
Enhancing Vector Quantization with Distributional
Matching: A Theoretical and Empirical Study

Anonymous Author(s)
Affiliation
Address
email

Abstract

The success of autoregressive models largely depends on the effectiveness of1

vector quantization, a technique that discretizes continuous features by mapping2

them to the nearest code vectors within a learnable codebook. Two critical issues3

in existing vector quantization methods are training instability and codebook4

collapse. Training instability arises from the gradient discrepancy introduced by5

the straight-through estimator, especially in the presence of significant quantization6

errors, while codebook collapse occurs when only a small subset of code vectors7

are utilized during training. A closer examination of these issues reveals that8

they are primarily driven by a mismatch between the distributions of the features9

and code vectors, leading to unrepresentative code vectors and significant data10

information loss during compression. To address this, we employ the Wasserstein11

distance to align these two distributions, achieving near 100% codebook utilization12

and significantly reducing the quantization error. Both empirical and theoretical13

analyses validate the effectiveness of the proposed approach.14

1 Introduction15

Autoregressive models have re-emerged as a powerful paradigm in visual generation, demonstrating16

significant advances in image synthesis quality. Recent studies [29, 9, 6, 19, 35, 20] highlight that17

autoregressive approaches now achieve superior results compared to diffusion-based methods [12,18

30, 33, 35, 24]. The success of autoregressive visual generative models hinges on the effectiveness of19

vector quantization (VQ) [36], a technique that compresses and discretizes continuous features by20

mapping them to the nearest code vectors within a learnable codebook. However, VQ continues to21

face two major challenges: training instability and codebook collapse.22

Distributional Mismatch Distributional Match
Figure 1: The symbols · and × represent the fea-
ture and code vectors, respectively. The left figure
illustrates the distributional mismatch between the
feature and code vectors, while the right figure visu-
alizes their distributional match.

The first issue originates from the non-23

differentiability of VQ, which prevents direct24

gradient backpropagation from quantized features25

to their continuous counterparts, thereby hindering26

effective model optimization. To address this27

challenge, VQ-VAE [36] introduces a straight-28

through estimator (STE) [2]. The STE facilitates29

gradient propagation by copying the gradients from30

the quantized features to the continuous features.31

Nevertheless, the effectiveness of this approach32

is critically contingent upon the magnitude of the33

quantization error between the continuous and34

quantized feature vectors. When the quantization error is excessively large, the training process35

becomes notably unstable [19].36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

The latter issue emerges due to the inability of existing VQ methods to ensure that all Voronoi cells137

are assigned feature vectors. When only a minority of Voronoi cells are allocated feature vectors,38

leaving the majority unutilized and unoptimized, severe codebook collapse ensues [42]. Despite39

considerable research efforts dedicated to mitigating this problem, these methods still exhibit relatively40

low utilization of code vectors, particularly in scenarios with large codebook sizes [8, 34, 39, 19, 42].41

This is due to the fact that, as the codebook size increases, the number of Voronoi cells also increases,42

significantly raising the challenge of ensuring that every cell is assigned a feature vector.43

In this paper, we examine these issues by investigating the distributions of the features and code44

vectors. To illustrate the idea, Figure 1 presents two extreme scenarios: the left panel depicts a45

significant mismatch between the two distributions, while the right panel shows a match. In the left46

panel, all features are mapped to a single codeword, resulting in large quantization errors and minimal47

codebook utilization. In contrast, the right panel demonstrates that a distributional match leads to48

negligible quantization error and near 100% codebook utilization. This suggests aligning these two49

distributions in VQ could potentially address the issues of training instability and codebook collapse.50

To investigate the idea above, we first introduce three principled criteria that a VQ method should51

satisfy. Guided by this criterion triple, we conduct qualitative and quantitative analyses, demonstrating52

that aligning the distributions of the feature and code vectors results in near 100% codebook utilization53

and minimal quantization error. Additionally, our theoretical analysis underscores the importance of54

distribution matching for vector quantization. To achieve this alignment, we employ the quadratic55

Wasserstein distance which has a closed-form representation under a Gaussian hypothesis. Our56

approach effectively mitigates both training instability and codebook collapse, thereby enhancing57

image reconstruction performance in visual generative tasks.58

2 Understanding Distribution Matching59

This section introduces a novel distributional perspective for VQ. By defining three principled criteria60

for VQ evaluation, we empirically and theoretically demonstrate that distribution matching yields an61

almost optimal VQ solution.62

2.1 An Overview of Vector Quantization63

As the core component in visual tokenizer [36, 19, 35], VQ acts as a compressor that discretizes64

continuous latent features into discrete visual tokens by mapping them to the nearest code vectors65

within a learnable codebook.66

Vector Quantizer DecoderEncoder

x x̂
3 8 9 1

4 0 5 6

1 3 7 8

4 7 0 2

Forward

Backward

Quantization

Figure 2: The illustration of VQ.

Figure 2 illustrates the classic VQ process [36],67

which consists of an encoder E(·), a decoder68

D(·), and an updatable codebook {ek}Kk=1 ∈69

Rd containing a finite set of code vectors. Here,70

K represents the size of the codebook, and d de-71

notes the dimension of the code vectors. Given72

an image x ∈ RH×W×3, the goal is to derive73

a spatial collection of codeword IDs r ∈ Nh×w74

as image tokens. This is achieved by pass-75

ing the image through the encoder to obtain76

ze = E(x) ∈ Rh×w×d, followed by a spatial-wise quantizer Q(·) that maps each spatial feature zij
e77

to its nearest code vector ek:78

rij = argmin
k

∥zij
e − ek∥22. (1)

These tokens are then used to retrieve the corresponding codebook entries zij
q = Q(zij

e) = erij ,79

which are subsequently passed through the decoder to reconstruct the image as x̂ = D(zq). Despite80

its success in high-fidelity image synthesis [36, 29, 9], VQ faces two key challenges: training81

instability and codebook collapse.82

1A comprehensive understanding of codebook collapse through the lens of Voronoi partition is provided in
Appendix C.

2

Training Instability This issue occurs because during backpropagation, the gradient of zq cannot83

flow directly to ze due to the non-differentiable function Q. To optimize the encoder’s network param-84

eters through backpropagation, VQ-VAE [36] employs the straight-through estimator (STE) [3], which85

copies gradients directly from zq to ze. However, this approach carries significant risks—especially86

when zq and ze are far apart. In these cases, the gradient gap between the representations can87

grow substantially, destabilizing the training process. In this paper, we tackle the training instability88

challenge from a distributional viewpoint.89

Codebook Collapse Codebook collapse occurs when only a small subset of code vectors receives90

optimization-useful gradients, while most remain unrepresentative and unupdated [8, 34, 39, 19, 42].91

Researchers have proposed various solutions to this problem, such as improved codebook initializa-92

tion [43], reinitialization strategies [8, 38], and classical clustering algorithms like k-means [5] and93

k-means++[1] for codebook optimization [29, 42]. Beyond these deterministic approaches that select94

the best-matching token, researchers have also explored stochastic quantization strategies [40, 28, 34].95

However, these methods still exhibit relatively low utilization of code vectors, particularly with large96

codebook sizes K [42, 25]. In this paper, we address this issue by the distributional matching between97

feature vectors and code vectors.98

2.2 Evaluation Criteria99

Given a set of feature vectors {zi}Ni=1 sampled from feature distribution PA and code vectors100

{ek}Kk=1 sampled from codebook distribution PB , vector quantization involves finding the nearest,101

and thus most representative, code vector for each feature vector:102

z′
i = argmin

e∈{ek}
∥zi − e∥.

The original feature vector zi is then quantized to z′
i. Below, we introduce three key criteria to103

evaluate this process.104

Criterion 1 (Quantization Error). The quantization error measures the average distortion introduced105

by VQ and is defined as106

E({ek}; {zi}) =
1

N

∑
i

∥zi − z′
i∥2.

A smaller E signifies a more accurate quantization of the original feature vectors, resulting in a107

smaller gradient gap between zi and z′
i. Consequently, a small E suggests that the issue of training108

instability can be effectively mitigated.109

Criterion 2 (Codebook Utilization Rate). The codebook utilization rate measures the proportion of110

code vectors used in VQ and is defined as111

U({ek}; {zi}) =
1

N

N∑
i=1

1(ek = z′
i for some i).

A higher value of U reduces the risk of codebook collapse. Ideally, U should reach 100%, indicating112

that all code vectors are utilized. As discussed in Appendix D, U can only measure the completeness113

of codebook utilization; it does not suffice to evaluate the degree of codebook collapse. This motivates114

us to introduce the codebook perplexity criterion.115

Criterion 3 (Codebook Perplexity). The codebook perplexity measures the uniformity of codebook116

utilization in VQ and is defined as117

C({ek}; {zi}) = exp(−
K∑

k=1

pk log pk),

where pk = 1
N

∑N
i=1 1(z

′
i = ek). A higher value of C indicates that code vectors are more uniformly118

selected in the VQ process. Ideally, C reaches its maximum at C0 = exp(−
∑K

k=1
1
K log 1

K) = K119

when code vectors are completely uniformly utilized. Therefore, as a complementary measure to120

Criterion 2, the combination of U and C can effectively evaluate the degree of codebook collapse.121

3

(a) (1.19, 2%, 3.8) (b) (0.70, 20.8%, 16.5) (c) (0.26, 57.8%, 96.9) (d) (0.05, 100%, 344.9)

(e) (0.36, 93.3%, 63.2) (f) (0.10, 99.8%, 250.5) (g) (0.07, 61.3%, 199.7) (h) (0.08, 45.3%, 151.5)

Figure 3: Qualitative analyses of the criterion triple (E ,U , C): The red and green disks represent the uniform
distributions of feature vectors and code vectors, respectively.

We refer to (E ,U , C) as the criterion triple. When comparing extreme cases of distributional match122

and mismatch shown in Figure 1, we find that distributional matching significantly outperforms123

mismatching across all three criteria. Using this criterion triple, we present detailed analyses that124

demonstrate the advantages of distribution matching.125

2.3 The Effects of Distribution Matching126

We conduct a simple synthetic experiment to provide intuitive insights (See experimental details in127

Appendix I.1). Specifically, we assume that the distributions PA and PB are uniform distributions128

confined within two distinct disks, as depicted in Figure 3. We then sample a set of feature vectors129

{zi}Ni=1 uniformly from the red disk, and a set of code vectors {ek}Kk=1 uniformly from the green130

circle. The criterion triple (E ,U , C) is then calculated based on the definitions in Criteria 1 to 3.131

We examine two cases. The first involves two disks with identical radii but different centers. As132

shown in Figures 3(a) to 3(d), when the centers of the disks move closer together, the criterion triple133

improves toward optimal values. Specifically, E decreases from 1.19 to 0.05, U rises from 2% to134

100%, and C increases from 3.8 to 344.9.135

The second case shows two distributions with identical centers but different radii. When the codebook136

distribution’s support lies within the feature distribution’s support (as shown in Figures 3(e) and 3(f)),137

it results in a notably larger E , slightly lower U , and significantly smaller C compared to the aligned138

distributions shown in Figure 3(d). Conversely, when the codebook distribution’s support extends139

beyond the feature distribution’s support, E shows a modest increase while both U and C decrease140

significantly, as illustrated in Figures 3(g) and 3(h). We provide detailed explanations of these141

experimental results in Appendix E.142

From both cases, we can conclude that the VQ achieves the optimal criterion triple when the143

feature and codebook distributions are identical. This observation will be further supported by more144

quantitative analyses in Appendix F.145

2.4 Theoretical Analyses146

In this section, we provide theoretical evidence to support our empirical observations. Let the code147

vectors {ek}Kk=1 and feature vectors {zi}Ni=1 be independently and identically drawn from PB and148

PA, respectively. We say a codebook {ek}Kk=1 attains full utilization asymptotically with respect149

to {zi}Ni=1 if the codebook utilization rate U({ek}Kk=1; {zi}Ni=1) tends to 1 in probability as N150

approaches infinity:151

U({ek}Kk=1; {zk}Ni=1)
p→ 1, as N → ∞.

