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ABSTRACT

While large language models (LLMs) have been able to provide generally rea-
sonable answers to complex information extraction (IE) tasks through prompt en-
gineering and supervised fine-tuning (SFT), their performance and safety remain
limited. We propose a novel fuzzy matching method to reveal that this is largely
due to the definition bias between the model and the dataset. To mitigate this prob-
lem without human intervention, we use Reinforcement Learning with Verifiable
Rewards (RLVR) to train the model, enabling it to independently learn the inher-
ent definition of the task from the dataset. Specifically, we use Group Relative
Policy Optimization (GRPO) to train LLMs of varying parameter sizes, rewarded
with micro F1 scores, and achieve notably higher precision and recall than SFT
across all models. We then apply fuzzy matching again to statistically demonstrate
that this improvement is mainly primarily to the mitigation of the definition bias
between the model and the dataset.

1 INTRODUCTION

In recent years, large language models (LLMs) have become a convenient solution for information
extraction (IE) tasks (Xu et al., 2024). Due to their powerful generalization and instruction-following
capabilities gained from their rich pre-training of general knowledge, current LLMs are already
roughly capable of handling complex IE tasks. For example, consumer-level LLMs like GPT-4o
OpenAI et al. (2024) can provide answers that human consider generally reasonable off-the-shelf. In
addition, through prompt engineering and supervised fine-tuning (SFT), even much smaller LLMs,
such as Qwen3-0.6B Yang et al. (2025), are able to generate generally reasonable responses.

A. Tim Cook
[PERSON]

is the CEO of Apple Inc.
[ORGANIZATION]

B. Marlowe Dynamics
[ORGANIZATION]

Inc., located at

The Virelli Tower, 30th floor
[LOCATION]

, discloses the

following information under this Agreement.

Table 1: Examples of texts with IE ground truths.

However, while the model’s answer may
be correct in a general sense, it still falls
short of the ground truth in specific scenar-
ios. Even when the model recognizes the
correct entity, it may under-extract or over-
extract words around the entity, or classify
the entity into a different category. For ex-
ample, for text A in Table 1, the ground
truth extracts “Apple” and classifies it as
“organization”, but the model may over-
extract the “Inc.” after it, or classify it into
a different category like “location”. Al-
though the model’s answer is more or less acceptable in general, it doesn’t fully match the ground
truth. This may cause serious consequences in some cases. For exmaple, when processing a con-
fidential contract to extract and erase sensitive information in it, the model may under-extract or
over-extract information, resulting in privacy leakage or unnecessary information loss. An example
would be extracting organizations and locations from text B Table 1 for further erasion. Suppose we
want to include floor numbers “30th floor” when extracting locations, but not “Inc.” when extrating
organizations. The problem is that no matter how good LLMs are at general language understand-
ing, they may still fail to obey our rules, even after being trained on datasets carefully constructed
according to our needs. As a result, it may not include “30th floor” but include “Inc.”, which is the
opposite of what we require, causing privacy leakage and unnecessary information loss respectively.
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Figure 1: Diagrams of definition bias, the shortcoming of previous solutions and the advantage of
RLVR. Green, blue and yellow curves represent the definition of the task implied by the dataset’s
ground truth, the model’s prediction, and the human-designed prompt, respectively. Problem: the
model and the dataset’s definition differ, causing bias demonstrated as the distance between the
blue and green curves. Solution 1: prompt designing with SFT mitigates definition bias (shorter
horizontal distance), but also introduces extra bias from human (added vertical distance) after the
model learns their definition. Solution 2: RLVR mitigates definition bias without introducing any
new bias, since the model learns from the dataset by itself.

This is due to the definition bias between the model and the dataset we expect the model to predict
(Huang et al., 2024), which we define as the gap between the model’s understanding and the dataset’s
implied rules of the task. Since the model is pretrained and fine-tuned on general knowledge, it tends
to solve tasks in a common way. However, due to industry norms or preferences, the dataset often
specifies a task that differs from the most common scenario. This causes the model to generally
understand the task but not strictly follow the dataset’s rules. We further find that even if the model
is fine-tuned on a training set with the same distribution, it still may not fully comprehend and
conform to the dataset’s definition of the task.

