© N o g B~ @ N =

- o ©

12

16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36

Enhancing Vector Quantization with Distributional
Matching: A Theoretical and Empirical Study

Anonymous Author(s)
Affiliation
Address

email

Abstract

The success of autoregressive models largely depends on the effectiveness of
vector quantization, a technique that discretizes continuous features by mapping
them to the nearest code vectors within a learnable codebook. Two critical issues
in existing vector quantization methods are training instability and codebook
collapse. Training instability arises from the gradient discrepancy introduced by
the straight-through estimator, especially in the presence of significant quantization
errors, while codebook collapse occurs when only a small subset of code vectors
are utilized during training. A closer examination of these issues reveals that
they are primarily driven by a mismatch between the distributions of the features
and code vectors, leading to unrepresentative code vectors and significant data
information loss during compression. To address this, we employ the Wasserstein
distance to align these two distributions, achieving near 100% codebook utilization
and significantly reducing the quantization error. Both empirical and theoretical

analyses validate the effectiveness of the proposed approach.

1 Introduction

Autoregressive models have re-emerged as a powerful paradigm in visual generation, demonstrating
significant advances in image synthesis quality. Recent studies [29} (9} |6} [19, [35] 20] highlight that
autoregressive approaches now achieve superior results compared to diffusion-based methods [[12}
30,133,135} [24]). The success of autoregressive visual generative models hinges on the effectiveness of
vector quantization (VQ) [36], a technique that compresses and discretizes continuous features by
mapping them to the nearest code vectors within a learnable codebook. However, VQ continues to
face two major challenges: training instability and codebook collapse.

The first issue originates from the non-
differentiability of VQ, which prevents direct
gradient backpropagation from quantized features
to their continuous counterparts, thereby hindering
effective model optimization. To address this
challenge, VQ-VAE [36] introduces a straight-
through estimator (STE) [2]]. The STE facilitates
gradient propagation by copying the gradients from
the quantized features to the continuous features.
Nevertheless, the effectiveness of this approach
is critically contingent upon the magnitude of the
quantization error between the continuous and

° . . L) « \:J'
x
° x P
° . ® TN f(M o o
° L) ‘,' xl‘. % X X ® »
. ° © ‘_’: X o ox ®X
° X X
L] L
Distributional Mismatch Distributional Match

Figure 1: The symbols - and x represent the fea-
ture and code vectors, respectively. The left figure
illustrates the distributional mismatch between the
feature and code vectors, while the right figure visu-
alizes their distributional match.

quantized feature vectors. When the quantization error is excessively large, the training process

becomes notably unstable [[19].

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41
42
43

44
45
46
47
48
49
50

51
52
53
54
55
56
57
58

59

60
61
62

63

64
65
66

67
68
69
70
71
72
73
74
75
76
77
78

79
80
81
82

The latter issue emerges due to the inability of existing VQ methods to ensure that all Voronoi cellsE]
are assigned feature vectors. When only a minority of Voronoi cells are allocated feature vectors,
leaving the majority unutilized and unoptimized, severe codebook collapse ensues [42]]. Despite
considerable research efforts dedicated to mitigating this problem, these methods still exhibit relatively
low utilization of code vectors, particularly in scenarios with large codebook sizes [8} 34,39, 19, 42].
This is due to the fact that, as the codebook size increases, the number of Voronoi cells also increases,
significantly raising the challenge of ensuring that every cell is assigned a feature vector.

In this paper, we examine these issues by investigating the distributions of the features and code
vectors. To illustrate the idea, Figure [1| presents two extreme scenarios: the left panel depicts a
significant mismatch between the two distributions, while the right panel shows a match. In the left
panel, all features are mapped to a single codeword, resulting in large quantization errors and minimal
codebook utilization. In contrast, the right panel demonstrates that a distributional match leads to
negligible quantization error and near 100% codebook utilization. This suggests aligning these two
distributions in VQ could potentially address the issues of training instability and codebook collapse.

To investigate the idea above, we first introduce three principled criteria that a VQ method should
satisfy. Guided by this criterion triple, we conduct qualitative and quantitative analyses, demonstrating
that aligning the distributions of the feature and code vectors results in near 100% codebook utilization
and minimal quantization error. Additionally, our theoretical analysis underscores the importance of
distribution matching for vector quantization. To achieve this alignment, we employ the quadratic
Wasserstein distance which has a closed-form representation under a Gaussian hypothesis. Our
approach effectively mitigates both training instability and codebook collapse, thereby enhancing
image reconstruction performance in visual generative tasks.

2 Understanding Distribution Matching

This section introduces a novel distributional perspective for VQ. By defining three principled criteria
for VQ evaluation, we empirically and theoretically demonstrate that distribution matching yields an
almost optimal VQ solution.

2.1 An Overview of Vector Quantization

As the core component in visual tokenizer [36, [19, 35]], VQ acts as a compressor that discretizes
continuous latent features into discrete visual tokens by mapping them to the nearest code vectors
within a learnable codebook.

Figure@]illustrates the classic VQ process [36], oL _ ot

Dz, — Forward

which consists of an encoder E(-), a decoder _mm=el o, - Badward

D(-), and an updatable codebook {ex}X € %, B NP T Quandain
R4 containing a ﬁplte set of code vectors. Here, {Encoder} .- @ == Vector Quanizer | == @-._’ {Dew der}
K represents the size of the codebook, and d de- 4 A

notes the dimension of the code vectors. Given Y - F

an image & € REXW X3 the goal is to derive X q

a spatial collection of codeword IDs r € N?*®
as image tokens. This is achieved by pass-
ing the image through the encoder to obtain
z. = E(x) € R"™wxd followed by a spatial-wise quantizer Q(-) that maps each spatial feature 2%/
to its nearest code vector ey:

{er} T

Figure 2: The illustration of VQ.

r' = argmin ||z — eg||3. (1
k

These tokens are then used to retrieve the corresponding codebook entries zi/ = Q(z¥) = e,
which are subsequently passed through the decoder to reconstruct the image as £ = D(z,). Despite
its success in high-fidelity image synthesis [36, 29, 9], VQ faces two key challenges: training
instability and codebook collapse.

'A comprehensive understanding of codebook collapse through the lens of Voronoi partition is provided in
Appendix [C}

83
84
85
86
87
88
89

90
91
92
93
94
95

96
97
98

99

100
101
102

103
104

105
106

107
108
109

110
111

112
113
114
115

116
117

118

119
120
121

Training Instability This issue occurs because during backpropagation, the gradient of z, cannot
flow directly to z. due to the non-differentiable function Q. To optimize the encoder’s network param-
eters through backpropagation, VQ-VAE [36] employs the straight-through estimator (STE) [3]], which
copies gradients directly from z, to z.. However, this approach carries significant risks—especially
when z, and z. are far apart. In these cases, the gradient gap between the representations can
grow substantially, destabilizing the training process. In this paper, we tackle the training instability
challenge from a distributional viewpoint.

Codebook Collapse Codebook collapse occurs when only a small subset of code vectors receives
optimization-useful gradients, while most remain unrepresentative and unupdated [8}, 134} 139,|19, 42].
Researchers have proposed various solutions to this problem, such as improved codebook initializa-
tion [43]], reinitialization strategies [8, 38]], and classical clustering algorithms like k-means [5S] and
k-means++[1] for codebook optimization [29}42]]. Beyond these deterministic approaches that select
the best-matching token, researchers have also explored stochastic quantization strategies [40} 128l [34]].

However, these methods still exhibit relatively low utilization of code vectors, particularly with large
codebook sizes K [42,25]). In this paper, we address this issue by the distributional matching between
feature vectors and code vectors.

2.2 Evaluation Criteria

Given a set of feature vectors {2;}}¥, sampled from feature distribution P4 and code vectors
{ex }£_ | sampled from codebook distribution P, vector quantization involves finding the nearest,
and thus most representative, code vector for each feature vector:
z, = argmin||z; — e|.
ec{er}
The original feature vector z; is then quantized to z;. Below, we introduce three key criteria to
evaluate this process.

Criterion 1 (Quantization Error). The quantization error measures the average distortion introduced
by VQ and is defined as

Ederki{z}) = 3 3 llsi - #IIP.

A smaller &£ signifies a more accurate quantization of the original feature vectors, resulting in a
smaller gradient gap between z; and z;. Consequently, a small £ suggests that the issue of training
instability can be effectively mitigated.

Criterion 2 (Codebook Utilization Rate). The codebook utilization rate measures the proportion of
code vectors used in VQ and is defined as

L&
U{er};{zi}) = N Z 1(ex = =, for some 7).

A higher value of U reduces the risk of codebook collapse. Ideally, I/ should reach 100%, indicating
that all code vectors are utilized. As discussed in Appendix [D] ¢/ can only measure the completeness
of codebook utilization; it does not suffice to evaluate the degree of codebook collapse. This motivates
us to introduce the codebook perplexity criterion.

Criterion 3 (Codebook Perplexity). The codebook perplexity measures the uniformity of codebook
utilization in VQ and is defined as

K
C({er}; {zi}) = exp(— > _ prlogpr),
k=1

where pj, = 4 Zf\;1 1(z = ey). A higher value of C indicates that code vectors are more uniformly

selected in the VQ process. Ideally, C reaches its maximum at Cy = exp(— Zszl % log %) =K
when code vectors are completely uniformly utilized. Therefore, as a complementary measure to
Criterion 2| the combination of I/ and C can effectively evaluate the degree of codebook collapse.

122
123
124
125

126

127
128
129
130
131

132
133
134
135

136
137
138
139
140
141
142

143
144
145

146

147
148
149

151

152
153
154

(a) (1.19, 2%, 3..8) (b) (0.76, 20.8%, 16.5) (c) (0.26, 57.8%, 96.9) (d) (0.05, 100%, 344.9)

(e) (0.36,93.3%, 63.2) () (0.10,99.8%, 250.5) (g) (0.07, 61.3%, 199.7) (h) (0.08, 45.3%, 151.5)

Figure 3: Qualitative analyses of the criterion triple (£,U, C): The red and green disks represent the uniform
distributions of feature vectors and code vectors, respectively.

