

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS A CERTIFICATE OF TRUST: TASK-AWARE OOD DETECTION FOR SCIENTIFIC AI

Anonymous authors

Paper under double-blind review

ABSTRACT

Data-driven models are increasingly adopted in critical scientific fields like weather forecasting and fluid dynamics. These methods can fail on out-of-distribution (OOD) data, but detecting such failures in regression tasks is an open challenge. We propose a new OOD detection method based on estimating joint likelihoods using a score-based diffusion model. This approach considers not just the input but also the regression model’s prediction, providing a task-aware reliability score. Across numerous scientific datasets, including PDE datasets, satellite imagery and brain tumor segmentation, we show that this likelihood strongly correlates with prediction error. Our work provides a foundational step towards building a verifiable ‘certificate of trust’, thereby offering a practical tool for assessing the trustworthiness of AI-based scientific predictions.

1 INTRODUCTION

Deep learning is rapidly transforming scientific computing. Most problems in this domain involve the prediction of unknown, spatially and/or temporally varying physical properties – such as the temperature distribution in a solid or the flow velocity of a fluid – from given initial or boundary conditions. Traditionally, such problems have been addressed by physical models formulated as partial differential equations (PDEs) Evans (2022), and approximated with bespoke numerical algorithms Quarteroni & Valli (1994). However, data-driven approaches building on neural networks are now increasingly applied to scientific computing Mishra & Townsend (2024), achieving state-of-the-art accuracy in applications like numerical weather forecasting (Bodnar et al., 2025).

This novel data-driven paradigm offers significant advantages, including reduced computational costs and the ability to learn from historical data even when no tractable physical model exists (Lu et al., 2021; Li et al., 2021; Raonic et al., 2023; Pfaff et al., 2021). Nevertheless, purely data-driven approaches also introduce critical drawbacks, primarily concerning prediction reliability. Whereas PDE models reflect fundamental physical laws that remain valid even in extreme, previously unseen conditions, in contrast, data-driven approaches are inherently interpolative, and prediction accuracy can deteriorate for inputs far from the training distribution (Herde et al., 2024).

Machine learning models are typically built on a “closed-world” assumption, expecting test data to share the training data’s distribution (in-distribution, or ID). Yet, real-world scientific applications frequently encounter out-of-distribution (OOD) samples that require careful handling (Drummond & Shearer, 2006). As a consequence, deep learning predictions typically lack a *certificate of trustworthiness*, making it difficult to ascertain their accuracy and reliability on real-world inputs.

To address challenges related to ID/OOD distribution shifts, out-of-distribution detection has gained significant attention over the last decade Yang et al. (2024). This has led to the development of a number of OOD detection methods, including classification-, distance-, and density-based approaches. While this topic is extensively studied for tasks such as image classification, its application to regression, which constitute a vast majority of learning tasks in scientific computing, remains severely underexplored.

1.1 CONTRIBUTIONS

This work addresses the critical need for tools to assess the accuracy and reliability of neural network predictions, particularly for OOD data in scientific and engineering applications. While the ultimate

goal of this research direction is to furnish end-users with reliable "certificates" of prediction quality, the main contribution of the present paper is to propose the following important steps towards this objective,

- We develop and empirically validate a novel approach integrating *any* underlying regression model Ψ with a score-based diffusion model for OOD detection. Our proposed certificate is based on the evaluation of the estimated joint likelihood $p(x, y_{\text{pred}})$, with y_{pred} being the model's prediction for input x .
- Our approach is *zero-shot*, in the sense that it does not require any access to the ground truth predictions for the test distribution, for OOD detection. If some ground-truth test samples are available, we can go further than ID vs. OOD detection and provide an *a posteriori* estimate of the underlying prediction error.
- We tailor this method specifically for regression tasks, while also demonstrating its applicability to classification and segmentation problems.
- We perform an extensive evaluation across diverse scientific datasets, including PDE datasets (Wave and Navier-Stokes equations), a humidity forecasting problem utilizing satellite data, image classification benchmarks, and brain tumor segmentation.
- In all cases, we observe a very strong correlation between the model's prediction errors on ID and OOD data, and the estimated joint likelihood $p(x, y_{\text{pred}})$. We also adapt other certificates, derived as aggregated statistics from the probability-flow ODE, to our proposed setting, and show that these resulting baselines also provide satisfactory OOD detection, indicating the efficacy of the proposed approach based on the *joint* input/outputs.

2 RELATED WORK

A first approach to OOD detection, with applications to image classification, directly leverages latent features from the trained networks including outputs of the final or earlier layers. For example, Liu et al. (2020); Zhang et al. (2022) define explicit energy scores based on such features. Test samples with lower energy are considered ID and vice versa. A softmax approach for estimating conditional likelihoods is used in (Hendrycks & Gimpel, 2016; Hsu et al., 2020). Other works also use latent features (statistics) to distinguish ID/OOD samples, (Yang et al., 2024) and references therein.

OOD detection can be viewed through epistemic uncertainty, where estimating this uncertainty yields a scalar detection score. Methods like MC-Dropout Gal & Ghahramani (2016) and Rate-In Zeevi et al. (2025) use dropout at train and test time to generate stochastic forward passes that approximate Bayesian inference. Other approaches, such as Chan et al. (2024), use hybrid Bayesian–diffusion methods to estimate epistemic uncertainty.

Density-based methods capture the ID with probabilistic models, flagging inputs from low-density regions as OOD based on likelihoods. Early works employ (mixtures of) Gaussian distributions (Lee et al., 2018; Pleiss et al., 2019). Normalizing flows in classification tasks are leveraged in (Ren et al., 2019; Nalisnick et al., 2019c; Heng et al., 2024c; Goodier & Campbell, 2023). Some papers estimate likelihoods on latent features with diffusion models Ding et al. (2025); Järve et al. (2025).

Modeling the joint distribution $p(x, y)$ has been explored in Nalisnick et al. (2019a), where a hybrid model coupled a deep invertible transform with a generalized linear model, mainly focusing on OOD detection in classification. A hybrid approach was also put forward by Cao & Zhang (2022). An assessment of likelihood based OOD detection, identifying systematic biases in the context of image classification, is provided in Nalisnick et al. (2019b). Subsequent work revisiting these examples and proposing improvements include Ren et al. (2019); Nalisnick & et al. (2020). Other approaches explore "typicality" Nalisnick et al. (2019c), "local intrinsic dimension" Kamkari et al. (2024), and enhanced normalizing flows via a "approximate mass" penalty Chali et al. (2023) . Beyond likelihood estimation, applications of diffusion models to OOD detection include reconstruction-based approaches (Graham et al., 2023) and work by Heng et al. (2024a) (DiffPath), which perform OOD detection based on rate-of-change and curvature of diffusion paths.

The overwhelming proportion of work on OOD detection has been in the vision/image domains with classification as the learning objective. In contrast, there are very few articles that explore how OOD detection (and error certification in general) can be performed in scientific machine learning,

108 where bulk of the learning tasks are regression-based. A few exceptions to this rule are Elsharkawy
 109 & Kahn (2025), who introduce Contrastive Normalizing Flows for parameter estimation for high-
 110 energy physics, Fanelli et al. (2022) propose a conditional generative approach for anomaly detection
 111 in experimental physics. For drug discovery, Molecular Out-Of-distribution Diffusion (MOOD) Lee
 112 et al. (2023) employs a diffusion model to explore chemical space, guiding generation towards novel
 113 molecules. Abdi et al. (2025a) apply DiffPath to medical image OOD detection.

114 What this brief literature survey brings out is the scarcity of OOD detection and prediction certifi-
 115 cation methods for most of scientific machine learning applications. The main goal here is to devise
 116 such a method.
 117

118 3 METHODOLOGY

120 A generic regression task consists in minimizing over parameters φ , a loss of the form,
 121

$$122 \quad \mathcal{L} = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, \Psi_\varphi(x)) p(x, y) dx dy, \quad (1)$$

124 where Ψ_φ is a model of the operator Ψ which defines the ground truth, ℓ is the loss function and
 125 $p(x, y)$ is the (ground truth) training distribution.

126 Given an unseen input x^* with corresponding ground-truth output y^* , our goal is to determine a
 127 quantity $c(x^*)$, to be used as a *certificate*, which correlates with the loss $\ell(y^*, \Psi_\varphi(x^*))$. We impose
 128 two important requirements: (i) $c(x^*)$ must be computable without knowledge of y^* , and (ii) $c(x^*)$
 129 should indicate to an end user whether they can expect $\ell(y^*, \Psi_\varphi(x^*))$ to be small.
 130

131 **Likelihood as a Certificate.** To this end of finding a certificate, we provide with a motivating
 132 heuristic computation in SI A.1, where under certain assumptions on the training and generalization
 133 of the regression model Ψ_φ and on the underlying ground truth probability distribution, we derive
 134 the following (approximate) relation,

$$135 \quad \log(\ell(y^*, \Psi_\varphi(x^*))) \leq \alpha \log(\epsilon) - \log(p(x^*, y_{\text{pred}}) + O(\epsilon^\beta) \quad (2)$$

136 where $\epsilon > 0$ is the average loss and $y_{\text{pred}} = \Psi_\varphi(x^*)$, with positive constants α, β . From the
 137 above relation, we immediately observe that i) the error of the prediction $\Psi_\varphi(x^*)$ nicely relates to
 138 (correlates with) the likelihood $p(x^*, y_{\text{pred}})$ and ii) the error should be small where data are abundant
 139 (high likelihood) and can be large where data are scarce (low likelihood).

140 Moreover, given the *decomposition*, $\log p(x^*, y_{\text{pred}}) = \log p(x^*) + \log p(y_{\text{pred}} | x^*)$, it follows that
 141 the *joint likelihood* as a certificate ensures i) the model Ψ_φ should generalize better in regions of high
 142 input likelihood $p(x^*)$ and ii) Task-specific information enters through the conditional likelihood
 143 $p(y_{\text{pred}} | x^*)$, which captures the intrinsic complexity of predicting y_{pred} from x^* . The role of each
 144 term in this decomposition is explored in SI A.2 for regression tasks for simple one-dimensional
 145 functions, where we demonstrate how both terms are essential in designing a good certificate.

146 Given these heuristic considerations, we will base our certificate on the *joint likelihood* $p(x^*, y_{\text{pred}})$.
 147 However, one immediately runs into the difficulty of determining this joint probability distribution
 148 from data. We will approximate this distribution with a diffusion model as described below.
 149

150 **Diffusion Models.** Diffusion models map a Gaussian reference distribution to a target distribution
 151 $p(z)$. They are commonly implemented using a backward stochastic differential equation (SDE).
 152 However, this SDE also has an equivalent probability flow ODE formulation (Tang & Zhao, 2024,
 153 Section 4.3):

$$154 \quad \frac{dz}{dt} = -\frac{1}{2} \sigma_t^2 s(z(t); t). \quad (3)$$

155 To sample from $p(z)$, we start with samples from a Gaussian prior as initial data and solve the ODE
 156 (27). Here $s(z; t) \approx \nabla_x \log p_t$ is the so-called *score function* and σ_t is the underlying noise level.
 157

158 As the probability flow ODE (27) transforms a Gaussian prior into the target distribution, it also
 159 enables evaluation of the data density $p(z)$. By integrating along the solution path of the ODE, we
 160 obtain (Tang & Zhao, 2024, Appendix D.2, Eq. (39)):

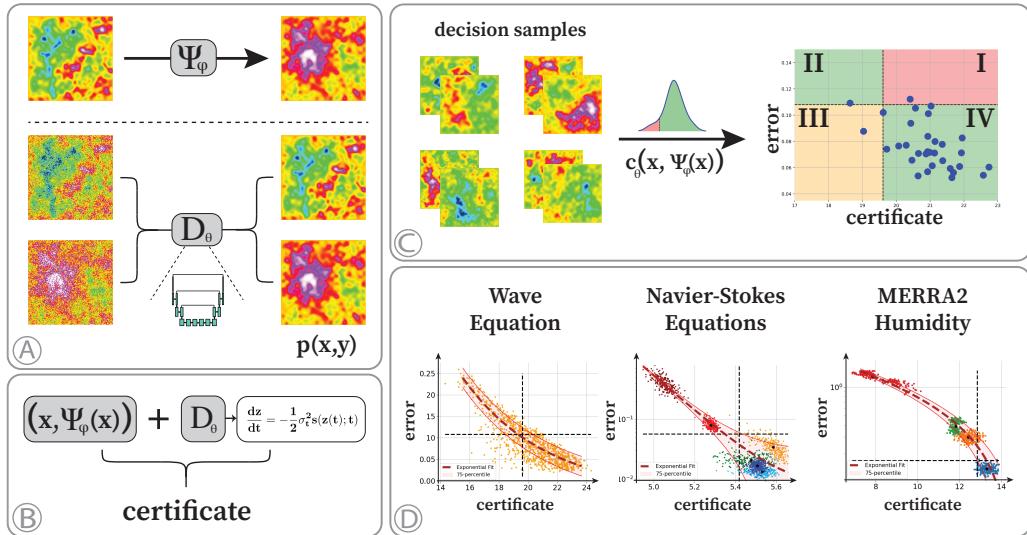
$$161 \quad \log p_0(z(0)) = \log p_T(z(T)) - \int_0^T \frac{1}{2} \sigma_t^2 (\nabla \cdot s)(z(t); t) dt. \quad (4)$$

162 The divergence term $\nabla \cdot s(z(t); t)$ can be approximated using stochastic estimators, as detailed in
 163 (Tang & Zhao, 2024, Appendix D.2). In this work, we apply this to the **joint variable** $z = (x, y)$. In
 164 practice, the score function is approximated from a trained *denoiser* using Tweedie's formula Karras
 165 et al. (2022).

166 **Computing the Certificate.** As argued above, our certificate is given by the joint likelihood $p(x, y)$.
 167 To compute it, we train the denoiser D_θ of our score-based diffusion model on the available data
 168 pairs (x_n, y_n) , $n = 1, \dots, N$. We note that the training of the diffusion model **does not** involve the
 169 regression model Ψ_φ in any form.

170 Given any new input x^* , we then first generate the prediction $\Psi_\varphi(x^*)$ using the regression model,
 171 and then we estimate the joint log-likelihood $p(x^*, y_{\text{pred}})$ by numerically solving the associated
 172 probability flow ODE (4), with its score function being estimated by the trained Denoiser D_θ . The
 173 certificate computation is also illustrated in Fig. 1 (A,B).

174 **ID/OOD classification.** While the relation (2) suggests that the test error and the joint likelihood
 175 are perfectly correlated, we emphasize that it is a *heuristic* relation and may not hold exactly. Thus,
 176 finding an exact formula between the error and the proposed certificate is very difficult. On the
 177 other hand, we can still utilize the certificate in the important task of classifying test samples as *in-
 178 distribution* (ID) or *out-of-distribution* (OOD), providing the end user with a metric for ascertaining
 179 whether the regression model is reliable or not.



199 Figure 1: Illustration of the approach: (A) A regression model Ψ and joint diffusion model D . (B)
 200 Certificate from the probability flow ODE. (C) Classification as ID/OOD based on the certificate
 201 (regions II/IV are good). (D) Correlation between error and certificate, with *a posteriori* estimates.

202 To this end, We first take a small number of *decision samples* from the training distribution and
 203 compute the *median* of the corresponding certificate values, denoting it as l_e , along with their stan-
 204 dard deviation, σ_e . We define ID samples as those with certificate value greater than $l_e - 1.5\sigma_e$,
 205 while OOD samples have values below $l_e - 1.5\sigma_e$. As shown in Figure 1 (C), this procedure de-
 206 fines a vertical boundary between ID/OOD samples, separated according to their certificate values.
 207 More formal calibration techniques could also be applied, such as quantile-conformal methods, FPR
 208 control, or standard temperature scaling. For *testing purposes*, the horizontal dashed line shows the
 209 boundary between small/large errors, here defined as the 95th percentile of errors of the decision
 210 samples. Note that the horizontal threshold can be adjusted by the end user, reflecting their chosen
 211 tolerance for acceptable error levels. The resulting 4 quadrants in the error vs certificate plane are
 212 shown in Figure 1 (C). A good certificate should minimize misclassified samples in regions I and
 213 III, corresponding to ID-classified samples with large errors (region I), and OOD-classified samples
 214 despite a small prediction error (region III), respectively. This ID/OOD classification procedure pro-
 215 vides a quantitative metric to assess the reliability of the certificate. Finally, our proposed overall

216 algorithm for reliability certification in terms of ID/OOD detection is summarized in Algorithm 1.
 217 Further details can be found in SI A.4.
 218

219 **4 RESULTS**
 220

221 To assess the proposed approach empirically, we consider a variety of datasets of relevance to sci-
 222 entific computing, including regression on the solution operator for the wave equation, the Navier-
 223 Stokes equations and a Humidity Forecast regression dataset, based on real-world data. In addition,
 224 we also revisit image classification within the proposed framework, and extend the approach to brain
 225 tumor segmentation.

226 **Wave Equation.** In this experiment, we consider regression on the solution operator of the wave
 227 equation with periodic boundary conditions in two spatial dimensions. Initial conditions are obtained
 228 from a field with random Fourier coefficients. The distribution is characterized by two parameters
 229 K and r , where K controls the number of *active* Fourier modes, and r controls the decay rate of
 230 Fourier coefficients. Test and training distributions differ in the range of values from which K and
 231 r are chosen to generate samples. We refer to SI B.1 for further details on the data distributions.

232 Once the model Ψ is trained on the training set $X = \{u_{0,n}, \Psi(u_{0,n})\}_{n=1}^N$, we then test its per-
 233 formance on the test distribution. For this experiment, the support of the training distribution is a subset
 234 of support of the test distribution. Hence, some samples drawn at test-time will be similar to those
 235 from training, while others may differ significantly. In addition to the regression model Ψ_φ , we also
 236 train a diffusion model D_θ to approximate the joint input/output distribution. The regression model
 237 is the CNO architecture of Raonic et al. (2023) and the diffusion model is a UViT type denoiser con-
 238 sidered in Molinaro et al. (2025), see SI D for details. The chosen loss function here is the L_1 -error.
 239 Histograms of the estimated likelihood certificate $c_\theta(x)$ and L_1 errors are illustrated in SI 1 (D).

240 The approach for ID/OOD detection in the present work hinges on a presumptive correlation be-
 241 tween likelihoods and errors: *How does the absolute L_1 error correlate with the estimated joint*
 242 *log-likelihood?* We summarize this correlation in Figure 1 (D), where the errors are evaluated for
 243 the test distribution. Our results show that samples drawn from the training distribution exhibit
 244 higher likelihood values and lower errors compared to those from the test-distribution. Additionally,
 245 we observe a very clear correlation between these quantities.

246 **Algorithm 1** OOD Detection with Diffusion Certificates
 247

248 1: Train task model Ψ_φ on (x, y) and denoiser (diffusion) model D_θ on $p(x, y)$
 249 2: Define certificate $c_\theta(x, \Psi_\varphi(x))$ via probability-flow ODE (e.g. likelihood as in (4))
 250 3: From training samples, compute (error, c_θ) and set ID/OOD boundary
 251 4: **for** test sample x **do**
 252 5: $y_{pred} \leftarrow \Psi_\varphi(x)$
 253 6: $c \leftarrow c_\theta(x, y_{pred})$
 254 7: **if** $c \geq c_{\text{boundary}}$ **then**
 255 8: classify as ID
 256 9: **else**
 257 10: classify as OOD
 258 11: **end if**
 12: **end for**

260 We perform ID/OOD classification as described in Section 3. In addition to the scatter plot of error
 261 vs certificate, Figure 1 (D) also shows the resulting classification regions: The vertical dashed line in
 262 this plot shows the ID/OOD boundary. Additionally, the horizontal dashed line shows the boundary
 263 between small/large errors, which we here define as the 95th percentile of errors in the training
 264 distribution. Representative examples of predicted and ground-truth samples from ID and OOD
 265 classes can be found in SI B.1, Figures 8 and 9.

266 For further insight into the results, we split the OOD class into intermediate, or *critical* (CD), where
 267 certificates lie in $(l_e - 3\sigma_e, l_e - 1.5\sigma_e)$, and OOD, where certificates fall below $l_e - 3\sigma_e$. To illustrate
 268 the ID/CD/OOD separation, we plot joint histograms of (K, r) for ID (left), CD (center), and OOD
 269 (right) samples in SI B.1 (Figure 11). The ID samples predominantly correspond to high values of the
 decay parameter r , specifically $r \leq 0.75$, which is the minimum observed value of r in the training

270 set. Critical samples tend to have intermediate values of r , whereas OOD samples are characterized
 271 by both low r values and typically high K values, regions where the model exhibits the poorest
 272 generalization.

273 *Ablations.* The above results provide strong empirical evidence for the utility of the proposed like-
 274 lihood certificate on the studied dataset. To better understand the sensitivity of our approach, we
 275 performed two ablation studies on the sensitivity to the diffusion model training and number of
 276 samples used to determine ID/CD/OOD ranges.

277 *Sensitivity to the Diffusion Model:* The first ablation examines the extent to which the diffusion
 278 model needs to be trained to be effective for OOD detection, with further details in SI B.1.2. The
 279 model is trained for 500 epochs, with final estimated likelihoods shown in Figure 10. We repeat like-
 280 lihood estimation using intermediate checkpoints with fewer epochs. SI B.1.2 Figure 13 illustrates
 281 the progression of the L_1 error versus the estimated joint log-likelihood $\log p_\theta(x, y_{\text{pred}})$ throughout
 282 training. As the model is trained for more epochs, the estimated likelihood becomes increasingly
 283 aligned with the prediction error, with the final model (trained for 500 epochs) showing a pronounced
 284 correlation between the two. We also observe that the average estimated log-likelihood over both
 285 the training and test distributions increases steadily throughout training, exhibiting a rapid transition
 286 during training (cp. SI B.1.2 Figure 14). For the last 100 epochs of training, the model’s explanation
 287 of the data remains consistent across checkpoints (cp. SI B.1.2, Figure 15). This suggests that once
 288 the diffusion model is sufficiently trained, it provides reliable performance for OOD detection.

289 *Classification Sensitivity:* In previous evaluations, we used 32 samples drawn from the training dis-
 290 tribution to classify inputs into ID and OOD categories. We check *what is the number of samples*
 291 *required to achieve reliable classification performance.* This ablation illustrates how the classifi-
 292 cation boundaries, based on the estimated joint log-likelihood, evolve as the number of randomly
 293 selected training samples increases, with results shown in SI B.1.3 Figure 16. With only 4 sam-
 294 ples, the classification is conservative, resulting in many test samples being labeled as OOD. As the
 295 number of samples used for decision-making increases, the boundaries become progressively more
 296 stable and reliable.

297 *Regression Model Architecture:* In our final ablation, we evaluate the proposed framework using
 298 various regression architectures. Instead of the previously used CNO model, we now consider ViT
 299 Dosovitskiy et al. (2020), UNet Ronneberger et al. (2015), and C-FNO Molinaro et al. (2025) ar-
 300 chitectures. The same diffusion model trained in earlier sections is employed throughout. Each
 301 regression model is trained on the same dataset used for the CNO experiments (cp. SI B.1.4, Figure
 302 17). In each case, we observe that samples with low likelihoods correspond to high prediction er-
 303 rors, whereas samples with high likelihoods exhibit lower errors across all tested architectures. This
 304 indicates that the approach is robust, and does not require a matching regression model architecture
 305 and diffusion model backbone.

306 **Navier-Stokes Equations.** In this experiment, we validate the proposed approach on the time-
 307 dependent Navier-Stokes equations with periodic boundary conditions in two dimensions, and with
 308 (spectral) viscosity $\nu = 4 \times 10^{-4}$. To this end, we revisit six datasets of varying difficulty, from the
 309 papers Raonic et al. (2023) and Herde et al. (2024), termed NS-Sines, NS-Sines Moderate, NS-Shear
 310 Layer, NS-Brownian, NS-PwC, with further details provided in SI B.2. For both the regression and
 311 diffusion tasks, we employ an *all2all* training strategy, as recommended in Herde et al. (2024).