For the codebook distribution PB , we say it attains full utilization asymptotically with respect152

to PA if, with probability 1, the randomly generated codebook {ek}Kk=1 achieves full utilization153

asymptotically.154

4

Additionally, a codebook distribution PB is said to have vanishing quantization error asymptotically155

with respect to a domain Ω ⊆ Rd if the quantization error over all data of size N tends to zero in156

probability as K approaches infinity:157

sup
{zi}⊆Ω

E({ek}Kk=1; {zi}Ni=1)
p→ 0, as K → ∞. (2)

Our first theorem shows that supp(PA) = supp(PB) is sufficient and necessary for the codebook158

distribution PB to attain both full utilization and vanishing quantization error asymptotically. For159

simplicity, PA is assumed to have a density function fA with bounded support Ω ⊆ Rd.160

Theorem 1. Assume Ω = supp(PA) is a bounded open area. The codebook distribution PB attains161

full utilization and vanishing quantization error asymptotically if and only if supp(PB) = supp(PA),162

where S denotes the closure of the set S.163

Theorem 1 establishes the optimal support of the codebook distribution. The boundedness of Ω is164

required as we consider the worst case quantization error in equation 2. In real applications, when165

PA follows an absolutely continuous distribution over an unbounded domain, then {zi}Ni=1 generated166

from PA will be bounded with high probability. Thus, Theorem 1 also provides theoretical insights167

for a target distribution PA with an unbounded domain.168

Besides the optimal support, we also determine the optimal density of the codebook distribution by169

invoking existing results characterizing asymptotic optimal quantizers [10]. Specifically, we consider170

the case where N approaches to infinity and define the expected quantization error of a codebook171

{ek} with respect to PA as172

E({ek}Kk=1;PA) = Ez∼PA
min

e∈{ek}
∥z − e∥2.

A codebook {e∗k}Kk=1 is called the set of optimal centers for PA if it achieves the minimal quantization173

error:174

E({e∗k}Kk=1;PA) = min
{ek}K

k=1

E({ek}Kk=1;PA).

Theorem 2 demonstrates that, under weak regularity conditions, the empirical measure of the optimal175

centers for PA converges in distribution to a fixed distribution determined by PA. Notably, we do not176

assume a bounded domain in the following theorem.177

Theorem 2 (Theorem 7.5, [10]). Suppose Z ∼ PA is absolutely continuous with respect to the178

Lesbegue measure in Rd and E∥Z∥2+δ < ∞ for some δ > 0. Then the empirical measure of the179

optimal centers for PA,180

1

K

K∑
k=1

δe∗
k
,

converges weakly to a fixed distribution P∗
A, whose density function f∗

A is proportional to f
(d+2)/d
A .181

Theorem 2 implies that PB = P∗
A is the optimal codebook distribution in the asymptotic regime as182

K approaches infinity. In high-dimensional spaces with large d, this optimal distribution PB = P∗
A183

closely approximates PA. This further motivates us to align the codebook distribution PB with the184

feature distribution PA.185

3 Methodology186

In this section, we introduce the quadratic Wasserstein distance for distributional matching between187

features and the codebook. We then apply this technique to two frameworks.188

3.1 Distribution Matching via Wasserstein Distance189

We assume a Gaussian hypothesis for the distributions of both the feature and code vectors. For190

computational efficiency, we employ the quadratic Wasserstein distance, as defined in Appendix B,191

to align these two distributions. Although other statistical distances, such as the Kullback-Leibler192

divergence [17, 12], are viable alternatives, they lack simple closed-form representations, making193

them computationally expensive. The following lemma provides the closed-form representation for194

the quadratic Wasserstein distance between two Gaussian distributions.195

5

Encoder Decoder

Codebook Lookup

Distributional

Matching

Figure 4: Illustration of the Wasserstein VQ. The architecture integrates an encoder-decoder network with a
VQ module. In the VQ module, we augment the vanilla VQ framework [36] by incorporating our proposed
Wasserstein loss LW to achieve distributional matching between features ze (zij

e ∼ PA) and the codebook ek

(ek ∼ PB). This enhancement leads to 100% codebook utilization and the minimal achievable quantization
error between ze and zq .

Lemma 3 ([27]). The quadratic Wasserstein distance between N (µ1,Σ1) and N (µ2,Σ2)196 √
∥µ1 − µ2∥22 + tr(Σ1 +Σ2 − 2(Σ

1
2
1 Σ2Σ

1
2
1)

1
2). (3)

The lemma above indicates that the quadratic Wasserstein distance can be easily computed using197

the population means and covariance matrices. In practice, we estimate these population quantities,198

µ1, µ2, Σ1, and Σ2, with their sample counterparts: µ̂1, µ̂2, Σ̂1, and Σ̂2. The empirical quadratic199

Wasserstein distance is then used as the optimization objective to align the feature and codebook200

distributions:201

LW =

√
∥µ̂1−µ̂2∥22+tr(Σ̂1+Σ̂2−2(Σ̂

1
2
1 Σ̂2Σ̂

1
2
1)

1
2). (4)

A smaller value of LW indicates stronger alignment between the feature distribution PA and the202

codebook distribution PB . We refer to the VQ algorithm that employs LW as Wasserstein VQ.203

3.2 Integration into the VQ-VAE Framework204

We first examine Wasserstein VQ within the VQ-VAE framework [36]. As illustrated in the Figure 4,205

the VQ-VAE model combines three key components: an encoder E(·), a decoder D(·), a quantizer206

Q(·) with a learnable codebook {ek}Kk=1. As described earlier in Section 2.1, for an input image207

x, the encoder processes the image to yield a spatial feature ze = E(x) ∈ Rh×w×d. The quantizer208

converts ze into a quantized feature zq , from which the decoder reconstructs the image as x̂ = D(zq).209

By incorporating our proposed Wasserstein loss LW into the VQ-VAE framework, the overall loss210

objective can be formulated as follows:211

LVQ-VAE = ∥x̂− x∥22 + β∥sg(zq)− ze∥22 (5)

+ ∥sg(ze)− zq∥22 + γLW .

where sg denotes the stop-gradient operation. β and γ are hyper-parameters. We set γ = 0.5 for all212

experiments.213

3.3 Integration into the VQGAN Framework214

To ensure high perceptual quality in the reconstructed images, we further investigate Wasserstein VQ215

within the VQGAN framework [9]. VQGAN extends the VQ-VAE framework by integrating a VGG216

network [32] and a patch-based discriminator [9, 15]. The overall training objective of VQGAN can217

be written as follows:218

LVQGAN = LVQ-VAE + LPer + λLGAN. (6)

Where LPer and LGAN denote the VGG-based perceptual loss [41], and GAN loss [14, 21], respectively.219

We set λ = 0.2 for all experiments.220

6

Table 1: Comparison of VQ-VAEs trained on FFHQ dataset following [36].
Approach Tokens Codebook Size U (↑) C (↑) PSNR(↑) SSIM(↑) Rec. Loss (↓)
Vanilla VQ 256 16384 3.8% 527.2 27.83 73.8 0.0119
EMA VQ 256 16384 14.0% 1795.7 28.39 74.8 0.0106
Online VQ 256 16384 11.7% 1115.3 27.68 72.6 0.0125
Wasserstein VQ 256 16384 100% 15713.3 29.03 76.6 0.0093
Vanilla VQ 256 50000 1.2% 516.8 27.83 73.6 0.0120
EMA VQ 256 50000 10.3% 4075.7 28.61 75.3 0.0101
Online VQ 256 50000 6.0% 1642.9 28.37 74.6 0.0107
Wasserstein VQ 256 50000 100% 47496.4 29.24 77.0 0.0089
Vanilla VQ 256 100000 0.6% 481.0 27.86 74.2 0.0118
EMA VQ 256 100000 2.7% 2087.5 28.43 74.8 0.0105
Online VQ 256 100000 3.6% 1556.8 27.12 71.1 0.0142
Wasserstein VQ 256 100000 100% 93152.7 29.53 78.0 0.0083

Table 2: Comparison of VQ-VAEs trained on ImageNet dataset following [36].
Approach Tokens Codebook Size U (↑) C (↑) PSNR(↑) SSIM(↑) Rec. Loss (↓)
Vanilla VQ 256 16384 2.5% 360.7 24.44 57.5 0.0294
EMA VQ 256 16384 14.5% 1861.5 24.98 59.2 0.0267
Online VQ 256 16384 22.2% 1465.6 24.88 58.6 0.0273
Wasserstein VQ 256 16384 100% 15539.1 25.47 61.2 0.0242
Vanilla VQ 256 50000 0.9% 378.7 24.40 57.7 0.0295
EMA VQ 256 50000 16.8% 6139.3 25.37 60.9 0.0246
Online VQ 256 50000 9.9% 2241.7 25.09 59.7 0.0260
Wasserstein VQ 256 50000 100% 46133.2 25.72 62.3 0.0230
Vanilla VQ 256 100000 0.4% 337.0 24.43 57.4 0.0295
EMA VQ 256 100000 3.0% 2170.0 25.13 60.1 0.0257
Online VQ 256 100000 4.1% 1709.9 24.95 59.1 0.0267
Wasserstein VQ 256 100000 100% 93264.7 25.88 63.0 0.0223

4 Experiments221

In this section, we empirically demonstrate the effectiveness of our proposed Wasserstein VQ222

algorithm in visual tokenization tasks. Our experiments are conducted within the frameworks of223

VQ-VAE [36] and VQGAN [9]. The PyTorch code, including training environment, scripts and logs,224

will be made publicly available.225

4.1 Evaluation on VQ-VAE Framework226

Datasets and Baselines Experiments are conducted on four benchmark datasets: two low-resolution227

datasets, i.e., CIFAR-10 [18] and SVHN [26], and two high-resolution datasets FFHQ [16] and228

ImageNet [7]. We evaluated our approach against several representative VQ methods: Vanilla229

VQ [36], EMA VQ [29], which uses exponential moving average updates and is also referred to230

as k-means, Online VQ, which employs k-means++ in CVQ-VAE [42]. For detailed experimental231

settings, please refer to Appendix J.232

Metrics We employ multiple evaluation metrics, including the Codebook Utilization Rate (U),233

Codebook Perplexity (C), peak signal-to-noise ratio (PSNR), patch-level structural similarity index234

(SSIM), and pixel-level reconstruction loss (Rec. Loss). We exclude the quantization error (E) from235

our reported results, as it is highly sensitive to distribution variances—a factor analyzed in Appendix G.236

Since these distribution variances remain uncontrolled in our experiments, fair comparison based on237

(E) would be unreliable. To ensure an equitable assessment, Appendix H provides an atomic setting238

where distribution variances are fully controlled and identical across all VQ variants.239

Main Results As shown in Tables 1, 2, and Tables 6, 7 in the Appendix K, our proposed Wasserstein240

VQ outperforms all baselines on both datasets, achieving superior performance across almost all241

evaluation metrics under various experimental settings. The underlying reason is that VQ inherently242

functions as a compressor, transitioning from a continuous latent space to a discrete space, where243

minimal information loss indicates improved expressivity. Our proposed Wasserstein VQ employs244

explicit distribution matching constraints, thereby achieving a more favorable alignment between245

7

1.0 0.5 0.0 0.5 1.0
Feature Vector Dim 1

1.0

0.5

0.0

0.5

1.0

Fe
at

ur
e

V
ec

to
r D

im
 2

(a) Vanilla VQ

1.0 0.5 0.0 0.5 1.0
Feature Vector Dim 1

1.0

0.5

0.0

0.5

1.0

Fe
at

ur
e

V
ec

to
r D

im
 2

(b) EMA VQ

1.0 0.5 0.0 0.5 1.0
Feature Vector Dim 1

1.0

0.5

0.0

0.5

1.0

Fe
at

ur
e

V
ec

to
r D

im
 2

(c) Online VQ

1.0 0.5 0.0 0.5 1.0
Feature Vector Dim 1

1.0

0.5

0.0

0.5

1.0

Fe
at

ur
e

V
ec

to
r D

im
 2

(d) Wasserstein VQ

Figure 5: Visualization of feature and codebook distributions. The symbols blue · and red × represent the
feature and code vectors, respectively.

the feature vectors and code vectors. This results in nearly 100% codebook utilization and almost246

minimal quantization error, leading to the lowest Rec. Loss among all settings.247

Representation Visualization To visualize the distributions of feature vectors and code vectors248

across different VQ methods trained on the FFHQ dataset (with a fixed codebook size of 8192), we249

randomly sample 3000 feature vectors and 1000 code vectors and plot their scatter diagrams. As250

shown in Figure 5(a) and Figure 5(b), in Vanilla VQ and EMA VQ, the majority of code vectors251

are clustered near the zero point, rendering them effectively unusable. While Online VQ avoids this252

central clustering issue, most of its code vectors are distributed at the two extremes of the feature253

space, as illustrated in Figure 5(c). This distributional mismatch leads to increased information254

loss and reduced codebook utilization. In contrast to these three VQ methods, Wasserstein VQ255

demonstrates significantly better distributional matching between feature vectors and code vectors.256

This alignment substantially minimizes information loss and enhances codebook utilization.257

6 3 0 3 6
Feature Vector Value

0.0

0.1

0.2

0.3

0.4

Fe
at

ur
e

V
ec

to
r D

en
si

ty

Dim 1
Dim 2

(a) Feature Density

6 3 0 3 6
Feature Vector Dim 1

6

3

0

3

6

Fe
at

ur
e

V
ec

to
r D

im
 2

(b) Feature Visualization
Figure 6: Visualization of feature vectors.