To alleviate this problem, a common practice is to write a clear and thorough system prompt for the
model to reference, which may include an overall description of the task, definitions and restrictions
for each category, extraction examples, etc., and use it in further supervised fine-tuning. Many
relevant research have adopted this approach. Whether they design prompts one-off (Kwak et al.,
2024; Neuberger et al., 2025) or refine them based on test results (Hein et al., 2025; Zhang et al.,
2025), they share the same idea of manually designing sophisticated prompts for the model to follow.

While this approach is effective to some extent, it requires the system prompt to be designed by
humans emperically. This introduces another bias between humans and the dataset, making it un-
able to completely solve the problem. In order to control the extra bias from humans, the system
prompt needs to be precisely designed and constantly tested on every possible detail, which is time-
consuming and laborious. Even so, since most datasets do not provide detailed rules for information
extraction, it is still difficult to ensure the accuracy of the designed system prompt, thus preventing
the human-introduced bias from being reliably mitigated.

Therefore, we require an approach that does not introduce extra bias from humans in the first place.
In other words, we require the model to learn the inherent definition of the IE task from the dataset
itself. Inspired by recent studies (Shao et al., 2024; DeepSeek-AI et al., 2025), we select Rein-
forcement Learning with Verifiable Rewards (RLVR) as our core approach. During reinforcement
learning (RL), the model generates additional data to explore the dataset’s implied rules, which are
then scored by a rule-based reward function. By updating on self-generated positive and negative
samples, the model learns the definition behind the dataset on its own. This avoids human-introduced
bias from the start. It costs no manual system prompt design, and ensures that the model updates
towards reducing definition bias. In Figure 1, we visually demonstrate definition bias, how previous
methods introduce extra bias from humans, and how RL avoids human-introduced bias.

In this paper, we first discover how much impact definition bias has on model performance using a
novel method, namely fuzzy matching. Then, we select Group Relative Policy Optimization (GRPO)
(Shao et al., 2024) as our RL algorithm to train models of different parameter sizes on complex IE
tasks. Afterwards, we compare the performances between the models trained with RL and SFT, and
find that the former achieves better precision and recall under all parameter size settings. Finally,
we apply fuzzy matching again to statistically show that such an performance gain is mainly due to
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the mitigation of the definition bias between the model and the dataset, proving that RL effectively
achieves our goal.

Our paper is organized as follows: In Section 2, we introduce fuzzy matching to evaluate the model’s
incorrect answers, and find that a large proportion of them results from definition bias, proving that
definition bias seriously hinders model performance. In Section 3, we discuss the effectiveness of
RL by designing a preliminary experiment to prove that RL enables the model to explore alternative
solutions. In Section 4, we describe our training settings, including the datasets and training strate-
gies. In Section 5, we conduct experiments to demonstrate that RL leads to better performance than
SFT, and again use fuzzy matching to prove that the improvement mainly results from the mitigated
definition bias between the model and the dataset.

2 SIGNIFICANCE OF DEFINITION BIAS

The examples in Table 1 have shown how the definition bias between the model and the dataset
negatively impacts model performance. However, the extent of its impact remains to be estimated.
We now explore the extent to which definition bias hinders model performance by measuring the
improvement in model performance when definition bias is eliminated. If the improvement is large
compared to the difference between perfect performance and the model’s original performance, we
conclude that definition bias is the primary factor contributing to the mediocre model performance.

Figure 2: Differences between exact matching and
fuzzy matching. Fuzzy matching allows the en-
tity “Willow Chrest” to be classified into any cat-
egory, including “location”, “organization”, etc.
When the threshold is set to 1, fuzzy matching al-
lows the LLM to over-extract or under-extract at
most 1 word around the entity, such as “Willow
Chrest Hospital” for “Willow Chrest” and “Ev-
ergreen Health” for “Evergreen Health Alliance”,
but not more than 1 word, such as “The Willow
Chrest Hospital” for “Willow Chrest”.