312 Labeling of input samples as ID/OOD is performed by the same
 313 procedure as in the wave equation. We refer to SI B.2 for additional
 314 details related to the time-varying setup of this experiment,
 315 and an ablation on autoregressive vs direct formulations. We sum-
 316 marize the correlation between L_1 -errors and likelihood certi-
 317 ficate in Figure 1 (D), where the models are trained on the NS-Mix
 318 dataset and tested on a variety of previously unseen datasets.

319 We again observe a very clear correlation between errors and the
 320 likelihood certificate. Additionally, we performed several exper-
 321 iments, where in each experiment we choose a different dataset
 322 (or mix of datasets) as our ID training distribution, and we test
 323 OOD detection on the other datasets, with results shown in B.2,

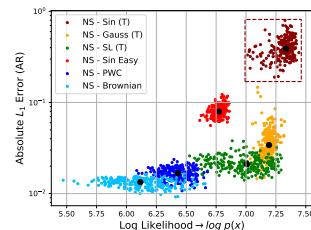


Figure 2: Navier-Stokes. L_1 Error vs input-only likelihood $\log p_\theta(x)$ for NS-Mix.

324 Fig. 19. These results demonstrate that ID/OOD detection works
 325 robustly across this range of datasets.
 326

327 *Insufficiency of $p(x)$ as a certificate.* So far, we have restricted attention to the joint likelihood
 328 $p(x, y)$. We here investigate the suitability of $p(x)$ as an alternative certificate. A potential issue
 329 with this approach is that the distribution $p(x)$ is completely **task-agnostic**. The task itself could
 330 be to solve a PDE, given the input x , but it could be something completely different. Therefore
 331 the intrinsic difficulty of the task is not incorporated into the input distribution. Moreover, the way
 332 we evaluate the trained model is also not incorporated into the certificate. Therefore we do not
 333 recommend this approach, given the supporting evidence below.
 334

335 We analyze the certificate $\log p_\theta(x)$ for the *NS-MIX* problem. In Fig. 2, we present the L_1 errors
 336 plotted against the estimated log-likelihood. While we observed a clear correlation with errors when
 337 using the joint likelihood $p(x, y)$ as a certificate (cp. Fig. 1(D)), no such correlation between $p_\theta(x)$
 338 and the L_1 -errors is observed. Notably, the NS-Sines dataset receives the highest likelihood scores.
 339 However, despite these high likelihoods, the downstream task associated with this dataset remains
 340 challenging, resulting in large test errors. This indicates that, in this case, $p(x)$ is not a reliable metric
 341 for OOD detection. This conclusion is further supported by SI A.2.1, Table 5, which demonstrates
 342 that, in fact, *all task-agnostic baselines* fail. This failure occurs for *all* the certificates based on only
 343 the input distribution.
 344

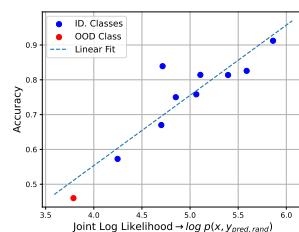
345 **MERRA-2 Humidity Forecast.** In this experiment, we use MERRA-2 satellite data to forecast
 346 surface-level specific humidity Global Modeling and Assimilation Office (GMAO) (2015). Training
 347 is performed on a 128×128 region over South America, using 4h snapshots, in the period 2016–
 348 2021 (SI B.3, Fig. 26). The task is to predict humidity 12h ahead. A time-conditioned regression
 349 model is trained to forecast up to 60h (15 steps) into the future, and evaluated on 12h predictions
 350 (3 steps). In addition, a diffusion model is trained to estimate the joint likelihood $p(x_{t_1}, x_{t_2})$ of
 351 humidity snapshots over the same region. We evaluate humidity prediction for 2023 on four test
 352 sets (SI B.3, Fig. 26): (1) South America (training region), (2) Australia–Oceania, (3) Africa, and
 353 (4) Asia. Due to differing humidity patterns, generalization degrades outside the training domain:
 354 performance is best on South America, moderate on Australia–Oceania, and poor on Africa and
 355 Asia.
 356

357 Figure 1(D) plots L_1 errors against the likelihood certificate. We observe that the diffusion model
 358 assigns high likelihoods, corresponding to low prediction errors, to samples from South America.
 359 Samples from Australia receive slightly lower likelihoods and are mostly identified as OOD. As
 360 anticipated, the African and Asian datasets fall entirely within the OOD region. In SI B.3, the pre-
 361 dicted humidity fields appear overly smooth, lacking fine-scale structures. This is expected, since
 362 the regression task is ill-posed and no auxiliary information (e.g., boundary conditions, wind, tem-
 363 perature, pressure) is provided. For comparison, Fig. 25 shows the error histogram of our 12-hour
 364 forecasts against a *persistence* baseline (humidity assumed constant). The model clearly outper-
 365 forms persistence, with its error distribution shifted to the left.
 366

367 **Classification.** To complement the regression datasets considered before, we next apply our ap-
 368 proach to classification tasks. We start with classic image datasets, CIFAR10 and MNIST. We train
 369 a classifier Ψ_φ to predict a discrete label y from the image x . The classifier is trained using a conven-
 370 tional *softmax*-based loss function, maximizing the log-probability corresponding to the true label
 371 y . During the training of the diffusion model, we concatenate an additional channel containing the
 372 constant value y to the c channels of the image x .
 373

374 The classifier predicts log-probabilities $\log p(y | x)$ for *each* class
 375 label y (the last layer before the softmax is applied). To include
 376 full information about classifier outputs during testing, we do *not*
 377 define y_{pred} as the single class label with highest probability. In-
 378 stead, to define the channel y_{pred} that is fed into the diffusion
 379 model to compute $\log p(x, y_{\text{pred}})$, we sample the individual pix-
 380 els of y_{pred} independently from the set of labels, where each pixel
 381 value is chosen with probability $p(y | x)$.
 382

383 In this way, predictions with low confidence introduce variabil-
 384 ity into the label channel, effectively “corrupting” those samples.
 385 Consequently, samples for which the classifier is confident re-



386 Figure 3: CIFAR10 Image
 387 Classification. Accuracy vs
 388 Likelihood Certificate.
 389

378 main mostly unaffected. By incorporating uncertain label values,
 379 we effectively *perturb the one-dimensional manifold* on which the labels reside.
 380

381 *CIFAR10*. In this experiment, we train both a classifier and a diffusion model using the CIFAR
 382 dataset, containing 10 distinct classes. We designate one class as out-of-distribution (OOD), which
 383 is underrepresented in the training set. The class chosen as the OOD class is *trucks* (the last class).
 384 For each in-distribution class, we select approximately 4.5K training samples, with slight variations
 385 in the exact number for each class. For the OOD class, we select only 10% of the samples.
 386

387 In Figure 3 we show the accuracy of the classifier vs. the likelihood certificate. We observe a linear
 388 relation between the accuracy and the predicted likelihoods. As expected, the performance of the
 389 classifier was the worst for the OOD class (i.e. the *truck* class). Additionally, the classifier was
 390 unable to accurately predict the *cat* class (below 60% accuracy), and the diffusion model accurately
 391 assigned low likelihood to this class. Two effects combine to yield this result: (1) The classifier
 392 is *rarely overconfident in the wrong label*. (2) Even when the classifier is overconfident in the
 393 wrong label, the estimated likelihood is still much lower than the ones obtained when the classifier
 394 is overconfident in the correct label.
 395

396 *MNIST*. We repeat this experiment for MNIST. The OOD class is the *number 9*. The results, shown
 397 in SI B.7, Figure 32 are similar to the ones obtained in the case of CIFAR10 dataset. Note that the
 398 classification task is very easy, so almost all the ID samples are properly classified. Finally, we per-
 399 form an extensive ablation of our approach on the well-known issues of ID/OOD misclassifications
 400 for CIFAR/SVHN identified in Ren et al. (2019), with details in SI B.7.1.
 401

402 **Segmentation.** In this section, we evaluate our approach on **binary segmentation** tasks (i.e. pixel-
 403 wise classification). Our method follows a similar strategy as for classification, with one key dis-
 404 tinction: we explicitly reduce the influence of non-semantic pixels by corrupting them with white
 405 noise during training. The method is explained in full detail in SI B.8.
 406

407 Our objective is to perform **brain tumor segmentation** on the **BraTS2020** dataset Menze et al.
 408 (2014). This dataset contains 3D brain MRI volumes. The data is divided into two categories: (1)
 409 High-grade gliomas (HGG), (2) Low-grade gliomas (LGG). Each brain scan is accompanied by
 410 a simplified segmentation mask defined as 0: non-tumor tissue pixels and 1: tumor tissue pixels.
 411 We train our segmentation model using brain scans with HGG tumors, from which we select 190
 412 for training, 10 for validation, and 10 for testing. During training, we apply a range of augmenta-
 413 tion techniques. We refer to SI B.8 for further details on the datasets and employed augmentation
 414 techniques; we also include an ablation on the noise corruption technique.
 415

416 Our evaluation is conducted on 10 held-out HGG brains and an additional set of 10 LGG brains.
 417 For the HGG cases, we evaluate the model not only on FLAIR MRI scans, which were used during
 418 training, but also on T_2 -weighted scans, representing a different MRI modality. For the LGG cases,
 419 performance is assessed on both axial (z-axis) slices, aligned with the training direction, and x-
 420 axis slices, offering a side view of the brain and allowing us to test the model’s generalization to
 421 previously unseen anatomical orientations.
 422

423 SI B.8, Fig. 37 shows the relation between relative L_1 segmentation error and our likelihood cer-
 424 tificate across four test scenarios. Most low-error cases are correctly classified as ID, while nearly
 425 all high-error cases (relative $L_1 \geq 1.0$) are identified as OOD. Furthermore, it is crucial to highlight
 426 that our approach effectively identifies OOD samples originating from a **different MRI modality**,
 427 namely T_2 MRI scans (see subfigure 3 in Figure 37).
 428

429 Aggregating all datasets, the 2d histogram of error vs. likelihood (SI B.8, Fig. 38(left)) shows
 430 high density around low likelihood and errors near 1.0, i.e., OOD. Low-error points cluster near
 431 the threshold but remain ID. The log-likelihood histogram (middle) is right-skewed, favoring higher
 432 values. Finally, error histograms (right) confirm that ID samples are mostly low-error, while OOD
 433 samples are dominated by high-error cases, with some low-error outliers.
 434

435 **Quantitative performance metrics and Baselines.** As illustrated in Fig. 1(C), the ID/OOD bound-
 436 ary (vertical) and error boundary (horizontal) divide the error-vs-likelihood scatter plot into 4 quad-
 437 rant. We consider the *null-hypothesis* that testing samples are OOD and, based on this sub-division,
 438 identify true positives (classified OOD, large error), false positives (classified OOD, small error),
 439 true negatives (classified ID, small error) and false positives (classified ID, large error). Further
 440 details can be found in SI A.4.
 441

		JLBC	JDPATH	JSFNS	JSBDDM	JMSSM	OODC
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457	Wave	ACC	0.855	0.864	0.862	0.865	0.892
		FPR	0.040	0.108	0.095	0.108	0.066
		FDR	0.126	0.359	0.314	0.359	0.220
		AUROC	0.936	0.912	0.916	0.913	0.946
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457	NS-PwC	ACC	0.994	0.988	0.989	0.988	0.989
		FPR	0.001	0.002	0.002	0.002	0.142
		FDR	0.002	0.003	0.003	0.003	0.673
		AUROC	0.999	0.999	0.999	0.999	—
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457	NS-MIX	ACC	0.947	0.788	0.786	0.788	0.788
		FPR	0.009	0.022	0.020	0.021	0.020
		FDR	0.024	0.062	0.058	0.060	0.058
		AUROC	0.992	0.918	0.886	0.913	0.891
446 447 448 449 450 451 452 453 454 455 456 457	MERRA2	ACC	0.956	0.989	0.922	0.981	0.987
		FPR	0.034	0.004	0.067	0.001	0.002
		FDR	0.046	0.006	0.086	0.002	0.003
		AUROC	0.992	0.998	0.989	0.997	0.998
450 451 452 453 454 455 456 457	Brain	ACC	0.743	0.789	0.727	0.785	0.772
		FPR	0.077	0.087	0.169	0.097	0.123
		FDR	0.253	0.297	0.580	0.332	0.422
		ARCB	0.743	0.765	0.381	0.726	0.611
454 455 456 457	Average	AUROC	0.808	0.808	0.742	0.802	0.782
		ACC	0.899	0.884	0.857	0.881	0.886
		FPR	0.033	0.045	0.071	0.046	0.043
		FDR	0.091	0.145	0.208	0.151	0.141
455 456 457		AUROC	0.945	0.927	0.906	0.925	0.923

Table 1: Performance metrics on scientific datasets for proposed likelihood certificate, and several OOD detection baselines (using joint input/output distribution).

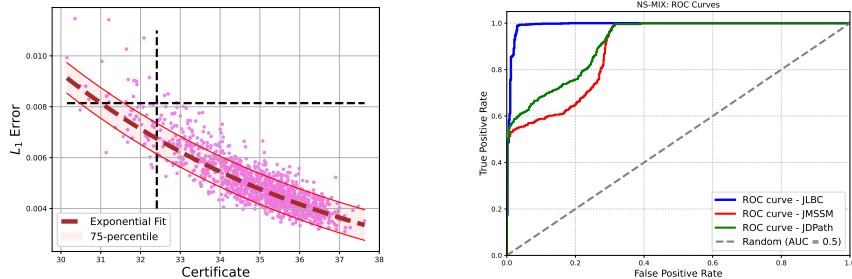
To quantify the performance of the proposed certificate across our experiments, we finally report relevant statistical metrics in Table 1. Specifically, we report the accuracy (measuring correctly classified samples), false positive rate (FPR), and false discovery rate (FDR). To ensure statistical significance of our results, we also report the AUROC metric. The AUROC represents the probability that a randomly selected positive sample receives a higher classifier score than a randomly selected negative one, and is inherently threshold-independent. The proposed likelihood certificate (termed as *JLBC*) is compared to a number of diffusion-based baselines: a curvature-based certificate *JDPATH* (see Heng et al. (2024b)), a certificate incorporating contributions both from the curvature of the score function and from the score function itself (termed *JSBDDM*) Abdi et al. (2025b), the sum of the score functions *Joint Score Function Norm Score* (*JSFNS*, introduced by us in this paper), and a certificate based on sums of norms of the score, referred to in our framework as *JMSSM* Mahmood et al. (2020). All these baselines are still computed by using the denoiser to calculate the score function for the *joint distribution*. All the previous works primarily relied on input-distribution-based approaches. As part of our contribution, we extend these methods to the joint-distribution setting (denoted with J) by adapting their approaches accordingly, ensuring a fair and consistent comparison within our framework. We additionally include a non-diffusion baseline *OODC* (see D.1), which requires access to the ground-truth for some *test samples*. For the Wave Equation experiment, we additionally compared our method against two Bayesian-style approaches where the predicted epistemic uncertainty is used for OOD detection, namely MC-Dropout Gal & Ghahramani (2016) and Rate-In Zeevi et al. (2025), both of which use dropout during training and inference to enable stochastic forward passes (i.e., approximate Bayesian inference). Consult SI C for further details on all the baselines.

Throughout all experiments, we find that certificates derived from diffusion models trained on the *joint input/output distribution* robustly classify inputs with large errors to be OOD, as indicated by the low FPR. The results furthermore indicate that the likelihood based certificate is the most robust among these certificates, as demonstrated by it being the best performing approach on average (Tab.

486 1). Moreover, the JLBC certificate is significantly more accurate for all metrics on the most chal-
 487 lenging NS-MIX dataset, where the underlying training and test distributions are both mixtures of
 488 multiple distributions. For this task, we also compute the ROC curve and compare it against several
 489 baselines (see Figure 4, right). The JLBC demonstrates near-perfect OOD discrimination, whereas
 490 the other models show considerably lower ability to distinguish between ID and OOD samples.
 491 Regarding the comparison against Bayesian approaches, JLBC clearly surpasses both MC-Dropout
 492 and Rate-In in the Wave Equation experiment, delivering substantially higher accuracy and AUROC
 493 while also being considerably faster to evaluate (see SI Table 4 and SI B.1.7). Finally, we conduct
 494 an ablation study in SI B.1.6 demonstrating that JLBC delivers reliable and stable OOD certificates
 495 while requiring only a fraction of a second per sample for certificate computation, enabling fast and
 496 robust inference in practice. These findings highlight the utility and potential of the proposed joint
 497 input/output approach for identifying problematic predictions across a variety of datasets. Further
 498 discussion and ablations on the choice of boundaries can be found in SI A.4 (cp. Table 2).
 499

500 **A Posteriori estimates on the prediction error.** We reiterate that our proposed approach is *zero-*
 501 *shot* as no access to *any* ground truth test samples is necessary. A natural question that arises is: can
 502 we say more in case we have access to the ground truth for some test samples. Revisiting Eqn. (2),
 503 we see that the error-(log)-likelihood relation is heuristically an approximate exponential. Hence,
 504 we aim to *fit* a scaled and shifted exponential to the error log-likelihood relation for a small number
 505 (~ 64) of samples of the test distribution for our regression tasks (Wave, NS-Mix and MERRA-2,
 506 see SI B.4 for details). We observe from Fig. 1 (D) and SI Fig. 27, that this exponential fit provides
 507 a reliable estimate of the error from the likelihood, yielding a quantitative a posteriori error estimate,
 508 which can be very useful in scientific applications.

509 **Inference on Training Distribution.** In some cases, the objective is to assess the model’s general-
 510 alization ability within its own training distribution. The main challenge here is to identify the *most*
 511 *challenging* samples that still belong to that distribution. In this regard, we perform a posteriori
 512 error estimation for the Wave-Eq and NS-PwC experiments using 64 training samples to determine
 513 likelihood and error bounds, and a respective relationship between them. Uncertainty bounds of the
 514 established relationship are derived via the 75th-percentile rule. For the NS-PwC experiment, we
 515 present the error fits in Figure 4. We also examine how the uncertainty bounds depend on the chosen
 516 confidence threshold by varying the percentile used to define the bands. As shown in SI Figure 29,
 517 increasing the threshold from the 65th to the 95th percentile expands the bounds, capturing more
 518 samples but also amplifying the associated uncertainty. For further details, see SI B.4.1.



519 Figure 4: Left: Error fits and corresponding error–certificate histograms for the training distributions
 520 (NS-PwC experiment). Right: ROC curves for the NS-MIX experiment, where JLBC shows near-
 521 perfect OOD discrimination, while other models perform notably weaker.

531 5 CONCLUSION

532 In this work, we addressed the critical challenge of assessing the reliability of data-driven models
 533 in scientific AI, where out-of-distribution failures can have significant consequences. We proposed
 534 a novel, task-aware OOD detection method tailored for regression tasks. Our approach leverages a
 535 score-based diffusion model to estimate a variety of certificates on the *joint input/output distribution*.
 536 This is found to be crucial for an informative reliability score for regression tasks, where methods
 537 based on the input distribution $p(x)$ can completely fail. Thus, this work represents a foundational
 538 step towards building verifiable “certificates of trust” for AI-based scientific predictions.
 539

540 REFERENCES
541

542 Lemar Abdi, Francisco Caetano, Amaan Valiuddin, Christiaan Viviers, Hamdi Joudeh, and Fons
543 van der Sommen. Out-of-distribution detection in medical imaging via diffusion trajectories.
544 *arXiv preprint arXiv:2507.23411*, 2025a.

545 Lemar Abdi, Francisco Caetano, Amaan Valiuddin, Christiaan Viviers, Hamdi Joudeh, and Fons
546 van der Sommen. Out-of-distribution detection in medical imaging via diffusion trajectories.
547 *arXiv preprint arXiv:2507.23411*, 2025b.

548 Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Anna Allen, Johannes Brandstetter,
549 Patrick Garvan, Maik Riechert, Jonathan A Weyn, Haiyu Dong, et al. A foundation model for the
550 earth system. *Nature*, pp. 1–8, 2025.

551 Senqi Cao and Zhongfei Zhang. Deep hybrid models for out-of-distribution detection. In *Proceed-
552 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4733–4743,
553 2022.

554 Samy Chali, Inna Kucher, Marc Duranton, and Jacques-Olivier Klein. Improving normalizing flows
555 with the approximate mass for out-of-distribution detection. In *Proceedings of the IEEE/CVF
556 Conference on Computer Vision and Pattern Recognition*, pp. 750–758, 2023.

557 Matthew Chan, Maria Molina, and Chris Metzler. Estimating epistemic and aleatoric uncertainty
558 with a single model. *Advances in Neural Information Processing Systems*, 37:109845–109870,
559 2024.

560 Yifan Ding, Arturas Aleksrauskas, Amirhossein Ahmadian, Jonas Unger, Fredrik Lindsten, and
561 Gabriel Eilertsen. Revisiting likelihood-based out-of-distribution detection by modeling repre-
562 sentations. *arXiv preprint arXiv:2504.07793*, 2025.

563 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
564 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
565 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
566 arXiv:2010.11929*, 2020.

567 Nick Drummond and Rob Shearer. The open world assumption. In *eSI Workshop: The Closed World
568 of Databases meets the Open World of the Semantic Web*, volume 15, pp. 1, 2006.

569 Ibrahim Elsharkawy and Yonatan Kahn. Contrastive Normalizing Flows for Uncertainty-Aware
570 Parameter Estimation. *arXiv preprint arXiv:2505.08709*, 2025. URL <https://arxiv.org/abs/2505.08709>.

571 Lawrence C Evans. *Partial differential equations*, volume 19. American Mathematical Society,
572 2022.

573 Cristiano Fanelli, James Giroux, and Z Papandreou. ‘flux+ mutability’: a conditional generative
574 approach to one-class classification and anomaly detection. *Machine Learning: Science and
575 Technology*, 3(4):045012, 2022.

576 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
577 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
578 PMLR, 2016.

579 Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_flx_Nx (M2T1NXFLX):
580 2D, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Surface Flux Diagnostics, Version
581 5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt,
582 MD, USA, 2015. Data used for the period 2013–2023. Accessed: 2025-04-22.

583 Joseph Goodier and Neill DF Campbell. Likelihood-based out-of-distribution detection with de-
584 noising diffusion probabilistic models. *arXiv preprint arXiv:2310.17432*, 2023.

585 Mark S Graham, Walter HL Pinaya, Petru-Daniel Tudosiu, Parashkev Nachev, Sebastien Ourselin,
586 and Jorge Cardoso. Denoising diffusion models for out-of-distribution detection. In *Proceedings
587 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2948–2957, 2023.

594 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 595 examples in neural networks. *arXiv preprint arXiv:1610.02136*, 2016.

596

597 Alvin Heng, Harold Soh, et al. Out-of-distribution detection with a single unconditional diffusion
 598 model. *Advances in Neural Information Processing Systems*, 37:43952–43974, 2024a.

599

600 Alvin Heng, Harold Soh, et al. Out-of-distribution detection with a single unconditional diffusion
 601 model. *Advances in Neural Information Processing Systems*, 37:43952–43974, 2024b.

602

603 Alvin Heng, Harold Soh, et al. Out-of-distribution detection with a single unconditional diffusion
 604 model. *Advances in Neural Information Processing Systems*, 37:43952–43974, 2024c.

605

606 Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
 607 de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes, 2024.

608

609 Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-
 610 of-distribution image without learning from out-of-distribution data. In *Proceedings of the*
 611 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 10951–10960, 2020.