Gaussian Hypothesis Justification To258

justify the reasonableness of the Gaus-259

sian assumption, we extract feature vec-260

tors from the encoder and computed the261

density of arbitrary two dimensions by bin-262

ning the data points into 29 groups, as vi-263

sualized in Figure 6(a). Furthermore, we264

randomly selected 2000 data points from265

any two dimensions and plotted them in266

a scatter plot, as shown in Figure 6(b). It267

is evident that the feature vectors exhibit268

Gaussian-like characteristics. The under-269

lying reason for this behavior can be attributed to the central limit theorem, which posits that learned270

feature vectors and code vectors will approximate a Gaussian distribution given a sufficiently large271

sample size and a relatively low-dimensional space, i.e., d = 8.272

Analyses of Codebook Size We investigate the impact of the codebook size K on VQ performance,273

as presented in Table 1, and Table 8 in Appendix L. Vanilla VQ suffers from severe codebook collapse274

even with a small K, such as K = 1024. In contrast, improved algorithms, such as EMA VQ and275

Online VQ, also experience codebook collapse when K is very large, e.g., K ≥ 50000. Notably,276

Wasserstein VQ consistently maintains 100% codebook utilization, regardless of the codebook size.277

This demonstrates that distributional matching by quadratic Wasserstein distance effectively resolves278

the issue of codebook collapse.279

Analyses of Codebook Dimensionality We further investigate the impact of codebook dimension-280

ality d on VQ performance. We conduct experiments on CIFAR-10 dataset and range d from 2 to281

32. As shown in Table 9 in Appendix L our proposed Wasserstein VQ consistently outperforms282

all baselines regardless of dimensionality. Notably, we observe the curse of dimensionality phe-283

nomenon—performance degrades as dimensionality increases. Vanilla VQ exhibits the most severe284

degradation, followed by EMA VQ and Online VQ, while our Wasserstein VQ shows only minimal285

codebook utilization reduction.286

8

Table 3: Comparison of VQGAN trained on FFHQ dataset following [9].

Method Tokens Codebook Size Utilization (%) ↑ rFID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
RQVAE† [19] 256 2,048 - 7.04 0.13 22.9 67.0
VQ-WAE† [37] 256 1,024 - 4.20 0.12 22.5 66.5
MQVAE† [13] 256 1,024 78.2 4.55 - - -

VQGAN† [9] 256 16,384 2.3 5.25 0.12 24.4 63.3
VQGAN-FC† [39] 256 16,384 10.9 4.86 0.11 24.8 64.6
VQGAN-EMA† [29] 256 16,384 68.2 4.79 0.10 25.4 66.1
VQGAN-LC† [43] 256 100,000 99.5 3.81 0.08 26.1 69.4

Wasserstein VQ⋆
256 16,384 100 3.08 0.08 26.3 70.4
256 50,000 100 2.96 0.08 26.5 71.4
256 100,000 100 2.71 0.07 26.6 71.9

Multi-scale Wasserstein VQ⋆
680 16,384 100 2.48 0.06 27.4 74.0
680 50,000 100 2.07 0.06 27.6 74.6
680 100,000 100 1.79 0.05 27.9 75.4

4.2 Evaluation on VQGAN Framework287

Dataset, Baselines, and Metrics We evaluated our approach against following methods on the288

FFHQ dataset: RQVAE [19], VQGAN [9], VQGAN-FC [39], VQGAN-EMA [29], VQ-WAE [37],289

MQVAE [13], and VQGAN-LC [43]. Following VQGAN-LC [43], we employ the Fréchet Inception290

Distance (r-FID) [11], Learned Perceptual Image Patch Similarity (LPIPS) [41], PSNR, and SSIM to291

evaluate visual reconstruction quality.292

Main Results As presented in Table 3, our proposed Wasserstein VQ outperforms all baselines293

across all evaluation metrics within the VQGAN framework. This superior performance stems from294

its VQ system that minimizes information loss, as discussed in Section 4.1, thereby achieving optimal295

reconstruction fidelity and visual perceptual quality. Notably, when integrating VAR’s multi-scale296

VQ [35] with our Wasserstein VQ, we observe a significant improvement in rFID (reduced from297

2.71 to 1.79 with codebook size K = 100000). Figure 7 demonstrates that Wasserstein VQ’s298

reconstructed images exhibit only minimal differences from the inputs, confirming its exceptional299

visual tokenization capability.300

Figure 7: Visualization of reconstructed Images. The top row displays the original input images with a
resolution of 256× 256 pixels, while the bottom row shows the reconstructed images from the Wasserstein VQ.

5 Conclusion301

This paper examines vector quantization (VQ) from a distributional perspective, introducing three302

key evaluation criteria. Empirical results demonstrate that optimal VQ results are achieved when the303

distributions of continuous feature vectors and code vectors are identical. Our theoretical analysis304

confirms this finding, emphasizing the crucial role of distributional alignment in effective VQ.305

Based on these insights, we propose using the quadratic Wasserstein distance to achieve alignment,306

leveraging its computational efficiency under a Gaussian hypothesis. This approach achieves near-307

full codebook utilization while significantly reducing quantization error. Our method successfully308

addresses both training instability and codebook collapse, leading to improved downstream image309

reconstruction performance. A limitation of this work, however, is that our proposed distributional310

matching approach relies on the assumption of Gaussian distribution, which may not strictly hold311

in all scenarios. In future work, we aim to develop methods that do not depend on this assumption,312

thereby broadening the applicability and robustness of our VQ framework.313

9

References314

[1] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In315

ACM-SIAM Symposium on Discrete Algorithms, 2007.316

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients317

through stochastic neurons for conditional computation. ArXiv, 2013.318

[3] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients319

through stochastic neurons for conditional computation. ArXiv, 2013.320

[4] A. Bhattacharyya. On a measure of divergence between two statistical populations defined by321

their probability distributions. Bulletin of the Calcutta Mathematical Society, 1943.322

[5] Paul S. Bradley and Usama M. Fayyad. Refining initial points for k-means clustering. In ICML,323

1998.324

[6] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked325

generative image transformer. In CVPR, 2022.326

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li Fei-Fei. Imagenet: A large-scale327

hierarchical image database. In CVPR, 2009.328

[8] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya329

Sutskever. Jukebox: A generative model for music. ArXiv, 2020.330

[9] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution331

image synthesis. In CVPR, 2021.332

[10] Siegfried Graf and Harald Luschgy. Foundations of quantization for probability distributions.333

Springer Science & Business Media, 2000.334

[11] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.335

Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS,336

2017.337

[12] Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. In NeurIPS,338

2020.339

[13] Mengqi Huang, Zhendong Mao, Quang Wang, and Yongdong Zhang. Not all image regions340

matter: Masked vector quantization for autoregressive image generation. In CVPR, 2023.341

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with342

conditional adversarial networks. In CVPR, 2017.343

[15] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer344

and super-resolution. In ECCV, 2016.345

[16] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative346

adversarial networks. In CVPR, 2018.347

[17] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.348

[18] Alex Krizhevsky. Learning multiple layers of features from tiny images. ArXiv, 2009.349

[19] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive350

image generation using residual quantization. In CVPR, 2022.351

[20] Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Jiuxiang Gu, Jindong Wang, Zhe Lin, and Bhiksha352

Raj. Xq-gan: An open-source image tokenization framework for autoregressive generation.353

ArXiv, 2024.354

[21] Jae Hyun Lim and J. C. Ye. Geometric gan. ArXiv, 2017.355

[22] David Lindley and Solomon Kullback. Information theory and statistics. Journal of the356

American Statistical Association, 1959.357

10

[23] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.358

[24] Xiaoxiao Ma, Mohan Zhou, Tao Liang, Yalong Bai, Tiejun Zhao, H. Chen, and Yi Jin. Star:359

Scale-wise text-to-image generation via auto-regressive representations. ArXiv, 2024.360

[25] Fabian Mentzer, David C. Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar361

quantization: Vq-vae made simple. In ICLR, 2024.362

[26] Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. Reading digits in363

natural images with unsupervised feature learning. ArXiv, 2011.364

[27] Ingram Olkin and Friedrich Pukelsheim. The distance between two random vectors with given365

dispersion matrices. Linear Algebra and its Applications, 1982.366

[28] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark367

Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021.368

[29] Ali Razavi, Aäron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images369

with vq-vae-2. In NeurIPS, 2019.370

[30] Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-371

resolution image synthesis with latent diffusion models. In CVPR, 2022.372

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for373

biomedical image segmentation. In MICCAI, 2015.374

[32] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale375

image recognition. In ICLR, 2015.376

[33] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.377

Autoregressive model beats diffusion: Llama for scalable image generation. ArXiv, 2024.378

[34] Yuhta Takida, Takashi Shibuya, Wei-Hsiang Liao, Chieh-Hsin Lai, Junki Ohmura, Toshimitsu379

Uesaka, Naoki Murata, Shusuke Takahashi, Toshiyuki Kumakura, and Yuki Mitsufuji. Sq-vae:380

Variational bayes on discrete representation with self-annealed stochastic quantization. In ICML,381

2022.382

[35] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive383

modeling: Scalable image generation via next-scale prediction. In NeurIPS, 2024.384

[36] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation385

learning. In NeurIPS, 2017.386

[37] Tung-Long Vuong, Trung-Nghia Le, He Zhao, Chuanxia Zheng, Mehrtash Harandi, Jianfei Cai,387

and Dinh Q. Phung. Vector quantized wasserstein auto-encoder. In ICML, 2023.388

[38] Will Williams, Sam Ringer, Tom Ash, John Hughes, David Macleod, and Jamie Dougherty.389

Hierarchical quantized autoencoders. In NeurIPS, 2020.390

[39] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku,391

Yuanzhong Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with392

improved vqgan. In ICLR, 2022.393

[40] Jiahui Zhang, Fangneng Zhan, Christian Theobalt, and Shijian Lu. Regularized vector quantiza-394

tion for tokenized image synthesis. In CVPR, 2023.395

[41] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreason-396

able effectiveness of deep features as a perceptual metric. In CVPR, 2018.397

[42] Chuanxia Zheng and Andrea Vedaldi. Online clustered codebook. In ICCV, 2023.398

[43] Lei Zhu, Fangyun Wei, Yanye Lu, and Dong Chen. Scaling the codebook size of vqgan to399

100,000 with a utilization rate of 99%. ArXiv, 2024.400

[44] Yongxin Zhu, Bocheng Li, Yifei Xin, and Linli Xu. Addressing representation collapse in401

vector quantized models with one linear layer. ArXiv, 2024.402

11

NeurIPS Paper Checklist403

1. Claims404

Question: Do the main claims made in the abstract and introduction accurately reflect the405

paper’s contributions and scope?406

Answer: [Yes]407

Justification: The abstract and introduction clearly and accurately articulate the paper’s408

key claims and contributions, notably the proposed distributional matching framework409

via Wasserstein distance to address training instability and codebook collapse in vector410

quantization (VQ). These claims are rigorously substantiated by theoretical derivations and411

empirical validation across the paper.412

Guidelines:413

• The answer NA means that the abstract and introduction do not include the claims414

made in the paper.415

• The abstract and/or introduction should clearly state the claims made, including the416

contributions made in the paper and important assumptions and limitations. A No or417

