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ABSTRACT

Data-driven models are increasingly adopted in critical scientific fields like
weather forecasting and fluid dynamics. These methods can fail on out-of-
distribution (OOD) data, but detecting such failures in regression tasks is an open
challenge. We propose a new OOD detection method based on estimating joint
likelihoods using a score-based diffusion model. This approach considers not just
the input but also the regression model’s prediction, providing a task-aware relia-
bility score. Across numerous scientific datasets, including PDE datasets, satellite
imagery and brain tumor segmentation, we show that this likelihood strongly cor-
relates with prediction error. Our work provides a foundational step towards build-
ing a verifiable ’certificate of trust’, thereby offering a practical tool for assessing
the trustworthiness of Al-based scientific predictions.

1 INTRODUCTION

Deep learning is rapidly transforming scientific computing. Most problems in this domain involve
the prediction of unknown, spatially and/or temporally varying physical properties — such as the
temperature distribution in a solid or the flow velocity of a fluid — from given initial or boundary
conditions. Traditionally, such problems have been addressed by physical models formulated as
partial differential equations (PDEs) [Evans| (2022)), and approximated with bespoke numerical al-
gorithms |Quarteroni & Valli| (1994). However, data-driven approaches building on neural networks
are now increasingly applied to scientific computing [Mishra & Townsend| (2024), achieving state-
of-the-art accuracy in applications like numerical weather forecasting (Bodnar et al., [2025)).

This novel data-driven paradigm offers significant advantages, including reduced computational
costs and the ability to learn from historical data even when no tractable physical model exists (Lu
et al.,[2021} |L1 et al., [2021} [Raonic et al.| 2023} [Pfaff et al., 2021). Nevertheless, purely data-driven
approaches also introduce critical drawbacks, primarily concerning prediction reliability. Whereas
PDE models reflect fundamental physical laws that remain valid even in extreme, previously unseen
conditions, in contrast, data-driven approaches are inherently interpolative, and prediction accuracy
can deteriorate for inputs far from the training distribution (Herde et al.| 2024)).

Machine learning models are typically built on a “closed-world” assumption, expecting test data to
share the training data’s distribution (in-distribution, or ID). Yet, real-world scientific applications
frequently encounter out-of-distribution (OOD) samples that require careful handling (Drummond
& Shearer, [2006). As a consequence, deep learning predictions typically lack a certificate of trust-
worthiness, making it difficult to ascertain their accuracy and reliability on real-world inputs.

To address challenges related to ID/OOD distribution shifts, out-of-distribution detection has gained
significant attention over the last decade [Yang et al.| (2024). This has led to the development of
a number of OOD detection methods, including classification-, distance-, and density-based ap-
proaches. While this topic is extensively studied for tasks such as image classification, its applica-
tion to regression, which constitute a vast majority of learning tasks in scientific computing, remains
severely underexplored.

1.1 CONTRIBUTIONS

This work addresses the critical need for tools to asses the accuracy and reliability of neural network
predictions, particularly for OOD data in scientific and engineering applications. While the ultimate
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goal of this research direction is to furnish end-users with reliable "certificates” of prediction quality,
the main contribution of the present paper is to propose the following important steps towards this
objective,

* We develop and empirically validate a novel approach integrating any underlying regres-
sion model ¥ with a score-based diffusion model for OOD detection. Our proposed cer-
tificate is based on the evaluation of the estimated joint likelihood p(z, Ypred), With Yprea
being the model’s prediction for input x.

* Our approach is zero-shot, in the sense that it does not require any access to the ground truth
predictions for the test distribution, for OOD detection. If some ground-truth test samples
are available, we can go further than ID vs. OOD detection and provide an a posteriori
estimate of the underlying prediction error.

* We tailor this method specifically for regression tasks, while also demonstrating its appli-
cability to classification and segmentation problems.

* We perform an extensive evaluation across diverse scientific datasets, including PDE
datasets (Wave and Navier-Stokes equations), a humidity forecasting problem utilizing
satellite data, image classification benchmarks, and brain tumor segmentation.