We refer to (£,U,C) as the criterion triple. When comparing extreme cases of distributional match
and mismatch shown in Figure [I] we find that distributional matching significantly outperforms
mismatching across all three criteria. Using this criterion triple, we present detailed analyses that
demonstrate the advantages of distribution matching.

2.3 The Effects of Distribution Matching

We conduct a simple synthetic experiment to provide intuitive insights (See experimental details in
Appendix [T). Specifically, we assume that the distributions P4 and Py are uniform distributions
confined within two distinct disks, as depicted in Figure[3] We then sample a set of feature vectors
{z;}}¥, uniformly from the red disk, and a set of code vectors {e; } £, uniformly from the green
circle. The criterion triple (£,U, C) is then calculated based on the definitions in Criteria to

We examine two cases. The first involves two disks with identical radii but different centers. As
shown in Figures [3(a)|to 3(d)} when the centers of the disks move closer together, the criterion triple
improves toward optimal values. Specifically, £ decreases from 1.19 to 0.05, I/ rises from 2% to
100%, and C increases from 3.8 to 344.9.

The second case shows two distributions with identical centers but different radii. When the codebook
distribution’s support lies within the feature distribution’s support (as shown in Figures [3(e)]and 3(T)),
it results in a notably larger £, slightly lower U, and significantly smaller C compared to the aligned
distributions shown in Figure[3(d)] Conversely, when the codebook distribution’s support extends
beyond the feature distribution’s support, £ shows a modest increase while both ¢/ and C decrease
significantly, as illustrated in Figures [3(g)] and 3(h)] We provide detailed explanations of these
experimental results in Appendix [E]

From both cases, we can conclude that the VQ achieves the optimal criterion triple when the
feature and codebook distributions are identical. This observation will be further supported by more
quantitative analyses in Appendix [F|

2.4 Theoretical Analyses

In this section, we provide theoretical evidence to support our empirical observations. Let the code
vectors {e } 2, and feature vectors {z;}¥ ; be independently and identically drawn from Pp and
P4, respectively. We say a codebook {ey } £, attains full utilization asymptotically with respect
to {2;}I¥, if the codebook utilization rate U ({ex}X_;{z;}}¥,) tends to 1 in probability as N
approaches infinity:

U{er}izii {z}) B 1, as N — oo.

For the codebook distribution Pp, we say it attains full utilization asymptotically with respect
to Py if, with probability 1, the randomly generated codebook {ej, }£_, achieves full utilization
asymptotically.

155
156
157

158
159

161
162
163

164
165
166
167
168

170
171
172

173
174

175
176
177

178
179
180

181

182
183
184
185

186

187
188

189

190
191
192
193
194
195

Additionally, a codebook distribution Pp is said to have vanishing quantization error asymptotically
with respect to a domain 2 C R if the quantization error over all data of size N tends to zero in
probability as K approaches infinity:

sup E{ert iy {zid,) 50, as K — oo.)
2;,1CQ

Our first theorem shows that supp(P4) = supp(Pp) is sufficient and necessary for the codebook
distribution Pp to attain both full utilization and vanishing quantization error asymptotically. For
simplicity, P4 is assumed to have a density function f4 with bounded support 2 C R<.

Theorem 1. Assume Q2 = supp(Pa) is a bounded open area. The codebook distribution Pg attains
Sull utilization and vanishing quantization error asymptotically if and only if supp(Pg) = supp(Pa),
where S denotes the closure of the set S.

Theorem [I|establishes the optimal support of the codebook distribution. The boundedness of €2 is
required as we consider the worst case quantization error in equation 2] In real applications, when
P4 follows an absolutely continuous distribution over an unbounded domain, then {z;} | generated
from P4 will be bounded with high probability. Thus, Theorem [T]also provides theoretical insights
for a target distribution P4 with an unbounded domain.

Besides the optimal support, we also determine the optimal density of the codebook distribution by
invoking existing results characterizing asymptotic optimal quantizers [10]. Specifically, we consider
the case where N approaches to infinity and define the expected quantization error of a codebook
{ex} with respect to P 4 as

E({ertiz1;Pa) = Eznp, min [z —e]?.

ec{er}

A codebook {e; } 1 | is called the set of optimal centers for P4 if it achieves the minimal quantization
error:

E({ertic1;Pa) = min E({ex}isy; Pa)-

{er}i—1

Theorem [2] demonstrates that, under weak regularity conditions, the empirical measure of the optimal
centers for P4 converges in distribution to a fixed distribution determined by P 4. Notably, we do not
assume a bounded domain in the following theorem.

Theorem 2 (Theorem 7.5, [[10]). Suppose Z ~ P4 is absolutely continuous with respect to the
Lesbegue measure in R and E||Z||**° < oo for some § > 0. Then the empirical measure of the
optimal centers for P 4,

1 K
? Zée,’;a
k=1

converges weakly to a fixed distribution P}, whose density function f7 is proportional to fﬁfl“)/ d

Theoremimplies that Pp = P} is the optimal codebook distribution in the asymptotic regime as
K approaches infinity. In high-dimensional spaces with large d, this optimal distribution Pg = P}
closely approximates P 4. This further motivates us to align the codebook distribution P with the
feature distribution P4.

3 Methodology

In this section, we introduce the quadratic Wasserstein distance for distributional matching between
features and the codebook. We then apply this technique to two frameworks.

3.1 Distribution Matching via Wasserstein Distance

We assume a Gaussian hypothesis for the distributions of both the feature and code vectors. For
computational efficiency, we employ the quadratic Wasserstein distance, as defined in Appendix
to align these two distributions. Although other statistical distances, such as the Kullback-Leibler
divergence [17,112], are viable alternatives, they lack simple closed-form representations, making
them computationally expensive. The following lemma provides the closed-form representation for
the quadratic Wasserstein distance between two Gaussian distributions.

196

197
198
199
200
201

202
203

204

212
213

214

215
216
217
218

219
220

Codebook Lookup 2q |

€162 €3 €K —_—

Encoder — - Decoder

Ze

© ®
X () o o© ® £W CIN
o o ©¢ ®> ® ————— -
° oO 06! ®g % o
o ®0 © p ® Distributional " ® s

2 Matching

Pa

Figure 4: lustration of the Wasserstein VQ. The architecture integrates an encoder-decoder network with a
VQ module. In the VQ module, we augment the vanilla VQ framework [36] by incorporating our proposed
Wasserstein loss Ly to achieve distributional matching between features z. (22 ~ P4) and the codebook ey,
(ex ~ Pr). This enhancement leads to 100% codebook utilization and the minimal achievable quantization
error between z. and z.

Lemma 3 ([27]). The quadratic Wasserstein distance between N (p1, 1) and N (p2, Xo)

Vil — 3 + 6021+ 25— 258 2,55)h), @3)

The lemma above indicates that the quadratic Wasserstein distance can be easily computed using
the population means and covariance matrices. In practice, we ¢ estlmate these population quantities,
n1, e, X1, and X, with their sample counterparts: fi1, fio, 21, and 22 The empirical quadratic
Wasserstein distance is then used as the optimization objective to align the feature and codebook
distributions:

BN ala ol
L=l fall3 (814 228,81, @
A smaller value of £y indicates stronger alignment between the feature distribution P4 and the
codebook distribution Pp. We refer to the VQ algorithm that employs Ly as Wasserstein VQ.

3.2 Integration into the VQ-VAE Framework

We first examine Wasserstein VQ within the VQ-VAE framework [36]. As illustrated in the Figure EL
the VQ-VAE model combines three key components: an encoder E(+), a decoder D(-), a quantizer
Q(-) with a learnable codebook {ej }1_,. As described earlier in Section for an input image
x, the encoder processes the image to yield a spatial feature z, = E(x) € R"*%*4 The quantizer
converts z. into a quantized feature z,,, from which the decoder reconstructs the image as £ = D(z,).
By incorporating our proposed Wasserstein loss £yy into the VQ-VAE framework, the overall loss
objective can be formulated as follows:

Lvovae = || — z||3 + Bllsg(zq) — zell3 o)
+ [lsg(ze) — zqll5 + VL.

where sg denotes the stop-gradient operation. 5 and -y are hyper-parameters. We set v = 0.5 for all
experiments.

3.3 Integration into the VQGAN Framework

To ensure high perceptual quality in the reconstructed images, we further investigate Wasserstein VQ
within the VQGAN framework [9]. VQGAN extends the VQ-VAE framework by integrating a VGG
network [32] and a patch-based discriminator [9}[15]. The overall training objective of VQGAN can
be written as follows:

Lvcan = Lvq-vag + Lper + ALGAN. (6)

Where Lpe; and Lan denote the VGG-based perceptual loss [41], and GAN loss [14, 21]], respectively.
We set A = 0.2 for all experiments.

221

222
223
224
225

226

227
228
229
230
231
232

233
234
235
236
237
238
239

240
241
242
243
244
245

Table 1: Comparison of VQ-VAEs trained on FFHQ dataset following [36].

Approach Tokens Codebook Size U (1) c PSNR(1) SSIM(T) Rec. Loss ({)
Vanilla VQ 256 16384 3.8% 527.2 27.83 73.8 0.0119
EMA VQ 256 16384 14.0% 1795.7 28.39 74.8 0.0106
Online VQ 256 16384 11.7% 1115.3 27.68 72.6 0.0125
Wasserstein VQ 256 16384 100% 15713.3 29.03 76.6 0.0093
Vanilla VQ 256 50000 1.2% 516.8 27.83 73.6 0.0120
EMA VQ 256 50000 10.3% 4075.7 28.61 75.3 0.0101
Online VQ 256 50000 6.0% 1642.9 28.37 74.6 0.0107
Wasserstein VQ 256 50000 100% 47496.4 29.24 77.0 0.0089
Vanilla VQ 256 100000 0.6% 481.0 27.86 74.2 0.0118
EMA VQ 256 100000 2.7% 2087.5 28.43 74.8 0.0105
Online VQ 256 100000 3.6% 1556.8 27.12 71.1 0.0142
Wasserstein VQ 256 100000 100% 93152.7 29.53 78.0 0.0083

Table 2: Comparison of VQ-VAEs trained on ImageNet dataset following [36].