NA answer to this question will not be perceived well by the reviewers.418

• The claims made should match theoretical and experimental results, and reflect how419

much the results can be expected to generalize to other settings.420

• It is fine to include aspirational goals as motivation as long as it is clear that these goals421

are not attained by the paper.422

2. Limitations423

Question: Does the paper discuss the limitations of the work performed by the authors?424

Answer: [Yes]425

Justification: We explicitly discuss the limitation that their distributional matching approach426

relies on a Gaussian distribution assumption, noting this may not strictly hold in all practical427

scenarios. They also indicate that future work will aim to generalize beyond this.428

Guidelines:429

• The answer NA means that the paper has no limitation while the answer No means that430

the paper has limitations, but those are not discussed in the paper.431

• The authors are encouraged to create a separate "Limitations" section in their paper.432

• The paper should point out any strong assumptions and how robust the results are to433

violations of these assumptions (e.g., independence assumptions, noiseless settings,434

model well-specification, asymptotic approximations only holding locally). The authors435

should reflect on how these assumptions might be violated in practice and what the436

implications would be.437

• The authors should reflect on the scope of the claims made, e.g., if the approach was438

only tested on a few datasets or with a few runs. In general, empirical results often439

depend on implicit assumptions, which should be articulated.440

• The authors should reflect on the factors that influence the performance of the approach.441

For example, a facial recognition algorithm may perform poorly when image resolution442

is low or images are taken in low lighting. Or a speech-to-text system might not be443

used reliably to provide closed captions for online lectures because it fails to handle444

technical jargon.445

• The authors should discuss the computational efficiency of the proposed algorithms446

and how they scale with dataset size.447

• If applicable, the authors should discuss possible limitations of their approach to448

address problems of privacy and fairness.449

• While the authors might fear that complete honesty about limitations might be used by450

reviewers as grounds for rejection, a worse outcome might be that reviewers discover451

limitations that aren’t acknowledged in the paper. The authors should use their best452

judgment and recognize that individual actions in favor of transparency play an impor-453

tant role in developing norms that preserve the integrity of the community. Reviewers454

will be specifically instructed to not penalize honesty concerning limitations.455

12

3. Theory assumptions and proofs456

Question: For each theoretical result, does the paper provide the full set of assumptions and457

a complete (and correct) proof?458

Answer: [Yes]459

Justification: The paper clearly states all assumptions underlying the theoretical results, such460

as bounded support and continuity conditions. Complete proofs of theoretical claims (e.g.,461

Theorem 1 and Theorem 2) are thoroughly provided in the appendix, alongside rigorous462

mathematical justifications within the main text.463

Guidelines:464

• The answer NA means that the paper does not include theoretical results.465

• All the theorems, formulas, and proofs in the paper should be numbered and cross-466

referenced.467

• All assumptions should be clearly stated or referenced in the statement of any theorems.468

• The proofs can either appear in the main paper or the supplemental material, but if469

they appear in the supplemental material, the authors are encouraged to provide a short470

proof sketch to provide intuition.471

• Inversely, any informal proof provided in the core of the paper should be complemented472

by formal proofs provided in appendix or supplemental material.473

• Theorems and Lemmas that the proof relies upon should be properly referenced.474

4. Experimental result reproducibility475

Question: Does the paper fully disclose all the information needed to reproduce the main ex-476

perimental results of the paper to the extent that it affects the main claims and/or conclusions477

of the paper (regardless of whether the code and data are provided or not)?478

Answer: [Yes]479

Justification: We provide detailed descriptions of experimental setups, hyperparameters,480

model architectures, datasets, and training procedures necessary for reproducibility, along481

with comprehensive results and analyses in the appendices. The authors will make the482

complete PyTorch implementation publicly available, including the training environment483

configuration, scripts, and logs in the supplementary material.484

Guidelines:485

• The answer NA means that the paper does not include experiments.486

• If the paper includes experiments, a No answer to this question will not be perceived487

well by the reviewers: Making the paper reproducible is important, regardless of488

whether the code and data are provided or not.489

• If the contribution is a dataset and/or model, the authors should describe the steps taken490

to make their results reproducible or verifiable.491

• Depending on the contribution, reproducibility can be accomplished in various ways.492

For example, if the contribution is a novel architecture, describing the architecture fully493

might suffice, or if the contribution is a specific model and empirical evaluation, it may494

be necessary to either make it possible for others to replicate the model with the same495

dataset, or provide access to the model. In general. releasing code and data is often496

one good way to accomplish this, but reproducibility can also be provided via detailed497

instructions for how to replicate the results, access to a hosted model (e.g., in the case498

of a large language model), releasing of a model checkpoint, or other means that are499

appropriate to the research performed.500

• While NeurIPS does not require releasing code, the conference does require all submis-501

sions to provide some reasonable avenue for reproducibility, which may depend on the502

nature of the contribution. For example503

(a) If the contribution is primarily a new algorithm, the paper should make it clear how504

to reproduce that algorithm.505

(b) If the contribution is primarily a new model architecture, the paper should describe506

the architecture clearly and fully.507

13

(c) If the contribution is a new model (e.g., a large language model), then there should508

either be a way to access this model for reproducing the results or a way to reproduce509

the model (e.g., with an open-source dataset or instructions for how to construct510

the dataset).511

(d) We recognize that reproducibility may be tricky in some cases, in which case512

authors are welcome to describe the particular way they provide for reproducibility.513

In the case of closed-source models, it may be that access to the model is limited in514

some way (e.g., to registered users), but it should be possible for other researchers515

to have some path to reproducing or verifying the results.516

5. Open access to data and code517

Question: Does the paper provide open access to the data and code, with sufficient instruc-518

tions to faithfully reproduce the main experimental results, as described in supplemental519

material?520

Answer: [Yes]521

Justification: The code, training scripts, and logs will be made publicly available on an522

anonymous repository for scrutiny and reproducibility.523

Guidelines:524

• The answer NA means that paper does not include experiments requiring code.525

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/526

public/guides/CodeSubmissionPolicy) for more details.527

• While we encourage the release of code and data, we understand that this might not be528

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not529

including code, unless this is central to the contribution (e.g., for a new open-source530

benchmark).531

• The instructions should contain the exact command and environment needed to run to532

reproduce the results. See the NeurIPS code and data submission guidelines (https:533

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.534

• The authors should provide instructions on data access and preparation, including how535

to access the raw data, preprocessed data, intermediate data, and generated data, etc.536

• The authors should provide scripts to reproduce all experimental results for the new537

proposed method and baselines. If only a subset of experiments are reproducible, they538

should state which ones are omitted from the script and why.539

• At submission time, to preserve anonymity, the authors should release anonymized540

versions (if applicable).541

• Providing as much information as possible in supplemental material (appended to the542

paper) is recommended, but including URLs to data and code is permitted.543

6. Experimental setting/details544

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-545

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the546

results?547

Answer: [Yes]548

Justification: The paper specifies all necessary experimental details clearly, including data549

splits, hyperparameter settings, optimizer types (e.g., AdamW), and training protocols550

across multiple benchmark datasets (CIFAR-10, SVHN, FFHQ, ImageNet) to enable full551

understanding and assessment of the reported results.552

Guidelines:553

• The answer NA means that the paper does not include experiments.554

• The experimental setting should be presented in the core of the paper to a level of detail555

that is necessary to appreciate the results and make sense of them.556

• The full details can be provided either with the code, in appendix, or as supplemental557

material.558

7. Experiment statistical significance559

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper report error bars suitably and correctly defined or other appropriate560

information about the statistical significance of the experiments?561

Answer: [Yes]562

Justification: The experimental results include clearly defined metrics such as Codebook563

Utilization, Codebook Perplexity, PSNR, SSIM, and reconstruction loss, with multiple runs564

reported for confidence. Error bars (95% confidence intervals) are explicitly computed and565

provided, especially for synthetic experiments (see Appendix F)566

Guidelines:567

• The answer NA means that the paper does not include experiments.568

• The authors should answer "Yes" if the results are accompanied by error bars, confi-569

dence intervals, or statistical significance tests, at least for the experiments that support570

the main claims of the paper.571

• The factors of variability that the error bars are capturing should be clearly stated (for572

example, train/test split, initialization, random drawing of some parameter, or overall573

run with given experimental conditions).574

• The method for calculating the error bars should be explained (closed form formula,575

call to a library function, bootstrap, etc.)576

• The assumptions made should be given (e.g., Normally distributed errors).577

• It should be clear whether the error bar is the standard deviation or the standard error578

of the mean.579

• It is OK to report 1-sigma error bars, but one should state it. The authors should580

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis581

of Normality of errors is not verified.582

• For asymmetric distributions, the authors should be careful not to show in tables or583

figures symmetric error bars that would yield results that are out of range (e.g. negative584

error rates).585

• If error bars are reported in tables or plots, The authors should explain in the text how586

they were calculated and reference the corresponding figures or tables in the text.587

8. Experiments compute resources588

Question: For each experiment, does the paper provide sufficient information on the com-589

puter resources (type of compute workers, memory, time of execution) needed to reproduce590

the experiments?591

Answer: [Yes]592

Justification: The paper provides detailed specifications of computational resources, in-593

cluding GPU types, memory requirements, and training durations clearly outlined in the594

experiment descriptions in the Table 5 in the appendix J.595

Guidelines:596

• The answer NA means that the paper does not include experiments.597

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,598

or cloud provider, including relevant memory and storage.599

• The paper should provide the amount of compute required for each of the individual600

experimental runs as well as estimate the total compute.601

• The paper should disclose whether the full research project required more compute602

than the experiments reported in the paper (e.g., preliminary or failed experiments that603

didn’t make it into the paper).604

9. Code of ethics605

Question: Does the research conducted in the paper conform, in every respect, with the606

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?607

Answer: [Yes]608

Justification: The research conforms fully to the NeurIPS Code of Ethics, as it involves609

algorithmic and synthetic experiments without posing ethical concerns such as privacy610

violations, fairness issues, or environmental harms. No identifiable data or ethically sensitive611

methodologies are involved.612

15

https://neurips.cc/public/EthicsGuidelines

Guidelines:613

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.614

• If the authors answer No, they should explain the special circumstances that require a615

deviation from the Code of Ethics.616

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-617

eration due to laws or regulations in their jurisdiction).618

10. Broader impacts619

Question: Does the paper discuss both potential positive societal impacts and negative620

societal impacts of the work performed?621

Answer: [NA]622

Justification: The paper primarily introduces foundational methodological improvements623

for vector quantization in generative modeling without direct societal implications.624

Guidelines:625

• The answer NA means that there is no societal impact of the work performed.626

• If the authors answer NA or No, they should explain why their work has no societal627

impact or why the paper does not address societal impact.628

• Examples of negative societal impacts include potential malicious or unintended uses629

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations630

(e.g., deployment of technologies that could make decisions that unfairly impact specific631

groups), privacy considerations, and security considerations.632

• The conference expects that many papers will be foundational research and not tied633

to particular applications, let alone deployments. However, if there is a direct path to634

any negative applications, the authors should point it out. For example, it is legitimate635

to point out that an improvement in the quality of generative models could be used to636

generate deepfakes for disinformation. On the other hand, it is not needed to point out637

that a generic algorithm for optimizing neural networks could enable people to train638

models that generate Deepfakes faster.639

• The authors should consider possible harms that could arise when the technology is640

being used as intended and functioning correctly, harms that could arise when the641

technology is being used as intended but gives incorrect results, and harms following642

from (intentional or unintentional) misuse of the technology.643

• If there are negative societal impacts, the authors could also discuss possible mitigation644

strategies (e.g., gated release of models, providing defenses in addition to attacks,645