* In all cases, we observe a very strong correlation between the model’s prediction errors
on ID and OOD data, and the estimated joint likelihood p(z, ypred). We also adapt other
certificates, derived as aggregated statistics from the probability-flow ODE, to our proposed
setting, and show that these resulting baselines also provide satisfactory OOD detection,
indicating the efficacy of the proposed approach based on the joint input/outputs.

2 RELATED WORK

A first approach to OOD detection, with applications to image classification, directly leverages latent
features from the trained networks including outputs of the final or earlier layers. For example, Liu
et al.[(2020); Zhang et al.|(2022) define explicit energy scores based on such features. Test samples
with lower energy are considered ID and vice versa. A softmax approach for estimating conditional
likelihoods is used in (Hendrycks & Gimpel, [2016; Hsu et al., |2020). Other works also use latent
features (statistics) to distinguish ID/OOD samples, (Yang et al.l 2024)) and references therein.

OOD detection can be viewed through epistemic uncertainty, where estimating this uncertainty
yields a scalar detection score. Methods like MC-Dropout (Gal & Ghahramani| (2016) and Rate-
In Zeevi et al| (2025) use dropout at train and test time to generate stochastic forward passes
that approximate Bayesian inference. Other approaches, such as |Chan et al.| (2024), use hybrid
Bayesian—diffusion methods to estimate epistemic uncertainty.

Density-based methods capture the ID with probabilistic models, flagging inputs from low-density
regions as OOD based on likelihoods. Early works employ (mixtures of) Gaussian distributions
(Lee et al.| 2018; [Pleiss et al., 2019). Normalizing flows in classification tasks are leveraged in (Ren
et al., 2019; Nalisnick et al., |2019c¢; |[Heng et al., 2024c; |Goodier & Campbell, 2023). Some papers
estimate likelihoods on latent features with diffusion models |Ding et al.| (20235)); Jarve et al.[(2025).

Modeling the joint distribution p(x, y) has been explored in Nalisnick et al.[(2019a), where a hybrid
model coupled a deep invertible transform with a generalized linear model, mainly focusing on OOD
detection in classification. A hybrid approach was also put forward by [Cao & Zhang| (2022). An
assessment of likelihood based OOD detection, identifying systematic biases in the context of image
classification, is provided in |[Nalisnick et al.| (2019b). Subsequent work revisiting these examples
and proposing improvements include Ren et al.|(2019); Nalisnick & et al.|(2020). Other approaches
explore “typicality” [Nalisnick et al.| (2019c)), “local intrinsic dimension” [Kamkari et al.| (2024),
and enhanced normalizing flows via a “approximate mass” penalty [Chali et al.| (2023) . Beyond
likelihood estimation, applications of diffusion models to OOD detection include reconstruction-
based approaches (Graham et al.| 2023)) and work by |[Heng et al.|(2024a) (DiffPath), which perform
OOD detection based on rate-of-change and curvature of diffusion paths.

The overwhelming proportion of work on OOD detection has been in the vision/image domains
with classification as the learning objective. In contrast, there are very few articles that explore how
OOD detection (and error certification in general) can be performed in scientific machine learning,
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where bulk of the learning tasks are regression-based. A few exceptions to this rule are [Elsharkawy
& Kahn| (2025), who introduce Contrastive Normalizing Flows for parameter estimation for high-
energy physics, Fanelli et al.|(2022) propose a conditional generative approach for anomaly detection
in experimental physics. For drug discovery, Molecular Out-Of-distribution Diffusion (MOOD)|Lee
et al.[(2023)) employs a diffusion model to explore chemical space, guiding generation towards novel
molecules. |Abdi et al.| (2025a)) apply DiffPath to medical image OOD detection.

What this brief literature survey brings out is the scarcity of OOD detection and prediction certifi-
cation methods for most of scientific machine learning applications. The main goal here is to devise
such a method.

3 METHODOLOGY

A generic regression task consists in minimizing over parameters ¢, a loss of the form,

L= Uy, Vo () pz,y) de dy, €9)
XxYy
where V., is a model of the operator ¥ which defines the ground truth, £ is the loss function and
p(x,y) is the (ground truth) training distribution.

Given an unseen input x* with corresponding ground-truth output y*, our goal is to determine a
quantity c(z*), to be used as a certificate, which correlates with the loss £(y*, U, (2*)). We impose
two important requirements: (i) ¢(x*) must be computable without knowledge of y*, and (i) ¢(z*)
should indicate to an end user whether they can expect £(y*, ¥, (2*)) to be small.