Therefore, we design a fuzzy matching method
to apply to the evaluation of the model’s an-
swers. For each extracted entity, we slightly
relax the matching restrictions, and count an-
swers that are “reasonable” but not exactly the
same as the ground truth. If the results improve
significantly, it indicates that definition bias is
the primary factor hindering the model’s per-
formance. 1

Specifically, we introduce two aspects in which
fuzzy matching should be relaxed compared to
exact matching. Firstly, when the model ex-
tracts the correct entity, it should be allowed to
classify it into a category different from what
the ground truth specifies. For example, “Har-
vard University” can be a “location” or an “or-
ganization” depending on one’s view, so during
fuzzy matching, the model is allowed to cate-
gorize the entity into either. Secondly, when the
model extracts the correct core entity, it should
be allowed to extract more or less words around
the entity. For example, since extracting “Apple
Inc.” and “Apple” from the text “Tim Cook is
the CEO of Apple Inc.” are both generally ac-
ceptable, in this setting, both answers are con-
sidered correct. The number of mismatched
words is defined as the threshold. See Figure
2 for more examples.

We select Qwen3-0.6B, Qwen3-1.7B, and Qwen3-8B (Yang et al., 2025) as our models, and perform
SFT on them using the DWIE (Zaporojets et al., 2021) and DocRED (Yao et al., 2019) datasets.
Then, we let the models generate answers to the questions in the test data. Afterwards, we apply
exact matching and different degrees of fuzzy matching on them, calculate the micro F1 scores, and
show them in Table 2. Finally, we calculate for all incorrectly extracted entities, what percentages of
them can be fuzzy matched after each relaxation, and draw pie charts shown in Figure 3. From these

1Huang et al. (2024) have also introduced the concept of definition bias and two methods to measure it.
However, these methods do not meet our requirements. See Appendix A for our detailed discussion.
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statistics, we observe that with unlimited classification and a threshold of 2, models can improve
8.76%, 7.27% and 6.57% in preformance respectively, which are 43.37%, 49.59% and 51.45% of
the distance to a 100% F1 score. This suggests that definition bias indeed exists, and is a large
impediment to the model’s performance.

Matching Method Qwen3-0.6B Qwen3-1.7B Qwen3-8B
Exact Matching 79.80% 85.34% 87.23%
Unlimited Classification 84.00% (+4.20%) 88.48% (+3.14%) 89.84% (+2.61%)
+ Threshold = 1 87.45% (+7.65%) 91.54% (+6.20%) 92.84% (+5.61%)
+ Threshold = 2 88.56% (+8.76%) 92.61% (+7.27%) 93.80% (+6.57%)

Table 2: The average micro F1 score of models’ answers on DWIE and DocRED when applying ex-
act matching and different degrees of fuzzy matching. With unlimited classification and a threshold
of 2, models can improve 6.57%-8.76% in the micro F1 score.

Figure 3: Pie charts showing the percentage of incorrectly extracted entities correctly that can be
considered correct via fuzzy matching at each degree of relaxation. With unlimited classification and
a threshold of 2, models improve by 6.57%-8.76% in the micro F1 score, which is 43.37%-51.45%
from the original score to a 100% score.

3 EFFECTIVENESS OF REINFORCEMENT LEARNING

SFT aligns the model to output exactly what the dataset shows. Since it learns from a fixed number
of samples, it fails to explore alternate interpretations that might better match the dataset’s definition.
This means the model’s internal definition of “correct extractions” may remain misaligned, hindering
the model’s performance on the test set, even if token-level accuracy on the training set is high.

In contrast, RL frames extraction as an exploration–feedback process. The model first proposes an
extraction under its current policy, and then updates the policy to maximize the expected reward. In
this way, the model can learn from a wider range of samples generated by itself, and if the reward can
reflect the degree to which the bias is mitigated, we expect the model to converge more accurately
to the dataset’s definition.

Previous studies (Shao et al., 2024; DeepSeek-AI et al., 2025) have proven the effictiveness of RL on
general and mathematical tasks. To preliminarily investigate RL’s ability to explore alternative so-
lutions in our task setting, we perform RL on Qwen3-0.6B using the DpcRED dataset, and examine
model generations that perfectly match the ground truth, but are textually different.