612

613 Joonas Järve, Karl Kaspar Haavel, and Meelis Kull. Probability density from latent diffusion models
 614 for out-of-distribution detection. *arXiv preprint arXiv:2508.15737*, 2025.

615

616 Hamidreza Kamkari, Brendan Leigh Ross, Jesse C. Cresswell, Anthony L. Caterini, Rahul Kr-
 617 ishnan, and Gabriel Loaiza-Ganem. A geometric explanation of the likelihood OOD detection
 618 paradox. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=EVMzCKLpdD>.

619

620 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 621 based generative models. *Advances in Neural Information Processing Systems*, 35:26565–26577,
 622 2022.

623

624 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified frame-
 625 work for detecting out-of-distribution samples and adversarial attacks. In S. Bengio,
 626 H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Ad-
 627 vances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,
 628 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf.

629

630 Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-
 631 distribution generation. In *International Conference on Machine Learning*, pp. 18872–18892.
 632 PMLR, 2023.

633

634 Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
 635 tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
 636 differential equations. In *International Conference on Learning Representations*, 2021.

637

638 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
 639 tion. *Advances in neural information processing systems*, 33:21464–21475, 2020.

640

641 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 642 nonlinear operators via DeepONet based on the universal approximation theorem of operators.
 643 *Nature Machine Intelligence*, 3(3):218–229, 2021.

644

645 Ahsan Mahmood, Junier Oliva, and Martin Styner. Multiscale score matching for out-of-distribution
 646 detection. *arXiv preprint arXiv:2010.13132*, 2020.

647

648 Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Farahani, Justin
 649 Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, et al. The multimodal
 650 brain tumor image segmentation benchmark (brats). *IEEE transactions on medical imaging*, 34
 651 (10):1993–2024, 2014.

652

653 Siddhartha Mishra and Alex (Eds.) Townsend. *Numerical Analysis meets Machine Learning*. Hand-
 654 book of Numerical Analysis. Springer, 2024.

648 Roberto Molinaro, Samuel Lanthaler, Bogdan Raonić, Tobias Rohner, Victor Armegioiu, Stephan
 649 Simonis, Dana Grund, Yannick Ramic, Zhong Yi Wan, Fei Sha, Siddhartha Mishra, and Leonardo
 650 Zepeda-Núñez. Generative ai for fast and accurate statistical computation of fluids, 2025. URL
 651 <https://arxiv.org/abs/2409.18359>.

652 E. Nalisnick and et al. Why Normalizing Flows Fail to Detect Out-of-Distribution Data.
 653 In *NeurIPS*, 2020. URL <https://proceedings.neurips.cc/paper/2020/file/ecb9fe2fbb99c31f567e9823e884dbec-Paper.pdf>.

654

655 Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan.
 656 Hybrid models with deep and invertible features. In *International Conference on Machine Learning*,
 657 pp. 4723–4732. PMLR, 2019a.

658

659 Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
 660 deep generative models know what they don’t know? In *International Conference on Learning
 661 Representations*, 2019b. URL <https://openreview.net/forum?id=H1xwNhCcYm>.

662

663 Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan. Detecting
 664 out-of-distribution inputs to deep generative models using typicality, 2019c. URL <https://arxiv.org/abs/1906.02994>.

665

666 Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning Mesh-
 667 Based Simulation with Graph Networks, June 2021. URL <http://arxiv.org/abs/2010.03409> [cs].

668

669 Geoff Pleiss, Amauri Souza, Joseph Kim, Boyi Li, and Kilian Q Weinberger. Neural network out-
 670 of-distribution detection for regression tasks. 2019.

671

672 A. Quarteroni and A. Valli. *Numerical approximation of Partial differential equations*, volume 23.
 673 Springer, 1994.

674

675 Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci,
 676 Rima Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neu-
 677 ral operators for robust and accurate learning of pdes. In A. Oh, T. Naumann,
 678 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural In-
 679 formation Processing Systems*, volume 36, pp. 77187–77200. Curran Associates, Inc.,
 680 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/f3c1951b34f7f55fffaecada7fde6bd5a-Paper-Conference.pdf.

681

682 Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and
 683 Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. *Advances in neural
 684 information processing systems*, 32, 2019.

685

686 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 687 ical image segmentation. In *International Conference on Medical image computing and computer-
 688 assisted intervention*, pp. 234–241. Springer, 2015.

689

690 Wenpin Tang and Hanyang Zhao. Score-based diffusion models via stochastic differential equations
 – a technical tutorial, 2024. URL <https://arxiv.org/abs/2402.07487>.

691

692 Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution de-
 693 tection: A survey. *International Journal of Computer Vision*, 132(12):5635–5662, Dec 2024.
 694 ISSN 1573-1405. doi: 10.1007/s11263-024-02117-4. URL <https://doi.org/10.1007/s11263-024-02117-4>.

695

696 Tal Zeevi, Ravid Shwartz-Ziv, Yann LeCun, Lawrence H Staib, and John A Onofrey. Rate-in:
 697 Information-driven adaptive dropout rates for improved inference-time uncertainty estimation.
 698 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 20757–20766,
 699 2025.

700

701 Jinsong Zhang, Qiang Fu, Xu Chen, Lun Du, Zelin Li, Gang Wang, Shi Han, Dongmei Zhang, et al.
 Out-of-distribution detection based on in-distribution data patterns memorization with modern
 hopfield energy. In *The Eleventh International Conference on Learning Representations*, 2022.

702 A THEORY AND MOTIVATION

704 A.1 MOTIVATION FOR JOINT LOG-LIKELIHOODS AS CERTIFICATES

706 We are in the setting of (1) and assume that the loss function ℓ is of the form,

$$707 \quad 708 \quad \ell(y, \Psi(x)) = |y - \Psi(x)|^p, \quad (5)$$

709 for some $1 \leq p < \infty$. In practice, we set $p = 1$ or $p = 2$.

710 We further assume that there exists a parameter φ^* , such that the resulting minimized loss is given
711 by,

$$712 \quad 713 \quad \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, \Psi_{\varphi^*}(x)) p(x, y) dx dy \leq \epsilon \ll 1. \quad (6)$$

714 Hence, we assume that the generalization error of the trained model $\Psi^* = \Psi_{\varphi^*}$ is very small.

716 Next, we fix an $0 < \alpha < 1$ and define the following two sets,

$$717 \quad 718 \quad A := \{(x, y) \in \mathcal{X} \times \mathcal{Y} : \ell(y, \Psi^*(x)) p(x, y) > \epsilon^\alpha\}, \quad B := \{(x, y) \in \mathcal{X} \times \mathcal{Y} : \ell(y, \Psi^*(x)) > \epsilon^\alpha\}. \quad (7)$$

719 Clearly $A \subset B$ as $p \leq 1$. Denoting the probability measure \mathbb{P} as,

$$720 \quad 721 \quad \mathbb{P}(C) = \int_{\mathcal{X} \times \mathcal{Y}} \chi_C(x, y) p(x, y) dx dy, \quad \forall \text{ measurable } C \subset \mathcal{X} \times \mathcal{Y},$$

724 we have that $\mathbb{P}(A) \leq \mathbb{P}(B)$.

725 By Chebychev's inequality, we obtain that,

$$726 \quad 727 \quad \mathbb{P}(A) \leq \mathbb{P}(B) \leq \frac{1}{\epsilon^\alpha} \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, \Psi^*(x)) p(x, y) dx dy \leq \epsilon^{1-\alpha}. \quad (8)$$

729 Hence, we also obtain that,

$$730 \quad 731 \quad \mathbb{P}(A^c) \geq 1 - \epsilon^{1-\alpha} \approx 1. \quad (9)$$

732 Thus, under the assumption of a well-trained and generalizable model Ψ^* , we have, *with very high*
733 *probability* of $1 - \epsilon^{1-\alpha}$, the event that

$$734 \quad A^c := \{(x, y) \in \mathcal{X} \times \mathcal{Y} : \ell(y, \Psi^*(x)) p(x, y) \leq \epsilon^\alpha\}, \quad (10)$$

735 occurs.

737 Under the assumption that $p(x, y) \neq 0$, for any $(x, y) \in \mathcal{X} \times \mathcal{Y}$, we can divide in (10) to conclude
738 that, with very high probability, we have a pointwise estimate of the form,

$$739 \quad 740 \quad \ell(y, \Psi^*(x)) \leq \frac{\epsilon^\alpha}{p(x, y)}. \quad (11)$$

741 Taking logarithms in (11) and observing that both its sides are positive results in the following
742 pointwise estimate (which holds with high probability),

$$744 \quad \log(\ell(y, \Psi^*(x))) \leq \alpha \log(\epsilon) - \log(p(x, y)), \quad (12)$$

745 for all $(x, y) \in A^c$

747 Under the assumption that $\log(p(x, y))$ is locally Lipschitz in y , one can expand it around $\Psi^*(x)$ to
748 obtain

$$749 \quad \begin{aligned} \log(p(x, \Psi^*(x))) &\leq \log p(x, y) + L|y - \Psi^*(x)|, \\ &\leq \log p(x, y) + L\ell(y, \Psi^*(x))^{\frac{1}{p}}, \quad \text{from (5)} \\ &\quad \log p(x, y) + O(\epsilon^{\frac{\alpha}{p}}), \end{aligned} \quad (13)$$

752 where the last inequality follows from the fact that $(x, y) \in B^c$.

754 Plugging (13) into 12, we obtain with high probability that,

$$755 \quad \log(\ell(y, \Psi^*(x))) \leq \alpha \log(\epsilon) - \log(p(x, \Psi^*(x))) + O\left(\epsilon^{\frac{\alpha}{p}}\right), \quad (14)$$

756 which is precisely Eqn. (2) of the main text.
 757

758 Note that the above form Eqn. (14) clearly demonstrates that the loss is controlled in terms of the
 759 joint likelihood-based certificate with very high-probability and motivates our use of these certifi-
 760 cates.

761 In deriving (14), we made some key assumptions, namely, i) that the model Ψ^* has very low general-
 762 ization errors, i.e., it trains and generalizes well in-distribution ii) we have access to the likelihood (or
 763 a good approximation of it) and iii) the ground truth probability density function is non-degenerate
 764 and log-Lipschitz. In practice, these assumptions may not hold and we need to empirically verify
 765 whether a likelihood-based certificate is a good indicator of the error or not. As demonstrated by the
 766 many numerical experiments in the main text, this does appear to hold, in general.

767 Finally, the inequality in (14) suggests that a high likelihood will result in a low error. This fact is
 768 consistent with the observations in Table 1 that the ACC and FPR scores therein are very high and
 769 very low, respectively. However, given the inequality in (14), we might expect that a low likelihood
 770 might correspond to a low error. Indeed, from Table 1, we see that the FDR is, on average, *three*
 771 *times* higher than the FPR, making it consistent with the nature of the inequality in (14).

772 773 A.2 TOY PROBLEM: ILLUSTRATE CONTRIBUTIONS TO JOINT LIKELIHOOD

774 In the following, we consider simple toy problems, where a simple multilayer-perceptron (MLP) is
 775 trained to regress on functions in 1d. In these examples, $x^*, y^* \in \mathbb{R}$ are real-valued, and connected
 776 by a noisy relationship $y^* = f(x^*)$ with function f .

777 In SI A.2.1, we illustrate the importance of $p(x^*)$ by regressing on simple $f(x)$, but with an *unbal-*
 778 *anced input data distribution* $p(x)$. In SI A.2.2, we illustrate the importance of taking into consider-
 779 *ation* $p(y_{\text{pred}} | x^*)$ in regression tasks. Here, the input distribution $p(x)$ is balanced by construction,
 780 but the dependence of y^* on x^* is more complex for positive inputs, $x^* > 0$, than for negative inputs,
 781 $x^* < 0$.

782 783 A.2.1 IMPORTANCE OF $p(x^*)$.

784 In this simple example, we will explore 1d regression using a basic two-layer MLP. Our objective
 785 is to approximate a function $f : \mathbb{R} \rightarrow \mathbb{R}$ from data pairs $(x_i, f(x_i) + \epsilon_i)_{i=1}^N$, where N represents
 786 the number of training samples. The noise term ϵ_i follows a normal distribution $\mathcal{N}(0, 0.1)$, and x is
 787 drawn from a specific distribution that we will define shortly.

788 We are interested in a scenario where the distribution of training inputs exhibits two modes: one
 789 that is sampled frequently and another that is sampled much less often. Specifically, we want to
 790 explore a dataset where there are many samples for positive values of x , while negative values of x
 791 are significantly underrepresented. Let us define the density of training inputs to be:

$$794 \quad p(x) = \frac{1}{C} \begin{cases} \mathcal{N}(x; 1, 0.5), & x > 0, \\ \nu \cdot \mathcal{N}(x; -1, 0.5), & x < 0. \end{cases}$$

795 Note that there needs to be some normalization constant C so that the integral of p over \mathbb{R} is 1 (there
 796 is also some cutoff at $x = 0$). Here, ν represents the fraction of less represented mode in the data.

797 Given a function f that we seek to approximate, we construct our training inputs by first selecting the
 798 number of positive samples, N_+ , and drawing them from $\mathcal{N}(1, 0.5)$. Additionally, we include νN_+
 799 samples drawn from $\mathcal{N}(-1, 0.5)$ in the training set. For evaluation, we generate two test sets, one
 800 for positive samples and one for negative samples, each containing 512 points drawn from $\mathcal{N}(1, 0.5)$
 801 and $\mathcal{N}(-1, 0.5)$, respectively.

802 First, we fix $\nu = 0.1$. We train an MLP, f_θ , to approximate four different functions. Figure 5
 803 presents the target functions, training samples, prediction errors, and overall performance of the
 804 trained MLPs. Across all examples, we set $N_+ = 100$ or $N_+ = 200$. Notably, the performance on
 805 the + set is consistently 3 to 10 times better in every case. For the exact error, please take a look at
 806 the legend of middle figures.

807 Next, we fix $\nu = 0.1$ and examine how the errors for the + and - sets change as we vary the
 808 number of training samples, N_+ , for all the target functions. For each point on the graphs, **10**

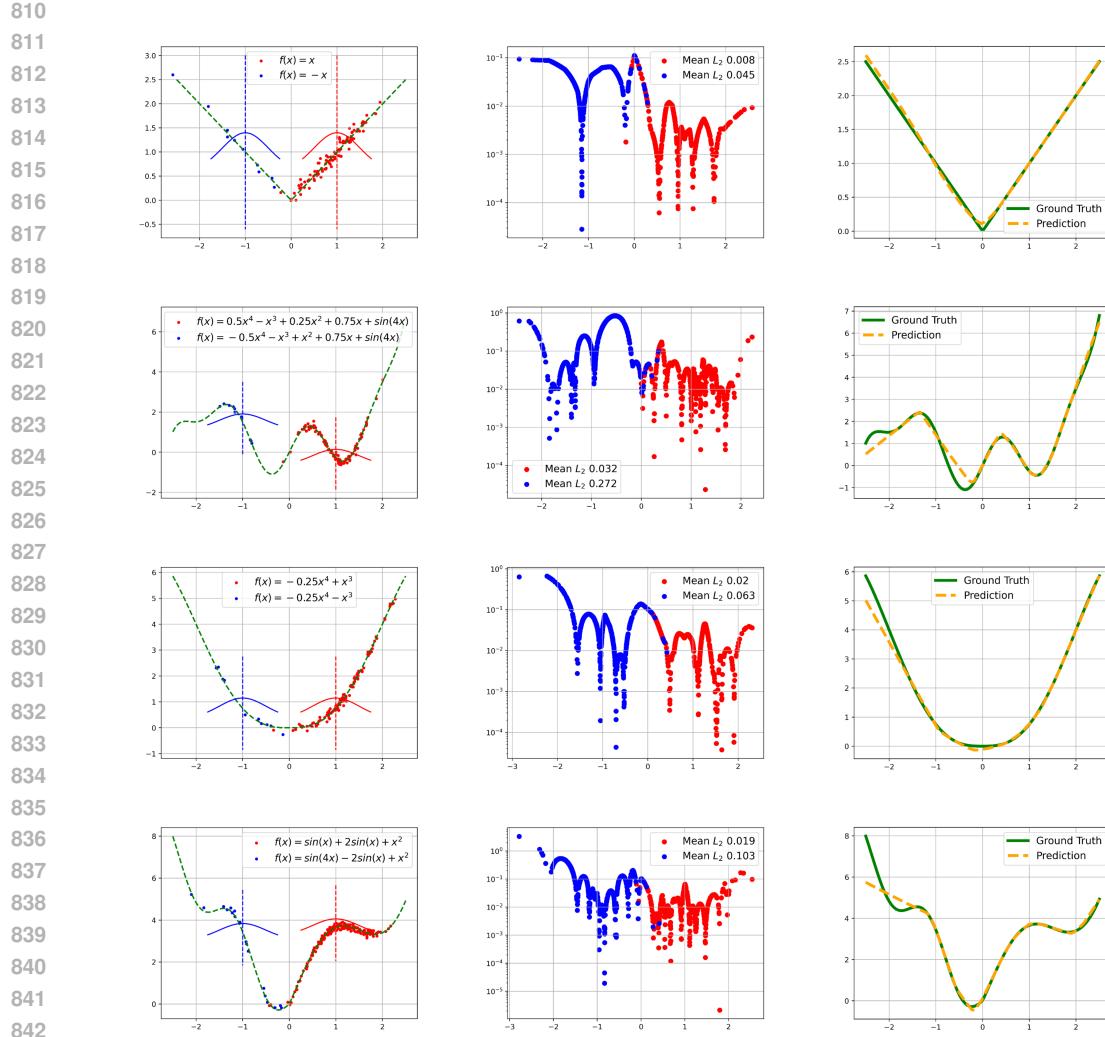


Figure 5: Performance of the trained MLP f_θ on four different target functions. The figure illustrates the target functions, training samples, prediction errors, and overall model performance. Training is conducted with $N_+ = 100$ or $N_+ = 200$, and the results show that the performance on the $+$ set is consistently 3 to 10 times better. For exact error values, refer to the legend in the middle figures.

different models are trained, each time with new training set, the mean L_2 error is calculated for each model, and the median of these 10 errors is reported. The results are presented in the left figures of Figure 6. We observe that the L_2 errors consistently decrease as N_+ increases, which is expected. Similarly, the error for the $-$ class also scales with the number of training samples.

Finally, we set $N_+ = 200$ (or $N_+ = 50$ in case of linear function) and vary the fraction of negative training samples, ν . The right figures in Figure 6 illustrate how the L_2 error evolves as ν increases. We observe that the performance on the $-$ class improves with increasing ν , while the performance on the $+$ class remains largely unaffected. For sufficiently large ν , the errors for both classes become nearly equal. Note that for each point on the graphs, we trained 10 different models and used the same procedure as above to compute the errors.

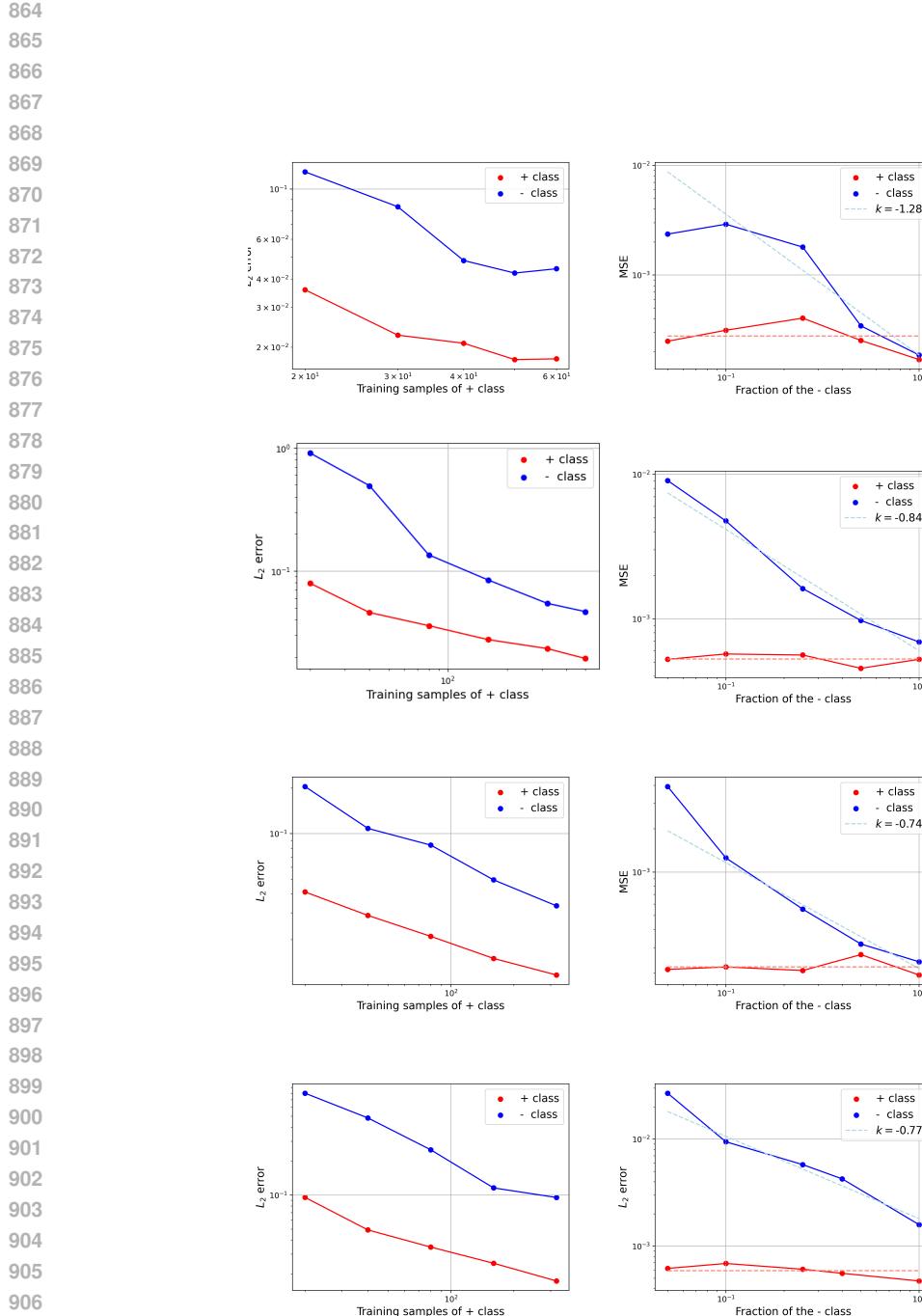


Figure 6: Impact of varying N_+ and ν on L_2 errors for the regression problems from Figure 5. For each point on the graphs, **10 different models are trained**, each time with new training set, the mean L_2 error is calculated for each model, and the median of these 10 errors is reported. The figures on the left show how errors for the + and - sets change as N_+ increases with $\nu = 0.1$, demonstrating a consistent decrease in error. The figures on the right illustrate the effect of increasing ν while keeping N_+ fixed, showing improved performance for the - class while the + class remains mostly unaffected.

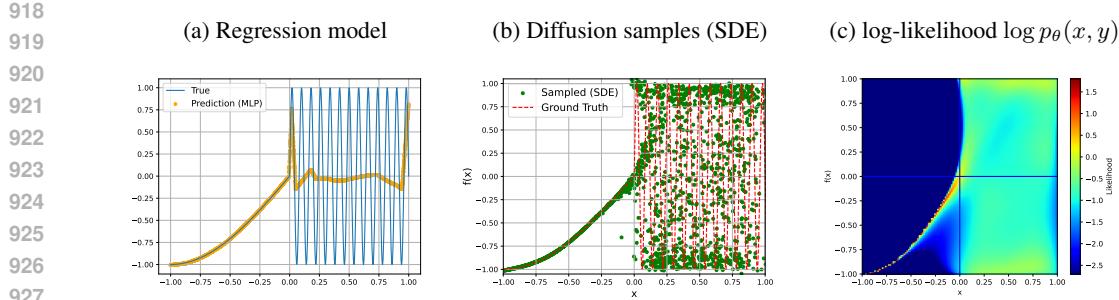


Figure 7: (Left) Ground truth values $f(x)$ and predicted values $f_\theta(x)$, (Center) Samples drawn from the trained diffusion model, (Right) Joint prior log-likelihood $\log p_0(x, y)$.