Likelihood as a Certificate. To this end of finding a certificate, we provide with a motivating
heuristic computation in SI[A.T] where under certain assumptions on the training and generalization
of the regression model ¥, and on the underlying ground truth probability distribution, we derive
the following (approximate) relation,

log (E(y*a \IILP(I*))) < OélOg(E) - log(p(x*, ypred) +0 (66) (2

where € > 0 is the average loss and yprea = \I/@(x*), with positive constants «, 8. From the
above relation, we immediately observe that i) the error of the prediction ¥, (z*) nicely relates to
(correlates with) the likelihood p(z*, ypred) and ii) the error should be small where data are abundant
(high likelihood) and can be large where data are scarce (low likelihood).

Moreover, given the decomposition, 1og p(z*, Ypred) = log p(x*) + log p(Ypred | *), it follows that
the joint likelihood as a certificate ensures i) the model ¥, should generalize better in regions of high
input likelihood p(x*) and ii) Task-specific information enters through the conditional likelihood
P(Ypred | £*), which captures the intrinsic complexity of predicting ypreq from z*. The role of each
term in this decomposition is explored in SI for regression tasks for simple one-dimensional
functions, where we demonstrate how both terms are essential in designing a good certificate.

Given these heuristic considerations, we will base our certificate on the joint likelihood p(z*, Ypred)-
However, one immediately runs into the difficulty of determining this joint probability distribution
from data. We will approximate this distribution with a diffusion model as described below.

Diffusion Models. Diffusion models map a Gaussian reference distribution to a target distribution
p(z). They are commonly implemented using a backward stochastic differential equation (SDE).
However, this SDE also has an equivalent probability flow ODE formulation (Tang & Zhaol 2024,
Section 4.3): 4
z 1

5 = ~508(E)t). 3)
To sample from p(z), we start with samples from a Gaussian prior as initial data and solve the ODE
. Here s(z;t) &~ V, log p; is the so-called score function and oy is the underlying noise level.

As the probability flow ODE transforms a Gaussian prior into the target distribution, it also
enables evaluation of the data density p(z). By integrating along the solution path of the ODE, we
obtain (Tang & Zhao| 2024, Appendix D.2, Eq. (39)):
T
1

log po(2(0)) = logpr(2(T)) — /0 503 (V- 5) (2(t); t)dt. (4)
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The divergence term V - s(z(¢);t) can be approximated using stochastic estimators, as detailed in
(Tang & Zhao, [2024] Appendix D.2). In this work, we apply this to the joint variable z = (x,y). In
practice, the score function is approximated from a trained denoiser using Tweedie’s formula Karras
et al.| (2022).

Computing the Certificate. As argued above, our certificate is given by the joint likelihood p(z, y).
To compute it, we train the denoiser Dy of our score-based diffusion model on the available data
pairs (., yn), n = 1,..., N. We note that the training of the diffusion model does not involve the
regression model ¥, in any form.

Given any new input 2*, we then first generate the prediction W, (2*) using the regression model,
and then we estimate the joint log-likelihood p(x*, yprea) by numerically solving the associated
probability flow ODE (@), with its score function being estimated by the trained Denoiser Dy. The
certificate computation is also illustrated in Fig. [T| (A,B).

ID/OOD classification. While the relation (Z) suggests that the test error and the joint likelihood
are perfectly correlated, we emphasize that it is a heuristic relation and may not hold exactly. Thus,
finding an exact formula between the error and the proposed certificate is very difficult. On the
other hand, we can still utilize the certificate in the important task of classifying test samples as in-
distribution (ID) or out-of-distribution (OOD), providing the end user with a metric for ascertaining
whether the regression model is reliable or not.
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Figure 1: Illustration of the approach: (A) A regression model ¥ and joint diffusion model D. (B)
Certificate from the probability flow ODE. (C) Classification as ID/OOD based on the certificate
(regions II/IV are good). (D) Correlation between error and certificate, with a posteriori estimates.