Approach Tokens Codebook Size U (1) c PSNR(T) SSIM(T) Rec. Loss ()
Vanilla VQ 256 16384 2.5% 360.7 24.44 57.5 0.0294
EMA VQ 256 16384 145% 1861.5 24.98 59.2 0.0267
Online VQ 256 16384 222% 1465.6 24.88 58.6 0.0273
Wasserstein VQ 256 16384 100% 15539.1 25.47 61.2 0.0242
Vanilla VQ 256 50000 0.9% 378.7 24.40 57.7 0.0295
EMA VQ 256 50000 16.8% 6139.3 25.37 60.9 0.0246
Online VQ 256 50000 9.9% 2241.7 25.09 59.7 0.0260
Wasserstein VQ 256 50000 100% 46133.2 25.72 62.3 0.0230
Vanilla VQ 256 100000 0.4% 337.0 24.43 57.4 0.0295
EMA VQ 256 100000 3.0% 2170.0 25.13 60.1 0.0257
Online VQ 256 100000 4.1% 1709.9 24.95 59.1 0.0267
Wasserstein VQ 256 100000 100% 93264.7 25.88 63.0 0.0223

4 Experiments

In this section, we empirically demonstrate the effectiveness of our proposed Wasserstein VQ
algorithm in visual tokenization tasks. Our experiments are conducted within the frameworks of
VQ-VAE [36] and VQGAN [9]. The PyTorch code, including training environment, scripts and logs,
will be made publicly available.

4.1 Evaluation on VQ-VAE Framework

Datasets and Baselines Experiments are conducted on four benchmark datasets: two low-resolution
datasets, i.e., CIFAR-10 [18]] and SVHN [26]], and two high-resolution datasets FFHQ [16]] and
ImageNet [7]. We evaluated our approach against several representative VQ methods: Vanilla
VQ [36], EMA VQ [29]], which uses exponential moving average updates and is also referred to
as k-means, Online VQ, which employs k-means++ in CVQ-VAE [42]]. For detailed experimental
settings, please refer to Appendix [J}

Metrics We employ multiple evaluation metrics, including the Codebook Utilization Rate (If),
Codebook Perplexity (C), peak signal-to-noise ratio (PSNR), patch-level structural similarity index
(SSIM), and pixel-level reconstruction loss (Rec. Loss). We exclude the quantization error (£) from
our reported results, as it is highly sensitive to distribution variances—a factor analyzed in Appendix[G]
Since these distribution variances remain uncontrolled in our experiments, fair comparison based on
(£) would be unreliable. To ensure an equitable assessment, Appendix [H| provides an atomic setting
where distribution variances are fully controlled and identical across all VQ variants.

Main Results As shown in Tables|[T] 2] and Tables[6] [7in the Appendix [K] our proposed Wasserstein
VQ outperforms all baselines on both datasets, achieving superior performance across almost all
evaluation metrics under various experimental settings. The underlying reason is that VQ inherently
functions as a compressor, transitioning from a continuous latent space to a discrete space, where
minimal information loss indicates improved expressivity. Our proposed Wasserstein VQ employs
explicit distribution matching constraints, thereby achieving a more favorable alignment between

246
247

248
249
250
251
252
253
254
255
256
257

259
260
261
262
263
264
265
266
267
268
269
270
271
272

273
274
275
276
277
278
279

280
281
282
283
284
285
286

Feature Vector Dim 2
4 °
& S

Feature Vector Dim 2
o
S

Feature Vector Dim 2
- =3
S

Feature Vector Dim 2

=10 0.5 00 05 1o 10 0.5 00 05 L0 0% 0. Lo 105 05 00

5 0 05 05
Feature Vector Dim 1 Feature Vector Dim 1 Feature Vector Dim 1 Feature Vector Dim 1

1.0

(a) Vanilla VQ (b) EMA VQ (c) Online VQ (d) Wasserstein VQ

Figure 5: Visualization of feature and codebook distributions. The symbols blue - and red x represent the
feature and code vectors, respectively.

the feature vectors and code vectors. This results in nearly 100% codebook utilization and almost
minimal quantization error, leading to the lowest Rec. Loss among all settings.

Representation Visualization To visualize the distributions of feature vectors and code vectors
across different VQ methods trained on the FFHQ dataset (with a fixed codebook size of 8192), we
randomly sample 3000 feature vectors and 1000 code vectors and plot their scatter diagrams. As
shown in Figure [5(a) and Figure [5(b)| in Vanilla VQ and EMA VQ, the majority of code vectors
are clustered near the zero point, rendering them effectively unusable. While Online VQ avoids this
central clustering issue, most of its code vectors are distributed at the two extremes of the feature
space, as illustrated in Figure This distributional mismatch leads to increased information
loss and reduced codebook utilization. In contrast to these three VQ methods, Wasserstein VQ
demonstrates significantly better distributional matching between feature vectors and code vectors.
This alignment substantially minimizes information loss and enhances codebook utilization.

Gaussian Hypothesis Justification To
justify the reasonableness of the Gaus-
sian assumption, we extract feature vec-
tors from the encoder and computed the
density of arbitrary two dimensions by bin-
ning the data points into 29 groups, as vi- L
sualized in Figure[6(a)] Furthermore, we JAVARLTN

randomly selected 2000 data points from A \\“ N

6 -3 0 3

0.4
Dim 1

e
W

|

°
Feature Vector Dim 2
o

Feature Vector Density
)
o

any two dimensions and plotted them in -

6 0% 3 0 3 6

a scatter plOt as ShOWn in Figure @ It Feature Vector Value Feature Vector Dim 1
is evident that the feature vectors exhibit (a) Feature Density (b) Feature Visualization
Gaussian-like characteristics. The under- Figure 6: Visualization of feature vectors.

lying reason for this behavior can be attributed to the central limit theorem, which posits that learned
feature vectors and code vectors will approximate a Gaussian distribution given a sufficiently large
sample size and a relatively low-dimensional space, i.e., d = 8.

Analyses of Codebook Size We investigate the impact of the codebook size K on VQ performance,
as presented in Table[I] and Table[§]in Appendix[L} Vanilla VQ suffers from severe codebook collapse
even with a small K, such as K = 1024. In contrast, improved algorithms, such as EMA VQ and
Online VQ, also experience codebook collapse when K is very large, e.g., K > 50000. Notably,
Wasserstein VQ consistently maintains 100% codebook utilization, regardless of the codebook size.
This demonstrates that distributional matching by quadratic Wasserstein distance effectively resolves
the issue of codebook collapse.

Analyses of Codebook Dimensionality We further investigate the impact of codebook dimension-
ality d on VQ performance. We conduct experiments on CIFAR-10 dataset and range d from 2 to
32. As shown in Table 9 in Appendix [L|our proposed Wasserstein VQ consistently outperforms
all baselines regardless of dimensionality. Notably, we observe the curse of dimensionality phe-
nomenon—performance degrades as dimensionality increases. Vanilla VQ exhibits the most severe
degradation, followed by EMA VQ and Online VQ, while our Wasserstein VQ shows only minimal
codebook utilization reduction.

293
294
295

297
298
299
300

301

302
303
304
305
306
307
308
309
310
311
312
313

Table 3: Comparison of VQGAN trained on FFHQ dataset following [9].

Method Tokens Codebook Size Utilization (%)t rFID| LPIPS| PSNR?t SSIM 1t
RQVAE! 256 2,048 - 7.04 0.13 22.9 67.0
VQ-WAE' [37] 256 1,024 - 4.20 0.12 22.5 66.5
MQVAE' 256 1,024 78.2 4.55 - - -
VQGANT 256 16,384 2.3 5.25 0.12 24.4 63.3
VQGAN-FCT [39] 256 16,384 10.9 4.86 0.11 24.8 64.6
VQGAN-EMAT 256 16,384 68.2 4.79 0.10 254 66.1
VQGAN-LC' [43] 256 100,000 99.5 3.81 0.08 26.1 69.4
256 16,384 100 3.08 0.08 26.3 70.4
Wasserstein VQ* 256 50,000 100 2.96 0.08 26.5 71.4
256 100,000 100 2.71 0.07 26.6 71.9
680 16,384 100 2.48 0.06 27.4 74.0
Multi-scale Wasserstein VQ* 680 50,000 100 2.07 0.06 27.6 74.6
680 100,000 100 1.79 0.05 279 75.4

4.2 Evaluation on VQGAN Framework

Dataset, Baselines, and Metrics We evaluated our approach against following methods on the
FFHQ dataset: RQVAE [19], VQGAN [9], VQGAN-FC [39], VQGAN-EMA [29], VQ-WAE [371,
MQVAE [13], and VQGAN-LC [43]]. Following VQGAN-LC [43]], we employ the Fréchet Inception
Distance (r-FID) [11]], Learned Perceptual Image Patch Similarity (LPIPS) [41]], PSNR, and SSIM to
evaluate visual reconstruction quality.

Main Results As presented in Table [3] our proposed Wasserstein VQ outperforms all baselines
across all evaluation metrics within the VQGAN framework. This superior performance stems from
its VQ system that minimizes information loss, as discussed in Section[d.T} thereby achieving optimal
reconstruction fidelity and visual perceptual quality. Notably, when integrating VAR’s multi-scale
VQ [35] with our Wasserstein VQ, we observe a significant improvement in rFID (reduced from
2.71 to 1.79 with codebook size K = 100000). Figure |Z] demonstrates that Wasserstein VQ’s
reconstructed images exhibit only minimal differences from the inputs, confirming its exceptional
visual tokenization capability.

Figure 7: Visualization of reconstructed Images. The top row displays the original input images with a
resolution of 256 x 256 pixels, while the bottom row shows the reconstructed images from the Wasserstein VQ.

5 Conclusion

This paper examines vector quantization (VQ) from a distributional perspective, introducing three
key evaluation criteria. Empirical results demonstrate that optimal VQ results are achieved when the
distributions of continuous feature vectors and code vectors are identical. Our theoretical analysis
confirms this finding, emphasizing the crucial role of distributional alignment in effective VQ.
Based on these insights, we propose using the quadratic Wasserstein distance to achieve alignment,
leveraging its computational efficiency under a Gaussian hypothesis. This approach achieves near-
full codebook utilization while significantly reducing quantization error. Our method successfully
addresses both training instability and codebook collapse, leading to improved downstream image
reconstruction performance. A limitation of this work, however, is that our proposed distributional
matching approach relies on the assumption of Gaussian distribution, which may not strictly hold
in all scenarios. In future work, we aim to develop methods that do not depend on this assumption,
thereby broadening the applicability and robustness of our VQ framework.