A.2.2 IMPORTANCE OF $p(y_{\text{pred}} | x^*)$.

Let us study the function

$$f(x) = \begin{cases} \sin\left(\frac{\pi x}{2}\right), & x < 0 \\ \sin(25\pi x), & x \geq 0 \end{cases} \quad (15)$$

The function f is continuous and exhibits a low-frequency behavior for negative inputs, while it becomes highly oscillatory for positive inputs.

We define the training set as $X = \{(x, f(x))\}_{n=1}^N$, where $x \sim \mathcal{U}(-1, 1)$ and $N = 5000$. This means that, on average, half of the dataset represents the low-frequency region of f , while the other half corresponds to the high-frequency region. We train a model (an MLP), denoted as f_θ , to approximate the function f using the dataset X . The model is trained for 500 epochs. The function f_θ provides a good approximation of f in the region of negative inputs. However, for positive values of x , a phenomenon known as *collapse to the mean value* (as described in Molinaro et al. (2025)) occurs. In this region, where f has a high Lipschitz constant, f_θ lacks the capacity to accurately approximate the function. The ground truth values of f , as well as the predictions of f_θ are given in the Figure 7 (Left).

Next, we train a score-based diffusion denoiser, D_θ , to generate samples from the *joint distribution* $(x, f(x))$. We expect the diffusion model's samples to be concentrated around the curve $(x, f(x))$. For negative values of x , this curve occupies a relatively small region of the plane, whereas for positive values of x , it spans a much larger portion of the plane. For that reason, for positive values of x , we expect the samples to be distributed (almost) **uniformly** in the region $(0, 1) \times (-1, 1)$ ¹. In Figure 7, the middle plot displays samples drawn from the trained diffusion model using the probability flow ODE sampler, while the right plot shows samples generated using the Euler-Maruyama SDE sampler. We observe that in the region of negative x values, both techniques yield the samples centered around the graph.

For any point (x, y) in the plane, one can estimate the log-likelihood $\log p(x, y)$ using the instantaneous change of variables formula in the probability flow ODE (see Tang & Zhao (2024)) to get

$$\log p_0(\mathbf{x}(0)) = \log p_T(\mathbf{x}(T)) + \int_0^T \nabla \cdot \tilde{\mathbf{f}}_\theta(\mathbf{x}(t), t) dt. \quad (16)$$

In our choice of the forward SDE, we set $T = 1$, while f_θ can be expressed in terms of the (estimated) score function and the diffusion coefficient. The score function is conveniently computed from the denoiser D_θ using Tweedie's formula. Note that the divergence term inside the integral in 16 can be estimated using Skilling-Hutchinson estimation (see Tang & Zhao (2024) for clarification).

Let us observe a 2d uniform, 128^2 grid in the region $[-1, 1] \times [-1, 1]$. For each grid point, we compute the joint log-likelihood $\log p_0(x, y)$ using the formula 16. The resulting likelihood values are displayed in Figure 7 (Right). It is observed that for negative values of x , the density is concentrated around the graph, while for positive values of x , the probability is distributed across the entire

¹To be more precise, relevant analysis in Molinaro et al. (2025) suggests that the distribution has approximate density $dx dy / \sqrt{1 - y^2}$.

972 region $[0, 1] \times [-1, 1]$, as anticipated. We note that while estimating the log-likelihoods, an additional correction arises by solving the probability flow ODE backwards in time to obtain log-priors
 973 $\log p_T(x_T, y_T)$.
 974

975 **A.3 LIKELIHOOD ESTIMATION**
 976

978 Joint log-likelihoods (Eq. 16) are computed using the *RK38* solver from the *integrate_torch* library
 979 for the initial value problem (and *RK45* in 1d experiments). The divergence term is approximated
 980 via a stochastic estimator (see (Tang & Zhao, 2024, Appendix D.2)) with 32 *Monte Carlo samples*.
 981

982 **A.4 DECISION BOUNDARIES**
 983

984 After training both the application-specific model and the diffusion model, the likelihood function
 985 and error bounds must be defined to support decision-making and hypothesis testing. Suppose we are
 986 given a task-specific model $\mathcal{G} : X \rightarrow Y$, a likelihood-estimation function $\mathcal{L}_\theta : (X, Y) \rightarrow \mathbb{R}$ (derived
 987 from the trained diffusion model D_θ), and a **small set** of $M \in \mathbb{N}$ input–output pairs $(x_i, y_i) \in X \times Y$,
 988 $i = 1, \dots, M$, sampled from the training distribution.
 989

990 The decision boundaries illustrated in Figure 1(C) in the main text are derived using a small subset
 991 of input–output pairs from the training set (dark blue points). The **vertical dashed line** represents
 992 the *certificate threshold*. Samples to the right of this line are classified as *in-distribution* (ID), while
 993 those to the left are classified as *out-of-distribution* (OOD). The **horizontal dashed line** represents
 994 the *error threshold*. We expect samples with *low certificate values* to lie *above* this line with high
 995 probability (i.e., they have large prediction errors), while samples with *high certificate values* will
 996 generally lie *below* it (i.e., they have small errors). This separation defines four quadrants:
 997

- 998 • **Quadrant I** (upper right, high certificate + high error): These are the most problematic
 999 cases. They are classified as ID based on certificate, but their large errors indicate they
 1000 should be OOD, i.e. *false positives*.
 1001
- 1002 • **Quadrant II** (upper left, low certificate + high error): Ideally, these are *true positives* for
 1003 OOD detection — correctly identified as OOD due to low certificate and high error.
 1004
- 1005 • **Quadrant III** (lower left, low certificate + low error): These are *false negatives*, samples
 1006 classified as OOD even though their prediction error is small. These occur as a trade-off to
 1007 keep Quadrant I small; the horizontal error threshold is chosen not to be too high.
 1008
- 1009 • **Quadrant IV** (lower right, high certificate + low error): These are *true negatives*, correctly
 1010 identified as ID, with both high certificate and low error.
 1011

1012 Our objective is to *maximize* the number of true positives (Quadrant II) and true negatives (Quadrant IV) while *minimizing* false positives (Quadrant I). False negatives (Quadrant III) are an acceptable trade-off for stricter control over false positives.
 1013

1014 There are multiple ways to define the certificate and error boundaries. Given M testing input–output
 1015 pairs, we first compute the certificate values
 1016

$$1017 l_i = \mathcal{L}_\theta(x_i, \mathcal{G}_\varphi(x_i))$$

1018 and the errors
 1019

$$e_i = \|y_i - \mathcal{G}_\varphi(x_i)\|_p.$$

1020 We then calculate the median of the certificate values, $m = \text{median}(l_i)$, and their standard deviation,
 1021 $\sigma = \text{std}(l_i)$. The certificate boundary (vertical line) is defined as
 1022

$$1023 l_b = m - \alpha \cdot \sigma,$$

1024 where α is a tunable parameter, set to $\alpha = 1.5$ in all our regression experiments. The error boundary
 1025 e_b (horizontal line) is defined as the $(100 - \beta)$ th percentile of the error values. In our regression
 1026 experiments, we set $\beta = 0.05$. We also conduct ablation studies to compare alternative methods for
 1027 deriving l_b and e_b , and to assess the stability of the resulting boundaries across different definitions.
 1028 Note that the error boundary is introduced only to define the quadrants. One should keep in mind
 1029 that the error boundary may be defined differently, *depending on the use case and the acceptable*
 1030 *margin of error*.
 1031

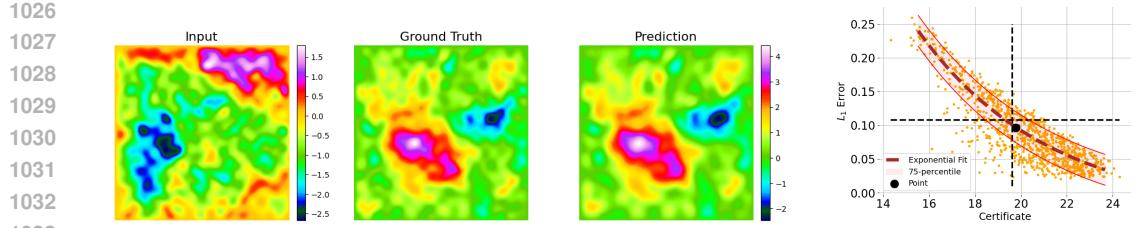


Figure 8: Wave equation. A randomly selected *ID* sample (q dist.). Absolute L_1 error is 0.097. The estimated log likelihood is 19.78. Parameters for this sample are $K = 28$ and $r = -0.79$. A posteriori error estimate (defined in B.4) is 0.10 ± 0.02 .

B EXPERIMENTS

B.1 WAVE EQUATION

Problem Setup. In this experiment, we study Wave equation

$$u_{tt} - c^2 \Delta u = 0, \text{ in } D \times (0, T), \quad u_0(x, y) = f(x, y \mid r, K, a_{ij}) \quad (17)$$

with constant speed of propagation $c = 0.1$ and the initial condition given by

$$f(x, y \mid r, K, a_{ij}) = \pi \sum_{i,j=1}^K a_{ij} \cdot (i^2 + j^2)^{-r} \sin(\pi i x) \sin(\pi j y), \quad (18)$$

where K controls the number of *active* Fourier modes, r controls the spectral decay and a_{ij} are coefficients of the respective modes. The exact solution at time $t > 0$ is given by

$$u(x, y, t) = \pi \sum_{i,j} a_{ij} \cdot (i^2 + j^2)^{-r} \sin(\pi i x) \sin(\pi j y) \cos\left(c\pi t \sqrt{i^2 + j^2}\right), \quad \forall (x, y) \in D.$$

Our objective is to approximate the operator $\mathcal{G} : f \mapsto u(\cdot, T = 5)$.

Data distributions. As described in the main text, we define the **training distribution** p as follows: For each initial condition, the parameters are distributed as $r \sim \mathcal{U}(0.75, 0.85)$, $K \sim \mathcal{U}_{\text{discrete}}(20, 28)$, and $a_{ij} \sim \mathcal{U}(-1.0, 1.0)$. Once the model \mathcal{G}_φ is trained on the training set $X = (f_n, \mathcal{G}(f_n))_{n=1}^N$, we want to test its performance on the **testing distribution** q defined as follows: For each initial condition, the parameters are distributed as $r \sim \mathcal{U}(0.675, 0.925)$, $K \sim \mathcal{U}_{\text{discrete}}(16, 32)$, and $a_{ij} \sim \mathcal{U}(-1.0, 1.0)$. We observe that the $\text{supp}(p) \subset \text{supp}(q)$. Therefore, we anticipate that some samples drawn from distribution q will be similar to those from p , while others may differ significantly. Note that we use only $N = 1000$ samples in the training set.

Wave Equation - Critical Region (CD) To better analyze the intermediate region for the Wave equation, we further split the OOD class. We define a *critical* (CD) subset where certificate values fall within $(l_b - 3\sigma, l - 1.5\sigma)$, while samples with certificates below $l - 3\sigma$ are classified as (pure) OOD.

B.1.1 JOINT LOG LIKELIHOOD VS L_1 ERROR

We present an example of a predicted and a ground-truth sample from ID and OOD classes in Figures 8 and 9. We observe that the parameter K and the decay r of the ID sample in Figure 8 align with the parameter group of the p -distribution. The OOD sample in Figure 9 corresponds to $K = 31$, a value not encountered during training, and is associated with $r = -0.85$ decay factor. This leads to inaccurate model predictions, as indicated by the error and the notably low likelihood value.

We show a scatter plot of the estimated likelihood certificate vs the L_1 error in Figure 10.

We show the *joint* histograms of the parameter values (K, r) for ID samples (left), critical samples (center), and OOD samples (right) (see Figure 11). The ID samples predominantly correspond to high values of the decay parameter, specifically $r \leq 0.75$, which is the minimum observed value of r

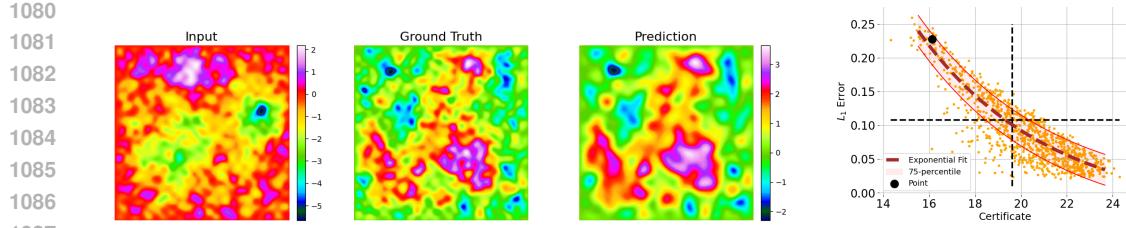


Figure 9: Wave equation. A randomly selected *OOD* sample (q dist.). Absolute L_1 error is 0.227. The estimated log likelihood is 16.12. Parameters for this samples are $K = 31$ and $r = -0.85$. A posteriori error estimate (defined in B.4) is 0.21 ± 0.02 .

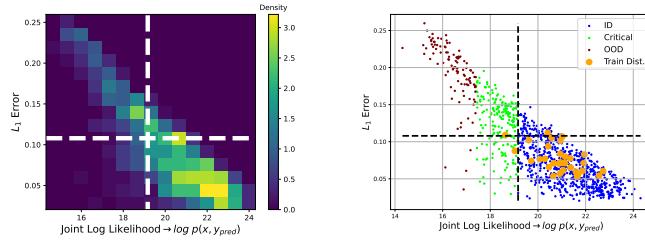


Figure 10: Wave equation. Likelihood–error plane illustrating in-distribution (ID) and out-of-distribution (OOD) classification boundaries, with quadrants indicating true/false positives and negatives.

in the training set. Critical samples tend to have intermediate values of r , whereas OOD samples are characterized by both low r values and typically high K values—regions where the model exhibits the poorest generalization.

B.1.2 SENSITIVITY TO THE DIFFUSION MODEL

We now examine the extent to which the diffusion model needs to be trained to be effective for OOD detection. Specifically, we train the model for 500 epochs, corresponding to approximately 8000 gradient steps. The estimated likelihoods shown in Figure 10 of the main text are obtained from the diffusion model trained for 500 epochs. We now repeat the likelihood estimation using intermediate checkpoints of the model trained for fewer epochs. Figure 13 illustrates the progression of the L_1 error versus the estimated joint log-likelihood $\log p_\theta(x, y_{\text{pred}})$ throughout training. As the model is trained for more epochs, the estimated likelihood becomes increasingly aligned with the prediction error, with the final model (trained for 500 epochs) showing a pronounced correlation between the two.

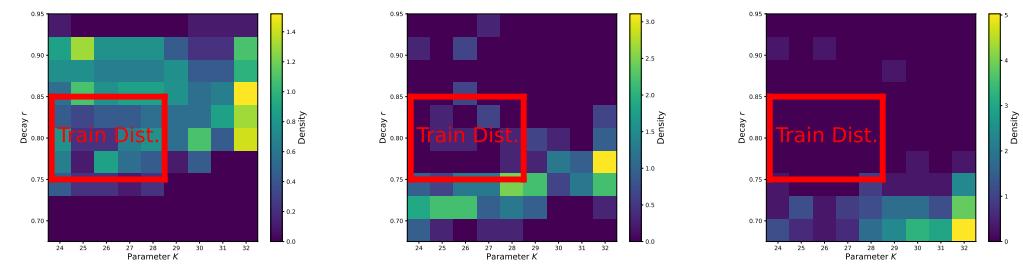


Figure 11: Wave equation. 2d histograms of the values of the parameter K and the decay r for ID samples (left), critical samples (middle) and OOD samples (right). The rectangular region in red represents parameters of the *training distribution*.

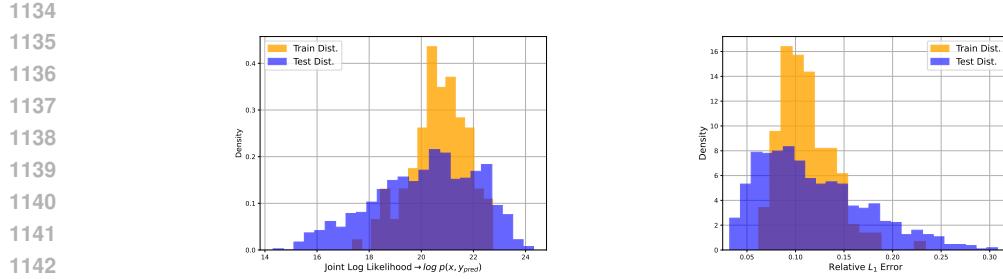


Figure 12: Wave equation. Left: Histogram of estimated likelihoods of the samples drawn from p distribution (training) and q distribution (testing). Right: Histogram of relative L_1 errors for the same samples.

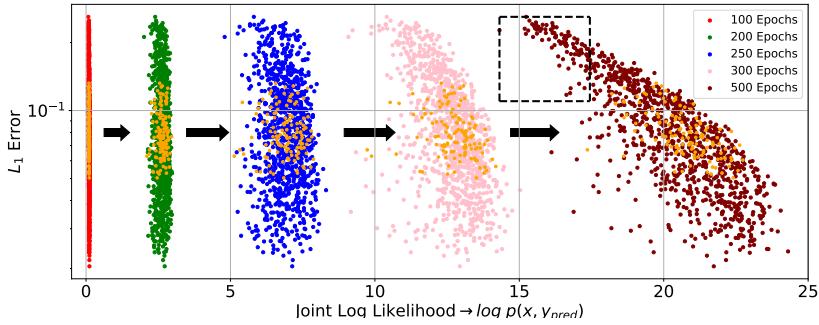


Figure 13: Evolution of the joint log-likelihood $\log p(x, y_{pred})$ versus the L_1 error across training checkpoints of the diffusion model. Likelihoods are estimated using models trained for 100, 200, 250, 300, and 500 epochs. As training progresses, the joint likelihood estimates become more informative for error detection, with the final model (500 epochs) exhibiting a clear correlation between likelihood and prediction error.

We observe that the average estimated log-likelihood over both the training and testing distributions increases steadily throughout training. Figure 14 displays the evolution of the median estimated log-likelihood on the training distribution (red curve) alongside the validation EMA loss (blue curve). Initially, the median log-likelihood remains close to zero for the first 150 epochs. It then rises rapidly over the subsequent 250 epochs, before gradually saturating toward the end of training, coinciding with the plateauing of the validation loss.

In Figure 15, the model evaluated at epoch 400 is shown on the left, and at epoch 500 on the right. The two plots are nearly identical, indicating that the model’s explanation of the data remains consistent across these checkpoints. This suggests that once the diffusion model is sufficiently trained, it provides reliable performance for OOD detection.

B.1.3 CLASSIFICATION SENSITIVITY

In this section, we address the following question: What is the number of samples required to achieve reliable classification performance?

Figure 16 illustrates how the classification boundaries, based on the estimated joint log-likelihood, evolve as the number of randomly selected training samples increases. With only 4 samples, the classification is conservative, resulting in many test samples being labeled as OOD. As the number of samples used for decision-making increases, the boundaries become progressively more stable and reliable. At 128 samples, the classification boundaries are well-formed and yield satisfactory performance.

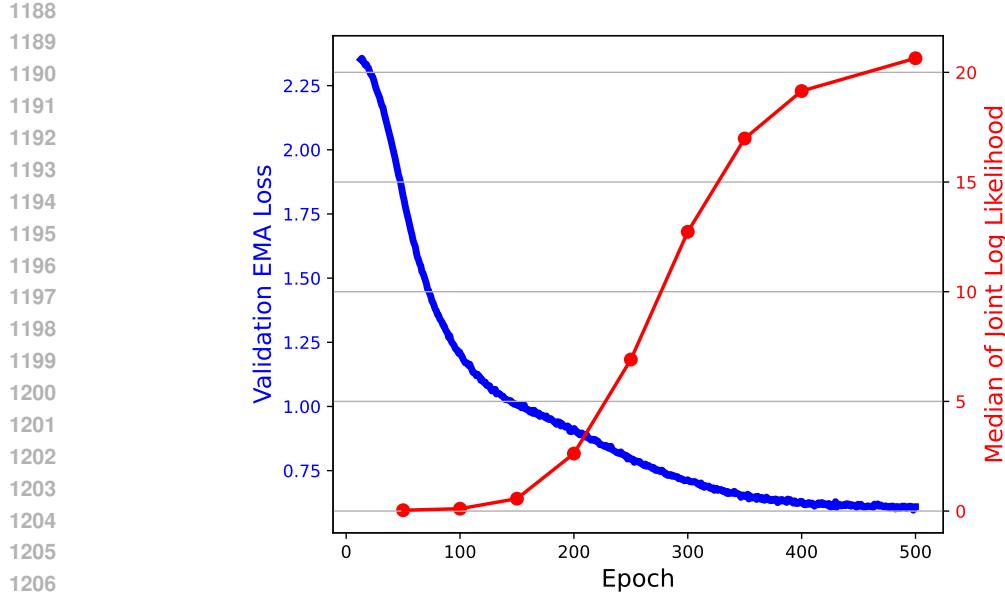


Figure 14: Evolution of the median estimated joint log-likelihood on the training distribution (red) and the EMA validation loss (blue) over the course of training. The estimated log-likelihood remains low during the initial phase, increases rapidly between epochs 150 and 400, and saturates as the validation loss begins to plateau.

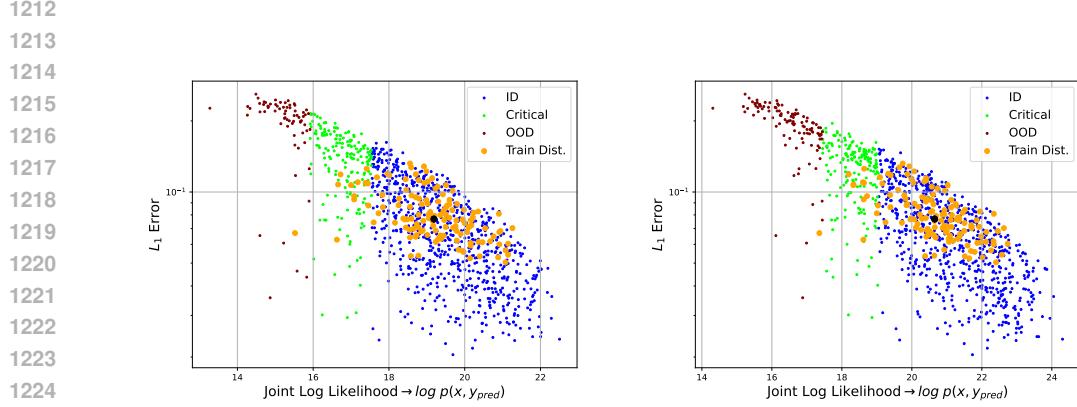


Figure 15: Comparison of the L_1 error versus estimated joint log-likelihood $\log p(x, y_{\text{pred}})$ at training epochs 400 (left) and 500 (right). The similarity between the two plots indicates that the model’s predictive behavior stabilizes, and the likelihood estimates remain consistent once sufficient training is achieved.