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from646

feedback over time, improving the efficiency and accessibility of ML).647

11. Safeguards648

Question: Does the paper describe safeguards that have been put in place for responsible649

release of data or models that have a high risk for misuse (e.g., pretrained language models,650

image generators, or scraped datasets)?651

Answer: [NA]652

Justification: The paper focuses on fundamental algorithmic improvements in VQ and does653

not involve releasing pretrained language models, generative models prone to misuse, or654

large-scale scraped datasets, thus posing no high risks of misuse.655

Guidelines:656

• The answer NA means that the paper poses no such risks.657

• Released models that have a high risk for misuse or dual-use should be released with658

necessary safeguards to allow for controlled use of the model, for example by requiring659

that users adhere to usage guidelines or restrictions to access the model or implementing660

safety filters.661

• Datasets that have been scraped from the Internet could pose safety risks. The authors662

should describe how they avoided releasing unsafe images.663

• We recognize that providing effective safeguards is challenging, and many papers do664

not require this, but we encourage authors to take this into account and make a best665

faith effort.666

16

12. Licenses for existing assets667

Question: Are the creators or original owners of assets (e.g., code, data, models), used in668

the paper, properly credited and are the license and terms of use explicitly mentioned and669

properly respected?670

Answer: [Yes]671

Justification: All existing datasets (CIFAR-10, SVHN, FFHQ, ImageNet) used for empirical672

validation are clearly referenced, properly credited, and publicly available with well-known673

licenses cited explicitly within the experimental settings.674

Guidelines:675

• The answer NA means that the paper does not use existing assets.676

• The authors should cite the original paper that produced the code package or dataset.677

• The authors should state which version of the asset is used and, if possible, include a678

URL.679

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.680

• For scraped data from a particular source (e.g., website), the copyright and terms of681

service of that source should be provided.682

• If assets are released, the license, copyright information, and terms of use in the683

package should be provided. For popular datasets, paperswithcode.com/datasets684

has curated licenses for some datasets. Their licensing guide can help determine the685

license of a dataset.686

• For existing datasets that are re-packaged, both the original license and the license of687

the derived asset (if it has changed) should be provided.688

• If this information is not available online, the authors are encouraged to reach out to689

the asset’s creators.690

13. New assets691

Question: Are new assets introduced in the paper well documented and is the documentation692

provided alongside the assets?693

Answer: [NA]694

Justification: The paper does not introduce or release new datasets, code packages, or pre-695

trained models as new assets; it leverages well-established datasets and publicly accessible696

frameworks for validation.697

Guidelines:698

• The answer NA means that the paper does not release new assets.699

• Researchers should communicate the details of the dataset/code/model as part of their700

submissions via structured templates. This includes details about training, license,701

limitations, etc.702

• The paper should discuss whether and how consent was obtained from people whose703

asset is used.704

• At submission time, remember to anonymize your assets (if applicable). You can either705

create an anonymized URL or include an anonymized zip file.706

14. Crowdsourcing and research with human subjects707

Question: For crowdsourcing experiments and research with human subjects, does the paper708

include the full text of instructions given to participants and screenshots, if applicable, as709

well as details about compensation (if any)?710

Answer: [NA]711

Justification: The paper involves no crowdsourcing, human subject research, or any partici-712

pant interaction.713

Guidelines:714

• The answer NA means that the paper does not involve crowdsourcing nor research with715

human subjects.716

17

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-717

tion of the paper involves human subjects, then as much detail as possible should be718

included in the main paper.719

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,720

or other labor should be paid at least the minimum wage in the country of the data721

collector.722

15. Institutional review board (IRB) approvals or equivalent for research with human723

subjects724

Question: Does the paper describe potential risks incurred by study participants, whether725

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)726

approvals (or an equivalent approval/review based on the requirements of your country or727

institution) were obtained?728

Answer: [NA]729

Justification: The research involves no human subjects, thus IRB or equivalent ethical review730

is not applicable.731

Guidelines:732

• The answer NA means that the paper does not involve crowdsourcing nor research with733

human subjects.734

• Depending on the country in which research is conducted, IRB approval (or equivalent)735

may be required for any human subjects research. If you obtained IRB approval, you736

should clearly state this in the paper.737

• We recognize that the procedures for this may vary significantly between institutions738

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the739

guidelines for their institution.740

• For initial submissions, do not include any information that would break anonymity (if741

applicable), such as the institution conducting the review.742

16. Declaration of LLM usage743

Question: Does the paper describe the usage of LLMs if it is an important, original, or744

non-standard component of the core methods in this research? Note that if the LLM is used745

only for writing, editing, or formatting purposes and does not impact the core methodology,746

scientific rigorousness, or originality of the research, declaration is not required.747

Answer: [NA]748

Justification: The methodology does not involve using large language models (LLMs) as749

part of the core methodological contribution; any usage would be solely related to standard750

writing or formatting purposes.751

Guidelines:752

• The answer NA means that the core method development in this research does not753

involve LLMs as any important, original, or non-standard components.754

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)755

for what should or should not be described.756

18

https://neurips.cc/Conferences/2025/LLM

A Optimal Support of The Codebook Distribution757

Proof of Theorem 1. First, we assume supp(PB) = supp(PA). Then for any z ∈ supp(PA),758

there exist a sequence of points in supp(PB) that converge to z. Let {ek}Kk=1 be K code vectors759

independently generated from PB . Then the empirical distribution of {ek}Kk=1 tends to PB as the760

size K tends to infinity. Since Ω = supp(PA) is a bounded region, we have the following:761

sup
z∈supp(PA)

min
k

∥z − ek∥2 = sup
z∈supp(PB)

min
k

∥z − ek∥2
p→ 0, as K → ∞.

This quantity is an upper bound on the quantization error E({zi}; {ek}). Thus,762

sup
{zi}⊆Ω

E
(
{zi}Ni=1; {ek}Kk=1

)
≤ sup

z∈Ω

min
k

∥z − ek∥2
p→ 0, as K → ∞.

This demonstrates that PB has vanishing quantization error asymptotically. Furthermore, for any K763

code vectors {ek}Kk=1 independently drawn from PB , we have {ek}Kk=1 ⊆ Ω. Since the empirical764

distribution of {zi}Ni=1 tends to PA as the feature sample size N tends to infinity, we can easily show765

that for any fixed {ek}Kk=1 ⊆ Ω, the codebook utility rate satisfies766

U
(
{zi}Ni=1, {ek}Kk=1

) p→ 1, as N → ∞.

This shows that {ek}Kk=1 attains full utilization asymptotically, and thus PB attains full utilization767

asymptotically.768

On the other hand, we assume PB attains full utilization and vanishing quantization error asymp-769

totically. Then we first claim that supp(PA) ⊆ supp(PB). Since PB has vanishing quantization770

error asymptotically, then for any z ∈ supp(PA), there exist a sequence of points in supp(PB) that771

converge to z. This implies that supp(PA) ⊆ supp(PB) and thus supp(PA) ⊆ supp(PB).772

To show supp(PB) = supp(PA), it remains to show supp(PB) ⊆ supp(PA). In fact, if773

supp(PB) ⊆ supp(PA) does not hold, then there exists an open region R ⊆ supp(PB)−supp(PA)774

such that PB(R) > 0 and775

min
z∈supp(PA),z′∈R

∥z − z′∥ ≥ ϵ0

for some ϵ0 > 0. Since supp(PA) ⊆ supp(PB), then there exists a sufficiently large K0 such that776

the event777 {
Generating{ek}K0

k=1 i.i.d. from PB s.t. {ek} ⊆ supp(PA), sup
z∈supp(PA)

min
k

∥z − ek∥ < ϵ0

}
(7)

has some positive probability C > 0. Then with a positive probability of at least C · PB(R), we can778

pick the first K0 code vectors from Equation (7) and the (K0 + 1)th code vector from R. For any779

such codebook of size K0 + 1, we know the (K0 + 1)th code vector will never be used regardless of780

the choice of the feature set {zi}. Therefore, the codebook utilization781

sup
{zi}

U
(
{ek}K0+1

k=1 ; {zi}
)
≤ K0

K0 + 1
< 1.

This contradicts the property that PB attains full utilization asymptotically. Thus, supp(PB) ⊆782

supp(PA) must hold. This concludes the proof.783

B Statistical Distances over Gaussian Distributions784

We first introduce the definition of Wasserstein distance.785

Definition 4. The Wasserstein distance or earth-mover distance with p norm is defined as below:786

Wp(Pr,Pg) = (inf
γ∈Π(Pr,Pg)

E(x,y)∼γ

[
∥x− y∥p

]
)1/p . (8)

19

where Π(Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals are Pr and Pg787

respectively. Intuitively, when viewing each distribution as a unit amount of earth/soil, the Wasserstein788

distance (also known as earth-mover distance) represents the minimum cost of transporting “mass”789

from x to y to transform distribution Pr into distribution Pg . When p = 2, this is called the quadratic790

Wasserstein distance.791

In this paper, we achieve distributional matching using the quadratic Wasserstein distance under Gaus-792

sian distribution assumptions. We also examine other statistical distribution distances as potential793

loss functions for distributional matching and compare them with the Wasserstein distance. Specif-794

ically, we provide the Kullback-Leibler divergence and the Bhattacharyya distance over Gaussian795

distributions in Lemma 5 and Lemma 6. It can be observed that the KL divergence for two Gaussian796

distributions involves calculating the determinant of covariance matrices, which is computationally797

expensive in moderate and high dimensions. Moreover, the calculation of the determinant is sensitive798

to perturbations and it requires full rank (In the case of not full rank, the determinant is zero, rendering799

the logarithm of zero undefined), which can be impractical in many cases. Other statistical distances800

like Bhattacharyya Distance suffer from the same issue. In contrast, quadratic Wasserstein distance801

does not require the calculation of the determinant and full-rank covariance matrices.802

Lemma 5 (Kullback-Leibler divergence [22]). Suppose two random variables Z1 ∼ N (µ1,Σ1) and803

Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, then Kullback-Leibler divergence between804

Z1 and Z2 is:805

DKL(Z1,Z2) =
1

2
((µ1 − µ2)

TΣ−1
2 (µ1 − µ2) + tr(Σ−1

2 Σ1 − I) + ln
detΣ2

detΣ1
).

Lemma 6 (Bhattacharyya Distance [4]). Suppose two random variables Z1 ∼ N (µ1,Σ1) and806

Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, Σ = 1
2 (Σ1 +Σ2), then bhattacharyya807

distance between Z1 and Z2 is:808

DB(Z1,Z2) =
1

8
(µ1 − µ2)

TΣ−1(µ1 − µ2) +
1

2
ln

detΣ√
detΣ1 detΣ2

.

C Understanding Codebook Collapse Through the Lens of Voronoi Partition809

(a) (b) (c) (d)

Figure 8: Visualization of the Voronoi partition. The symbols · and × represent the feature and code vectors,
respectively.