After RL, some cases are shown in Table 3. We see that although the model extracts the entities
correctly, it may output them in a different order (in the first case), or output an entity multiple
times in a category (in the second case), which is acceptable since they can be easily deduplicated
afterwards. Therefore, the model has explored alternative solutions that are equally correct as the
ground truth, and these solutions are also closer to the model’s current output distribution, since they
were generated by the model itself. Motivated by this, we now aim to conduct experiments further
verify the effectiveness of RL on IE tasks.
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Model Answer Ground Truth
[PERSON] Shakespeare; Anne; Terry;

Jacques Rivette
[PERSON] Anne; Jacques Rivette; Shake-
speare; Terry

[MISC] The Grim Adventures of Billy
& Mandy; Evil Con Carne; Grim & Evil;
The Grim Adventures of Billy & Mandy;
”Cartoon Cartoons; Company Halt; Car-
toon Cartoon

[MISC] Evil Con Carne; Cartoon Cartoon;
The Grim Adventures of Billy & Mandy;
Grim & Evil; Cartoon Cartoons; Company
Halt

Table 3: Some cases where the model generates a 100% correct answer that is textually different
from the ground truth. In the first case, the model extracts all entites correctly, but in a different
order. In the second case, the model extracts “The Grim Adventures of Billy & Mandy” once more
than the ground truth, but should still be considered correct since the entities in a category can be
easily deduplicated afterwards.

4 TRAINING SETTINGS

In this section, we select datasets and training strategies to train the model to compare its perfor-
mance after SFT and RL on IE tasks.

4.1 DATASET SELECTION AND PROCESSING

For our main experiment, we select DWIE (Zaporojets et al., 2021) and DocRED (Yao et al., 2019)
as the datasets, which consist of complex named entity recognition (NER) tasks. As shown in
Appendix B, samples in these datasets consist of multiple sentences and a considerable number of
words, thus requiring fairly powerful models to handle. In order to demonstrate the LLMs’ ability to
learn from different datasets simultaneously, we train the models on a mixture of these two datasets.

For each sample from the dataset, we add a system prompt before the text, which clarifies the source
dataset, the categories along with their official descriptions copied from the original paper, and the
output format, and then input it to the model.

In addition, we conduct supplementary experiments on a simper NER task and an entity extraction
(EE) task. We choose WikiNEuRal (Tedeschi et al., 2021) and DocEE (Tong et al., 2022) as the
datasets, respectively.

Statistics of the datasets, system prompts, and output format are shown in Appendix B.

4.2 TRAINING STRATEGIES

We train the same model with SFT and RL respectively to demonstrate that RL can lead to better
performance of the model.

For RL, we choose Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as our algorithm.
During each step in GRPO, the model θ generates a batch of outputs o1, o2, . . . , oG given the same
input. Then, the reward function evaluates the responses and outputs their rewards r1, r2, . . . , rG.
Their advantages are then calculated as the rewards normalized, and assigned to each token t, i.e.

Âi,t =
ri −mean(r)

std(r)
(1)

Finally, the loss is calculated as follows:

LGRPO(θ) = − 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

li,t (2)

where

5
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li,t =
πθ(oi,t|q, oi,<t)

[πθ(oi,t|q, oi,<t)]no grad
Âi,t − βDKL[πθ∥πref ] (3)

and used by the optimizer to update the model.

We choose the micro F1 score as the reward function. For each response by the model, entities in
each category are deduplicated before calculating the F1 score.

Additionally, through early experiments, we observe that directly applying GRPO to the model
makes it difficult to converge to the required response format. Therefore, before GRPO, we slightly
fine-tune the model using ground truths from the dataset, until it stably generates responses that
follow the format.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Our experiments are run on at most 4 Nvidia A100 GPUs, each with 80GB of memory. We compare
RL (format learning + GRPO) with SFT (format learning + SFT) to demonstrate that the former
produces greater performance gains. We select Qwen3-0.6B, Qwen3-1.7B and Qwen3-8B as our
models, and run SFT and RL with the same total number of steps on our pre-processed dataset.
During GRPO, the group size (i.e. the value of G in Equation 2) is set to 8, and the length of
responses are truncated to 512. After training, we use the precision, recall and micro F1 score to
evaluate the performance of the models.