3

4

315
316

317
318

319
320

321
322

323
324

325
326

327
328

329
330

331
332

340
341

342
343

344
345

346
347

348

349

351

352
353
354

355

356
357

References

[1] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
ACM-SIAM Symposium on Discrete Algorithms, 2007.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. ArXiv, 2013.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. ArXiv, 2013.

[4] A.Bhattacharyya. On a measure of divergence between two statistical populations defined by
their probability distributions. Bulletin of the Calcutta Mathematical Society, 1943.

[5] Paul S. Bradley and Usama M. Fayyad. Refining initial points for k-means clustering. In ICML,
1998.

[6] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked
generative image transformer. In CVPR, 2022.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

[8] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya
Sutskever. Jukebox: A generative model for music. ArXiv, 2020.

[9] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In CVPR, 2021.

[10] Siegfried Graf and Harald Luschgy. Foundations of quantization for probability distributions.
Springer Science & Business Media, 2000.

[11] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS,
2017.

[12] Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

[13] Mengqi Huang, Zhendong Mao, Quang Wang, and Yongdong Zhang. Not all image regions
matter: Masked vector quantization for autoregressive image generation. In CVPR, 2023.

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
conditional adversarial networks. In CVPR, 2017.

[15] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer
and super-resolution. In ECCV, 2016.

[16] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, 2018.

[17] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.
[18] Alex Krizhevsky. Learning multiple layers of features from tiny images. ArXiv, 2009.

[19] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive
image generation using residual quantization. In CVPR, 2022.

[20] Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Jiuxiang Gu, Jindong Wang, Zhe Lin, and Bhiksha
Raj. Xq-gan: An open-source image tokenization framework for autoregressive generation.
ArXiv, 2024.

[21] Jae Hyun Lim and J. C. Ye. Geometric gan. ArXiv, 2017.
[22] David Lindley and Solomon Kullback. Information theory and statistics. Journal of the

American Statistical Association, 1959.

10

358

359
360

361
362

363
364

365
366

367
368

369
370

371
372

374

375

377
378

379
380
381
382

383
384

385
386

387
388

389
390

391
392
393

394
395

396
397

398

399
400

401
402

[23] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

[24] Xiaoxiao Ma, Mohan Zhou, Tao Liang, Yalong Bai, Tiejun Zhao, H. Chen, and Yi Jin. Star:
Scale-wise text-to-image generation via auto-regressive representations. ArXiv, 2024.

[25] Fabian Mentzer, David C. Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar
quantization: Vg-vae made simple. In ICLR, 2024.

[26] Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. Reading digits in
natural images with unsupervised feature learning. ArXiv, 2011.

[27] Ingram Olkin and Friedrich Pukelsheim. The distance between two random vectors with given
dispersion matrices. Linear Algebra and its Applications, 1982.

[28] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In /CML, 2021.

[29] Ali Razavi, Adron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images
with vg-vae-2. In NeurlPS, 2019.

[30] Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In MICCAI, 2015.

[32] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

[33] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. ArXiv, 2024.

[34] Yuhta Takida, Takashi Shibuya, Wei-Hsiang Liao, Chieh-Hsin Lai, Junki Ohmura, Toshimitsu
Uesaka, Naoki Murata, Shusuke Takahashi, Toshiyuki Kumakura, and Yuki Mitsufuji. Sq-vae:
Variational bayes on discrete representation with self-annealed stochastic quantization. In ICML,
2022.

[35] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive
modeling: Scalable image generation via next-scale prediction. In NeurIPS, 2024.

[36] Adron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
learning. In NeurlPS, 2017.

[37] Tung-Long Vuong, Trung-Nghia Le, He Zhao, Chuanxia Zheng, Mehrtash Harandi, Jianfei Cai,
and Dinh Q. Phung. Vector quantized wasserstein auto-encoder. In ICML, 2023.

[38] Will Williams, Sam Ringer, Tom Ash, John Hughes, David Macleod, and Jamie Dougherty.
Hierarchical quantized autoencoders. In NeurIPS, 2020.

[39] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku,
Yuanzhong Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with
improved vqgan. In ICLR, 2022.

[40] Jiahui Zhang, Fangneng Zhan, Christian Theobalt, and Shijian Lu. Regularized vector quantiza-
tion for tokenized image synthesis. In CVPR, 2023.

[41] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreason-
able effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[42] Chuanxia Zheng and Andrea Vedaldi. Online clustered codebook. In ICCV, 2023.

[43] Lei Zhu, Fangyun Wei, Yanye Lu, and Dong Chen. Scaling the codebook size of vqgan to
100,000 with a utilization rate of 99%. ArXiv, 2024.

[44] Yongxin Zhu, Bocheng Li, Yifei Xin, and Linli Xu. Addressing representation collapse in
vector quantized models with one linear layer. ArXiv, 2024.

11

403

404

405
406

407

408
409
410
411
412

413
414
415
416
417
418
419
420
421
422

423

424

425

426
427
428

429

430
431

432

433
434

436
437

439
440
441
442
443
444
445
446
447
448
449
450
451
452

454
455

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly and accurately articulate the paper’s
key claims and contributions, notably the proposed distributional matching framework
via Wasserstein distance to address training instability and codebook collapse in vector
quantization (VQ). These claims are rigorously substantiated by theoretical derivations and
empirical validation across the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly discuss the limitation that their distributional matching approach
relies on a Gaussian distribution assumption, noting this may not strictly hold in all practical
scenarios. They also indicate that future work will aim to generalize beyond this.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

12

456

457
458

459

460
461
462
463

464

465

467
468

469
470
471

472
473

474

475

476
477
478

479

481
482
483
484

485

486

487
488
489

490
491

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper clearly states all assumptions underlying the theoretical results, such
as bounded support and continuity conditions. Complete proofs of theoretical claims (e.g.,
Theorem 1 and Theorem 2) are thoroughly provided in the appendix, alongside rigorous
mathematical justifications within the main text.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of experimental setups, hyperparameters,
model architectures, datasets, and training procedures necessary for reproducibility, along
with comprehensive results and analyses in the appendices. The authors will make the
complete PyTorch implementation publicly available, including the training environment
configuration, scripts, and logs in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

13

508
509
510
511

512
513
514
515
516

517

518
519
520

521

522
523

524

525

527

528
529
530

532
533
534

535
536

537
538
539

540
541

542
543

544

545

547

548

549
550
551
552

553

554

555
556

557
558

559

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code, training scripts, and logs will be made publicly available on an
anonymous repository for scrutiny and reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all necessary experimental details clearly, including data
splits, hyperparameter settings, optimizer types (e.g., AdamW), and training protocols
across multiple benchmark datasets (CIFAR-10, SVHN, FFHQ, ImageNet) to enable full
understanding and assessment of the reported results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

560
561

562

563
564
565
566

567

568

569
570
571

572
573
574

575
576
577

578
579

580
581
582

583

585
586
587
588

589
590
591

592

593
594
595

596

597
598
599
600
601
602
603
604

605

606
607

608

609
610
611
612

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results include clearly defined metrics such as Codebook
Utilization, Codebook Perplexity, PSNR, SSIM, and reconstruction loss, with multiple runs
reported for confidence. Error bars (95% confidence intervals) are explicitly computed and
provided, especially for synthetic experiments (see Appendix F)

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides detailed specifications of computational resources, in-
cluding GPU types, memory requirements, and training durations clearly outlined in the
experiment descriptions in the Table 5 in the appendix J.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conforms fully to the NeurIPS Code of Ethics, as it involves
algorithmic and synthetic experiments without posing ethical concerns such as privacy
violations, fairness issues, or environmental harms. No identifiable data or ethically sensitive
methodologies are involved.

15

https://neurips.cc/public/EthicsGuidelines

613

614
615
616
617
618

619

620
621

622

623
624

626
627
628
629
630
631

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648

649
650
651

652

653
654
655

656

657
658
659
660
661
662
663
664
665
666

10.

11.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper primarily introduces foundational methodological improvements
for vector quantization in generative modeling without direct societal implications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper focuses on fundamental algorithmic improvements in VQ and does

not involve releasing pretrained language models, generative models prone to misuse, or
large-scale scraped datasets, thus posing no high risks of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

16

667

668
669
670

671

672
673
674

675

676
677

679
680

682

683
684
685

687
688

689
690
691

692
693

694

695
696
697

698

699

700
701
702

703
704

705
706

707

71

712
713

714

715
716

12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All existing datasets (CIFAR-10, SVHN, FFHQ, ImageNet) used for empirical

validation are clearly referenced, properly credited, and publicly available with well-known
licenses cited explicitly within the experimental settings.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce or release new datasets, code packages, or pre-
trained models as new assets; it leverages well-established datasets and publicly accessible
frameworks for validation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper involves no crowdsourcing, human subject research, or any partici-
pant interaction.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

17

paperswithcode.com/datasets

7
718
719

720
721
722

723
724

725
726
727
728

729

731
732
733
734

735
736
737

738

740
741
742
743

744
745
746
747

748

749
750
751

752

754

755
756

15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research involves no human subjects, thus IRB or equivalent ethical review
is not applicable.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The methodology does not involve using large language models (LLMs) as
part of the core methodological contribution; any usage would be solely related to standard
writing or formatting purposes.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM

757

758
759
760
761

762

764
765
766

767

769

770
771

772

773

774
775

776
77

778
779
780
781

782
783

784

785

786

A Optimal Support of The Codebook Distribution

Proof of Theorem([l] First, we assume supp(Pp) = supp(Pa). Then for any z € supp(Pa),
there exist a sequence of points in supp(Pp) that converge to z. Let {e; }/< | be K code vectors

independently generated from Pp. Then the empirical distribution of {e k}k:1 tends to Pp as the
size K tends to infinity. Since {2 = supp(P,) is a bounded region, we have the following:

sup minllz —eg]|?= sup minz—ex]? 20, as K — oo.
zesupp(Pa) zesupp(PB)

This quantity is an upper bound on the quantization error £({z;}; {e}). Thus,

sup & ({z:}1; {ex}ie,) < supmin|z — ey 20, as K — .
{z:}CQ zeq
This demonstrates that Pp has vanishing quantization error asymptotically. Furthermore, for any K
code vectors {e k}szl independently drawn from P, we have {e k}szl C Q. Since the empirical
distribution of {z; }¥ | tends to P4 as the feature sample size N tends to infinity, we can easily show
that for any fixed {e), }X_, C €, the codebook utility rate satisfies

Uz {erhie) 21, asN — oo
This shows that {e;, }_, attains full utilization asymptotically, and thus Py attains full utilization
asymptotically.