C.1 The Definition of Voronoi Partition and Its Connection to Codebook Collapse810

Let X be a metric space with distance function d(·, ·), and given a set of code vectors {ek}Kk=1. The811

Voronoi cell, or Voronoi region, Rk, associated with the code vector ek is the set of all points in X812

whose distance to ek is not greater than their distance to the other code vectors ej , where j is any813

index different from k. Mathematically, this can be expressed as:814

Rk = {x ∈ X ; d(x, ek) ≤ d(x, ej),∀j ̸= k}, (9)

The Voronoi diagram is simply the tuple of cells {Rk}Kk=1. As depicted in Figure 8, there are 12815

code vectors which partition the metric space into 12 regions according to the Rk. When d is a a816

distance function based on the ℓ2 norm, the vector quantization (VQ) process can be equivalently817

understood through the regions Rk as:818

∀zi ∈ Rj , z′
i = argmin

e∈{ek}
∥zi − e∥ = ej (10)

20

Where zi is an arbitrary feature vector. Equation 10 offers an alternative approach for nearest neighbor819

search in code vector selection. Specifically, this involves first identifying the partition region Rj to820

which the feature vector zi belongs, and then directly obtaining the nearest code vector ej based on821

the region’s id j.822

Relation to Codebook Collapse The most severe case of codebook collapse occurs when all823

feature vectors belong to the same partition region. As illustrated in Figure 8(a), all feature vectors824

are confined to a single partition region in the upper right corner, resulting in the utilization of only825

one code vector. To prevent codebook collapse, it is crucial for feature vectors to be distributed across826

all partition regions as evenly as possible, as depicted in Figure 8(d).827

C.2 Why Existing Vector Quantization Strategies Fail to Address Codebook Collapse828

This section offers an in-depth analysis of why existing VQ methods inherently struggle to address829

codebook collapse. We use Vanilla VQ [36] and VQ methods based on the k-means algorithm [29]830

as illustrative examples. These two approaches share similarities in their assignment step but differ in831

their update mechanisms.832

Assignment Step Suppose there is a set of feature vectors {zi}Ni=1 and code vectors {ek}Kk=1. In833

the t-th assignment step, both algorithms partition the feature space into Voronoi cells, based on834

which we assign all feature vectors to their nearest code vectors as follows:835

R(t−1)
k = {x ∈ X ;

∥∥∥x− e
(t−1)
k

∥∥∥2
2
≤

∥∥∥x− e
(t−1)
j

∥∥∥2
2
,∀j ̸= k}, S(t)

k = {zi; zi ∈ R(t−1)
k } (11)

Update Step in Vanilla VQ It updates the code vectors using gradient descent through the loss836

function provided below.837

L =
1

N

K∑
k=1

∑
zm∈S(t)

k

∥∥∥zm − e
(t−1)
k

∥∥∥2
2

(12)

Update Step in k-means-based VQ It updates the code vectors by using an exponential moving838

average of the feature vectors assigned to each code vector:839

e
(t)
k = αe

(t−1)
k + (1− α)

1

|S(t)
k |

∑
zm∈S(t)

k

zm (13)

Codebook Collapse in Two VQs While both VQ methods employ different update strategies for840

the code vectors, they still suffer from codebook collapse. This is because, in the assignment step, the841

learnable Voronoi partition does not guarantee that all Voronoi cells will be assigned feature vectors,842

as illustrated in Figures 8(a) to 8(c). Especially when the codebook size is large, there are more843

Voronoi cells, and inevitably, some cells remain unassigned. In such cases, the corresponding code844

vectors remain unupdated and underutilized.845

Connection to Distribution Matching and Solutions In Appendix H, we demonstrated through846

synthetic experiments that the effectiveness of both VQ methods heavily relies on the codebook847

initialization. Only when the codebook distribution is initialized to approximate the feature distribu-848

tion can codebook collapse be effectively mitigated. However, in practical applications, the feature849

distribution is often unknown and evolves dynamically during training. To address this issue, we850

propose an explicit distributional matching constraint that ensures the codebook distribution aligns851

closely with the feature distribution, thereby achieving 100% codebook utilization.852

D Complementary Roles of Criterion 2 and 3 in Assessing Codebook Collapse853

To explain the complementary roles of Criterion 2 and 3 (defined in Section 2.2), we provide visual854

elucidations for enhanced clarity and understanding. The metric U is capable of quantifying the855

completeness of codebook utilization. As depicted in the Figure 9(a) and 9(b), the values of U are856

21

e1 e2 e3 e4 e5 e6 e7 e8 e9 e100.0

0.2

0.4

0.6

0.8

1.0

(a) (50%, 4.92)

e1 e2 e3 e4 e5 e6 e7 e8 e9 e100.0

0.2

0.4

0.6

0.8

1.0

(b) (100%, 10.00)

e1 e2 e3 e4 e5 e6 e7 e8 e9 e100.0

0.2

0.4

0.6

0.8

1.0

(c) (100%, 1.02)

e1 e2 e3 e4 e5 e6 e7 e8 e9 e100.0

0.2

0.4

0.6

0.8

1.0

(d) (100%, 4.92)

Figure 9: Visualization of the evaluation criteria (U , C).

50% and 100%, respectively2. However, U alone is insufficient to evaluate the degree of codebook857

collapse, as it fails to address the scenario depicted in Figure 9(c). Although all code vectors are858

utilized, the code vector e3 excessively dominates the codebook utilization, resulting in an extreme859

imbalance. This imbalanced codebook utilization can be considered a form of codebook collapse,860

despite U reaching its maximum value. This observation motivates the proposal of Criterion 3, which861

is capable of gauging the imbalance or uniformity inherent in codebook utilization.862

When compared in Figure 9(b) and 9(c), the value of C are 10.00 and 1.02, respectively, demonstrating863

that Criterion 3 is capable of distinguishing the imbalance of code vector utilization pk under864

conditions where cases share the same U , e.g., U = 100%. Additionally, Criterion 3 categorizes865

Figure 9(c) as indicative of codebook collapse, as the value C nearly reaches its minimum of 1.0, a866

result that resonates with our desired interpretation. However, it is essential to note that Criterion 3867

alone does not suffice to evaluate the degree of codebook collapse. When scrutinizing Figure 9(a)868

and 9(d), despite the identical C, there exists a stark disparity in U . This observation underscores that869

the value of C is inadequate for quantifying the proportion of actively utilized code vectors.870

In this paper, we adopt the combination of Criterion 2 and 3 to quantitatively assess the extent of871

codebook collapse. A robust mitigation of codebook collapse is indicated solely when both U and C872

exhibit substantial values.873

E Interpretation of Qualitative Distributional Matching Results in Figure 3874

This section interprets the experimental results presented in Figure 3. The VQ process relies on nearest875

neighbor search for code vector selection. As evident from Figure 3(a) to 3(d), actively selected code876

vectors are predominantly those located in close proximity to or within the feature distribution, while877

distant ones remain unselected. This leads to highly uneven code vector utilization pk, with those878

closer to the feature distribution being excessively used. This elucidates the significantly low U and879

C observed in Figure 3(a). Furthermore, a notable quantization error, e.g., E = 1.19 in Figure 3(a),880

arises when the codebook and feature distributions are mismatched, forcing feature vectors outside881

the codebook to settle for distant code vectors. Conversely, as the disk centers align, leading to a882

closer match between the two distributions, an increased number of code vectors become actively883

engaged. Additionally, code vectors are utilized more uniformly, and feature vectors can select nearer884

counterparts. This accounts for the improvement of criterion triple values towards optimality as the885

distributions align.886

Analogously, we can employ nearest neighbor search to interpret the second case. When code vectors887

are distributed within the range of feature vectors, as illustrated in Figure 3(e) and Figure 3(f), the888

majority of code vectors would be actively utilized, ensuring high U . However, the utilization of889

these code vectors is not uniform; code vectors on the periphery of the codebook distribution are890

more frequently used, leading to relatively low C. Feature vectors on the periphery will have larger891

distances to their nearest code vectors, resulting in higher E . Conversely, when feature vectors fall892

within the range of code vectors, as depicted in Figure 3(g) and Figure 3(h), outer code vectors remain893

largely unused, leading to a lower U and C. Since only inner code vectors are active, each feature894

vector can find a nearby counterpart, maintaining low E .895

2This discrepancy arises because, in Figure 9(a) only half of code vectors’ utilization pk (as defined in
Criterion 3) exceeds zero, whereas in Figure 9(b), the utilization pk of of all code vectors surpasses zero.

22

0.0 0.5 1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(a) E w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(b) E w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(c) E w.r.t. N

1 2 3 4 5 6
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(d) E w.r.t. K

1 2 3 4 5 6
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(e) E w.r.t. d

1 2 3 4 5 6
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(f) E w.r.t. N

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(g) U w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(h) U w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(i) U w.r.t. N

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(j) U w.r.t. K

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(k) U w.r.t. d

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(l) U w.r.t. N

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(m) C w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(n) C w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(o) C w.r.t. N

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(p) C w.r.t. K

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(q) C w.r.t. d

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(r) C w.r.t. N

Figure 10: Quantitative analyses of the criterion triple when PA and PB are Gaussian distributions.

F Supplementary Quantitative Analyses on Distribution Matching: Further896

Supporting the Main Findings in Section 2.3897

To further elucidate the effects of the distributional matching, we conduct more quantitative analyses898

centered around the criterion triple (E ,U , C).899

F.1 Codebook Distribution and Feature Distribution are Gaussian Distributions900

We begin by assuming that the distributions PA and PB are Gaussian. We generate a set of feature901

vectors {zi}Ni=1 from Nd(0, I) and a set of code vectors {ek}Kk=1 from Nd(µ ·1, I)3, with µ varying902

within {0.0, 0.5, 1.0, 1.5, 2.0, 2.5}. The criterion triple results are presented in Figures 10(a) to 10(c),903

Figures 10(g) to 10(i), and Figures 10(m) to 10(o). Across all tested configurations of K, d,N , we904

consistently observe that when µ = 0 — indicating identical distributions between PA and PB —905

the criterion triple achieves the lowest E , highest U , and largest C. This empirical evidence reinforces906

the effectiveness of aligning feature and codebook distributions in VQ.907

Additionally, we further analyze the criterion triple by varying the covariance matrix. We sample a908

set of feature vectors {zi}Ni=1 from the distribution Nd(0, I) and a set of code vectors {ek}Kk=1 from909

Nd(0, σ
2I), where σ is selected from {1, 2, 3, 4, 5, 6}. The results for the criterion triple are shown910

in Figures 10(d) to 10(f), Figures 10(j) to 10(l), and Figures 10(p) to 10(r). When σ = 1, indicating911

identical distributions between PA and PB , all three evaluation criteria reach their optimal values:912

the lowest E , highest U , and largest C across all tested values of K, d,N . This result corroborates our913

earlier findings.914

F.2 Codebook Distribution and Feature Distribution are Unifrom Distributions915

The above conclusion holds when PA and PB are other types of distributions, such as the uniform916

distribution. As shown in Figure 11, we sample a set of feature vectors {zi}Ni=1 from the distribution917

Unifd(−1, 1) and a set of code vectors {ek}Kk=1 from Unifd(ν − 1, ν + 1), where ν is selected from918

the set {0.0, 0.5, 1.0, 1.5, 2.0, 2.5} or from Unifd(−ζ, ζ), with ζ drawn from the set {1, 2, 3, 4, 5, 6}.919

We observe that when µ = 0 or ζ = 1—indicating that PA and PB have identical distributions—the920

performance in terms of the criterion triple is optimal, achieving the lowerest E , the highest U , and921

the largest C across all tested values of K, d,N . Therefore, we conclude that our quantitative analyses922

are distribution-agnostic and can be generalized to other distributions.923

31 represents the vector of all ones.

23

0.0 0.5 1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(a) E w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(b) E w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(c) E w.r.t. N

1 2 3 4 5 6
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(d) E w.r.t. K

1 2 3 4 5 6
5

3

1

1

3

5

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(e) E w.r.t. d

1 2 3 4 5 6
0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(f) E w.r.t. N

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(g) U w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(h) U w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(i) U w.r.t. N

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(j) U w.r.t. K

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(k) U w.r.t. d

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

)

N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(l) U w.r.t. N

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(m) C w.r.t. K

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(n) C w.r.t. d

0.0 0.5 1.0 1.5 2.0 2.5
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(o) C w.r.t. N

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) K = 128
K = 256
K = 512
K = 1024
K = 2048
K = 4096
K = 8192
K = 16384

(p) C w.r.t. K

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256

(q) C w.r.t. d

1 2 3 4 5 6
1

0

1

2

3

4

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

) N = 10000
N = 50000
N = 100000
N = 200000
N = 300000
N = 500000
N = 800000
N = 1000000

(r) C w.r.t. N

Figure 11: Quantitative analyses of the criterion triple when PA and PB are uniform distributions.