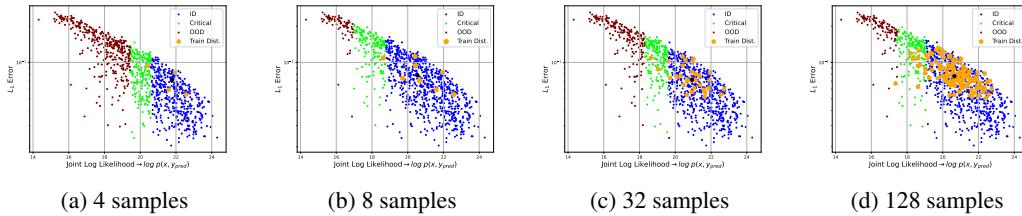


Figure 16: Effect of the number of training samples on the stability of classification boundaries based on the estimated joint log-likelihood $\log p(x, y_{\text{pred}})$. Each subplot shows the L_1 error versus estimated log-likelihood for different numbers of randomly selected training samples: 4, 8, 32, and 128.

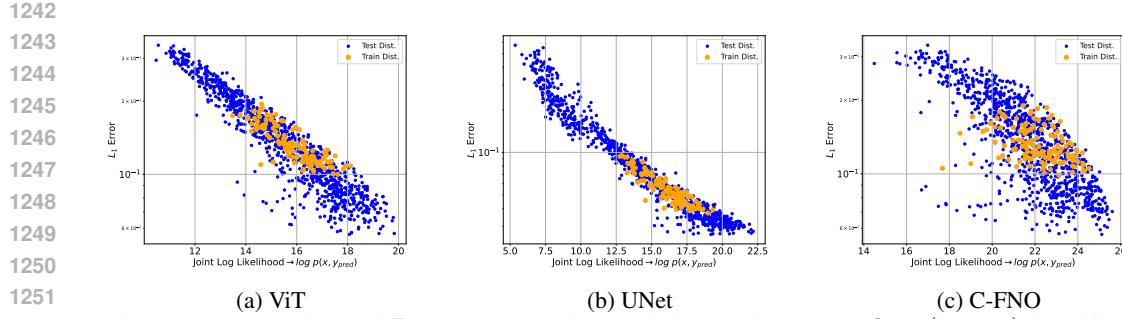


Figure 17: Comparison of L_1 errors and estimated joint log-likelihoods $\log p(x, y_{\text{pred}})$ for different regression architectures (ViT, UNet, C-FNO) using the same diffusion model. While low likelihoods consistently correspond to high-error samples within each model, the absolute likelihood values are not comparable across models.

B.1.4 REGRESSION MODEL ARCHITECTURE ABLATION

In this section, we evaluate the proposed framework using various regression architectures. Instead of the previously used CNO model, we now consider ViT Dosovitskiy et al. (2020), UNet Ronneberger et al. (2015), and C-FNO Molinaro et al. (2025) architectures (see D.4 for architectural details). The same diffusion model trained in earlier sections is employed throughout. Each regression model is trained on the same dataset used for the CNO experiments. Figure 17 presents the L_1 errors plotted against the estimated joint log-likelihoods $\log p_{\theta}(x, y_{\text{pred}})$ for the different models. Similar to the CNO case, we observe that samples with low likelihoods correspond to high prediction errors, whereas samples with high likelihoods exhibit lower errors across all tested architectures.

We find that this method cannot be reliably used for model selection. Although the estimated log-likelihoods for the C-FNO model are higher than those for the ViT and UNet models, its corresponding prediction errors are also higher. This indicates that only the relative likelihoods within a single model are meaningful, while comparisons of estimated likelihoods across different models are not easily interpretable.

B.1.5 DECISION BOUNDARIES ABLATION

We now analyze the dependency and stability of the accuracy, FPR, and FNR as the positions of the likelihood certificate and error boundaries are varied (defined in A.4). While the error boundary is consistently defined using a percentile-based approach, for the likelihood certificate boundary we compare the median-and-std method with an alternative percentile-based definition. Table 2 shows the variation in accuracy, FPR, and FNR as the parameters for the error- and likelihood-boundary estimations are adjusted. We find that accuracy remains relatively stable, even when β_{ERR} is as high as 0.25. The primary change is in the balance between FPR and FNR. The best results are achieved with $\alpha_L = 1.5$ and $\beta_{\text{ERR}} \in \{0.01, 0.05\}$. One should keep in mind that the error boundary can also be specified manually. This section presents an ablation study on our approach to defining this boundary.

B.1.6 COMPUTATIONAL COMPLEXITY OF THE JLBC FOR OOD DETECTION

As discussed in SMA.3, our certificate estimation procedure uses the RK38 solver. We use a *single* integration step from $t = 0$ to $t = 1$. Because RK38 is a fourth-order Runge–Kutta method, this requires only *four internal substeps* to solve the probability-flow ODE. The Skilling–Hutchinson divergence is estimated using a random tensor of size 32. This choice was made in a largely heuristic manner. To evaluate the impact of this choice, we perform an ablation study on the random-tensor size. All inference experiments were conducted on a single RTX 4090 GPU. The corresponding performance metrics and per-sample certificate computation times are reported in Table 3.

The results indicate that the complete certification process requires only a fraction of a second per sample. The metrics remain highly stable even when the random-tensor size is reduced to as few as 2,

1296	β_{ERR}	β_L	α_L	Accuracy	FPR	FNR
1297	0.05	—	1.5	0.855	0.040	0.105
1298	0.01	—	1.5	0.861	0.026	0.113
1299	0.25	—	1.5	0.813	0.133	0.054
1300	0.05	—	1.0	0.827	0.019	0.154
1301	0.01	—	1.0	0.821	0.012	0.117
1302	0.25	—	1.0	0.819	0.095	0.086
1303	0.05	—	2.0	0.865	0.069	0.066
1304	0.01	—	2.0	0.877	0.054	0.069
1305	0.25	—	2.0	0.777	0.186	0.037
1306	0.05	0.05	—	0.857	0.061	0.082
1307	0.05	0.01	—	0.851	0.106	0.043
1308	0.05	0.25	—	0.770	0.010	0.220

1309 Table 2: Wave equation. Performance metrics (accuracy, FPR, and FNR) for different configurations
1310 of the error-boundary percentile β_{ERR} and the likelihood-boundary parameters: either percentile-
1311 based (β_L) or median-and-standard-deviation-based (α_L) definitions.

1314 in which case the per-sample inference time is approximately 0.02s. Importantly, the diffusion model
1315 requires no retraining or finetuning at inference time, as the proposed method identifies ID/OOD
1316 samples in a fully zero-shot manner.

1317	JLBC Tensor size	Certificate time [s]	AUROC	ACC
1319	32	0.211	0.936	0.855
1320	8	0.062	0.936	0.859
1321	2	0.020	0.937	0.857

1323 Table 3: Computation time and performance of the JLBC certificate across different random-tensor
1324 sizes.

1326 B.1.7 COMPARISON WITH BAYESIAN APPROACHES

1328 The OOD detection problem can be interpreted through the lens of epistemic uncertainty. High
1329 epistemic uncertainty, reflecting the model’s lack of knowledge, typically indicates that an input
1330 lies outside the training distribution. Estimating this uncertainty and using it as a scalar score
1331 thus enables Bayesian-style models to act as OOD detectors. In this context, methods such as
1332 MC-Dropout Gal & Ghahramani (2016) and Rate-In Zeevi et al. (2025) employ dropout during both
1333 training and inference, allowing for stochastic forward passes that approximate Bayesian inference
1334 by randomly sampling subnetworks.

1335 We evaluate our model on the Wave Equation experiment against MC-Dropout and Rate-In. MC-
1336 Dropout estimates predictive uncertainty by performing multiple stochastic forward passes with
1337 dropout activated during inference, effectively approximating a Bayesian ensemble. The Rate-In
1338 method can be viewed as a more advanced variant of MC-Dropout, where the dropout rates used
1339 during inference are adaptively tuned to preserve information flow. This adaptation increases in-
1340 ference time compared to standard MC-Dropout, but yields notably higher accuracy and AUROC.
1341 We also re-evaluate the JLBC model (marked with \star in Table 4) using a newly trained version
1342 that includes dropout ($p = 0.1$). Overall, the diffusion-based approach remains dominant, achiev-
1343 ing significantly higher performance while requiring only about 0.02s per sample for certificate
1344 computation, roughly five times faster than Rate-In despite its lower accuracy. Note that model ac-
1345 curacies are computed using a fixed threshold corresponding to *the mean plus/minus 1.5 standard*
1346 *deviations of the score*, while the AUROC metric remains threshold-independent. Figure 18 shows
1347 the histograms of error versus certificate values for JLBC, MC-Dropout, and Rate-In. Among the
1348 three, JLBC provides the most pronounced separation between ID and OOD samples, with Rate-In
1349 performing second best and MC-Dropout showing the weakest distinction in this setting.

1350
1351
1352
1353
1354

JLBC*	Tensor size	Certificate time [s]	AUROC	ACC
	32	0.211	0.955	0.873
	2	0.020	0.955	0.869
MC-Dropout	Tensor size	Certificate time [s]	AUROC	ACC
	32	0.028	0.526	0.407
	2	0.002	0.642	0.676
Rate-In	Tensor size	Certificate time [s]	AUROC	ACC
	128	0.240	0.809	0.742
	32	0.150	0.816	0.762
	2	0.120	0.714	0.693

Table 4: Comparison of diffusion-based certificates, MC-Dropout, and Rate-In approaches across different random tensor sizes. JLBC employs random tensors for estimating the divergence term in the probability-flow ODE, whereas the other two methods use them for Monte Carlo estimation. The diffusion certificates achieve high accuracy and AUROC with minimal computation time, while MC-Dropout and Rate-In provide weaker yet complementary uncertainty estimates, with Rate-In offering moderate improvements over MC-Dropout at the cost of higher runtime. With sufficiently large tensor sizes used during Rate-In inference, the performance eventually reaches a saturation point.

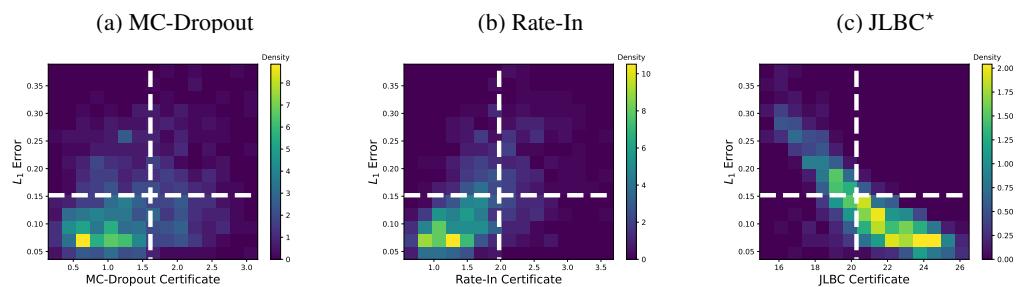


Figure 18: Histogram of error versus certificate values across different methods. JLBC and Rate-In are evaluated using 32 random samples, while MC-Dropout uses 2 samples (corresponding to its best-performing configuration). JLBC exhibits the strongest separation between ID and OOD samples, followed by Rate-In, whereas MC-Dropout performs the weakest under these settings.

1400
1401
1402
1403

1404
1405 B.2 NAVIER-STOKES1406 **Problem Setup.** In this experiment, we study Navier-Stokes equations

1407
1408
$$u_t + (u \cdot \nabla)u + \nabla p = \nu \Delta u, \quad \operatorname{div} u = 0, \quad (19)$$

1409 in the torus $D = \mathbb{T}^2$ with periodic boundary conditions and viscosity $\nu = 4 \times 10^{-4}$, only applied to
1410 high-enough Fourier modes (those with amplitude ≥ 12). The data is taken from the papers Raonic
1411 et al. (2023) and Herde et al. (2024).1412 In this section, we validate our intuition on time-dependent 2D Navier-Stokes equation problems.
1413 To achieve this, we define six datasets of varying difficulty (mainly taken from Herde et al. (2024)),
1414 namely:1415 1. **NS-Sines.** We consider the following initial conditions,
1416

1417
1418
$$u_x^0(x, y) = \sum_{i,j=1}^p \frac{\alpha_{i,j}}{(2\pi(i+j))^q} \sin(2\pi ix + \beta_{i,j}) \sin(2\pi jy + \gamma_{i,j}) \quad (20)$$

1419
1420
$$u_y^0(x, y) = \sum_{i,j=1}^p \frac{\alpha_{i,j}}{(2\pi(i+j))^q} \cos(2\pi ix + \beta_{i,j}) \cos(2\pi jy + \gamma_{i,j})$$

1421
1422

1423 where the random variables are chosen as $\alpha_{i,j} \sim \mathcal{U}_{[-1,1]}$, $\beta_{i,j} \sim \mathcal{U}_{[0,2\pi]}$, and $\gamma_{i,j} \sim \mathcal{U}_{[0,2\pi]}$.
1424 The number of modes p is chosen to be $p = 10$, while the spectral decay is $q = 1/2$.1425 2. **NS-Sines Moderate.** The initial conditions have the same form as in 20, but with the
1426 spectral decay $q = 1$. The higher order modes are damped to a greater extent, making
1427 the solution less chaotic.1428 3. **NS-Gauss.** Given a two-dimensional velocity field $u = (u_x, u_y)$, its *vorticity* is given by
1429 the scalar $\omega = \operatorname{curl} u = \partial_x u_y - \partial_y u_x$. We specify the initial conditions in terms of the
1430 vorticity, given by,

1431
1432
$$\omega_0(x, y) = \sum_{i=1}^p \frac{\alpha_i}{\sigma_i} \exp\left(-\frac{(x - x_i)^2 + (y - y_i)^2}{2\sigma_i^2}\right) \quad (21)$$

1433

1434 where we chose $p = 100$ Gaussians with $\alpha_i \sim \mathcal{U}_{[-1,1]}$, $\sigma_i \sim \mathcal{U}_{[0.01,0.1]}$, $x_i \sim \mathcal{U}_{[0,1]}$, and
1435 $y_i \sim \mathcal{U}_{[0,1]}$.1436 4. **NS-Shear Layer.** We take as initial conditions the shear layer,

1437
1438
$$u_0(x, y) = \begin{cases} \tanh\left(2\pi \frac{y-0.25}{\rho}\right) & \text{for } y + \sigma_\delta(x) \leq \frac{1}{2} \\ \tanh\left(2\pi \frac{0.75-y}{\rho}\right) & \text{otherwise} \end{cases} \quad (22)$$

1439
1440
1441

1442 where $\sigma_\delta : [0, 1] \rightarrow \mathbb{R}$ is a perturbation of the initial data given by

1443
1444
$$\sigma_\delta(x) = \xi + \delta \sum_{k=1}^p \alpha_k \sin(2\pi kx - \beta_k). \quad (23)$$

1445
1446

1447 The parameters are chosen to be $p \sim \mathcal{U}_{\{7,8,\dots,12\}}$, $\alpha_k \sim \mathcal{U}_{[0,1]}$, $\beta_k \sim \mathcal{U}_{[0,2\pi]}$, $\delta = 0.025$,
1448 $\rho \sim \mathcal{U}_{[0.08,0.12]}$, and $\xi \sim \mathcal{U}_{[-0.0625,0.0625]}$.1449 5. **NS-Brownian.** We generate Brownian Bridges directly in Fourier space with the following
1450 method:

1451
1452
$$W(x) = \sum_{\|\mathbf{k}\|_\infty \leq N} \frac{1}{\|\mathbf{k}\|_2^{\frac{3}{2}}} \sum_{m,n,\ell \in \{0,1\}} \alpha_k^{(mn\ell)} \operatorname{sc}_m(x) \operatorname{sc}_n(x) \operatorname{sc}_\ell(x) \quad (24)$$

1453

1454 where

1455
1456
$$\operatorname{sc}_i(x) = \begin{cases} \sin(x) & \text{for } i = 0 \\ \cos(x) & \text{for } i = 1 \end{cases} \quad (25)$$

1457

1458 and the $\alpha_k^{(mn\ell)} \sim \mathcal{U}_{[-1,1]}$. These Brownian Bridges are propagated through the discretized
1459 Navier-Stokes system from time $t = -0.5$ to $t = 0$.

–	–	LBC	DPath	SFNS	SBDDM	MSSM	Joint LBC
NS-MIX p(X)	ACC	0.404	0.487	0.486	0.487	0.484	0.947
	FPR	0.187	0.345	0.339	0.345	0.343	0.009
	FDR	0.518	0.994	0.976	0.994	0.988	0.024

Table 5: Approximation of $p(x)$ used for OOD detection for NS-MIX fails completely for diffusion-based baselines. We here include our proposed Joint LBC (JLBC) based on estimating $p(x, y_{\text{pred}})$ as a reference for comparison.

6. **NS-PwC.** The initial vorticity is assumed to be constant along a uniform (square) partition of the underlying domain and is given by,

$$\omega_0(x, y) = c_{i,j} \text{ in } [x_{i-1}, x_i] \times [y_{j-1}, y_j] \quad (26)$$

for $x_i = y_i = \frac{i}{p}$ for $i = 0, 1, 2, \dots, p$, and $c_{i,j} \sim \mathcal{U}_{[-1,1]}$. The number of squares in each direction was chosen to be $p = 10$.

Each dataset consists trajectories that are made of 11 solution snapshots (an input + 10 solution snapshots). Note that in Herde et al. (2024), the original trajectories have a length of 21, but we subsampled them to a length of 11 by selecting every other snapshot in time. For both the regression and diffusion tasks, we employ an *all2all* training strategy, as recommended in the original work.

For the **NS-MIX** dataset, training is conducted on a combination of:

- NS-Sines
- NS-Gauss
- NS-Shear Layer

The model is trained on full trajectories, with 18K trajectories in total, yielding nearly 3M I/O pairs.

For the **NS-PwC** dataset, training uses 5K trajectories of length 8 (the first 8 snapshots). Figure 19 shows the L^1 error vs the likelihood certificate for two experimental settings. Note that the decision boundaries for the NS-MIX dataset are derived only from the NS-Gauss and NS-Shear Layer datasets. Although the model was trained on the NS-Sines distribution as well, its errors there remain very large. This is because NS-Sines requires substantially more training trajectories than 18k to achieve (highly) accurate predictions.

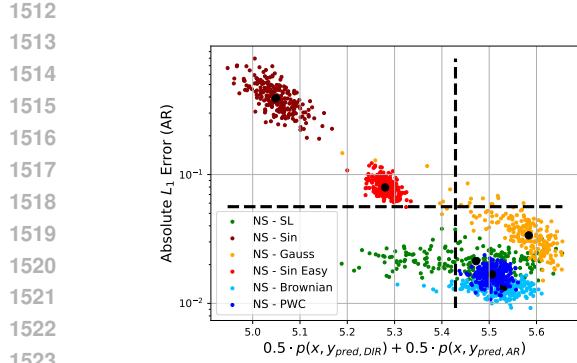
In both NS-MIX and NS-PwC, the models are evaluated across all six distributions described above, with the final evaluation performed on the 8th solution snapshot.

In the NS-MIX experiment, we present randomly selected samples from all test distributions, including the inputs, ground truth solutions, predictions, and corresponding absolute errors. Notably, while the predictions for NS-Sines and NS-Sines Moderate may not appear highly inaccurate at first glance, the diffusion-based certificate successfully identified them as OOD, since their errors are significantly larger compared to other distributions. This is also evident in the absolute error plots, where large values occur only for NS-Sines and NS-Sines Moderate. For details, see Figure 23.

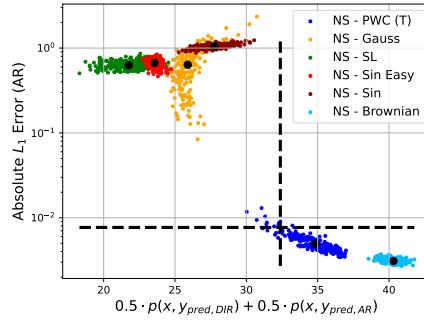
In the NS-PwC experiment, we additionally display randomly selected samples from all test distributions (see 24). While the solutions from the NS-PwC and NS-Brownian distributions are well approximated, the trained model fails to generalize to the other four distributions, whose samples are classified as OOD.

B.2.1 INSUFFICIENCY OF $p(x)$ AS CERTIFICATE

In the Table 5, we show the accuracy rates and other metrics for baselines (defined in C) on the NS-MIX problem, based on estimating the input distribution $p(x)$ alone. We observe that all certificates derived from such a task-agnostic approach completely fail on this dataset. This result highlights the necessity of a joint-distribution-based approach to obtain reliable certificates.



(a) NS-MIX



(b) NS-PwC

Figure 19: Absolute L1 error versus likelihood for four experimental settings. Each plot shows results for different testing distributions, with the vertical dashed line indicating the likelihood threshold and the horizontal dashed line indicating the error threshold. These decision boundaries divide the space into four quadrants corresponding to true positives, false positives, true negatives, and false negatives.

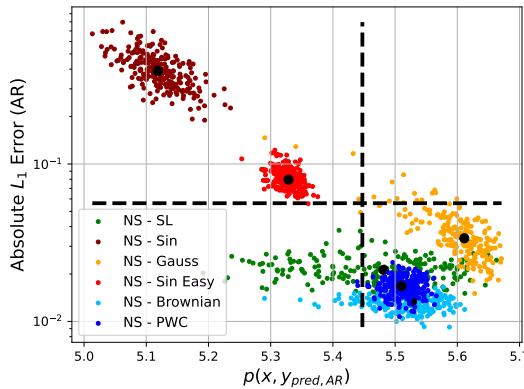


Figure 20: Ablation Study for the certificate. Training distribution is NS-MIX.

B.2.2 ABLATION STUDY ABOUT THE EVALUATION OF THE LIKELIHOOD

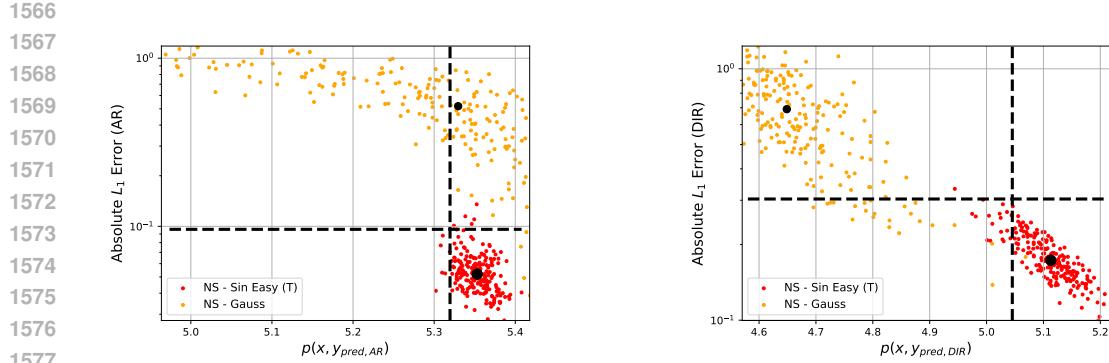
If the models are evaluated autoregressively (AR), our certificate for the time-dependent problems is evaluated as

$$s(x) = 0.5 \cdot p(x, y_{DIR}) + 0.5 \cdot p(x, y_{AR}),$$

where y_{AR} is the autoregressive prediction, while y_{DIR} is the prediction obtained by directly approximating the solution at the test time T . We do not use only the $p(x, y_{AR})$, as the model is not trained to make predictions in autoregressive manner. The model is trained to directly predict the solution, so y_{DIR} is the real indicator of how well and accurate our model performs. In the paper Herde et al. (2024), the authors noted that AR evaluation is sometimes beneficial for the model performance, but it is unclear *when* this strategy leads to better performance. For NS-MIX and NS-PwC, we employ uniform AR rollouts, using 7 AR steps, with the final evaluation corresponding to the 8th solution snapshot.