On the other hand, we assume Pp attains full utilization and vanishing quantization error asymp-

totically. Then we first claim that supp(P4) C supp(Pp). Since Pp has vanishing quantization
error asymptotically, then for any z € supp(P4), there exist a sequence of points in supp(Pp) that

converge to z. This implies that supp(P4) C supp(Pp) and thus supp(P4) C supp(Pp).

To show supp(Pp) = supp(Pa), it remains to show supp(Pr) C supp(Pa). In fact, if

supp(Pp) C supp(P4) does not hold, then there exists an open region R C supp(Pp) —supp(P4)
such that Pg(R) > 0 and

min |z —2'|| > eo
zesupp(Pa),z’€R

for some ¢y > 0. Since supp(P4) C supp(Pg), then there exists a sufficiently large K such that
the event

Generating{ek}kKZU1 iid. from Pp s.t. {ex} Csupp(Pa), sup min|z—egl|<ep (7
zesupp(Pa) ¥

has some positive probability C' > 0. Then with a positive probability of at least C' - Pg(R), we can
pick the first K code vectors from Equation (7)) and the (K, + 1)th code vector from R. For any
such codebook of size K¢ + 1, we know the (K + 1)th code vector will never be used regardless of
the choice of the feature set {z;}. Therefore, the codebook utilization

K
u Ko—‘rl’ 0
sup ({ek}k A }) ot 1

<1

This contradicts the property that Pp attains full utilization asymptotically. Thus, supp(Pg) C
supp(P.) must hold. This concludes the proof. O

B Statistical Distances over Gaussian Distributions

We first introduce the definition of Wasserstein distance.

Definition 4. The Wasserstein distance or earth-mover distance with p norm is defined as below:

WolBr.By) = (veni(IIIP’f,Pg)]E(%y)Nv [||x - y”pbl/p . ®)

19

804

806
807
808

809

810

811
812
813
814

815

817
818

where II(P,, P,) denotes the set of all joint distributions ~(x,y) whose marginals are P, and P,
respectively. Intuitively, when viewing each distribution as a unit amount of earth/soil, the Wasserstein
distance (also known as earth-mover distance) represents the minimum cost of transporting “mass”
from x to y to transform distribution P, into distribution P,. When p = 2, this is called the quadratic
Wasserstein distance.

In this paper, we achieve distributional matching using the quadratic Wasserstein distance under Gaus-
sian distribution assumptions. We also examine other statistical distribution distances as potential
loss functions for distributional matching and compare them with the Wasserstein distance. Specif-
ically, we provide the Kullback-Leibler divergence and the Bhattacharyya distance over Gaussian
distributions in Lemma[5]and Lemmal(6] It can be observed that the KL divergence for two Gaussian
distributions involves calculating the determinant of covariance matrices, which is computationally
expensive in moderate and high dimensions. Moreover, the calculation of the determinant is sensitive
to perturbations and it requires full rank (In the case of not full rank, the determinant is zero, rendering
the logarithm of zero undefined), which can be impractical in many cases. Other statistical distances
like Bhattacharyya Distance suffer from the same issue. In contrast, quadratic Wasserstein distance
does not require the calculation of the determinant and full-rank covariance matrices.

Lemma 5 (Kullback-Leibler divergence [22]]). Suppose two random variables Zy ~ N (u1,31) and
Zo ~ N (w2, Xo) obey multivariate normal distributions, then Kullback-Leibler divergence between
71 and 7> is:

det 22

1 3 _
Dx1.(Z4,Z;) = 5((#1 - H2)T22 1(N1 — p2) + tr(, B - I)+In det 3)

Lemma 6 (Bhattacharyya Distance [4]). Suppose two random variables Z; ~ N (p1,%1) and
Zs ~ N (2, X2) obey multivariate normal distributions, 3 = %(21 + 339), then bhattacharyya
distance between 7.1 and 7 is:

1
Dg(Zy,Z;) = g(lil —)" ST (e — po) +

lln det X
2 \/det 21 det 22.

C Understanding Codebook Collapse Through the Lens of Voronoi Partition

'a
%X

(a) (d) (© (d)

Figure 8: Visualization of the Voronoi partition. The symbols - and X represent the feature and code vectors,
respectively.

C.1 The Definition of Voronoi Partition and Its Connection to Codebook Collapse

Let X be a metric space with distance function d(-, -), and given a set of code vectors {e; }1_,. The
Voronoi cell, or Voronoi region, Ry, associated with the code vector ey, is the set of all points in X
whose distance to e, is not greater than their distance to the other code vectors e;, where j is any
index different from k. Mathematically, this can be expressed as:

Ri ={z € X;d(z,er) < d(z,e;),Vj # k}, ©)

The Voronoi diagram is simply the tuple of cells {Rx}_ ;. As depicted in Figure |8} there are 12
code vectors which partition the metric space into 12 regions according to the R;. When disa a
distance function based on the /5 norm, the vector quantization (VQ) process can be equivalently
understood through the regions Ry, as:

Vz; € Rj,

z, = argmin||z; — el = e; (10)

ec{er}

20

819
820
821
822

823
824

826
827

828

830
831
832

833
834
835

836
837

838
839

840
841
842
843
844
845

846
847
848
849
850
851
852

853

855
856

Where z; is an arbitrary feature vector. Equation[I0]offers an alternative approach for nearest neighbor
search in code vector selection. Specifically, this involves first identifying the partition region R ; to
which the feature vector z; belongs, and then directly obtaining the nearest code vector e; based on
the region’s id j.

Relation to Codebook Collapse The most severe case of codebook collapse occurs when all
feature vectors belong to the same partition region. As illustrated in Figure all feature vectors
are confined to a single partition region in the upper right corner, resulting in the utilization of only
one code vector. To prevent codebook collapse, it is crucial for feature vectors to be distributed across
all partition regions as evenly as possible, as depicted in Figure [8(d)]

C.2 Why Existing Vector Quantization Strategies Fail to Address Codebook Collapse

This section offers an in-depth analysis of why existing VQ methods inherently struggle to address
codebook collapse. We use Vanilla VQ [36] and VQ methods based on the k-means algorithm [29]
as illustrative examples. These two approaches share similarities in their assignment step but differ in
their update mechanisms.

Assignment Step Suppose there is a set of feature vectors {z;}¥ ; and code vectors {ej }}_,. In
the t-th assignment step, both algorithms partition the feature space into Voronoi cells, based on
which we assign all feature vectors to their nearest code vectors as follows:

2 2
Rgfl) ={reX;|z— e,(ffl)HQ < HHC - e;-tfl)HQ Vi # kb, Sl(ct) ={zi;2; € R;(:il)} (11)

Update Step in Vanilla VQ It updates the code vectors using gradient descent through the loss
function provided below.

K
1 t-n|?
£:NI€Z 3 Hzm—ek H2 (12)

=lznesH

Update Step in k-means-based VQ It updates the code vectors by using an exponential moving
average of the feature vectors assigned to each code vector:

_ 1
el = el 4 (1 —a)w S oz (13)
k

zmes?

Codebook Collapse in Two VQs While both VQ methods employ different update strategies for
the code vectors, they still suffer from codebook collapse. This is because, in the assignment step, the
learnable Voronoi partition does not guarantee that all Voronoi cells will be assigned feature vectors,
as illustrated in Figures [8(a)| to Especially when the codebook size is large, there are more
Voronoi cells, and inevitably, some cells remain unassigned. In such cases, the corresponding code
vectors remain unupdated and underutilized.

Connection to Distribution Matching and Solutions In Appendix [H} we demonstrated through
synthetic experiments that the effectiveness of both VQ methods heavily relies on the codebook
initialization. Only when the codebook distribution is initialized to approximate the feature distribu-
tion can codebook collapse be effectively mitigated. However, in practical applications, the feature
distribution is often unknown and evolves dynamically during training. To address this issue, we
propose an explicit distributional matching constraint that ensures the codebook distribution aligns
closely with the feature distribution, thereby achieving 100% codebook utilization.

D Complementary Roles of Criterion 2]and [3]in Assessing Codebook Collapse
To explain the complementary roles of Criterion [2]and 3] (defined in Section[2.2), we provide visual

elucidations for enhanced clarity and understanding. The metric I/ is capable of quantifying the
completeness of codebook utilization. As depicted in the Figure and 9(b)| the values of U/ are

21

857
858
859
860
861
862

863
864
865
866
867
868
869
870

871
872
873

874

875
876
877
878
879
880
881
882
883

885
886

887
888
889
890
891
892
893
894
895

HH‘HHHHIH; e,

1 1
el e2 el e4 e5 e6 e7 e8 9 ell el e2 el e4 e5 e6 e7 e8 e9 ell el e2 el ed e5 e6 e7 e8 €9 ell el e2 el e4 e5 e6 e e8 9 el

(a) (50%,4.92) (b) (100%, 10.00) (c) (100%, 1.02) (d) (100%,4.92)

Figure 9: Visualization of the evaluation criteria (£, C).

50% and 100%, respectivel However, U alone is insufficient to evaluate the degree of codebook
collapse, as it fails to address the scenario depicted in Figure [O(c)] Although all code vectors are
utilized, the code vector e3 excessively dominates the codebook utilization, resulting in an extreme
imbalance. This imbalanced codebook utilization can be considered a form of codebook collapse,
despite U/ reaching its maximum value. This observation motivates the proposal of Criterion 3| which
is capable of gauging the imbalance or uniformity inherent in codebook utilization.