To this end, We first take a small number of decision samples from the training distribution and
compute the median of the corresponding certificate values, denoting it as /., along with their stan-
dard deviation, .. We define ID samples as those with certificate value greater than [, — 1.50,
while OOD samples have values below [, — 1.50.. As shown in Figure[l] (C), this procedure de-
fines a vertical boundary between ID/OOD samples, separated according to their certificate values.
More formal calibration techniques could also be applied, such as quantile-conformal methods, FPR
control, or standard temperature scaling. For festing purposes, the horizontal dashed line shows the
boundary between small/large errors, here defined as the 95th percentile of errors of the decision
samples. Note that the horizontal threshold can be adjusted by the end user, reflecting their chosen
tolerance for acceptable error levels. The resulting 4 quadrants in the error vs certificate plane are
shown in Figure [I] (C). A good certificate should minimize misclassified samples in regions I and
III, corresponding to ID-classified samples with large errors (region I), and OOD-classified samples
despite a small prediction error (region III), respectively. This ID/OOD classification procedure pro-
vides a quantitative metric to assess the reliability of the certificate. Finally, our proposed overall
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algorithm for reliability certification in terms of ID/OOD detection is summarized in Algorithm [I]
Further details can be found in SI[A.4)

4 RESULTS

To assess the proposed approach empirically, we consider a variety of datasets of relevance to sci-
entific computing, including regression on the solution operator for the wave equation, the Navier-
Stokes equations and a Humidity Forecast regression dataset, based on real-world data. In addition,
we also revisit image classification within the proposed framework, and extend the approach to brain
tumor segmentation.

Wave Equation. In this experiment, we consider regression on the solution operator of the wave
equation with periodic boundary conditions in two spatial dimensions. Initial conditions are obtained
from a field with random Fourier coefficients. The distribution is characterized by two parameters
K and r, where K controls the number of active Fourier modes, and r controls the decay rate of
Fourier coefficients. Test and training distributions differ in the range of values from which K and
r are chosen to generate samples. We refer to SI[B.T|for further details on the data distributions.

Once the model W is trained on the training set X = {ug y,, \Il(uo,n)}ﬁ;l, we then test its perfor-
mance on the test distribution. For this experiment, the support of the training distribution is a subset
of support of the test distribution. Hence, some samples drawn at test-time will be similar to those
from training, while others may differ significantly. In addition to the regression model ¥, we also
train a diffusion model Dy to approximate the joint input/output distribution. The regression model
is the CNO architecture of Raonic et al.[(2023) and the diffusion model is a UViT type denoiser con-
sidered in[Molinaro et al.|(2025), see SI[D|for details. The chosen loss function here is the L;-error.
Histograms of the estimated likelihood certificate c¢y(x) and L, errors are illustrated in SI D).

The approach for ID/OOD detection in the present work hinges on a presumptive correlation be-
tween likelihoods and errors: How does the absolute L1 error correlate with the estimated joint
log-likelihood? We summarize this correlation in Figure [T] (D), where the errors are evaluated for
the test distribution. Our results show that samples drawn from the training distribution exhibit
higher likelihood values and lower errors compared to those from the test-distribution. Additionally,
we observe a very clear correlation between these quantities.

Algorithm 1 OOD Detection with Diffusion Certificates
1: Train task model ¥, on (z,y) and denoiser (diffusion) model Dy on p(z,y)
2: Define certificate cg(x, ¥y, (2)) via probability-flow ODE (e.g. likelihood as in (@)
3: From training samples, compute (error, cp) and set ID/OOD boundary
4: for test sample x do

5: Ypred — Yy(x)
6: C<Cy (l‘, ypred>
7: if ¢ > Cboundary then
8: classify as ID
9: else
10: classify as OOD
11: end if
12: end for

We perform ID/OOD classification as described in Section[3] In addition to the scatter plot of error
vs certificate, Figure[I] (D) also shows the resulting classification regions: The vertical dashed line in
this plot shows the ID/OOD boundary. Additionally, the horizontal dashed line shows the boundary
between small/large errors, which we here define as the 95th percentile of errors in the training
distribution. Representative examples of predicted and ground-truth samples from ID and OOD
classes can be found in SIB.T] Figures[8|and[9]

For further insight into the results, we split the OOD class into intermediate, or critical (CD), where
certificates lie in (I, — 30, l. — 1.50. ), and OOD, where certificates fall below [, — 30,. To illustrate
the ID/CD/OOD separation, we plot joint histograms of (K, r) for ID (left), CD (center), and OOD
(right) samples in SI[B.T(Figure[TT). The ID samples predominantly correspond to high values of the
decay parameter r, specifically » < 0.75, which is the minimum observed value of 7 in the training
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set. Critical samples tend to have intermediate values of r, whereas OOD samples are characterized
by both low r values and typically high K values, regions where the model exhibits the poorest
generalization.