Let us now test $s_{AR}(x) = p(x, y_{AR})$ as our certificate. For sufficiently complex training distributions, such as *NS-MIX*, $s_{AR}(x)$ is good certificate, as seen in Figure 20.

However, $s_{AR}(x)$ is not always the best possible indicator. Take for example NS-Sines Moderate training distribution. We trained a regression and a diffusion models on 4.5K trajectories of length 8. If $s_{AR}(x)$ is used, some of the samples that have larger than 20% relative error are classified as in-distribution. This may, or may not be a large error, depending on the use case. The mixed



1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593

Figure 21: Ablation Study for the certificate. Training distribution is NS-Sin-Moderate. Left: AR Evaluation with the certificate $p(x, y_{AR})$. Right: Direct Evaluation with the certificate $p(x, y_{DIR})$.

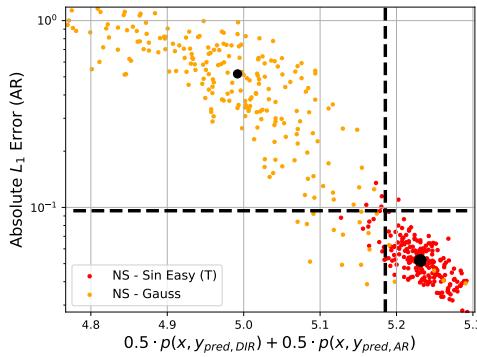


Figure 22: Ablation Study for the certificate. Training distribution is NS-Sines Moderate. Evaluation with mixed certificate.

certificate is **more conservative**, as it punishes the model’s inability to directly predict the solution, with one forward pass. In Figure 21, we show the performance of the certificate $s_{AR}(x)$. In the same figure, right, we show the error of the direct evaluation vs $p(x, y_{DIR})$. We see that the model is generally unable to accurately predict the solution with direct evaluation in case of NS-Gauss. Thus, we cannot expect the performance of the AR evaluation to be accurate, either. The results of the *mixed* certificate are shown in 22

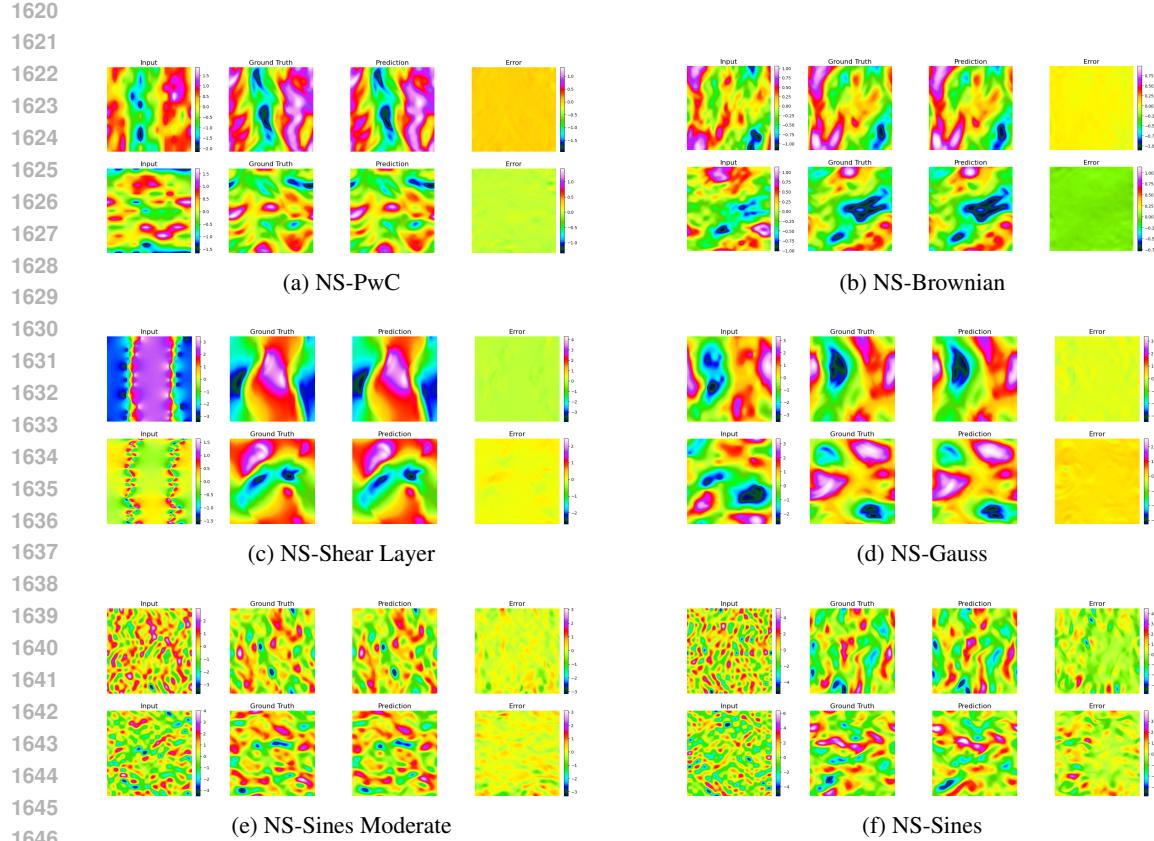


Figure 23: Randomly selected samples from the testing distributions in NS-MIX experiment, showing inputs, ground truth solutions, model predictions, and corresponding absolute errors. While predictions for NS-Sines and NS-Sines Moderate appear visually reasonable, their significantly larger errors compared to other distributions allow the diffusion-based certificate to correctly flag them as OOD. Note that the ground truth outputs, predictions, and absolute errors have the same colorbar.

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

Figure 24: Randomly selected samples from the testing distributions in NS-PwC experiment, showing inputs, ground truth solutions, model predictions, and corresponding absolute errors. The predictions for NS-PwC and NS-Brownian appear visually accurate, while the remaining distributions exhibit very larger errors. Our method successfully identifies these other distributions as out-of-distribution (OOD). Note that the ground truth outputs, predictions, and absolute errors have the same colorbar.

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

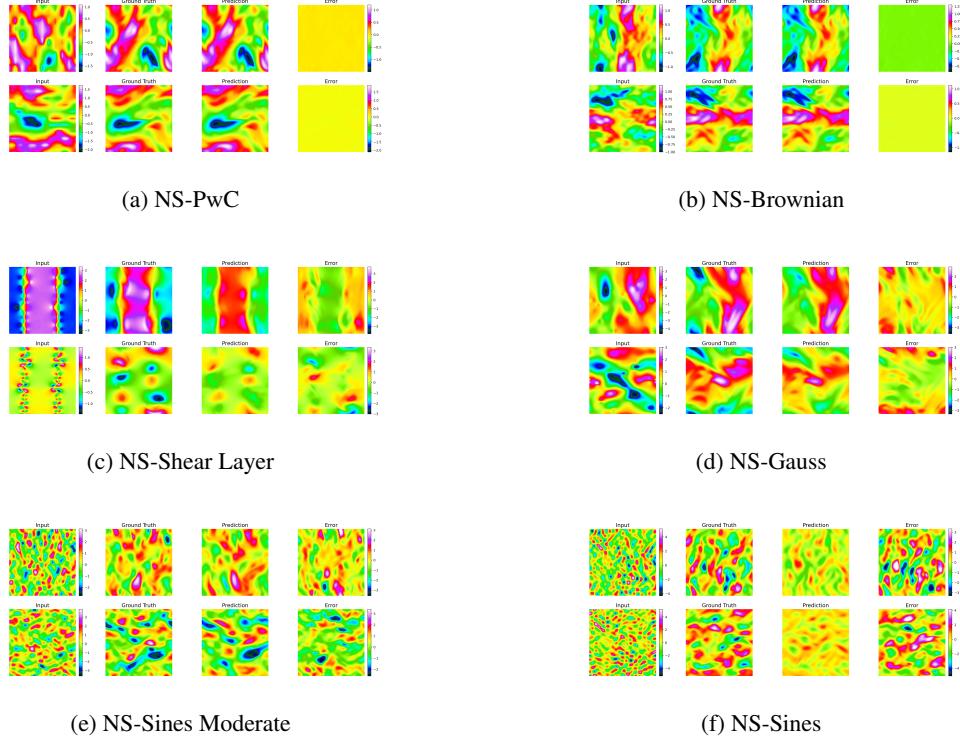
1723

1724

1725

1726

1727



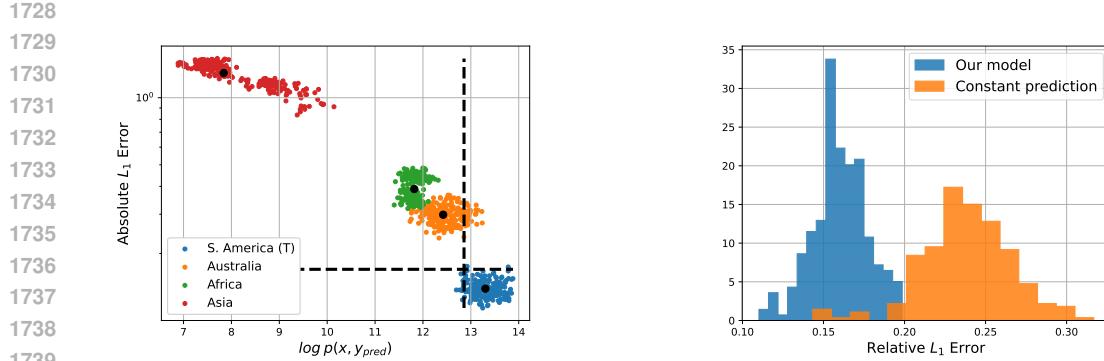


Figure 25: Humidity prediction. Left: L_1 errors vs. Estimated log likelihood for different testing datasets. Right: Histogram of absolute errors for 12-hour humidity predictions. The comparison is between our trained model and a persistence forecasting baseline, which assumes no change in humidity over time.

B.3 HUMIDITY FORECAST

In this experiment, we utilize MERRA-2 satellite data to forecast surface-level specific humidity over various global regions, from January–April. Refer to Figure 26 for an illustration of the data format. The objective is to predict specific humidity **12 hours into the future**. We evaluate our models on humidity prediction for the year 2023 using four distinct test datasets:

1. South America - Training region
2. Australia and Oceania region
3. African region
4. Asian region

Since humidity patterns vary significantly across continents, we anticipate poor performance in regions that differ from the training domain. Figure 25 presents L_1 errors plotted against the estimated log-likelihood $p(x, y_{pred})$, where y_{pred} denotes the 12-hour predicted humidity. We observe that the diffusion model assigns high likelihoods, corresponding to low prediction errors, to samples from South America. Samples from Australia receive slightly lower likelihoods and are mostly identified as OOD. As anticipated, the African and Asian datasets fall entirely within the OOD region.

We observe that the predicted humidity fields appear overly smooth, lacking fine-scale structures. This is expected, as capturing such small-scale features is challenging without providing additional contextual information, such as boundary conditions, or auxiliary variables like wind speed, air temperature, and pressure. In fact, our regression task is mathematically ill-posed, so perfect predictions are not expected. Nonetheless, in Figure 25 (Right), we compare the error histogram of our model’s 12-hour humidity predictions with that of a *persistence forecasting* baseline, where the humidity is assumed constant over time (i.e., the output is identical to the input). The comparison shows that our model clearly outperforms the persistence baseline, as evidenced by its error distribution being shifted to the left. Note that all the statistics are computed over **normalized** data.

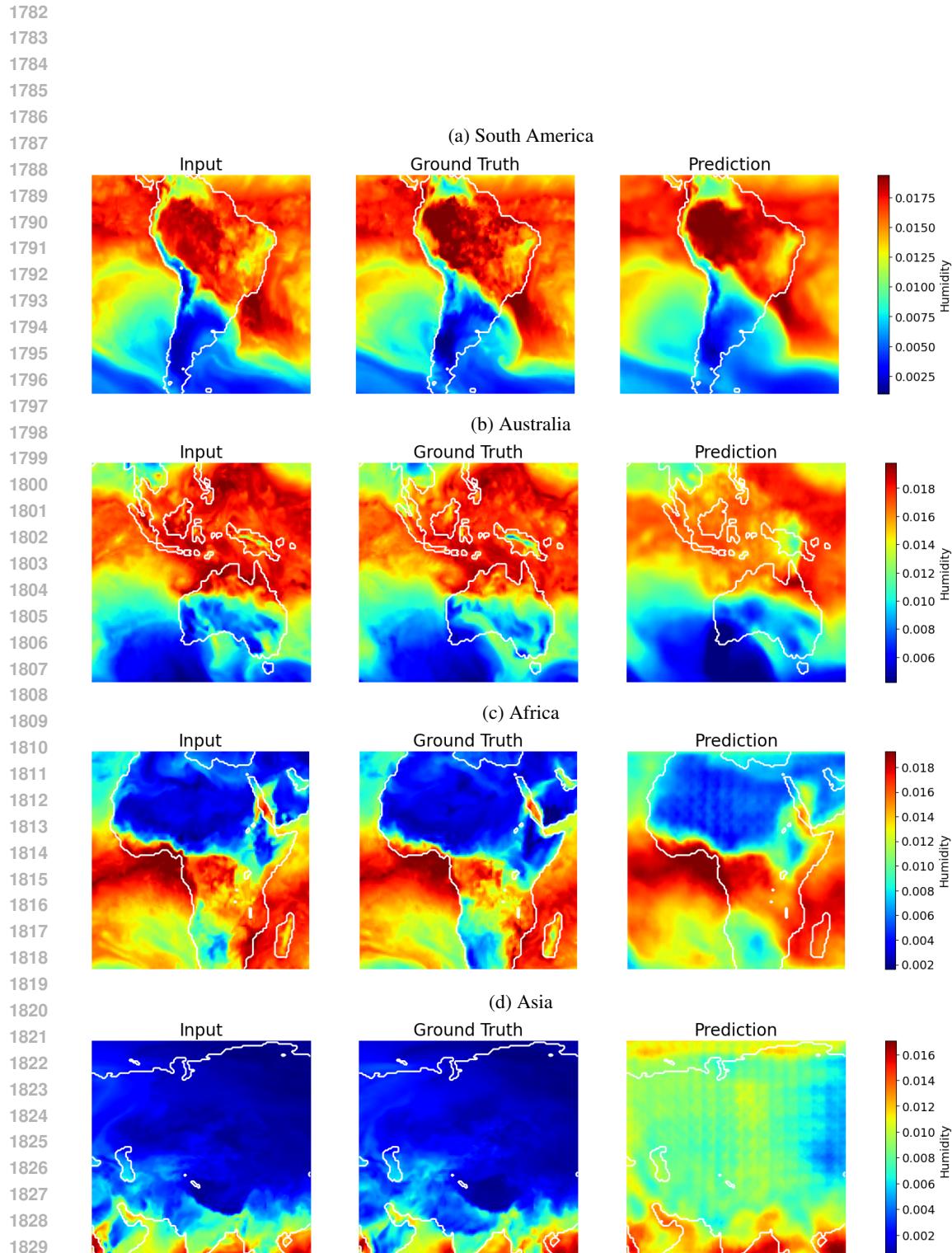


Figure 26: Humidity prediction over different testing regions.

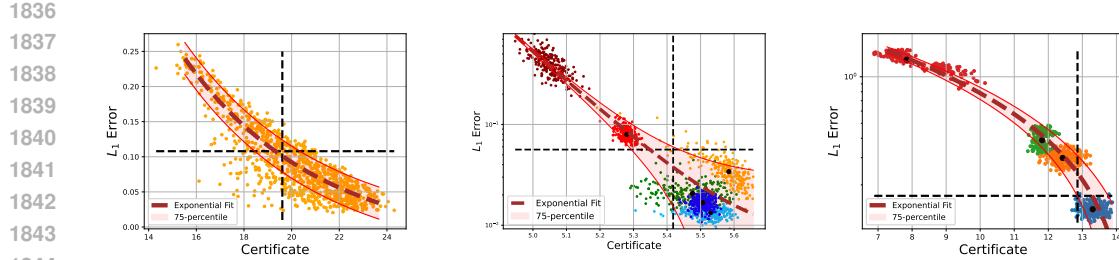


Figure 27: Fitted exponential curves of regression error as a function of the certificate (estimated log-likelihood) for the Wave Equation, NS-MIX, and MERRA2 test cases. Shaded regions denote the 75th-percentile deviation bands, within which the majority of test samples are contained.

B.4 A POSTERIORI ERROR ESTIMATES

Once the regression and diffusion models are trained on the training distribution, and a set of **test** samples is available, the prediction error can be analyzed as a function of the certificate (in our case, the estimated log-likelihood). We illustrate this relation in three settings: Wave Equation, NS-MIX, and MERRA2. We assume the availability of approximately 64 samples (input-output pairs) from the test distribution for constructing the error–certificate curve. For the Wave Equation, all 64 samples come from a single test distribution. In the NS-MIX case, with six test distributions, we take 11 samples from each (66 in total). For MERRA2, which has four test distributions, we consider 16 samples per distribution (64 in total).

We compute the L_1 errors of the regression model on the available test samples and estimate the corresponding certificates. A parametric exponential function of the form

$$y(x) = a \cdot \exp(-bx) + c$$

is then fitted to the certificate–error pairs. Figure 27 presents the fitted curves for the Wave Equation, NS-MIX, and MERRA2 experiments. From each set of samples, we evaluate the absolute deviation between the fitted curves and the true errors, and calculate the 75th percentile of these deviations. Majority of the test samples are contained within the 75th-percentile bands.

1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890

1891 B.4.1 INFERENCE ON TRAINING DISTRIBUTION

1892

1893 In certain situations, the goal is to evaluate how well the model generalizes within its own training
 1894 distribution. The challenge in this setting is to identify the "most difficult solutions" that lie inside
 1895 the training distribution. In such cases, one can also perform a posteriori error estimates. We carry
 1896 out these estimates on the training distributions of the Wave Equation and NS-PwC experiments.
 1897 A set of 64 samples from the training distribution is used to determine both the likelihood and the
 1898 error bounds, as well as to fit the exponential relationship between the certificate and the error.
 1899 To establish the uncertainty bounds, we apply the 75th-percentile rule. We present the error fits
 1900 alongside the corresponding error–certificate histograms for the Wave-Eq and NS-PwC experiments
 1901 in Figure 28.

1902

1903 **Ablation of threshold.** In the preceding cases, the uncertainty bands were defined using the 75th
 1904 percentile of the absolute error deviations as the threshold. We now vary this threshold and illus-
 1905 trate how the uncertainty bounds evolve as the threshold value increases. Figure 29 illustrates this
 1906 evolution for the 65th, 75th, 85th, and 95th percentile bounds for the Wave-Eq experiment. We find
 1907 that at the 75th percentile, the vast majority of samples lie within the bounds while the associated
 1908 uncertainty remains moderate. At the 95th percentile, nearly all samples are contained within the
 1909 bounds, though at the cost of significantly larger uncertainty.

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

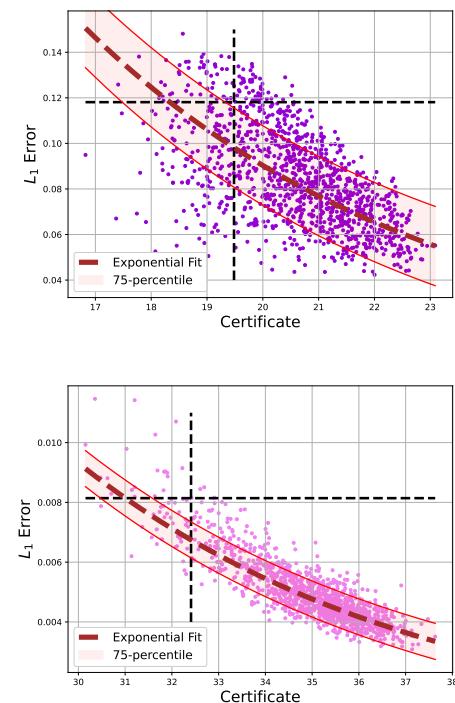
1930

1931

1932

1933

1934



1935 Figure 28: Error fits and corresponding error–certificate histograms for the training distributions.
 1936 The top panels show results for the Wave Equation, while the bottom panels correspond to the NS-
 1937 PwC experiment.

1938

1939

1940

1941

1942

1943

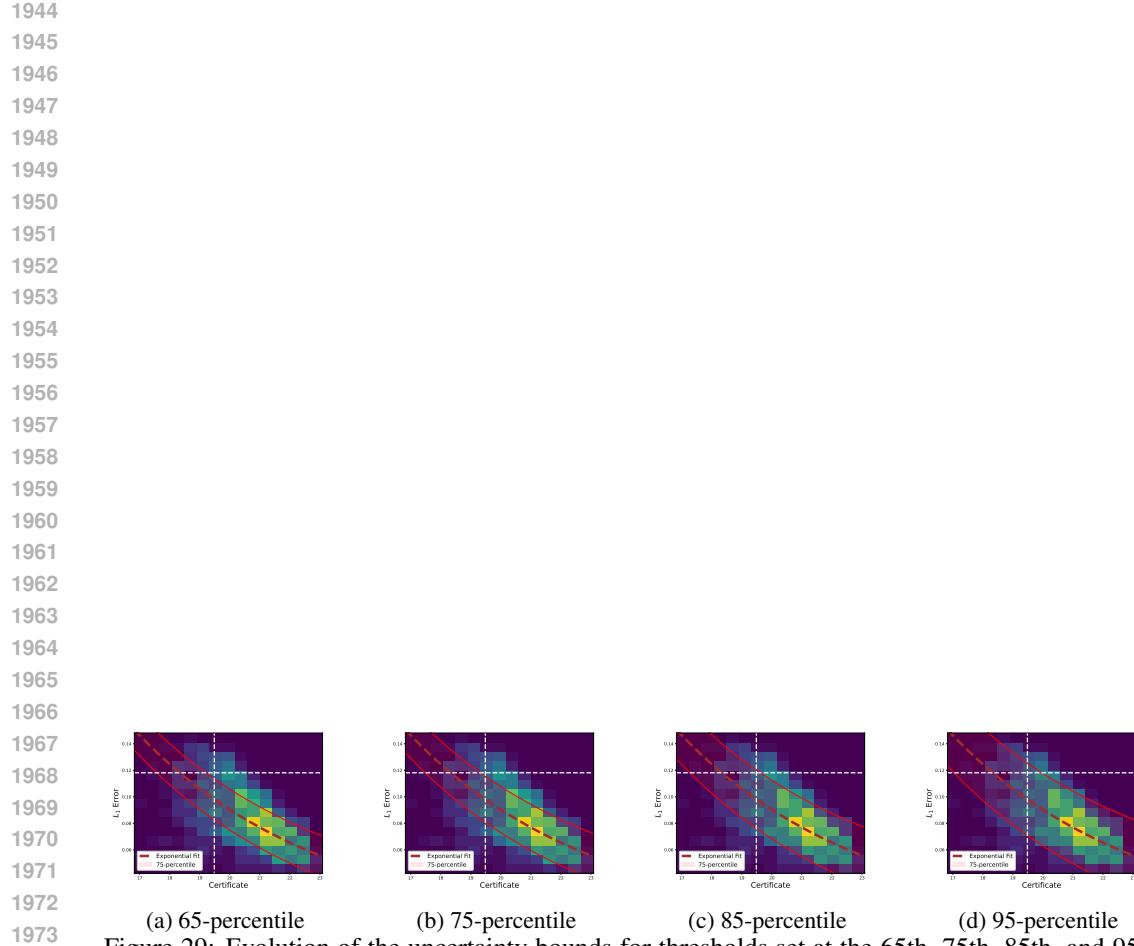


Figure 29: Evolution of the uncertainty bounds for thresholds set at the 65th, 75th, 85th, and 95th percentiles. Lower thresholds (e.g., 75th) capture most samples with moderate uncertainty, while higher thresholds (e.g., 95th) enclose nearly all samples but result in larger uncertainty.