When compared in Figure[9(b)land[9(c)] the value of C are 10.00 and 1.02, respectively, demonstrating
that Criterion [3] is capable of distinguishing the imbalance of code vector utilization pj, under
conditions where cases share the same U, e.g., i/ = 100%. Additionally, Criterion [3| categorizes
Figure [9(c)|as indicative of codebook collapse, as the value C nearly reaches its minimum of 1.0, a
result that resonates with our desired interpretation. However, it is essential to note that Criterion
alone does not suffice to evaluate the degree of codebook collapse. When scrutinizing Figure D(a)|
and despite the identical C, there exists a stark disparity in /. This observation underscores that
the value of C is inadequate for quantifying the proportion of actively utilized code vectors.

In this paper, we adopt the combination of Criterion [2 and [3|to quantitatively assess the extent of
codebook collapse. A robust mitigation of codebook collapse is indicated solely when both ¢/ and C
exhibit substantial values.

E Interpretation of Qualitative Distributional Matching Results in Figure 3]

This section interprets the experimental results presented in Figure[3] The VQ process relies on nearest
neighbor search for code vector selection. As evident from Figure [3(a)]|to[3(d)} actively selected code
vectors are predominantly those located in close proximity to or within the feature distribution, while
distant ones remain unselected. This leads to highly uneven code vector utilization py, with those
closer to the feature distribution being excessively used. This elucidates the significantly low ¢/ and
C observed in Figure Furthermore, a notable quantization error, e.g., £ = 1.19 in Figure|3(a)}
arises when the codebook and feature distributions are mismatched, forcing feature vectors outside
the codebook to settle for distant code vectors. Conversely, as the disk centers align, leading to a
closer match between the two distributions, an increased number of code vectors become actively
engaged. Additionally, code vectors are utilized more uniformly, and feature vectors can select nearer
counterparts. This accounts for the improvement of criterion triple values towards optimality as the
distributions align.

Analogously, we can employ nearest neighbor search to interpret the second case. When code vectors
are distributed within the range of feature vectors, as illustrated in Figure [3(e)|and Figure 3()] the
majority of code vectors would be actively utilized, ensuring high /. However, the utilization of
these code vectors is not uniform; code vectors on the periphery of the codebook distribution are
more frequently used, leading to relatively low C. Feature vectors on the periphery will have larger
distances to their nearest code vectors, resulting in higher £. Conversely, when feature vectors fall
within the range of code vectors, as depicted in Figure[3(g)|and Figure 3(h)| outer code vectors remain
largely unused, leading to a lower I/ and C. Since only inner code vectors are active, each feature
vector can find a nearby counterpart, maintaining low £.

’This discrepancy arises because, in Figure only half of code vectors’ utilization py (as defined in
Criterion@) exceeds zero, whereas in Figure@} the utilization py, of of all code vectors surpasses zero.

22

896

897

898
899

900

901
902
903
904
905
906
907

908
909
910
911
912
913
914

915

916
917
918
919
920
921
922
923

((d) Ewrt. K (e) Ewrt. d) Ewrt. N

gu:

(g U wrt. K (h) U w.r.t. G Uwrt. K k) U w.rt. d D Uwrt. N

W 15 20 2 oo o5 10 15 20 25 0o o5 0 15 20 s
u u "

(m) Cwrt. K (n) Cwrt. d (0)Cwrt. N (p) Cwrt. K (@ Cwrt. d (r) Cwrt. N

Figure 10: Quantitative analyses of the criterion triple when P4 and P are Gaussian distributions.

F Supplementary Quantitative Analyses on Distribution Matching: Further
Supporting the Main Findings in Section 2.3]

To further elucidate the effects of the distributional matching, we conduct more quantitative analyses
centered around the criterion triple (€,U, C).

F.1 Codebook Distribution and Feature Distribution are Gaussian Distributions

We begin by assuming that the distributions P4 and Pp are Gaussian. We generate a set of feature
vectors {z; } ¥ | from N;(0, I') and a set of code vectors {ej } 5, from Ny(u -1, I)EL with y varying
within {0.0,0.5,1.0,1.5,2.0,2.5}. The criterion triple results are presented in Figures to
Figures to and Figures to[T0(0)] Across all tested configurations of K, d, N, we
consistently observe that when © = 0 — indicating identical distributions between P4 and Pp —
the criterion triple achieves the lowest &, highest I/, and largest C. This empirical evidence reinforces
the effectiveness of aligning feature and codebook distributions in VQ.

Additionally, we further analyze the criterion triple by varying the covariance matrix. We sample a
set of feature vectors {z;}Y; from the distribution N;(0, I') and a set of code vectors {ej, }/_, from
N4(0,02I), where o is selected from {1,2,3,4,5,6}. The results for the criterion triple are shown
in Figures[T0(d)| to[I0(F)] Figures[I0()]to[I0(D} and Figures[T0(p)]to When o = 1, indicating
identical distributions between P4 and Pp, all three evaluation criteria reach their optimal values:
the lowest &, highest I/, and largest C across all tested values of K, d, N. This result corroborates our
earlier findings.

F.2 Codebook Distribution and Feature Distribution are Unifrom Distributions

The above conclusion holds when P4 and Pp are other types of distributions, such as the uniform
distribution. As shown in Figure|1 1} we sample a set of feature vectors {z; } ; from the distribution
Unify(—1, 1) and a set of code vectors {ej }~_, from Unif;(v — 1, + 1), where v is selected from
the set {0.0,0.5,1.0, 1.5,2.0,2.5} or from Unify(—(, ¢), with ¢ drawn from the set {1,2,3,4,5,6}.
We observe that when p = 0 or (= 1—indicating that P4 and Pp have identical distributions—the
performance in terms of the criterion triple is optimal, achieving the lowerest &, the highest ¢/, and
the largest C across all tested values of K, d, N. Therefore, we conclude that our quantitative analyses
are distribution-agnostic and can be generalized to other distributions.

31 represents the vector of all ones.

23

¢ 1 ' ’ ¢

(a) Ewrt. K) Ewrtt N (d) Ewrt. K (e) Ewrt. d

\\

(g U wrt. K h) U wrt. d i) Uwrt. N G Uwrt. K

(m) Cwrt. K (n) Cwrt. d (0)Cwrt. N (p) Cwrt. K (@ Cwrt. d (r) Cwrt. N

Figure 11: Quantitative analyses of the criterion triple when P4 and Pp are uniform distributions.

o2 G The Significant Impact of Distribution Variance on Quantization Error

925 As discussed in Section[2.3]and 2.4 the optimal criterion triple is achieved when the distributions P4
926 and Pp are identical. In this section, we further analyze the criterion triple by the lens of distribution
927 variance under the condition that both distributions are identical. Specifically, we first sample a set of
o8 feature vectors {2; }¥ ; along with a set of code vectors {e, }%_, from the distribution NV;(0, o2T) or
929 the distribution Unify(—(, ¢). We then calculate the evaluation criteria according to their definitions
30 in Section2.2] As demonstrated in Table[d] o and ¢ have a substantial impact on &, while I/ and C
931 remains largely unaffected.

Table 4: The criterion triple influence by the distribution variance.

. . o ¢
Evaluation Criteria |\ g01 70,01 0 10| 00001 | 0.00T | 0.01 0T 1o
T 12568 | 12566 | 12564 | 12462 | 125 [3.27e0 | 3.27e-7 [3.27e55 | 3273 [0327
u 0.9934 | 0.9938 | 0.9940 | 0.9934 | 0.9941 | 0.9993 | 0.9986 | 0.9990 | 0.9992 | 0.9989
c 72653 | 72603 | 72677 | 72550 | 7275.8 | 73802 | 73722 | 7387.9 | 73975 | 7391.6

932 This experimental finding suggests that when the distribution variance of the feature vectors is
933 uncontrollable or unknown, reporting a comparison of quantization error among various VQ methods
934 1is unreasonable. This is because the improvement in quantization error is predominantly attributed to
935 the reduction in distribution variance rather than the effectiveness of the VQ methods. To evaluate
936 various VQ methods in terms of the criterion triple, we establish an atomic and fair experimental
e37 setting in Appendix [H] where the feature distributions for all VQ methods are identical.

s H A Fair Setting to Evaluate Criterion Triple Evaluation

e30 The distribution variance has a substantial impact on &, as detailed in Appendix [G] Therefore, the
940 comparison of the quantization error among various VQ methods is unreasonable when the variance
941 of the feature vectors is uncontrollable or unknown. This is because any improvement in quantization
942 error is primarily attributed to the variance reduction rather than the inherent effectiveness of the VQ
943 methods. To ensure a fair criterion triple evaluation, we provide a controlled experimental setting.

944 Specifically, we fix the feature distributions for all VQ methods to the same Gaussian distributions
945 by setting z; ~ Ny(p - 1, I). Additionally, we initialize the codebook distribution as the standard
a46 Gaussian distribution across all VQ methods by sampling ej ~ Ny(0, I). In this experimental setup,
947 the distribution variance is controlled to be the same for all VQ methods.

948 Our baseline includes Vanilla VQ [36], EMA VQ [29]], Online VQ [42], and Linear VQ (a linear layer
949 projection for frozen code vectors) [43}44]. In all VQ algorithms, we treat the sampled code vectors

24

950
951

952
953
954
955
956
957
958

959
960
961
962
963

965
966
967
968

969

970

971
972
973
974
975

976

977
978
979

=

o
»

>

°
=

°
-

Quantization Error (l0g€)
¢
<

B
\.
N
Codebook Utilization (V)
Codebook Perplexity (IogC)

\\\t\\ [
0. ~o
0 2 4 6 8
]
(b) U wrt.
1 10 2
) s | = N + z A
g Z08 \ 1 - 2 5\ * }‘, /'/
b ElR + z) t g v
E é!)ﬁ \ % 6 ‘\\‘\\ ;z Is //
£ Zoa| | &y YN £ 10 A
§ R % \ e E 4
8 8 Y e R B g
0 0 §2 4 6 8 0! 2 4 6 8 0 4 6 8
v v v
(e) Ewrt. v) U wrt. v (g) Cwrt. v (h) Lw w.rt. v

Figure 12: The performance metrics (£,U, C) for various VQ approaches. For panels (a) to (d), the codebook
distribution is initialized as a Gaussian distribution, while for panels (e) to (h), the codebook distribution is
initialized as a uniform distribution.

as trainable parameters and optimize them using the respective algorithms. See detailed experimental
specifications in Appendix [[.4}

As visualized in Figures [12(a)] to Wasserstein VQ outperforms all baselines in terms of
the criterion triple (£,U, C), especially when the feature distribution and the initialized codebook
distribution have large deviations. Although existing VQ methods can perform well with y1 = 0,
this scenario is impractical, as the feature distribution is unknown and changes dynamically during
training. When there is a large initial distribution gap between the codebook and the features (at
w = 5), all existing VQ methods perform poorly. This indicates that the effectiveness of existing VQ
methods is heavily dependent on their codebook initialization.