Ablations. The above results provide strong empirical evidence for the utility of the proposed like-
lihood certificate on the studied dataset. To better understand the sensitivity of our approach, we
performed two ablation studies on the sensitivity to the diffusion model training and number of
samples used to determine ID/CD/OQOD ranges.

Sensitivity to the Diffusion Model: The first ablation examines the extent to which the diffusion
model needs to be trained to be effective for OOD detection, with further details in SI The
model is trained for 500 epochs, with final estimated likelihoods shown in Figure[T0] We repeat like-
lihood estimation using intermediate checkpoints with fewer epochs. SI Figure [[3]illustrates
the progression of the L, error versus the estimated joint log-likelihood log pg(, Ypred ) throughout
training. As the model is trained for more epochs, the estimated likelihood becomes increasingly
aligned with the prediction error, with the final model (trained for 500 epochs) showing a pronounced
correlation between the two. We also observe that the average estimated log-likelihood over both
the training and test distributions increases steadily throughout training, exhibiting a rapid transition
during training (cp. SI[B.T.2|Figure[T4). For the last 100 epochs of training, the model’s explanation
of the data remains consistent across checkpoints (cp. SI[B.1.2] Figure[I5). This suggests that once
the diffusion model is sufficiently trained, it provides reliable performance for OOD detection.

Classification Sensitivity: In previous evaluations, we used 32 samples drawn from the training dis-
tribution to classify inputs into ID and OOD categories. We check what is the number of samples
required to achieve reliable classification performance. This ablation illustrates how the classifi-
cation boundaries, based on the estimated joint log-likelihood, evolve as the number of randomly
selected training samples increases, with results shown in SI [B.1.3] Figure [I6] With only 4 sam-
ples, the classification is conservative, resulting in many test samples being labeled as OOD. As the
number of samples used for decision-making increases, the boundaries become progressively more
stable and reliable.

Regression Model Architecture: In our final ablation, we evaluate the proposed framework using
various regression architectures. Instead of the previously used CNO model, we now consider ViT
Dosovitskiy et al|(2020), UNet Ronneberger et al.| (2015)), and C-FNO |Molinaro et al.| (2025)) ar-
chitectures. The same diffusion model trained in earlier sections is employed throughout. Each
regression model is trained on the same dataset used for the CNO experiments (cp. SI[B.1.4] Figure
[I7). In each case, we observe that samples with low likelihoods correspond to high prediction er-
rors, whereas samples with high likelihoods exhibit lower errors across all tested architectures. This
indicates that the approach is robust, and does not require a matching regression model architecture
and diffusion model backbone.

Navier-Stokes Equations. In this experiment, we validate the proposed approach on the time-
dependent Navier-Stokes equations with periodic boundary conditions in two dimensions, and with
(spectral) viscosity v = 4 x 10~%. To this end, we revisit six datasets of varying difficulty, from the
papers|Raonic et al.|(2023) and|Herde et al.| (2024), termed NS-Sines, NS-Sines Moderate, NS-Shear
Layer, NS-Brownian, NS-PwC, with further details provided in SI For both the regression and
diffusion tasks, we employ an all2all training strategy, as recommended in |Herde et al.| (2024)).

Labeling of input samples as ID/OOD is performed by the same
procedure as in the wave equation. We refer to SI for addi- T lanth
tional details related to the time-varying setup of this experiment, - s
and an ablation on autoregressive vs direct formulations. We sum-
marize the correlation between Lq-errors and likelihood certifi-
cate in Figure (D), where the models are trained on the NS-Mix
dataset and tested on a variety of previously unseen datasets.