Specifically, to find a proper group size (G), we run GRPO on Qwen3-0.6B with G = 4, 8, 16
with DWIE and DocRED datasets, and evaluate the model’s performance using precision, recall and
micro F1. Other settings are the same as the main experiment in Section 5. The results are shown in
Table 4. While the results of different settings of G do not differ much, G = 8 achieves the best F1
score overall. Therefore, we set G to 8 in subsequent experiments.

Metric DWIE DocRED
G = 4 G = 8 G = 16 G = 4 G = 8 G = 16

Precision 88.19% 88.73% 87.67% 82.29% 83.64% 83.40%
Recall 86.70% 86.28% 86.66% 80.67% 81.29% 81.35%
F1 87.44% 87.49% 87.16% 81.47% 82.45% 82.36%

Table 4: Performance of Qwen3-0.6B after RL with different number of generations per input (G)
measured by precision, recall and micro F1 on DWIE and DocRED. While results of different G
settings are close, G = 8 achieves the best F1 score on both datasets.

5.2 BASIC RESULTS

The results of our main experiment on the DWIE and DocRED datasets are shown in Table 5. From
the table, we observe that among all models, those after RL consistently perform notably better than
those after SFT, with a micro F1 score increase of 2.38%-3.24% on DWIE and 1.46%-7.09% on
DocRED. This indicates that using RL to train the model can lead to greater performance gains than
SFT.

The results of the additional experiment on WikiNEuRal and DocEE datasets are shown in Appendix
C.

5.3 CASE STUDY

To demonstrate the reason why RL performs better in the main experiment, we show some cases in
the test set where the answer of the model after RL corrects the answer of the model after SFT in
Table 6.
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Metric DWIE DocRED Average
SFT RL SFT RL SFT RL

Qwen3-0.6B
Precision 84.44% 88.73% (+4.29%) 83.56% 83.64% (+0.08%) 84.00% 86.19% (+2.19%)

Recall 84.06% 86.28% (+2.22%) 68.62% 81.29% (+12.67%) 76.34% 83.78% (+7.44%)
F1 84.25% 87.49% (+3.24%) 75.36% 82.45% (+7.09%) 79.81% 84.97% (+5.16%)

Qwen3-1.7B
Precision 86.05% 91.25% (+5.20%) 85.63% 86.44% (+0.81%) 85.84% 88.84% (+3.00%)

Recall 87.47% 88.77% (+1.30%) 82.30% 84.36% (+2.06%) 84.88% 86.56% (+1.68%)
F1 86.75% 89.99% (+3.24%) 83.93% 85.39% (+1.46%) 85.34% 87.69% (+2.35%)

Qwen3-8B
Precision 88.92% 92.80% (+3.88%) 86.22% 87.83% (+1.61%) 87.57% 90.31% (+2.75%)

Recall 89.54% 90.46% (+0.92%) 84.28% 86.97% (+2.69%) 86.91% 88.72% (+1.81%)
F1 89.23% 91.61% (+2.38%) 85.28% 87.40% (+2.12%) 87.25% 89.50% (+2.25%)

Table 5: Performance of SFT and RL measured by precision, recall and micro F1 on DWIE and
DocRED. Models of different parameter sizes all achive better results after RL than after SFT.

Text with Ground Truth Answer after SFT Answer after RL
. . . Rhysently Granted won an open mic contest
at the Southern Blues Bar

[LOCATION]

. . .
[MISC] Southern
Blues Bar

[LOCATION]
Southern Blues Bar

. . . the lake that gave the municipality its name
was drained in the early 20th century

[TIME]

. . .
[TIME] the early
20th century

[TIME] 20th cen-
tury

Table 6: Some cases where RL outperfroms SFT by mitigating definition bias. The first case shows
that the model after RL corrctly classifies the entity “Southern Blues Bar” as “location”, while the
model afer SFT incorrectly classifies it as “misc”. The second case shows that the model after RL
correctly extracts “20th century”, while the model afer SFT over-extracts “the early” before it.