1998
1999

B.5 IMAGE CLASSIFICATION

2000
2001
2002
2003
2004
2005
2006

Let x be an image with c channels (where $c = 3$ for RGB images and $c = 1$ for grayscale images). Let y be the label associated with that image. The goal of classification task is that a model Ψ predict the label y of the image x . In probabilistic terms, it is challenging to work with $p(x, y_{true})$ and interpret $p(x, y_{pred})$ in a continuous sense, since y is a discrete label. Although the predicted label is discrete, the model Ψ_φ is trained using a softmax-based loss function, which assigns log-probabilities to all possible labels and maximizes the log-probability corresponding to the true label y .

2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

On top of the classifier, we train a diffusion model to predict the joint probability function $p(x, y)$. **During training**, we concatenate an additional channel containing the constant value y to the c channels of the image x . However, **during testing**, if we use only the predicted label y_{pred} as the value for the concatenated channel in likelihood estimation, we are not fully leveraging the classifier's output, only the label corresponding to the highest log-probability. In other words, relying solely on the predicted class does not capture the model's confidence in its prediction. To address this, we define the predicted label as a function of the full set of log-probabilities produced by the classifier (the last layer before the softmax is applied). Let M be the number of classes and (l_2, l_2, \dots, l_M) be the corresponding log-probabilities. Let $m \in \{1, \dots, M\}$ and let us define the probability p_m as a softmax applied to the log-probabilities, that is,

2017
2018
2019

$$p_m = \frac{\exp(l_m/T)}{\sum_{k=1}^M \exp(l_k/T)},$$

2020
2021
2022
2023
2024
2025
2026
2027

where T is the temperature parameter that we set to $T = 1$. Let s be the resolution of the image, i.e. each channel of the image is in \mathbb{R}^{s^2} . Instead of assigning a constant value for each pixel of the channel corresponding to label, we observe pixels as single realizations of independently and identically distributed random variable that follow discrete distribution over the support $\{1, 2, \dots, M\}$, with associated probabilities $[p_1, p_2, \dots, p_M]$. In this way, predictions with low confidence introduce variability into the label channel, effectively "corrupting" those samples. Consequently, samples for which the classifier is confident remain mostly unaffected. By incorporating uncertain label values, we effectively *perturb the one-dimensional manifold* on which the labels reside.

2028
2029
2030
2031
2032
2033

Note that the classifier can predict wrong label with high confidence, but our hope is in the following:

- This does not happen often. The classifier is *usually uncertain* about OOD samples.
- The diffusion model itself understands that some label is wrongly predicted (i.e. classifier predicted a *bird* instead of a *truck*).

2034

B.6 CIFAR10

2035
2036
2037
2038
2039
2040

In this experiment, we train both a classifier and a diffusion model using the CIFAR dataset, which contains 10 distinct classes. As described in the main text, we designate the class "trucks" as the out-of-distribution (OOD) class. In Figure 31, we show the predicted labels passed to the diffusion model together with estimated log-likelihoods. Some of the labels are uncorrupted, while some are very noisy. We observe the following:

2041
2042
2043
2044
2045
2046
2047

- The classifier is *rarely overconfident in the wrong label*.
- Even when the classifier is overconfident in the wrong label (the truck in the first row, for instance), the estimated likelihood is still much lower than the ones obtained when the classifier is overconfident in the correct label.

2048
2049

B.7 MNIST

2050
2051

For the MNIST, we do the same experiment. The OOD class is the *number 9*. Note that the classification task is very easy, so almost all the ID samples are properly classified. Figure 33 shows the predicted labels passed to the diffusion model together with estimated log-likelihoods for this task.

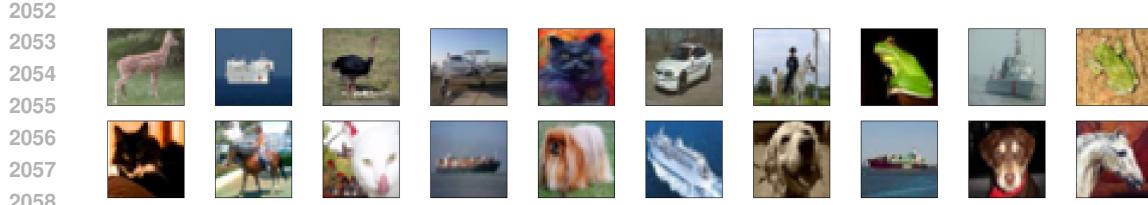


Figure 30: CIFAR Dataset. Samples from the dataset.

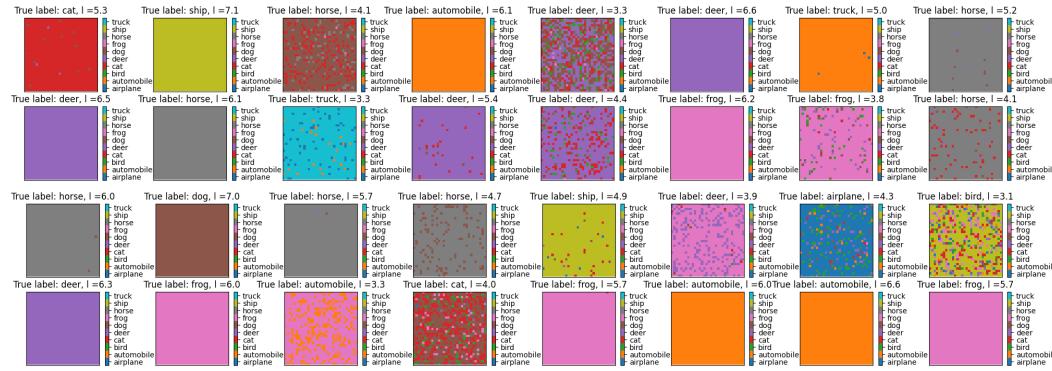


Figure 31: CIFAR Dataset. Labels passed to the diffusion model

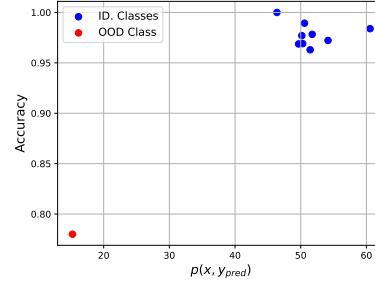


Figure 32: MNIST Image Classification. Accuracy vs. Likelihood Certificate.

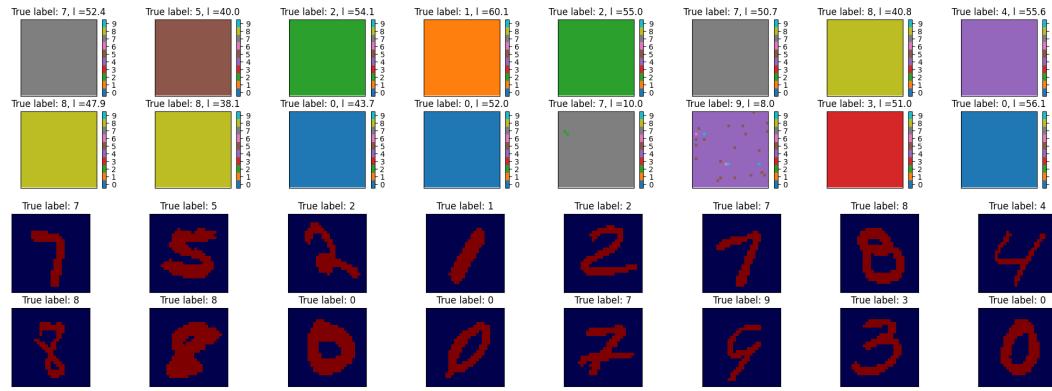


Figure 33: MNIST Dataset. Up: Labels passed to the diffusion model. Down: Samples to be classified.

2106 B.7.1 ABLATION STUDIES
21072108 In Ren et al. (2019), the authors investigated OOD detection using likelihood-based methods. They
2109 found that non-semantic elements, such as background pixels in natural images, can significantly
2110 affect likelihood estimates and, in some cases, lead to incorrect OOD decisions. For example, a
2111 likelihood-based model trained on the CIFAR-10 dataset may assign higher likelihoods to samples
2112 from the SVHN dataset, despite having never seen them during training.2113 In our setup, the first three channels represent the image, while the fourth channel encodes the
2114 image label. Although the label is originally a discrete scalar, we embed it into a much higher-
2115 dimensional space (specifically, a 32^2 -dimensional space). Similar to background pixels in natural
2116 images, this low-entropy, high-dimensional embedding can disproportionately influence likelihood
2117 estimation. To mitigate this effect, we perturb the label channel, one of the motivations behind this
2118 design choice. By introducing noise and incorporating information from the classifier’s output, we
2119 effectively increase the entropy of the label channel, thereby reducing its dominance in the likelihood
2120 estimation process.2121 Now, we use **unperturbed** labels for likelihood estimation by assigning the pixel values of the label
2122 channel to the class with the highest predicted probability from the classifier. In the left panel of Fig-
2123 ure 34, we plot the classification accuracy of each label against the median estimated likelihood of
2124 the corresponding samples. We observe no clear correlation between accuracy and likelihood. Not-
2125 ably, the most accurate class exhibits the lowest likelihood, which contrasts with the trend observed
2126 when using noisy label channels. This suggests that the estimated likelihood is heavily influenced by
2127 background pixels and the unperturbed label channel, rather than reflecting true semantic content.
2128 To further support this hypothesis, we evaluate our models on the SVHN dataset, which contains
2129 images of street view house numbers. Since the classifier has never been exposed to SVHN labels
2130 during training, its predictions are incorrect for all SVHN samples. Nevertheless, we can still esti-
2131 mate the joint likelihood $p(x, y_{pred})$ using the diffusion model, where y_{pred} denotes the unperturbed
2132 predicted labels. In the right panel of Figure 34, we compare the histograms of estimated likelihoods
2133 for the CIFAR-10 and SVHN datasets. Interestingly, the SVHN samples exhibit generally higher
2134 likelihoods than those from CIFAR-10. This failure mode has also been documented in Nalisnick
et al. (2019b).2135 We now evaluate our setup using noisy labels (*NL* abbreviation) for likelihood estimation (see 36
2136 for SVHN samples). In Figure 35a, we compare the histograms of estimated likelihoods for all
2137 samples in the CIFAR-10 and SVHN test sets. Unlike the previous results with unperturbed labels,
2138 the SVHN samples no longer exhibit higher likelihoods; however, the two distributions now overlap
2139 substantially.2140 To improve OOD detection, we progressively refine the subset of CIFAR-10 samples. In Figure
2141 35b, we restrict the analysis to **correctly classified** CIFAR-10 samples (*CC* abbreviation). Figure
2142 35c shows results for **high-confidence** samples, those for which the classifier assigns at least 90%
2143 confidence to a single class (*HC* abbreviation). Finally, in Figure 35d, we focus on samples that are
2144 both highly confident and correctly classified.2145 In these last two figures, the CIFAR-10 likelihood histogram shifts noticeably to the right, creating
2146 a clearer separation from the SVHN distribution. This shift enables more robust OOD detection. By
2147 selecting a subset of confidently and correctly classified CIFAR-10 samples and defining a threshold
2148 around the median estimated likelihood (e.g., within one standard deviation), we can successfully
2149 filter out a large portion of SVHN samples as OOD. This analysis further supports our assumption
2150 that the classifier is rarely overconfident in incorrect labels, provided the true label belongs to the
2151 classifier’s label space, and that the estimated likelihoods for incorrect labels are typically lower
2152 than those for correct ones. Further separation between SVHN and CIFAR-10 likelihoods requires
2153 reducing the influence of background pixels on the likelihood estimates, as demonstrated in Ren
2154 et al. (2019). Mitigating the impact of non-semantic pixels is essential for effective OOD detection
2155 in segmentation tasks.2156
2157
2158
2159

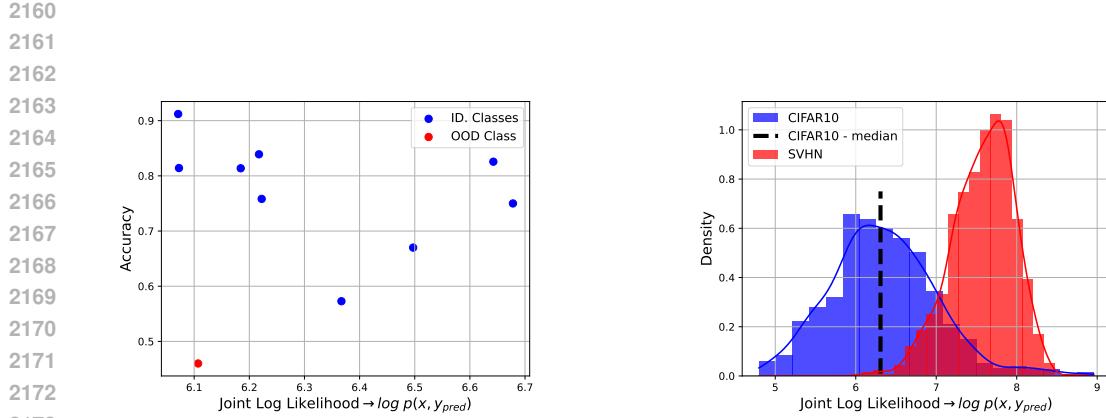


Figure 34: Left: Median estimated likelihood vs. classification accuracy for each CIFAR-10 class using unperturbed labels. Right: Histogram of estimated likelihoods for CIFAR-10 and SVHN samples; SVHN exhibits higher likelihoods despite being OOD.

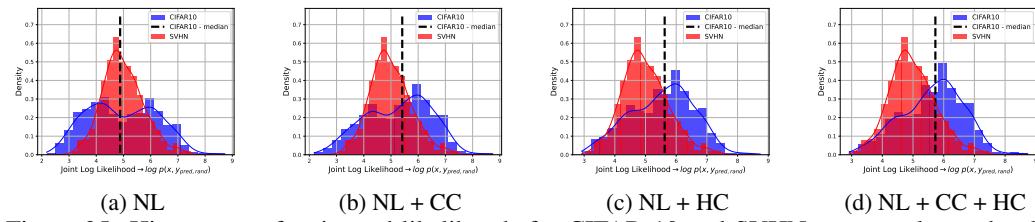


Figure 35: Histograms of estimated likelihoods for CIFAR-10 and SVHN test samples under different filtering strategies of CIFAR-10 dataset. (a) All test samples using noisy labels (NL). (b) Only correctly classified (CC) CIFAR-10 samples. (c) Only high-confidence (HC) samples, where the classifier assigns $\geq 90\%$ probability to a predicted label. (d) Samples that are both correctly classified and high-confidence (CC + HC). As the selection becomes more refined, the CIFAR-10 likelihood distribution shifts to the right, improving separation from SVHN and enabling more robust OOD detection.

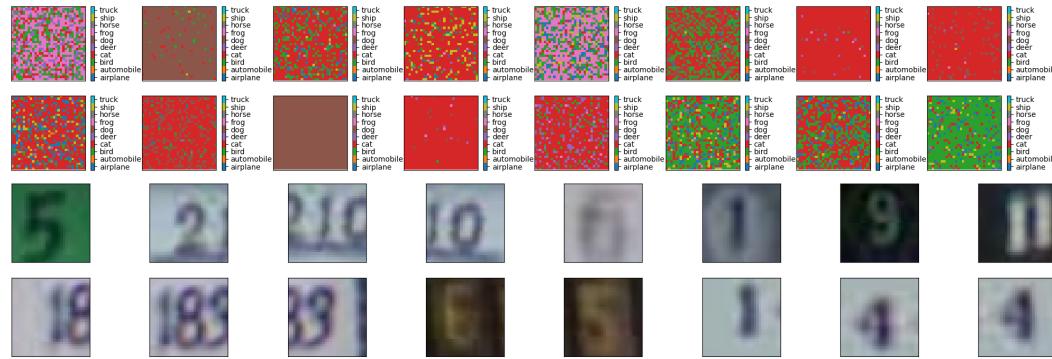


Figure 36: SVHN Dataset. Up: Labels passed to the diffusion model. Down: Samples to be classified.

2214 B.8 BRAIN TUMOR SEGMENTATION
2215

2216 This section contains additional results for the evaluation of our approach on **binary segmentation**
 2217 tasks. Since the segmentation is nothing but pixel-wise classification, our method follows a simi-
 2218 lar strategy to that used for classification tasks, with one key distinction: we explicitly reduce the
 2219 influence of non-semantic pixels by corrupting them with white noise during the training. We will
 2220 explain the method after we explain our datasets.

2221 Our objective is to perform **brain tumor segmentation** on the **BraTS2020** dataset. This dataset
 2222 contains 3D brain MRI volumes with a standardized shape of $240 \times 240 \times 155$. The data is divided
 2223 into two categories:

- High-grade gliomas (HGG)
- Low-grade gliomas (LGG)

2228 Each brain scan is accompanied by a multi-class segmentation mask with the following label assign-
 2229 ments:

- 0: background
- 1: necrotic core
- 2: edema
- 3: enhancing tumor

2236 For our task, we convert these multi-class masks into binary masks. The transformed labels are
 2237 defined as:

- 0: non-tumor (background)
- 1: tumor (any of the original classes 1, 2, or 3)

2242 We train our segmentation model using brain scans with HGG tumors. The dataset comprises 210
 2243 HGG brain volumes, from which we select 190 for training, 10 for validation, and 10 for testing.
 2244 To extract 2D slices, we sample 100 axial slices per brain along the z-axis, corresponding to slice
 2245 indices 30 through 130. Each slice is resized to a resolution of 128^2 . The pixel values of each
 2246 brain slice are normalized to $[0, 1]$. During training, we apply a range of augmentation techniques,
 2247 including horizontal and vertical flips, random rotations, and random shifts and scalings. The input
 2248 images are **FLAIR** MRI scans.

2249 In parallel with the segmentation model, we also train a diffusion model on the same dataset, exclud-
 2250 ing rotation-based augmentations. The diffusion model is trained on the joint distribution $p(x, y)$,
 2251 where x represents the 2d MRI scan of the brain, while y is the binary segmentation mask. Our
 2252 evaluation is conducted on 10 held-out HGG brains and an additional set of 10 LGG brains. For the
 2253 HGG cases, we evaluate the model not only on FLAIR MRI scans, which were used during training,
 2254 but also on T_2 -weighted scans, representing a different MRI modality. For the LGG cases, perfor-
 2255 mance is assessed on both axial (z-axis) slices, aligned with the training direction, and x-axis slices,
 2256 offering a side view of the brain and allowing us to test the model’s generalization to previously
 2257 unseen anatomical orientations. Note that we test our approach on the brain slices with at least 0.3%
 2258 tumor content present (i.e. at least 50 pixels). For the segmentation model backbone, we use a CNO
 2259 architecture Raonic et al. (2023) with *silu* activation function.

2260 To reduce the impact of non-semantic regions, namely, background pixels in the brain slices and
 2261 non-tumor areas in the segmentation masks, we apply masking during diffusion model training.
 2262 Specifically, these pixels are replaced with low-variance Gaussian noise sampled from $\mathcal{N}(0, 0.025)$.
 2263 During inference, no perturbation is applied. We also present an ablation study in which the diffusion
 2264 model is trained on unperturbed data for comparison.

2265 Figure 37 shows the relationship between the relative L_1 error on the segmentation masks and the
 2266 estimated log-likelihood of $p(x, y_{\text{pred}})$ for the four test scenarios described earlier. We define the
 2267 OOD threshold as the median of the estimated log-likelihoods computed over the HGG ID test set.
 2268 Most cases with low segmentation errors are correctly classified as ID. Notably, the vast majority

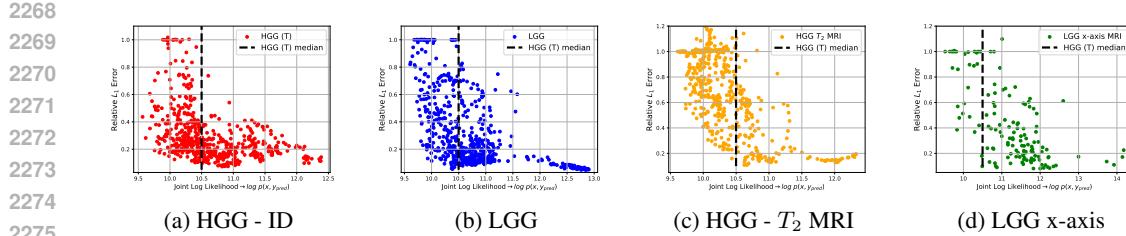


Figure 37: Scatter plots showing the relationship between relative L_1 error and estimated log-likelihood for test samples across different brain MRI datasets. (a) HGG dataset representing in-distribution (ID) samples, (b) LGG dataset, (c) HGG samples from a different MRI modality (T_2 MRI), and (d) LGG samples plotted along the x-axis. The plots illustrate how low likelihood values generally correspond to higher errors and out-of-distribution (OOD) samples, while higher likelihoods align with lower errors typical of ID data.

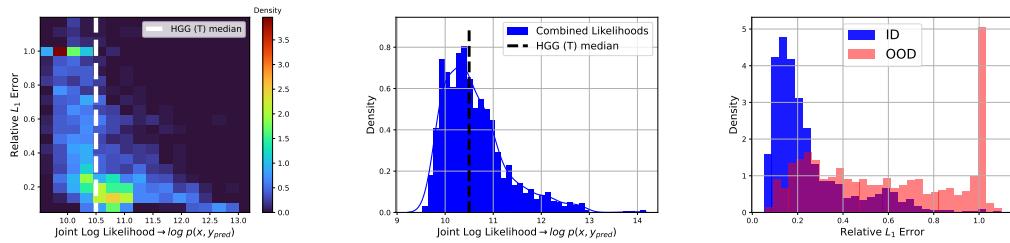


Figure 38: Histograms illustrating the relationship between segmentation quality and model likelihood across various test cases. (Left) Joint distribution of the relative L_1 segmentation error and the estimated log-likelihood $\log p(x, y_{\text{pred}})$. (Middle) Distribution of log-likelihoods across test samples. (Right) Distribution of segmentation errors across the same groups. These plots demonstrate that low-likelihood samples often correspond to poor segmentation quality and can be effectively identified as OOD, including samples from a different MRI modality (e.g., T_2).

of cases where the segmentation model either predicts an entirely empty tumor mask or produces a mask that has no overlap with the ground truth (i.e., relative L_1 error ≥ 1.0) are correctly identified as OOD. Furthermore, it is crucial to highlight that our approach effectively identifies OOD samples originating from a **different MRI modality**, namely T_2 MRI scans (refer to the third subfigure in Figure 37).

We now combine the test samples from all datasets. In Figure 38, the first sub-figure displays a 2d histogram of relative L_1 error vs. estimated log-likelihood. We first note that the region of highest density corresponds to low likelihood values and errors close to 1.0, which are classified as OOD. Additionally, many low-error points lie near the classification threshold, but are classified as ID. The second sub-figure presents the histogram of estimated log-likelihoods, which is noticeably skewed to the right, favoring higher likelihood values. In the final sub-figure, we show histograms of errors for samples classified as ID (in blue) and OOD (in red). The ID histogram predominantly contains low-error samples, whereas the OOD histogram includes some low-error samples but mostly consists of high-error ones. Notably, the OOD error histogram has a prominent peak around error 1.0, indicating that most completely incorrect predictions are classified as OOD.