As observed in Figure [[2(d)} the Wasserstein distance of all existing VQ methods is obviously
larger compared to that of Wasserstein VQ when p > 1.0, indicating that existing methods cannot
achieve effective distribution alignment between features and the codebook. Conversely, Wasserstein
VQ eliminates the reliance on codebook initialization via proposed explicit distributional matching
regularization, thereby delivering the best performance in criterion metrics.

We can arrive at the same conclusion when the feature and codebook distributions are uniform, in
which feature vectors are generated from Unif;(v — 1, + 1) and code vectors are initialized from
Unify(—1,1). As shown in Figuresto Wasserstein VQ performs the best. This suggests
that, despite being based on Gaussian assumptions, the effectiveness of our method exhibits a certain
degree of distribution-agnostic behavior.

I The Details of Synthetic Experiments

L1 Experimental Details in Section2.3]

As depicted in Figure [3]in Section [2.3] we conduct a qualitative analyses of the criterion triple.
Specifically, we sample a set of feature vectors {z; } Y ; from within the red circle, and a collection of
code vectors {ek}ﬁll from within the green circle, with parameters set to X' = 400, N = 10000
and d = 2 for the calculation of the criterion triple (£,U, C). For the visualization, we select 10% of
the feature vectors and 90% of the code vectors for plotting.

1.2 Experimental Details in Appendix F]
As illustrate in Figure[T0]in Appendix[F.I] we undertake comprehensive quantitative analyses centered

around the criterion triple (£,U,C). In these analyses, we assume that P4 and Pp are Gaussian
distributions, from which we sample a set of feature vectors {z; }; and a collection of code vectors

25

980

982
983
984
985
986

988
989

990

991
992
993
994
995
996
997

998

999
1000
1001

1002
1003
1004
1005
1006
1007

1008
1009
1010
1011

1012
1013

Table 5: Hyperparameters for the experiments in Table[I] 2] [3] and Table [6|and[7]

Frameworks VQ-VAE VQ-VAE VQ-VAE VQGAN
Dataset CIFAR-10/SVHN FFHQ ImageNet FFHQ
Input size 32x32x3 256 x 256 x 3 256 x 256 x 3 256 x 256 X 3
Latent size 8 x8x8 16 x 16 x 8 16 x 16 x 8 16 x 16 x 8
encoder/decoder channels 64 64 64 128
encoder/decoder channel mult. [1,1,2] [1,1,2,2,4] [1,1,2,2,4] [1,1,2,2,4]
Batch size 128 32 32 64
Initial Learning rate I 5x 1075 5x107° 5x107° 5x 1074
Codebook Loss Coefficient 1.0 1.0 1.0 1.0
Perceptual loss Coefficient 0 0 0.0 1.0
Adversarial loss Coefficient 0 0 0.0 0.2
Codebook dimensions 8 8 8 8
Training Epochs 50 30 4 200
GPU Resources V100 16GB A100 40GB A100 40GB 2 A100 80GB

{ek}szl. The default parameters are set to N = 200,000, K = 1024, and d = 32 for all figures
unless otherwise specified. For instance, in Figure N and d are taken at their default values,
while the K is varied within the set {128,256, 512, 1024, 2048, 4096, 8192, 16284}. Additionally,
each synthetic experiment is repeated five times, and the average results are reported, along with the
calculation of 95% confidence intervals. In all figures, mean results are represented by points, while
the confidence intervals are shown as shaded areas. Identical parameter settings are employed when
P4 and Pp are uniform distributions, as illustrated in Figure[TT]in Appendix

1.3 Experimental Details in Appendix[G]|

We set K = 8192, d = 8, N = 100000 when calculating the criterion triple (£,U,C) in Appendix
Each synthetic experiment is repeated five times, and the average results are reported in Table [4]

1.4 Experimental Details in Appendix

We provide experimental details of Figure[I2]in Appendix [H] In our experimental setup, we evaluate
five distinct VQ algorithms using the criterion triple (£,U,C). All experiments run on a single
NVIDIA A100 GPU, with a codebook size K of 16,384 and dimensionality d of 8 across all
algorithms. Each algorithm trains for 2,000 steps, with 50,000 feature vectors sampled from the
specified Gaussian distribution at each step. For Wasserstein VQ, Vanilla VQ, and VQ + MLP, we
use the SGD optimizer for training. For VQ EMA and Online Clustering, we use classical clustering
algorithms—#k-means [5] and k-means++[1]—to update code vectors.

J Experimental Details in Section {4

Data Augmentation For FFHQ and ImageNet-1k datasets, we follow LLama Gen [33]] and apply
iterative box downsampling to resize images to 256x256 resolution. For CIFAR-10 and SVHN, the
images are kept at their original resolution. Details are provided in Table[3]

Encoder-Decoder Architecture For the ImageNet and FFHQ datasets, within both the VQ-VAE
and VQGAN frameworks, our proposed Wasserstein VQ and all baseline methods adopt identical
encoder-decoder architectures and parameter configurations, following the original VQGAN imple-
mentation [9]. Across all baselines in these frameworks, the encoder—a U-Net [31]—downscales
the input image by a factor of 16. For CIFAR-10 and SVHN datasets, the encoder reduces the input
resolution by a factor of 4. Further details are provided in Table[5]

Training Details All experiments employ identical training settings: we use the AdamW opti-
mizer [23]] with 81 = 0.9 and $; = 0.95, an initial learning rate [r, and apply a half-cycle cosine
decay schedule following a linear warm-up phase. For specific details on training epochs and batch
sizes, refer to Table[3]

Loss Weight For all three baselines, (3 is typically set to a value within the range [0.25,2]. In
our experiments, 3 is set to a fixed value of 1.0. For our proposed Wasserstein VQ model, we set

26

1014
1015
1016

1017

1018
1019
1020
1021
1022

1023

1024
1025
1026
1027
1028
1029
1030
1031

1032
1033
1034
1035
1036
1037

Table 6: Comparison of VQ-VAEs trained on CIFAR-10 dataset following [36].

Approach Tokens Codebook Size U (T) C() PSNR(f) SSIM(f) Rec. Loss ({)
Vanilla VQ 64 8192 2.7% 186.9 27.15 0.83 0.0147
EMA VQ 64 8192 99.7% 6416.1 29.43 0.88 0.0095
Online VQ 64 8192 22.1% 995.4 28.20 0.85 0.0123
Wasserstein VQ 64 8192 100.0% 7781.8 29.88 0.90 0.0085
Vanilla VQ 64 16384 1.6% 220.3 27.36 0.84 0.0141
EMA VQ 64 16384 80.8% 10557.3 29.43 0.88 0.0093
Online VQ 64 16384 13.4% 798.5 27.54 0.82 0.0141
Wasserstein VQ 64 16384 100.0% 15583.7 30.19 0.90 0.0080
Vanilla VQ 64 32768 0.5% 154.8 27.10 0.83 0.0150
EMA VQ 64 32768 54.4% 14427.0 29.57 0.88 0.0091
Online VQ 64 32768 7.2% 1556.0 28.84 0.87 0.0106
Wasserstein VQ 64 32768 99.0% 29845.1 30.63 0.91 0.0071

Table 7: Comparison of VQ-VAEs trained on SVHN dataset following [36]).

Approach Tokens Codebook Size U (1) c PSNR(1) SSIM(T) Rec. Loss ({)
Vanilla VQ 64 8192 8.1% 533.1 37.81 0.97 0.0018
EMA VQ 64 8192 56.8% 3363.0 40.38 0.98 0.0010
Online VQ 64 8192 27.8% 1325.1 39.04 0.97 0.0016
Wasserstein VQ 64 8192 88.2% 6154.5 41.04 0.98 0.0009
Vanilla VQ 64 16384 3.4% 446.0 37.87 0.97 0.0017
EMA VQ 64 16384 222% 2593.8 40.19 0.98 0.0011
Online VQ 64 16384 13.5% 1090.5 39.12 0.97 0.0014
Wasserstein VQ 64 16384 87.5% 11967.2 41.49 0.98 0.0008
Vanilla VQ 64 32768 1.8% 467.5 37.87 0.97 0.0017
EMA VQ 64 32768 35.8% 7662.9 40.25 0.98 0.0010
Online VQ 64 32768 7.0% 1334.8 39.26 0.97 0.0014
Wasserstein VQ 64 32768 88.7% 24376.3 41.84 0.98 0.0008

[to a much smaller value, e.g., 5 = 0.1 for VQ-VAE and VQGAN. The smaller 5 values enable
the Wasserstein distance to dominate the loss function, thereby more effectively narrowing the gap
between the distributions.

K VQ-VAE Performance on CIFAR-10 and SVHN datasets

Due to space limitations in the main text, we have relocated the VQ-VAE evaluation on CIFAR-10 and
SVHN datasets to the appendix. As demonstrated in Table[6]and[7} our Wasserstein VQ consistently
outperforms all baselines across both datasets, achieving superior results on nearly all evaluation
metrics regardless of codebook size. Notably, we observe that Wasserstein VQ fails to reach 100%
codebook utilization on SVHN, which may be attributed to the dataset’s limited diversity.

L. Analyses on Codebook Size and Dimensionality

We investigate the impact of the codebook size K on the performance of VQ by varying across a
wide range: K € [1024, 2048, 4096, 8192, 16384, 50000, 100000]. As shown in Tableand Table
the vanilla VQ model suffers from severe codebook collapse even with a relatively small K, such
as K = 1024. In contrast, improved algorithms like EMA VQ and Online VQ can handle smaller
codebook sizes effectively, but they still experience codebook collapse when K is very large, e.g.,
K > 50000. Notably, the Wasserstein VQ model consistently maintains 100% codebook utilization,
irrespective of the codebook size. This underscores the effectiveness of distributional matching via
the quadratic Wasserstein distance in mitigating the issue of codebook collapse.