The model after RL classifies the extracted entity into the correct category. In the first case,
“Southern Blues Bar” is classified as “misc” (miscellaneous) by the model after SFT, and “location”
by the model after RL. While these can both be considered correct depending on the scenario, the
ground truths in the dataset always classify a bar as “location” instead of “misc”, implying that the
model after RL has a better understanding of the definitions implied by the dataset.

The model after RL extracts the entity more accurately. In the second case, when recognizing
the century in the text, the model after SFT extracts “the early 20th century”, while the model after
RL extracts “20th century”. Although both are reasonable answers, we scan through the DocRED
dataset, and find that the ground truths never include “the early” before the century. Therefore, the
answer of the mode after RL aligns better to the dataset’s definition of the IE task.

5.4 EFFECTIVENESS OF RL IN MITIGATING DEFINITION BIAS

We now statistically prove that the improvement of each model after RL is mainly due to the reduced
definition bias between the model and the dataset. To achieve this, we collect the entities that are
correctly extracted by the model after RL but incorrectly extracted by the model after SFT, and count
how many of them becomes correct due to reduced definition bias. Specifically, for each entity, we
again apply different degrees of fuzzy matching to find out its counterpart in the answer given by
the model after SFT. We first allow entities to be categorized into any category, and then gradually
increase the number of mismatched words before and after the entity (i.e. the threshold), while
counting the number of new entities that find their counterparts after each degree of relaxation. If
most of the entities match a counterpart after slight relaxations, it indicates that the model after SFT
is actually able to recognize most of these entities, but fails to extract them in the way the dataset
does. Therefore, we can conclude that the difference in definition bias is the main contributor to the
performance gap.
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After counting the number of new matches after each degree of relaxation, we obtain a pie chart for
each model shown in Figure 4. From the pie charts, we see that more than half (specifically, 51.04%-
56.80%) of the entities in the RL model’s answer after RL find their counterpart in the SFT model’s
answer after unlimited classification and no more than 2 mismatched words. This indicates that
more than half of the performance improvement of RL is caused by the mitigation of the definition
bias.

Figure 4: Pie charts showing the percentage of entities correctly extracted only by the model after
RL that finds its corresponding entity in the answer of the model after SFT via fuzzy matching at
each degree of relaxation. With unlimited classification and a threshold of 2, 51.04%-56.80% of the
entities are corrected by the model after RL.

5.5 RESULTS ON SYNTHETIC DATASET

To further explore the effectiveness of RL in helping models learn implicit rules from datasets, we
manually tweak DWIE and DocRED to synthesize a dataset that includes our own rules, and train
Qwen3-0.6B with SFT and RL on it. Specifically, we add the following rules for each category:

• Location: enforce extractions of “in” before entities; disallow extractions of “on” or “at”
before entities.

• Organization: enforce extractions of “Inc.” after entities.

• Person: enforce extractions of “Mr.”, “Mrs.” and “Dr.” before entities.

• Value: enforce extractions of “C” before entities; disallow extractions of “$” before enti-
ties.

• Misc: disallow extractions of “the” before entities.

After SFT and RL, we compute the recall of the entities related to each group of keywords.

The results are shown in Table 7. While for some keywords like “in” and “C”, RL achieves the same
recall or a slightly lower recall than SFT, for other keywords like “Inc.”, “Mr. / Mrs. / Dr.” and “the”,
RL achieves significantly higher recall scores, resulting in a higher score in average. This suggests
that RL does help models learn implied rules from datasets.

6 RELATED WORK

Language models for information extraction. Since the rise of Transformers (Vaswani et al.,
2017), especially after BERT (Devlin et al., 2019), using Transformer encoders to handle IE tasks
has become a common practice Li et al. (2022). There have also been studies that use reinforcement
learning for better performance (Huang et al., 2023). However, the relatively small size of BERT-
like models make them difficult to apply to complex scenarios, such as handling long pieces of text,
or learning from multiple datasets simultaneously. In contrast, LLMs like Qwen3 are much larger,
and are distilled from teacher models of even larger parameter sizes, which feeds them rich general
knowledge and significantly improves their ability to generalize (Yang et al., 2025). Therefore,
LLMs are capable of handling IE scenarios that small Transformers have difficulty with.