10

Absolute L; Error (AR)

We again observe a very clear correlation between errors and the s a7
likelihood certificate. Additionally, we performed several exper-

iments, where in each experiment we choose a different dataset Figure 2: Navier-Stokes. L,
(or mix of datasets) as our ID training distribution, and we test Error vs input-only likelihood
OOD detection on the other datasets, with results shown in log pg () for NS-Mix.
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Fig. [I9] These results demonstrate that ID/OOD detection works
robustly across this range of datasets.

Insufficiency of p(x) as a certificate. So far, we have restricted attention to the joint likelihood
p(z,y). We here investigate the suitability of p(z) as an alternative certificate. A potential issue
with this approach is that the distribution p(x) is completely task-agnostic. The task itself could
be to solve a PDE, given the input x, but it could be something completely different. Therefore
the intrinsic difficulty of the task is not incorporated into the input distribution. Moreover, the way
we evaluate the trained model is also not incorporated into the certificate. Therefore we do not
recommend this approach, given the supporting evidence below.

We analyze the certificate log pg(z) for the NS-MIX problem. In Fig. [2| we present the L, errors
plotted against the estimated log-likelihood. While we observed a clear correlation with errors when
using the joint likelihood p(z, ) as a certificate (cp. Fig. [I[D)), no such correlation between py(x)
and the Lq-errors is observed. Notably, the NS-Sines dataset receives the highest likelihood scores.
However, despite these high likelihoods, the downstream task associated with this dataset remains
challenging, resulting in large test errors. This indicates that, in this case, p(z) is not a reliable metric
for OOD detection. This conclusion is further supported by SI Table [5] which demonstrates
that, in fact, all task-agnostic baselines fail. This failure occurs for all the certificates based on only
the input distribution.

MERRA-2 Humidity Forecast. In this experiment, we use MERRA-2 satellite data to forecast
surface-level specific humidity Global Modeling and Assimilation Office (GMAO)|(2015)). Training
is performed on a 128 x 128 region over South America, using 4h snapshots, in the period 2016—
2021 (ST Fig. 26). The task is to predict humidity 12h ahead. A time-conditioned regression
model is trained to forecast up to 60h (15 steps) into the future, and evaluated on 12h predictions
(3 steps). In addition, a diffusion model is trained to estimate the joint likelihood p(zy, , x¢,) of
humidity snapshots over the same region. We evaluate humidity prediction for 2023 on four test
sets (SI[B.3] Fig.[26): (1) South America (training region), (2) Australia-Oceania, (3) Africa, and
(4) Asia. Due to differing humidity patterns, generalization degrades outside the training domain:
performance is best on South America, moderate on Australia—Oceania, and poor on Africa and
Asia.

Figure [I(D) plots L errors against the likelihood certificate. We observe that the diffusion model
assigns high likelihoods, corresponding to low prediction errors, to samples from South America.
Samples from Australia receive slightly lower likelihoods and are mostly identified as OOD. As
anticipated, the African and Asian datasets fall entirely within the OOD region. In SI[B.3] the pre-
dicted humidity fields appear overly smooth, lacking fine-scale structures. This is expected, since
the regression task is ill-posed and no auxiliary information (e.g., boundary conditions, wind, tem-
perature, pressure) is provided. For comparison, Fig. 25| shows the error histogram of our 12-hour
forecasts against a persistence baseline (humidity assumed constant). The model clearly outper-
forms persistence, with its error distribution shifted to the left.

Classification. To complement the regression datasets considered before, we next apply our ap-
proach to classification tasks. We start with classic image datasets, CIFAR10 and MNIST. We train
a classifier ¥, to predict a discrete label y from the image x. The classifier is trained using a conven-
tional softmax-based loss function, maximizing the log-probability corresponding to the true label
y. During the training of the diffusion model, we concatenate an additional channel containing the
constant value y to the c channels of the image x.

® D Classes .
® 00D Class e
=== Linear Fit .

The classifier predicts log-probabilities log p(y | x) for each class -
label y (the last layer before the softmax is applied). To include o il
full information about classifier outputs during testing, we do not
define y,req as the single class label with highest probability. In- P
stead, to define the channel yp,.q that is fed into the diffusion

model to compute log p(, Ypred), We sample the individual pix- i [

els of ypreq independently from the set of labels, where each pixel "* Joint Log Likelihood - 10g p(x. Yores )

value is chosen with probability p(y | x).