G The Significant Impact of Distribution Variance on Quantization Error924

As discussed in Section 2.3 and 2.4, the optimal criterion triple is achieved when the distributions PA925

and PB are identical. In this section, we further analyze the criterion triple by the lens of distribution926

variance under the condition that both distributions are identical. Specifically, we first sample a set of927

feature vectors {zi}Ni=1 along with a set of code vectors {ek}Kk=1 from the distribution Nd(0, σ
2I) or928

the distribution Unifd(−ζ, ζ). We then calculate the evaluation criteria according to their definitions929

in Section 2.2. As demonstrated in Table 4, σ and ζ have a substantial impact on E , while U and C930

remains largely unaffected.931

Table 4: The criterion triple influence by the distribution variance.
Evaluation Criteria σ ζ

0.0001 0.001 0.01 0.1 1.0 0.0001 0.001 0.01 0.1 1.0
E 1.25e-8 1.25e-6 1.25e-4 1.24e-2 1.25 3.27e-9 3.27e-7 3.27e-5 3.27e-3 0.327
U 0.9934 0.9938 0.9940 0.9934 0.9941 0.9993 0.9986 0.9990 0.9992 0.9989
C 7265.3 7260.3 7267.7 7255.0 7275.8 7380.2 7372.2 7387.9 7397.5 7391.6

This experimental finding suggests that when the distribution variance of the feature vectors is932

uncontrollable or unknown, reporting a comparison of quantization error among various VQ methods933

is unreasonable. This is because the improvement in quantization error is predominantly attributed to934

the reduction in distribution variance rather than the effectiveness of the VQ methods. To evaluate935

various VQ methods in terms of the criterion triple, we establish an atomic and fair experimental936

setting in Appendix H, where the feature distributions for all VQ methods are identical.937

H A Fair Setting to Evaluate Criterion Triple Evaluation938

The distribution variance has a substantial impact on E , as detailed in Appendix G. Therefore, the939

comparison of the quantization error among various VQ methods is unreasonable when the variance940

of the feature vectors is uncontrollable or unknown. This is because any improvement in quantization941

error is primarily attributed to the variance reduction rather than the inherent effectiveness of the VQ942

methods. To ensure a fair criterion triple evaluation, we provide a controlled experimental setting.943

Specifically, we fix the feature distributions for all VQ methods to the same Gaussian distributions944

by setting zi ∼ Nd(µ · 1, I). Additionally, we initialize the codebook distribution as the standard945

Gaussian distribution across all VQ methods by sampling ek ∼ Nd(0, I). In this experimental setup,946

the distribution variance is controlled to be the same for all VQ methods.947

Our baseline includes Vanilla VQ [36], EMA VQ [29], Online VQ [42], and Linear VQ (a linear layer948

projection for frozen code vectors) [43, 44]. In all VQ algorithms, we treat the sampled code vectors949

24

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

) Wasserstein VQ
EMA VQ
Online VQ
Vanilla VQ
Linear VQ

(a) E w.r.t. µ

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

) Wasserstein VQ
EMA VQ
Online VQ
Vanilla VQ
Linear VQ

(b) U w.r.t. µ

0 2 4 6 8
0

2

4

6

8

10

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

)

Wasserstein VQ
EMA VQ
Online VQ
Vanilla VQ
Linear VQ

(c) C w.r.t. µ

0 2 4 6 8
0

5

10

15

20

25

W
as

se
rs

te
in

 D
is

ta
nc

e
(

) Wasserstein VQ
EMA VQ
Online VQ
Vanilla VQ
Linear VQ

(d) LW w.r.t. µ

0 2 4 6 8
1.5

1.0

0.5

0.0

0.5

1.0

Q
ua

nt
iz

at
io

n
Er

ro
r (

lo
g

) Wasserstein VQ
EMA VQ
Online VQ
Vanilla VQ
Linear VQ

(e) E w.r.t. ν

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

C
od

eb
oo

k
U

til
iz

at
io

n
(

) Wasserstein VQ
EMA VQ
Online VQ
Vanilla VQ
Linear VQ

(f) U w.r.t. ν

0 2 4 6 8
0

2

4

6

8

10

C
od

eb
oo

k
Pe

rp
le

xi
ty

 (l
og

)

Wasserstein VQ
EMA VQ
Online VQ
Vanilla VQ
Linear VQ

(g) C w.r.t. ν

0 2 4 6 8
0

5

10

15

20

25

W
as

se
rs

te
in

 D
is

ta
nc

e
(

) Wasserstein VQ
EMA VQ
Online VQ
Vanilla VQ
Linear VQ

(h) LW w.r.t. ν

Figure 12: The performance metrics (E ,U , C) for various VQ approaches. For panels (a) to (d), the codebook
distribution is initialized as a Gaussian distribution, while for panels (e) to (h), the codebook distribution is
initialized as a uniform distribution.

as trainable parameters and optimize them using the respective algorithms. See detailed experimental950

specifications in Appendix I.4.951

As visualized in Figures 12(a) to 12(c), Wasserstein VQ outperforms all baselines in terms of952

the criterion triple (E ,U , C), especially when the feature distribution and the initialized codebook953

distribution have large deviations. Although existing VQ methods can perform well with µ = 0,954

this scenario is impractical, as the feature distribution is unknown and changes dynamically during955

training. When there is a large initial distribution gap between the codebook and the features (at956

µ = 5), all existing VQ methods perform poorly. This indicates that the effectiveness of existing VQ957

methods is heavily dependent on their codebook initialization.958

As observed in Figure 12(d), the Wasserstein distance of all existing VQ methods is obviously959

larger compared to that of Wasserstein VQ when µ ≥ 1.0, indicating that existing methods cannot960

achieve effective distribution alignment between features and the codebook. Conversely, Wasserstein961

VQ eliminates the reliance on codebook initialization via proposed explicit distributional matching962

regularization, thereby delivering the best performance in criterion metrics.963

We can arrive at the same conclusion when the feature and codebook distributions are uniform, in964

which feature vectors are generated from Unifd(ν − 1, ν + 1) and code vectors are initialized from965

Unifd(−1, 1). As shown in Figures 12(e) to 12(h), Wasserstein VQ performs the best. This suggests966

that, despite being based on Gaussian assumptions, the effectiveness of our method exhibits a certain967

degree of distribution-agnostic behavior.968

I The Details of Synthetic Experiments969

I.1 Experimental Details in Section 2.3970

As depicted in Figure 3 in Section 2.3, we conduct a qualitative analyses of the criterion triple.971

Specifically, we sample a set of feature vectors {zi}Ni=1 from within the red circle, and a collection of972

code vectors {ek}Kk=1 from within the green circle, with parameters set to K = 400, N = 10000973

and d = 2 for the calculation of the criterion triple (E ,U , C). For the visualization, we select 10% of974

the feature vectors and 90% of the code vectors for plotting.975

I.2 Experimental Details in Appendix F976

As illustrate in Figure 10 in Appendix F.1, we undertake comprehensive quantitative analyses centered977

around the criterion triple (E ,U , C). In these analyses, we assume that PA and PB are Gaussian978

distributions, from which we sample a set of feature vectors {zi}Ni=1 and a collection of code vectors979

25

Table 5: Hyperparameters for the experiments in Table 1, 2, 3, and Table 6 and 7.

Frameworks VQ-VAE VQ-VAE VQ-VAE VQGAN

Dataset CIFAR-10/SVHN FFHQ ImageNet FFHQ
Input size 32× 32× 3 256× 256× 3 256× 256× 3 256× 256× 3
Latent size 8× 8× 8 16× 16× 8 16× 16× 8 16× 16× 8
encoder/decoder channels 64 64 64 128
encoder/decoder channel mult. [1, 1, 2] [1, 1, 2, 2, 4] [1, 1, 2, 2, 4] [1, 1, 2, 2, 4]
Batch size 128 32 32 64
Initial Learning rate lr 5× 10−5 5× 10−5 5× 10−5 5× 10−4

Codebook Loss Coefficient 1.0 1.0 1.0 1.0
Perceptual loss Coefficient 0 0 0.0 1.0
Adversarial loss Coefficient 0 0 0.0 0.2
Codebook dimensions 8 8 8 8
Training Epochs 50 30 4 200
GPU Resources V100 16GB A100 40GB A100 40GB 2 A100 80GB

{ek}Kk=1. The default parameters are set to N = 200, 000, K = 1024, and d = 32 for all figures980

unless otherwise specified. For instance, in Figure 10(a), N and d are taken at their default values,981

while the K is varied within the set {128, 256, 512, 1024, 2048, 4096, 8192, 16284}. Additionally,982

each synthetic experiment is repeated five times, and the average results are reported, along with the983

calculation of 95% confidence intervals. In all figures, mean results are represented by points, while984

the confidence intervals are shown as shaded areas. Identical parameter settings are employed when985

PA and PB are uniform distributions, as illustrated in Figure 11 in Appendix F.2.986

I.3 Experimental Details in Appendix G987

We set K = 8192, d = 8, N = 100000 when calculating the criterion triple (E ,U , C) in Appendix G.988

Each synthetic experiment is repeated five times, and the average results are reported in Table 4.989

I.4 Experimental Details in Appendix H990

We provide experimental details of Figure 12 in Appendix H. In our experimental setup, we evaluate991

five distinct VQ algorithms using the criterion triple (E ,U , C). All experiments run on a single992

NVIDIA A100 GPU, with a codebook size K of 16,384 and dimensionality d of 8 across all993

algorithms. Each algorithm trains for 2,000 steps, with 50,000 feature vectors sampled from the994

specified Gaussian distribution at each step. For Wasserstein VQ, Vanilla VQ, and VQ + MLP, we995

use the SGD optimizer for training. For VQ EMA and Online Clustering, we use classical clustering996

algorithms—k-means [5] and k-means++[1]—to update code vectors.997

J Experimental Details in Section 4998

Data Augmentation For FFHQ and ImageNet-1k datasets, we follow LLama Gen [33] and apply999

iterative box downsampling to resize images to 256×256 resolution. For CIFAR-10 and SVHN, the1000

images are kept at their original resolution. Details are provided in Table 5.1001

Encoder-Decoder Architecture For the ImageNet and FFHQ datasets, within both the VQ-VAE1002

and VQGAN frameworks, our proposed Wasserstein VQ and all baseline methods adopt identical1003

encoder-decoder architectures and parameter configurations, following the original VQGAN imple-1004

mentation [9]. Across all baselines in these frameworks, the encoder—a U-Net [31]—downscales1005

the input image by a factor of 16. For CIFAR-10 and SVHN datasets, the encoder reduces the input1006

resolution by a factor of 4. Further details are provided in Table 5.1007

Training Details All experiments employ identical training settings: we use the AdamW opti-1008

mizer [23] with β1 = 0.9 and β1 = 0.95, an initial learning rate lr, and apply a half-cycle cosine1009

decay schedule following a linear warm-up phase. For specific details on training epochs and batch1010

sizes, refer to Table 5.1011

Loss Weight For all three baselines, β is typically set to a value within the range [0.25, 2]. In1012

our experiments, β is set to a fixed value of 1.0. For our proposed Wasserstein VQ model, we set1013

26

Table 6: Comparison of VQ-VAEs trained on CIFAR-10 dataset following [36].
Approach Tokens Codebook Size U (↑) C (↑) PSNR(↑) SSIM(↑) Rec. Loss (↓)
Vanilla VQ 64 8192 2.7% 186.9 27.15 0.83 0.0147
EMA VQ 64 8192 99.7% 6416.1 29.43 0.88 0.0095
Online VQ 64 8192 22.1% 995.4 28.20 0.85 0.0123
Wasserstein VQ 64 8192 100.0% 7781.8 29.88 0.90 0.0085
Vanilla VQ 64 16384 1.6% 220.3 27.36 0.84 0.0141
EMA VQ 64 16384 80.8% 10557.3 29.43 0.88 0.0093
Online VQ 64 16384 13.4% 798.5 27.54 0.82 0.0141
Wasserstein VQ 64 16384 100.0% 15583.7 30.19 0.90 0.0080
Vanilla VQ 64 32768 0.5% 154.8 27.10 0.83 0.0150
EMA VQ 64 32768 54.4% 14427.0 29.57 0.88 0.0091
Online VQ 64 32768 7.2% 1556.0 28.84 0.87 0.0106
Wasserstein VQ 64 32768 99.0% 29845.1 30.63 0.91 0.0071

Table 7: Comparison of VQ-VAEs trained on SVHN dataset following [36].
Approach Tokens Codebook Size U (↑) C (↑) PSNR(↑) SSIM(↑) Rec. Loss (↓)
Vanilla VQ 64 8192 8.1% 533.1 37.81 0.97 0.0018
EMA VQ 64 8192 56.8% 3363.0 40.38 0.98 0.0010
Online VQ 64 8192 27.8% 1325.1 39.04 0.97 0.0016
Wasserstein VQ 64 8192 88.2% 6154.5 41.04 0.98 0.0009
Vanilla VQ 64 16384 3.4% 446.0 37.87 0.97 0.0017
EMA VQ 64 16384 22.2% 2593.8 40.19 0.98 0.0011
Online VQ 64 16384 13.5% 1090.5 39.12 0.97 0.0014
Wasserstein VQ 64 16384 87.5% 11967.2 41.49 0.98 0.0008
Vanilla VQ 64 32768 1.8% 467.5 37.87 0.97 0.0017
EMA VQ 64 32768 35.8% 7662.9 40.25 0.98 0.0010
Online VQ 64 32768 7.0% 1334.8 39.26 0.97 0.0014
Wasserstein VQ 64 32768 88.7% 24376.3 41.84 0.98 0.0008