8
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Category Keywords SFT RL
Location in 86.86% 86.48% (-0.38%)

on / at 82.63% 84.74% (+2.11%)
Organization Inc. 63.17% 83.91% (+20.74%)
Person Mr. / Mrs. / Dr. 68.71% 82.53% (+13.82%)
Value C 100.00% 100.00% (+0.00%)

$ 96.15% 96.15% (+0.00%)
Misc the 61.68% 72.55% (+10.87%)

Average 79.89% 87.67% (+7.78%)

Table 7: Recall of entities related to each keyword after SFT and RL on the synthetic dataset. RL
achieves significantly better recall scores on adjusted entities in the “organization”, “person” and
“misc” categories, leading to a better average score compared to SFT.

Definition bias between LLMs and datasets. LLMs are already able to give generally resonable
answers to IE tasks after SFT. However, there have been studies (Huang et al., 2024) that demon-
strate notable definition bias between LLMs and datasets regarding the IE task. While they showed
that prompt engineering and SFT can mitigate the bias to a certain extent, they also stressed the com-
plexity of creating comprehensive prompts to accurately describe the tasks. Proceeding from this,
we show that by reinforcement learning, LLMs can comprehensively learn the dataset’s definition
of the task, and thus effectively mitigate the bias.

Prompt engineering and SFT to mitigate definition bias. Current studies often rely on prompt
design to mitigate definition bias and improve the model’s performance on IE tasks. Kwak et al.
(2024) and Neuberger et al. (2025) manually design task descriptions, restrictions, extraction exam-
ples, etc. in one go, while the latter also adds detailed definitions of each category in the prompt.
Hein et al. (2025) iteratively review the test results and manually refine the prompt to induce the de-
sired behavior of the LLM. Zhang et al. (2025) start from human-designed prompts, and use LLMs
to iteratively refine them based on test reseults. While these methods can mitigate the definition bias
between the model and the dataset to some extent, they all require human intervention, which is la-
borious and introduces extra bias between humans and the dataset. In contrast, our method does not
depend on the prompt. Instead, it lets the model learn the dataset’s definition by itself, thus ensuring
that no additional bias is introduced.

7 CONCLUSION AND FUTURE WORK

Large language models (LLMs) are able to provide generally acceptable answers for information
extraction tasks, but these answers may not follow the recognition logic implied by the dataset. In
this paper, we use reinforcement learning (RL) with the micro F1 score as the reward to train LLMs
to learn the implied definition behind the data on their own. Our experiments demonstrate that
compared to supervised fine-tuning (SFT), RL achieves better results for all selected model sizes.
By gradually loosening the restrictions when evaluating the RL model’s answers, we statistically
demonstrate that these performance gains are mainly due to the mitigation of the definition bias
between the model’s understanding and the dataset’s inherent definition of the task.

There are a few limitations in our work. Firstly, for each response, we assign the same advantage
based on the micro F1 score to all its tokens. While we have also tried to assign token-specific
advantages for finer granularity, the performance of the resulting model actually decreases, possibly
because this method encourages the model to adhere to a fixed output order. Therefore, finding
the effictive way to assign token-specific advantages require further research. Secondly, our current
research mainly focuses on recognizing entities and events alone. The effect of RL on subsequent
tasks, such as relation extraction, is also worth investigating, since definition bias also exists in the
relations between entities. Future work may explore these aspects.
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measures the bias between the pieces of text between datasets, rather than the bias between the
dataset’s ground truths and the model’s answer. Their second method, Fleiss’ Kappa, measures the
difference between the answer and the ground truth based on exact matching, which can serve as
a coarse-grained metric for the model’s performance, but cannot distinguish the “close matches”
which are caused by definition bias. For example, when the ground truth is “Apple Inc.”, answers
“Apple” and “Google” receive the same Fleiss’ Kappa score, but the former reflects definition bias,
while the latter is simply due to the model’s poor performance.

B DETAILS IN DATASET SELECTION AND PROCESSING

Statistics of all datasets used in the experiments are shown in Table 8. For efficiency, instead of using
the entire datasets, we randomly select samples from the original datasets to form the datasets for our
experiments. Therefore, the sizes of some training and test sets in the table are the result of random
selection, not their original sizes. Specifically, for the DocEE dataset, we only select samples whose
events are related to “Famous Person”, e.g. “Famous Person - Give a Speech”, “Famous Person -
Divorce”, etc. The number of categories in DocEE includes the number of event types.