B.8.1 ABLATION STUDY - NOISE INJECTION

We now retrain the diffusion model without adding white noise to the non-semantic pixels during training. In the left panel of Figure 42, we plot the relative L_1 error of the predicted segmentation masks against the estimated log-likelihood $\log p(x, y_{\text{pred}})$. The results show that many of the high-likelihood samples correspond to predictions with large errors (i.e., relative error ≥ 1.0). This indicates that the highest likelihood predictions often correspond to cases where the model fails to detect any tumor, despite its presence in the ground truth. Since the majority of pixels in the

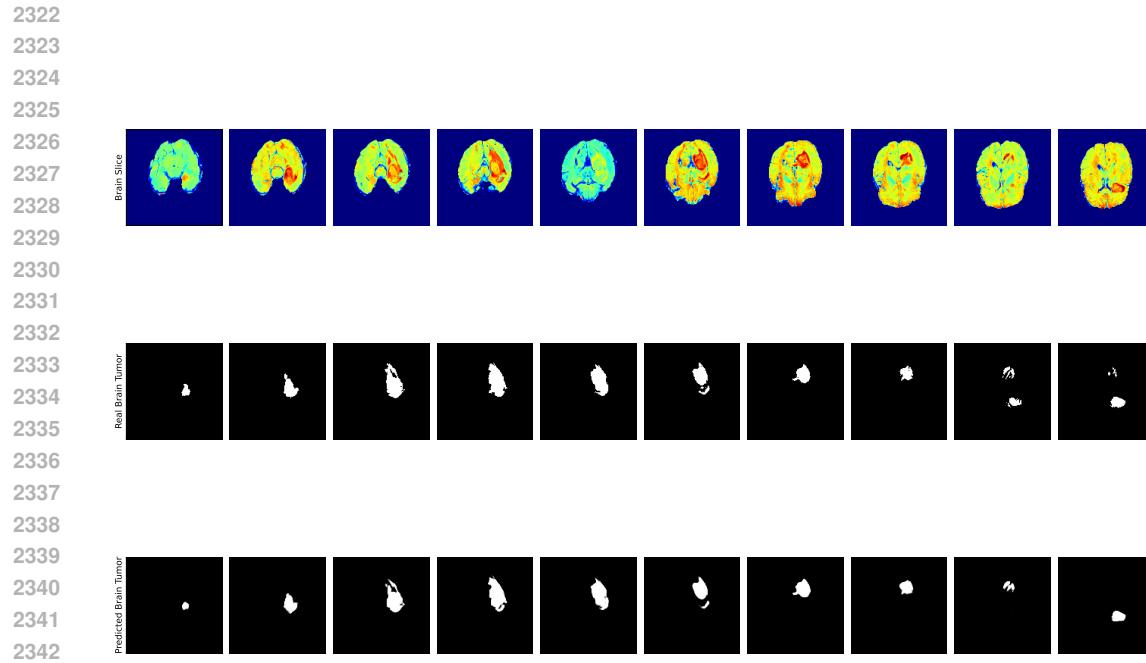


Figure 39: An example of an HGG brain samples (first row), ground truth segmentation masks (second row) and predicted segmentation masks (third row).

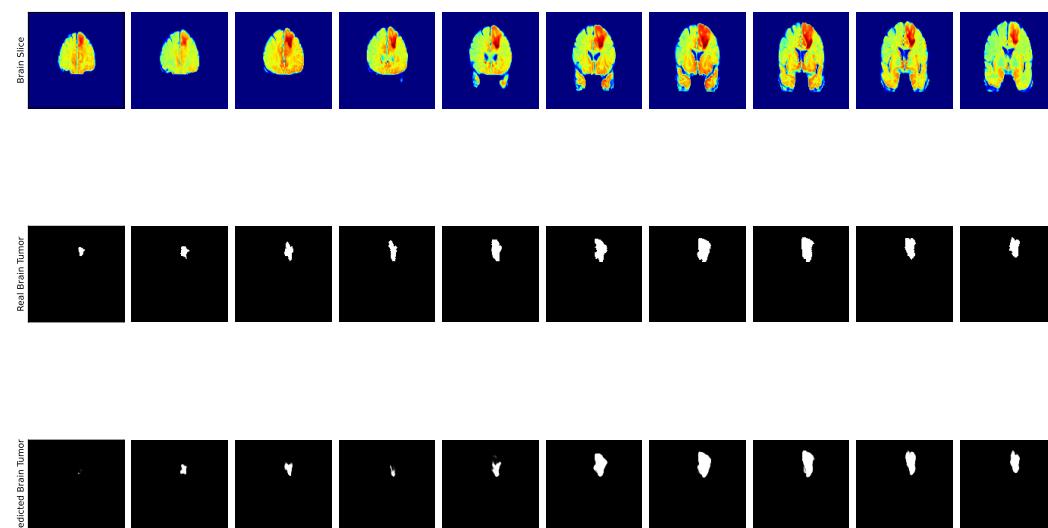


Figure 40: An example of an LGGx brain samples (first row), ground truth segmentation masks (second row) and predicted segmentation masks (third row).

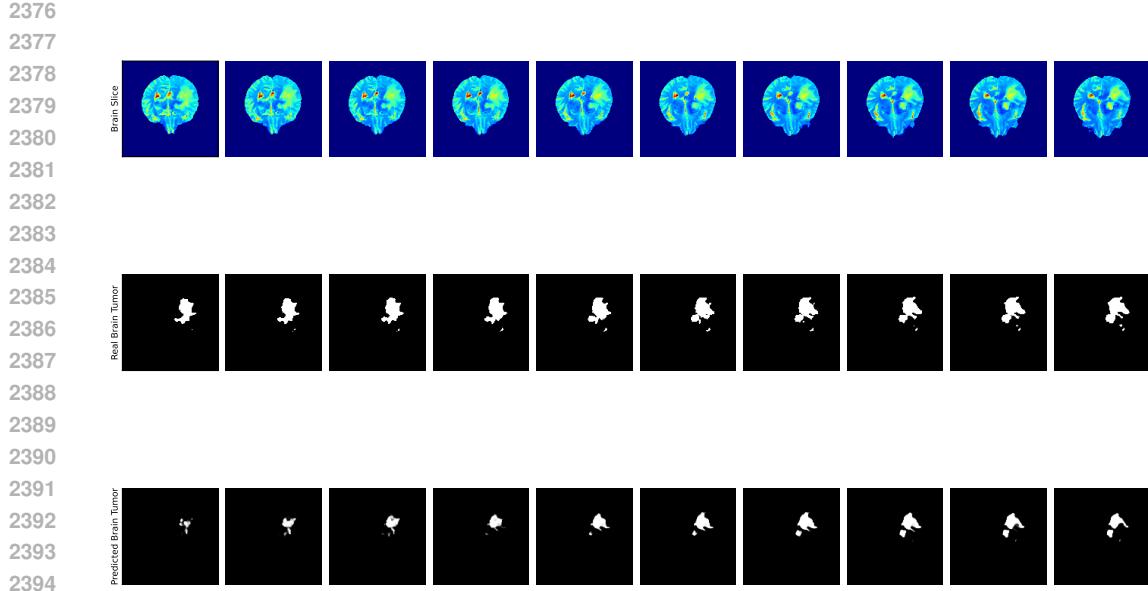


Figure 41: An example of an HGG-T2 brain samples (first row), ground truth segmentation masks (second row) and predicted segmentation masks (third row).

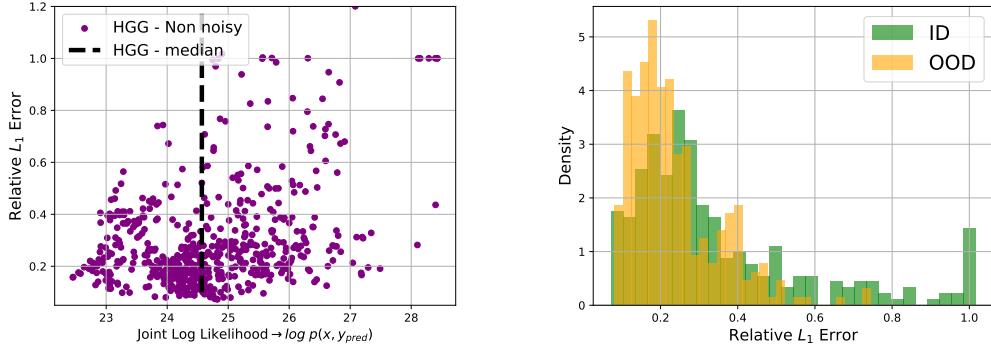


Figure 42: Ablation study: diffusion model trained without noise injection into non-semantic pixels. (Left) Relative L_1 error of the predicted segmentation masks versus the estimated log-likelihood $\log p(x, y_{pred})$. High-likelihood samples frequently correspond to large segmentation errors, often representing cases where the model predicts no tumor despite its presence. (Right) Histogram of segmentation errors for ID and OOD samples, where ID is defined by likelihoods above the median. Unlike the noise-injected setting, ID samples now span both low and high error regions, while OOD samples tend to have low errors—highlighting the failure of the method without noise injection.

segmentation masks represent non-tumor regions, and no noise was applied during training, the model tends to assign higher likelihood to completely non-semantic (no-tumor) predictions.

The right panel of Figure 42 presents the error histograms for ID and OOD samples, where ID samples are defined as those with likelihoods above the median across all predictions. Unlike the behavior observed when noise was injected during training, we now see that ID samples span both low and high error values, while OOD samples predominantly correspond to low-error cases. This reversal indicates that, without noise injection, the model fails to reliably associate high likelihoods with accurate predictions—suggesting that noise injection during training is crucial for effective OOD detection.

Scan type	β_{ERR}	α_L	Accuracy	FPR	FNR	ARCB
HGG			0.675	0.003	0.322	
LGG			0.733	0.056	0.211	
HGG L2	0.1	0.25	0.720	0.143	0.137	–
LGGx			0.844	0.106	0.005	
average			0.743	0.077	0.180	0.743
HGG			0.530	0.002	0.468	
LGG			0.677	0.027	0.296	
HGG L2	0.1	0.00	0.759	0.079	0.162	–
LGGx			0.670	0.041	0.289	
average			0.659	0.037	0.304	0.827
HGG			0.787	0.028	0.185	
LGG			0.783	0.080	0.137	
HGG L2	0.1	0.50	0.704	0.208	0.088	–
LGGx			0.816	0.142	0.042	
average			0.772	0.114	0.114	0.611

Table 6: Performance of the segmentation experiments for different values of α_L with β_{ERR} fixed at 0.1. Results are reported for different scan types (HGG, LGG, HGG L2, and LGGx) in terms of accuracy, false positive rate (FPR), false negative rate (FNR), and accuracy on critical brain cases (ARCB). Averages across scan types are also provided.

B.8.2 CLASSIFICATION SENSITIVITY

For the segmentation experiments, the accuracy is more sensitive to the choice of boundary parameters. In brain segmentation, particular attention must be paid to highly problematic cases, such as:

- No cancer pixels are detected despite their presence.
- Cancer pixels are detected in a cancer-free brain slice.
- Cancer pixels are present but completely missed, with other pixels incorrectly detected instead.

These situations correspond to relative L_1 errors of ≥ 1.0 . A crucial capability of the OOD detector is to classify such cases as OOD. For this reason, in the segmentation task we introduce an additional metric, **ARCB** (*accuracy rate – critical brains*), which measures accuracy rate specifically on these critical cases.

We observed that the values of β_{ERR} (defined in A.4) in the range (0.1, 0.25) yield the most stable performance. For all subsequent evaluations, we fix $\beta_{\text{ERR}} = 0.1$. Note that the horizontal (error) boundary could also be defined entirely manually. We then vary the parameter α_L and report the corresponding performance of our method in Table 6. We observe that increasing α_L leads to higher overall accuracy, but also results in a higher FPR and a lower ARCB. This indicates a clear trade-off between maximizing accuracy and maintaining a high ARCB with a low FPR. The most balanced performance is achieved at $\alpha_L = 0.25$.

Figure 43 shows the brain segmentation results for the HGG L2 case, where each plot presents the corresponding likelihood and error decision boundaries, illustrating how the choice of α_L influences the separation between ID and OOD.

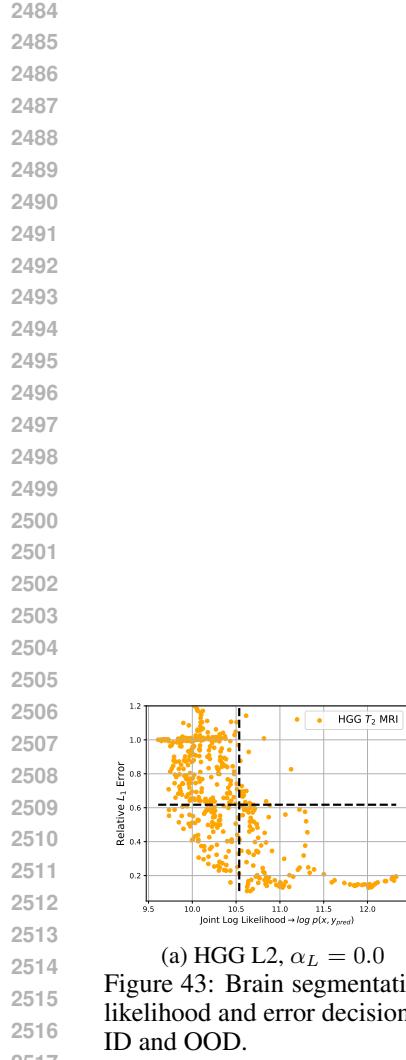


Figure 43: Brain segmentation results for the HGG L2 case. Each plot includes the corresponding likelihood and error decision boundaries, illustrating how the choice of α_L affects the separation of ID and OOD.

2538 C DIFFUSION-BASED CERTIFICATES
25392540 Let us observe the probability flow ODE of the form
2541

2542
$$\frac{dx}{dt} = -\frac{1}{2}\sigma_t^2 s(Y_t; t), \quad (27)$$

2543

2544 where $s(Y; t) \approx \nabla_x \log p_t(x)$ is the score function learned during training. As noted in the section
2545 A, one estimate the true log-likelihood $\log p(x)$ of a data point x , by numerically solving Eqn. 27
2546 backwards in (diffusion) time. We call this approach *Joint Likelihood Based Certificate* (or *JLBC*).
2547 We train a score-based diffusion model to estimate $\nabla_x \log p_t(x)$, where x is the **joint distribution**
2548 ($x_0, \Psi(x_0)$), where Ψ is the operator of interest.
25492550 Once the score function has been estimated, additional probability-flow ODE-based certificates can
2551 be constructed. Importantly, all such certificates originate from the same diffusion model trained
2552 on the joint distribution of inputs and outputs. Unlike the classification baseline, diffusion-based
2553 methods require no extra samples for OOD detection. Let us define the rescaled score function as
2554

2555
$$\epsilon(Y_t; t) = -\sigma_t \cdot s(Y_t; t).$$

2556 One may define a **unified**, score-based certificate as
2557

2558
$$a(Y) = \alpha \left\| \sum_{t=1}^S \epsilon(Y_t; t) \right\|^p + \beta \left\| \sum_{t=1}^S \frac{\partial \epsilon(Y_t; t)}{\partial t} \right\|^p + \gamma \sum_{t=1}^S \|\epsilon(Y_t; t)\|^p.$$

2559

2560 Here, $t = 1, \dots, S$ denotes the discrete time steps used in the numerical approximation of the
2561 solution of the probability flow ODE (RK steps), and $\alpha, \beta, \gamma \in \{0, 1\}$. The partial derivatives with
2562 respect to time (second term in the equation) are approximated with a finite difference scheme.
2563 When $\alpha = \gamma = 0$ and $\beta = 1$, the certificate reduces to the curvature-based quantity proposed in
2564 Heng et al. (2024b) for image classification (referred to as *DiffPath*). Our method differs in that it is
2565 trained on the joint distribution, and we therefore refer to it as *JDP*. When $\alpha = \beta = 1$ and $\gamma = 0$,
2566 the certificate incorporates contributions both from the curvature of the score function and from the
2567 score function itself. This approach was proposed for medical image classification in Abdi et al.
2568 (2025b) (termed *SBDDM*). In our joint-distribution, score-based settings, we denote this variant as
2569 *JSBDDM*. Finally, when $\alpha = 1$ and $\beta = \gamma = 0$, only the contribution from the sum of the score
2570 functions remains. We refer to this approach as the *Joint Score Function Norm Score* (*JSFNS*). For
2571 $\gamma = 1, \alpha = \beta = 0$, a variant of the certificate introduced in Mahmood et al. (2020) is referred
2572 to in our framework as *JMSSM*. As noted above, we **unified different certificates** into one single
2573 expression, and made them fully operational in our joint-distribution, score-based diffusion settings.
25742575 For M testing sample used to define the OOD boundary, we evaluate the different certificates. Then,
2576 we compute the median, m , together with the standard deviation, σ . The OOD boundary is defined
2577 as

2578
$$l = m + c \cdot \sigma,$$

2579 where c is a tunable parameter, fixed to $c = 1.5$ in all our regression experiments and $c = -0.5$
2580 in the segmentation experiment. Note that the definition of l involves a *plus* sign, in contrast to the
2581 likelihood-based approach, since larger errors correspond to larger certificate values (in the regres-
2582 sion cases).
25832584
2585
2586
2587
2588
2589
2590
2591

2592 **D MODELS AND ARCHITECTURES**
25932594 **D.1 CLASSIFICATION BASELINE**
2595

2596 We compare our approach against a **classification baseline** that we construct. Specifically, after
2597 training a task-specific model, we draw M samples from the **test distribution**. Using the horizontal
2598 (error) boundary e_b , we **assign labels** to these M samples: ID (label 0) or OOD (label 1). A
2599 classification model is then trained on this labeled set, with $0.2 \cdot M$ samples reserved for validation,
2600 and $0.8 \cdot M$ for training. Once trained, this model is used to predict the ID/OOD classes of
2601 the remaining test samples. Note that the classification training was performed on the (x, y_{pred})
2602 samples.

2603 In each setting, the classification baseline is trained on **112 test samples** (90 training and 22 validation
2604 samples). For experiments involving multiple test distributions, we sample an equal number
2605 of trajectories from each distribution to construct the baseline's training set. If the testing distribution
2606 contains K datasets, we use samples from $K/2$ of them to train the baselines, ensuring a fairer
2607 comparison with our method. The M samples used for training are excluded from inference. It
2608 is important to note that this comparison is inherently unfair, since our method is able to identify
2609 ID/OOD samples in a zero-shot manner. Moreover, the baseline **relies on access to M ground-
2610 truth solutions** for the test samples, precisely the requirement we aim to eliminate. We call this
2611 classification-based approach *OODC*.

2612 **D.2 TASK-SPECIFIC MODELS**
2613

2614 For all our tasks, we employed the CNO Raonic et al. (2023) architecture with *silu* activations. In
2615 all the regression tasks, the model is augmented by *transformer* blocks at selected layers. We refer
2616 to this modified design as the *Operator-UViT* architecture. We used architecture of different sizes,
2617 depending on the problem. We report the architectural details and the training setups for all the
2618 problems in Table 7.

Setting	Wave Eq. (CNO-Very-Small)	NS-PwC (CNO-Small)	MERRA2 (CNO-Small)	NS-MIX (CNO-Base)	Brain-Segm. (CNO-Small-NoAtt)	MNIST (CNO-Small-NoAtt2)	CIFAR10 (CNO-Small-NoAtt2)
Architecture							
Lifting dimension	32	48	48	64	32	32	32
# Up/Down layers	4	4	4	4	4	4	4
Residual blocks (bottleneck)	4	4	4	4	8	6	6
Residual blocks (middle)	2	2	2	4	8	6	6
Attention layers used	[T,F,T,F,T]	[T,F,T,F,T]	[T,F,T,F,T]	[T,F,T,F,T]	[F,F,F,F,F]	[F,F,F,F]	[F,F,F,F]
Attention blocks/layer	4	4	4	6	–	–	–
Attention hidden dim	256	256	256	384	–	–	–
Attention MLP dim	256	384	384	512	–	–	–
Attention heads	4	8	8	8	–	–	–
Attention head dim	128	128	128	256	–	–	–
Parameters (M)	21.8	41.8	41.8	113.0	17.6	11.2	11.2
Training setup							
Optimizer	AdamW	AdamW	AdamW	AdamW	AdamW	Adam	Adam
Scheduler	Cosine	Cosine	Cosine	Cosine	StepLP	–	–
Initial LR	10^{-4}	10^{-3}	$5 \cdot 10^{-4}$	$2 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$
Training samples	1K	$\sim 140K$	$\sim 63K$	$\sim 2.97M$	$\sim 18K$	$\sim 2K$	$\sim 40K$
Epochs	100	100	100	100	100	50	50
Batch size	64	64	64	32	32	96	64

2631 Table 7: Architectures and training setups across different problems.
26322633 **D.3 DIFFUSION MODELS**
2635

2636 For the diffusion denoisers D_θ , we adopted the UViT architecture from Molinaro et al. (2025),
2637 combined with exponential noise scheduling and a variance-exploding diffusion scheme. Further
2638 details are provided in Section 6.3 of Molinaro et al. (2025).

2639 For all non-classification tasks, we use 4-layer UViT architectures with channel counts adapted
2640 to task difficulty. For classification tasks, where the input resolution is lower, we employ 1-layer
2641 UViTs.

2642 For the Wave Equation problems, we use the following architecture of the UViT:
2643

- **Number of layers:** 4
- **Channels per layer:** [32, 64, 128, 256]

- 2646 • **Number of attention blocks per layer** 4
- 2647 • **Attention hidden dimension:** 128
- 2648 • **Attention Heads:** 4
- 2649 • **Attention Head dimension:** 128
- 2650 • **Trainable parameters:** 22.2M

2652 For the MERRA2, NS-PwC and the segmentation problem, we use the following architecture of the
 2653 UViT:
 2654

- 2655 • **Number of layers:** 4
- 2656 • **Channels per layer:** [48, 96, 192, 384]
- 2657 • **Number of attention blocks per layer** 6
- 2658 • **Attention hidden dimension:** 256
- 2659 • **Attention MLP dimension:** 128
- 2660 • **Attention Heads:** 8
- 2661 • **Attention Head dimension:** 128
- 2662 • **Trainable parameters:** 69.3M

2664 For the classification problems, we use the following architecture of the UViT:
 2665

- 2666 • **Number of layers:** 1
- 2667 • **Channels per layer:** [256]
- 2668 • **Number of attention blocks per layer** 4
- 2669 • **Attention hidden dimension:** 512
- 2670 • **Attention Heads:** 4
- 2671 • **Attention Head dimension:** 256
- 2672 • **Trainable parameters:** 34.0M

2675 D.4 OTHER REGRESSION MODELS (WAVE EQ.)

2676 The architecture of the UNet model used in the ablation study B.1.4 is:
 2677

- 2678 • **Number of layers:** 4
- 2679 • **Channels in the layers:** [60, 120, 240, 480]
- 2680 • **Number of ResNets in the bottleneck:** 2
- 2681 • **Trainable parameters:** 19.2M

2682 The architecture of the ViT model used in the ablation study B.1.4 is:
 2683

- 2684 • **Number of attention blocks** 6
- 2685 • **Attention hidden dimension:** 256
- 2686 • **Attention MLP dimension:** 512
- 2687 • **Attention Heads:** 6
- 2688 • **Attention Head dimension:** 64
- 2689 • **Trainable parameters:** 9.7M

2690 The architecture of the C-FNO model used in the ablation study B.1.4 is:
 2691

- 2692 • **Number of Fourier Layers** 4
- 2693 • **Number of Fourier Modes:** 16
- 2694 • **Latent Dimension:** 96
- 2695 • **Conv. kernels per layer:** [3, 5]
- 2696 • **Trainable parameters:** 19.0M

2700 **E LLM ASSISTANCE IN WRITING**
2701

2702 The LLMs were used solely to rephrase certain sentences in the paper. No additional assistance was
2703 taken from them in terms of writing.
2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753