β to a much smaller value, e.g., β = 0.1 for VQ-VAE and VQGAN. The smaller β values enable1014

the Wasserstein distance to dominate the loss function, thereby more effectively narrowing the gap1015

between the distributions.1016

K VQ-VAE Performance on CIFAR-10 and SVHN datasets1017

Due to space limitations in the main text, we have relocated the VQ-VAE evaluation on CIFAR-10 and1018

SVHN datasets to the appendix. As demonstrated in Table 6 and 7, our Wasserstein VQ consistently1019

outperforms all baselines across both datasets, achieving superior results on nearly all evaluation1020

metrics regardless of codebook size. Notably, we observe that Wasserstein VQ fails to reach 100%1021

codebook utilization on SVHN, which may be attributed to the dataset’s limited diversity.1022

L Analyses on Codebook Size and Dimensionality1023

We investigate the impact of the codebook size K on the performance of VQ by varying across a1024

wide range: K ∈ [1024, 2048, 4096, 8192, 16384, 50000, 100000]. As shown in Table 1 and Table 8,1025

the vanilla VQ model suffers from severe codebook collapse even with a relatively small K, such1026

as K = 1024. In contrast, improved algorithms like EMA VQ and Online VQ can handle smaller1027

codebook sizes effectively, but they still experience codebook collapse when K is very large, e.g.,1028

K ≥ 50000. Notably, the Wasserstein VQ model consistently maintains 100% codebook utilization,1029

irrespective of the codebook size. This underscores the effectiveness of distributional matching via1030

the quadratic Wasserstein distance in mitigating the issue of codebook collapse.1031

We further investigate the impact of codebook dimensionality d on VQ performance. Conducting1032

experiments on CIFAR-10 with dimensionality d ranging from 2 to 32, our proposed Wasserstein VQ1033

consistently outperforms all baselines regardless of dimensionality, as shown in Table 9. Notably, we1034

observe the curse of dimensionality phenomenon—performance degrades as dimensionality increases.1035

Vanilla VQ exhibits the most severe degradation, followed by EMA VQ and Online VQ, while our1036

Wasserstein VQ shows only minimal codebook utilization reduction.1037

27

Table 8: Supplementary comparison of VQ-VAEs trained on FFHQ dataset following [36] w.r.t codebook size
K.

Approach Tokens Codebook Size U (↑) C (↑) PSNR(↑) SSIM(↑) Rec. Loss (↓)
Vanilla VQ 256 1024 51.7% 446.2 27.64 73.0 0.0125
EMA VQ 256 1024 74.1% 618.9 27.66 72.7 0.0125
Online VQ 256 1024 100.0% 759.3 28.08 74.0 0.0114
Wasserstein VQ 256 1024 100.0% 977.4 28.11 74.4 0.0112
Vanilla VQ 256 2048 27.6% 453.0 27.78 73.8 0.0121
EMA VQ 256 2048 100% 1608.0 28.39 74.9 0.0107
Online VQ 256 2048 100% 1462.6 28.34 74.6 0.0108
Wasserstein VQ 256 2048 100% 1840.5 28.32 75.3 0.0107
Vanilla VQ 256 4096 12.5% 435.0 27.84 73.7 0.0119
EMA VQ 256 4096 76.7% 2443.1 28.49 75.0 0.0104
Online VQ 256 4096 70.7% 1600.0 28.25 74.1 0.0110
Wasserstein VQ 256 4096 100% 3895.4 28.54 75.1 0.0102
Vanilla VQ 256 8192 5.6% 398.1 27.69 73.5 0.0122
EMA VQ 256 8192 28.9% 1839.2 28.39 74.8 0.0106
Online VQ 256 8192 34.9% 1474.4 28.15 73.9 0.0113
Wasserstein VQ 256 8192 100% 7731.5 28.81 76.2 0.0099

Table 9: Analysis On codebook dimension by the comparison of VQ-VAEs trained on CIFAR-10 dataset
following [36]. (The codebook size K is fixed to 16384)

Approach Tokens Codebook Dim U (↑) C (↑) PSNR(↑) SSIM(↑) Rec. Loss (↓)
Vanilla VQ 256 2 3.8% 532.2 27.00 0.80 0.0162
EMA VQ 256 2 97.6% 14460.3 27.25 0.80 0.0155
Online VQ 256 2 9.0% 611.8 26.62 0.79 0.0178
Wasserstein VQ 256 2 99.3% 12278.9 27.30 0.81 0.0155
Vanilla VQ 256 4 1.3% 176.7 27.15 0.83 0.0149
EMA VQ 256 4 99.8% 13153.9 29.57 0.89 0.0092
Online VQ 256 4 11.1% 877.7 26.69 0.79 0.0173
Wasserstein VQ 256 4 100.0% 15724.7 29.93 0.89 0.0087
Vanilla VQ 256 8 1.6% 220.3 27.36 0.84 0.0141
EMA VQ 256 8 80.8% 10557.3 29.43 0.88 0.0009
Online VQ 256 8 13.4% 798.5 27.54 0.82 0.0141
Wasserstein VQ 256 8 100.0% 15583.7 30.19 0.90 0.0080
Vanilla VQ 256 16 1.1% 150.8 27.05 0.83 0.0152
EMA VQ 256 16 32.5% 4169.2 29.31 0.88 0.0099
Online VQ 256 16 18.2% 2051.0 28.29 0.85 0.0122
Wasserstein VQ 256 16 99.2% 14832.2 30.27 0.91 0.0078
Vanilla VQ 256 32 0.7% 94.37 26.67 0.81 0.0165
EMA VQ 256 32 7.0% 942.7 28.24 0.85 0.0122
Online VQ 256 32 18.8% 2278.0 28.92 0.87 0.0104
Wasserstein VQ 256 32 96.4% 14056.9 30.39 0.91 0.0076

M Discussion with VQ-WAE [37]1038

VQ-WAE [37] introduces an alternative approach to distributional matching by employing Optimal1039

Transport to optimize codebook vectors. Compared with our proposed distributional matching1040

method, there are three key differences.1041

First, regarding theoretical contributions: VQ-WAE [37] claims that achieving optimal transport1042

(OT) between code vectors and feature vectors yields the best reconstruction performance. Their1043

notion of optimality encompasses both the VQ process and the encoder-decoder reconstruction1044

pipeline. While we contend that incorporating complex encoder-decoder functions renders rigorous1045

theoretical analysis intractable, VQ-WAE nevertheless asserts this conclusion. In contrast, our work1046

deliberately excludes encoder-decoder components, focusing solely on the VQ process, which admits1047

rigorous mathematical modeling. Through our proposed criterion triple, we theoretically prove that1048

distributional matching guarantees optimal performance.1049

Second, regarding distribution modeling: VQ-WAE [37] assumes both code vectors and feature1050

vectors follow uniform discrete distributions, whereas our method models them as continuous1051

distributions. Specifically, VQ-WAE [37] represents the distributions of feature vectors {zi}Ni=1 and1052

28

Table 10: Reconstruction performance (↓: the lower the better and ↑: the higher the better). †:Results
cited from VQ-WAE [37]. Codebook size K is fixed to 512.

Dataset Model Tokens SSIM ↑ PSNR ↑ LPIPS ↓ Rec. Loss (↓) Perplexity ↑
CIFAR10 VQ-VAE† 64 70 23.14 0.35 69.8

SQ-VAE† 64 80 26.11 0.23 434.8
VQ-WAE† 64 80 25.93 0.23 497.3

VQ-WAE (Our run) 64 13 14.60 0.41 0.247 1.0
Vanilla VQ 64 83 27.19 0.03 0.015 192.5

EMA VQ 64 84 27.97 0.04 0.013 436.1
Online VQ 64 84 27.87 0.04 0.013 451.4

Wasserstein VQ 64 86 28.26 0.03 0.012 481.7

SVHN VQ-VAE† 64 88 26.94 0.17 114.6
SQ-VAE† 64 96 35.37 0.06 389.8

VQ-WAE† 64 96 34.62 0.07 485.1
VQ-WAE (Our run) 64 25 15.87 0.26 0.2026 1.0

Vanilla VQ 64 97 38.18 0.01 0.0016 407.1
EMA VQ 64 97 38.35 0.01 0.0017 408.9

Online VQ 64 97 38.54 0.01 0.0017 421.5
Wasserstein VQ 64 97 38.25 0.01 0.0016 423.5

code vectors {ek}Kk=1 as empirical measures:1053

PA =
1

N

N∑
i=1

δzi , PB =
1

N

K∑
k=1

δek
(14)

where δzi and δek
denote Dirac delta functions centered at zi and ek, respectively. To align PA and1054

PB , VQ-WAE formulates the OT problem as:1055

min
P∈Π(PA,PB)

N∑
i=1

K∑
k=1

Pik∥zi − ek∥2,

s.t. P1K =
1

N
1N , P⊤1N =

1

K
1K , Pik ≥ 0 ∀i, k,

(15)

where P is the transport plan, and the feasible set is:1056

Π(PA,PB) =

{
P ∈ RN×K

+

∣∣∣∣ P1K =
1

N
1N , P⊤1N =

1

K
1K

}
(16)

In contrast, we simplify the distributional assumption by modeling PA and PB as Gaussian distribu-1057

tions.1058

Third, regarding computational efficiency, The OT problem in VQ-WAE is prohibitively complex,1059

whereas our quadratic Wasserstein distance incurs minimal overhead. To mitigate complexity, VQ-1060

WAE employs a Kantorovich potential network. However, upon reproducing their code (no official1061

implementation was released; we derived it from their ICLR 2023 supplementary material4), we1062

observed severe non-convergence—the method degenerated to using a single code vector, failing1063

to achieve distributional matching. Notably, VQ-WAE underperformed all other VQ baselines1064

(Table 10).1065

In comparison, our quadratic Wasserstein distance (Equation 4) requires only low-dimensional matrix1066

operations (e.g., d = 8), achieving superior performance and effective matching (Figure 5).1067

4See https://openreview.net/forum?id=Z8qk2iM5uLI. We includes the reproduced code and training
logs of VQ-WAE in our supplementary materials.

29

https://openreview.net/forum?id=Z8qk2iM5uLI

	Introduction
	Understanding Distribution Matching
	An Overview of Vector Quantization
	Evaluation Criteria
	The Effects of Distribution Matching
	Theoretical Analyses

	Methodology
	Distribution Matching via Wasserstein Distance
	Integration into the VQ-VAE Framework
	Integration into the VQGAN Framework

	Experiments
	Evaluation on VQ-VAE Framework
	Evaluation on VQGAN Framework

	Conclusion
	Optimal Support of The Codebook Distribution
	Statistical Distances over Gaussian Distributions
	Understanding Codebook Collapse Through the Lens of Voronoi Partition
	The Definition of Voronoi Partition and Its Connection to Codebook Collapse
	Why Existing Vector Quantization Strategies Fail to Address Codebook Collapse

	Complementary Roles of Criterion 2 and 3 in Assessing Codebook Collapse
	Interpretation of Qualitative Distributional Matching Results in Figure 3
	Supplementary Quantitative Analyses on Distribution Matching: Further Supporting the Main Findings in Section 2.3
	Codebook Distribution and Feature Distribution are Gaussian Distributions
	Codebook Distribution and Feature Distribution are Unifrom Distributions

	The Significant Impact of Distribution Variance on Quantization Error
	A Fair Setting to Evaluate Criterion Triple Evaluation
	The Details of Synthetic Experiments
	Experimental Details in Section 2.3
	Experimental Details in Appendix F
	Experimental Details in Appendix G
	Experimental Details in Appendix H

	Experimental Details in Section 4
	VQ-VAE Performance on CIFAR-10 and SVHN datasets
	Analyses on Codebook Size and Dimensionality
	Discussion with VQ-WAE Vuong2023VectorQW