Statistics DWIE DocRED WikiNEuRal DocEE
Training set size 702 702 1400 1281
Test set size 100 1000 1400 323
Average number of sentences 22.43 8.14 1.00 34.60
Average number of words 532.02 167.46 23.36 646.11
Number of categories 8 6 4 41

Table 8: Statistics of all datasets used.

The system prompt clarifies the following:

• The source dataset.

• The categories: location, organization etc., along with their descriptions copied from the
original paper.

• The response format: a JSON object where each key is a category name and the corre-
sponding value is a list of recognized entities.

For example, the system prompt for DWIE is as follows:

The user will provide you with a document from the DWIE dataset. From the
document, extract all the entites of the following types:

location: entities referring to a particular geographical location.
organization: organizations such as companies, governmental organizations

, etc.
person: entities referring to people in general such as politicians,

artists, sport players, etc.
misc: miscellaneous entity types such as names of work of arts, treaties,

product names, etc.
event: events such as sport competitions, summits, etc.
ethnicity: entity type used to identify different ethnic groups.
value: values in general such as time, money, etc.
other: includes the nominal variations of entity types (e.g., includes

variations of country names such as ‘‘German", which is a variation
of ‘‘Germany").

You should answer in the following JSON format: {"location": [...], "
organization": [...], "person": [...], "misc": [...], "event": [...],
"ethnicity": [...], "value": [...], "other": [...]}

Below is an example of a valid output:
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{"location": ["White House", "United States", "Iraq", "Middle East", "
Fallujah", "Washington, D.C"], "organization": ["Senate", "House of
Representatives", "American Institute for Contemporary German Studies
", "Johns Hopkins University"], "person": ["George W. Bush", "Jackson
Janes", "Nixon", "Reagan", "Clinton", "Saddam"], "misc": [], "event

": ["State of the Union", "Watergate", "Iran-Contra Affair", "World
War II"], "ethnicity": [], "value": ["President", "Jan. 20", "
Wednesday"], "other": ["Americans", "Iraqi", "American"]}

C EXPREIMENTS ON OTHER DATASETS

Table 9 shows the results on WikiNEuRal and DocEE datasets. The DocEE column demonstrates
that for EE tasks, RL still outperforms SFT. Surprisingly, from the WikiNEuRal column, we find
that for smaller models, RL fails to outperform SFT. We also observe that although the tasks in
the WikiNEuRal dataset are simpler than those in the DWIE and DocRED datasets, models trained
on the former all achieve lower results than those trained on the latter (see Table 5). We infer the
reasons as follows: since the models are trained for the same number of steps, and each sample
in WikiNEuRal contains less information than that of DocEE (e.g. the number of entities in the
ground truth), the model trained on WikiNEuRal actually sees less information during training, thus
learning less effictively. Since the model learns less in the early SFT steps, i.e. format learning, when
applying RL, it has more difficulty generating high-quality responses, resulting in its performance
being inferior to SFT.

Model Metric WikiNEuRal DocEE
SFT RL SFT RL

Qwen3-0.6B Precision 83.89% 81.68% 48.42% 50.70%
Recall 81.45% 80.06% 48.49% 57.56%

F1 82.65% 80.86% 48.46% 53.91%

Qwen3-1.7B Precision 86.67% 86.71% 50.99% 51.90%
Recall 86.05% 85.79% 50.49% 59.47%

F1 86.35% 86.25% 50.74% 55.43%

Qwen3-8B Precision 87.04% 88.78% 54.79% 53.51%
Recall 85.54% 88.70% 61.02% 65.38%

F1 86.29% 88.74% 57.74% 58.85%

Table 9: Performance of SFT and RL measured by precision, recall and micro F1 on WikiNEu-
Ral and DocEE. On WikiNEuRal, smaller models achieve better results after SFT than RL, while
Qwen3-8B achieve better results after RL than SFT. On DocEE, most results improve after RL com-
pared to SFT.
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