold=4          | 50.00%                    |
| Threshold>4          | 5.11%                     |

Table 13: Human-validated precision of fuzzy-matched SFT predictions at different relaxation thresholds. The results show high precision at class-permissive and  $\pm 1$ -token settings, with gradual degradation at  $\pm 2$  tokens and substantial drops beyond that point, indicating where fuzzy matching begins failing in capturing "not precise but reasonable" extractions.

The results show high alignment at class-permissive and  $\pm 1$ -token settings, with gradual degradation at  $\pm 2$  tokens and substantial divergence beyond that point. This confirms that fuzzy matching with our chosen thresholds do not substantially over-credit SFT outputs and provides an empirical bound on any residual over-attribution.