We further investigate the impact of codebook dimensionality d on VQ performance. Conducting
experiments on CIFAR-10 with dimensionality d ranging from 2 to 32, our proposed Wasserstein VQ
consistently outperforms all baselines regardless of dimensionality, as shown in Table 9. Notably, we
observe the curse of dimensionality phenomenon—performance degrades as dimensionality increases.
Vanilla VQ exhibits the most severe degradation, followed by EMA VQ and Online VQ, while our
Wasserstein VQ shows only minimal codebook utilization reduction.

27

1038

1039
1040
1041

1042
1043
1044
1045
1046
1047
1048
1049

1050
1051
1052

Table 8: Supplementary comparison of VQ-VAEs trained on FFHQ dataset following [36] w.r.t codebook size
K.

Approach Tokens Codebook Size U C() PSNR(T) SSIM(T) Rec. Loss({)
Vanilla VQ 256 1024 51.7% 446.2 27.64 73.0 0.0125
EMA VQ 256 1024 74.1% 618.9 27.66 727 0.0125
Online VQ 256 1024 100.0% 759.3 28.08 74.0 0.0114
Wasserstein VQ 256 1024 100.0% 977.4 28.11 74.4 0.0112
Vanilla VQ 256 2048 27.6% 453.0 27.78 73.8 0.0121
EMA VQ 256 2048 100 % 1608.0 28.39 74.9 0.0107
Online VQ 256 2048 100 % 1462.6 28.34 74.6 0.0108
Wasserstein VQ 256 2048 100% 1840.5 28.32 75.3 0.0107
Vanilla VQ 256 4096 12.5% 435.0 27.84 73.7 0.0119
EMA VQ 256 4096 76.7% 2443.1 28.49 75.0 0.0104
Online VQ 256 4096 70.7% 1600.0 28.25 74.1 0.0110
Wasserstein VQ 256 4096 100% 3895.4 28.54 75.1 0.0102
Vanilla VQ 256 8192 5.6% 398.1 27.69 73.5 0.0122
EMA VQ 256 8192 289% 1839.2 28.39 74.8 0.0106
Online VQ 256 8192 349% 1474.4 28.15 73.9 0.0113
Wasserstein VQ 256 8192 100% 7731.5 28.81 76.2 0.0099

Table 9: Analysis On codebook dimension by the comparison of VQ-VAEs trained on CIFAR-10 dataset
following [36]. (The codebook size K is fixed to 16384)

Approach Tokens Codebook Dim U c PSNR(1) SSIM(T) Rec. Loss ({)
Vanilla VQ 256 2 3.8% 532.2 27.00 0.80 0.0162
EMA VQ 256 2 97.6% 14460.3 27.25 0.80 0.0155
Online VQ 256 2 9.0% 611.8 26.62 0.79 0.0178
Wasserstein VQ 256 2 99.3% 12278.9 27.30 0.81 0.0155
Vanilla VQ 256 4 1.3% 176.7 27.15 0.83 0.0149
EMA VQ 256 4 99.8% 13153.9 29.57 0.89 0.0092
Online VQ 256 4 11.1% 877.7 26.69 0.79 0.0173
Wasserstein VQ 256 4 100.0% 15724.7 29.93 0.89 0.0087
Vanilla VQ 256 8 1.6% 220.3 27.36 0.84 0.0141
EMA VQ 256 8 80.8% 10557.3 29.43 0.88 0.0009
Online VQ 256 8 13.4% 798.5 27.54 0.82 0.0141
Wasserstein VQ 256 8 100.0% 15583.7 30.19 0.90 0.0080
Vanilla VQ 256 16 1.1% 150.8 27.05 0.83 0.0152
EMA VQ 256 16 32.5% 4169.2 29.31 0.88 0.0099
Online VQ 256 16 18.2% 2051.0 28.29 0.85 0.0122
Wasserstein VQ 256 16 99.2% 14832.2 30.27 0.91 0.0078
Vanilla VQ 256 32 0.7% 94.37 26.67 0.81 0.0165
EMA VQ 256 32 7.0% 942.7 28.24 0.85 0.0122
Online VQ 256 32 18.8% 2278.0 28.92 0.87 0.0104
Wasserstein VQ 256 32 96.4% 14056.9 30.39 0.91 0.0076

M Discussion with VQ-WAE [37]

VQ-WAE [37] introduces an alternative approach to distributional matching by employing Optimal
Transport to optimize codebook vectors. Compared with our proposed distributional matching
method, there are three key differences.

First, regarding theoretical contributions: VQ-WAE [37] claims that achieving optimal transport
(OT) between code vectors and feature vectors yields the best reconstruction performance. Their
notion of optimality encompasses both the VQ process and the encoder-decoder reconstruction
pipeline. While we contend that incorporating complex encoder-decoder functions renders rigorous
theoretical analysis intractable, VQ-WAE nevertheless asserts this conclusion. In contrast, our work
deliberately excludes encoder-decoder components, focusing solely on the VQ process, which admits
rigorous mathematical modeling. Through our proposed criterion triple, we theoretically prove that
distributional matching guarantees optimal performance.

Second, regarding distribution modeling: VQ-WAE [37] assumes both code vectors and feature
vectors follow uniform discrete distributions, whereas our method models them as continuous
distributions. Specifically, VQ-WAE [37] represents the distributions of feature vectors {zz}f\L , and

28

Table 10: Reconstruction performance (|: the lower the better and 1: the higher the better). :Results
cited from VQ-WAE [37]]. Codebook size K is fixed to 512.

Dataset Model Tokens SSIM{T PSNR1 LPIPS| Rec.Loss()) Perplexity T
CIFAR10 VQ-VAE' 64 70 23.14 0.35 69.8
SQ-VAET 64 80 26.11 0.23 434.8

VQ-WAE 64 80 25.93 0.23 497.3

VQ-WAE (Our run) 64 13 14.60 0.41 0.247 1.0

Vanilla VQ 64 83 27.19 0.03 0.015 192.5

EMA VQ 64 84 27.97 0.04 0.013 436.1

Online VQ 64 84 27.87 0.04 0.013 4514

Wasserstein VQ 64 86 28.26 0.03 0.012 481.7

SVHN VQ-VAE' 64 88 26.94 0.17 114.6
SQ-VAET 64 96 35.37 0.06 389.8

VQ-WAET 64 96 34.62 0.07 485.1

VQ-WAE (Our run) 64 25 15.87 0.26 0.2026 1.0

Vanilla VQ 64 97 38.18 0.01 0.0016 407.1

EMA VQ 64 97 38.35 0.01 0.0017 408.9

Online VQ 64 97 38.54 0.01 0.0017 421.5

Wasserstein VQ 64 97 38.25 0.01 0.0016 423.5

1053 code vectors {ej }X_, as empirical measures:

1 1 &
== 2 == . 14
Pa N;& Pr N};m (14)

1054 where ¢, and de, denote Dirac delta functions centered at z; and ey, respectively. To align P4 and
1055 Pp, VQ-WAE formulates the OT problem as:

N K
min Pllz;, — e 2,
Pell(Pa,Pz) ;; ¢ ¢ (15)

1 1
st. Plg = TV Pliy = i Py >0 Vik,

1056 where P is the transport plan, and the feasible set is:

1 1
(P, Pg) = {P € RY*K ‘ Pl = +1n, P'iy = KlK} (16)
1057 In contrast, we simplify the distributional assumption by modeling P4 and Pp as Gaussian distribu-
1058 tions.

1059 Third, regarding computational efficiency, The OT problem in VQ-WAE is prohibitively complex,
1060 whereas our quadratic Wasserstein distance incurs minimal overhead. To mitigate complexity, VQ-
1061 WAE employs a Kantorovich potential network. However, upon reproducing their code (no official
1062 implementation was released; we derived it from their ICLR 2023 supplementary materiaﬂ), we
1063 observed severe non-convergence—the method degenerated to using a single code vector, failing
1064 to achieve distributional matching. Notably, VQ-WAE underperformed all other VQ baselines
1065 (Table[I0).

1066 In comparison, our quadratic Wasserstein distance (Equation @) requires only low-dimensional matrix
1067 operations (e.g., d = 8), achieving superior performance and effective matching (Figure 3.

“Seehttps://openreview.net/forum?id=Z8qk2iM5uL.l, We includes the reproduced code and training
logs of VQ-WAE in our supplementary materials.

29

https://openreview.net/forum?id=Z8qk2iM5uLI

	Introduction
	Understanding Distribution Matching
	An Overview of Vector Quantization
	Evaluation Criteria
	The Effects of Distribution Matching
	Theoretical Analyses

	Methodology
	Distribution Matching via Wasserstein Distance
	Integration into the VQ-VAE Framework
	Integration into the VQGAN Framework

	Experiments
	Evaluation on VQ-VAE Framework
	Evaluation on VQGAN Framework

	Conclusion
	Optimal Support of The Codebook Distribution
	Statistical Distances over Gaussian Distributions
	Understanding Codebook Collapse Through the Lens of Voronoi Partition
	The Definition of Voronoi Partition and Its Connection to Codebook Collapse
	Why Existing Vector Quantization Strategies Fail to Address Codebook Collapse

	Complementary Roles of Criterion 2 and 3 in Assessing Codebook Collapse
	Interpretation of Qualitative Distributional Matching Results in Figure 3
	Supplementary Quantitative Analyses on Distribution Matching: Further Supporting the Main Findings in Section 2.3
	Codebook Distribution and Feature Distribution are Gaussian Distributions
	Codebook Distribution and Feature Distribution are Unifrom Distributions

	The Significant Impact of Distribution Variance on Quantization Error
	A Fair Setting to Evaluate Criterion Triple Evaluation
	The Details of Synthetic Experiments
	Experimental Details in Section 2.3
	Experimental Details in Appendix F
	Experimental Details in Appendix G
	Experimental Details in Appendix H

	Experimental Details in Section 4
	VQ-VAE Performance on CIFAR-10 and SVHN datasets
	Analyses on Codebook Size and Dimensionality
	Discussion with VQ-WAE Vuong2023VectorQW