Accuracy

. . . ) ... Figure 3: CIFAR10 Image
In this way, predictions with low confidence introduce variabil-  ~j2ccification. Accuracy vs

ity into the label channel, effectively “corrupting” those samples. | ixelihood Certificate.
Consequently, samples for which the classifier is confident re-
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main mostly unaffected. By incorporating uncertain label values,
we effectively perturb the one-dimensional manifold on which the labels reside.

CIFARIO. In this experiment, we train both a classifier and a diffusion model using the CIFAR
dataset, containing 10 distinct classes. We designate one class as out-of-distribution (OOD), which
is underrepresented in the training set. The class chosen as the OOD class is frucks (the last class).
For each in-distribution class, we select approximately 4.5K training samples, with slight variations
in the exact number for each class. For the OOD class, we select only 10% of the samples.

In Figure 3| we show the accuracy of the classifier vs. the likelihood certificate. We observe a linear
relation between the accuracy and the predicted likelihoods. As expected, the performance of the
classifier was the worst for the OOD class (i.e. the truck class). Additionally, the classifier was
unable to accurately predict the car class (below 60% accuracy), and the diffusion model accurately
assigned low likelihood to this class. Two effects combine to yield this result: (1) The classifier
is rarely overconfident in the wrong label. (2) Even when the classifier is overconfident in the
wrong label, the estimated likelihood is still much lower than the ones obtained when the classifier
is overconfident in the correct label.

MNIST. We repeat this experiment for MNIST. The OOD class is the number 9. The results, shown
in SI Figure [32] are similar to the ones obtained in the case of CIFAR10 dataset. Note that the
classification task is very easy, so almost all the ID samples are properly classified. Finally, we per-
form an extensive ablation of our approach on the well-known issues of ID/OOD misclassifications
for CIFAR/SVHN identified inRen et al.[(2019), with details in SI

Segmentation. In this section, we evaluate our approach on binary segmentation tasks (i.e. pixel-
wise classification). Our method follows a similar strategy as for classification, with one key dis-
tinction: we explicitly reduce the influence of non-semantic pixels by corrupting them with white
noise during training. The method is explained in full detail in SI[B.8]

Our objective is to perform brain tumor segmentation on the BraTS2020 dataset Menze et al.
(2014). This dataset contains 3D brain MRI volumes. The data is divided into two categories: (1)
High-grade gliomas (HGG), (2) Low-grade gliomas (LGG). Each brain scan is accompanied by
a simplified segmentation mask defined as 0: non-tumor tissue pixels and 1: tumor tissue pixels.
We train our segmentation model using brain scans with HGG tumors, from which we select 190
for training, 10 for validation, and 10 for testing. During training, we apply a range of augmenta-
tion techniques. We refer to SI for further details on the datasets and employed augmentation
techniques; we also include an ablation on the noise corruption technique.

Our evaluation is conducted on 10 held-out HGG brains and an additional set of 10 LGG brains.
For the HGG cases, we evaluate the model not only on FLAIR MRI scans, which were used during
training, but also on T5-weighted scans, representing a different MRI modality. For the LGG cases,
performance is assessed on both axial (z-axis) slices, aligned with the training direction, and x-
axis slices, offering a side view of the brain and allowing us to test the model’s generalization to
previously unseen anatomical orientations.

SI Fig. [37| shows the relation between relative L; segmentation error and our likelihood cer-
tificate across four test scenarios. Most low-error cases are correctly classified as ID, while nearly
all high-error cases (relative L; > 1.0) are identified as OOD. Furthermore, it is crucial to highlight
that our approach effectively identifies OOD samples originating from a different MRI modality,
namely 75 MRI scans (see subfigure 3 in Figure[37).

Aggregating all datasets, the 2d histogram of error vs. likelihood (SI Fig. [B8[left)) shows
high density around low likelihood and errors near 1.0, i.e., OOD. Low-error points cluster near
the threshold but remain ID. The log-likelihood histogram (middle) is right-skewed, favoring higher
values. Finally, error histograms (right) confirm that ID samples are mostly low-error, while OOD
samples are dominated by high-error cases, with some low-error outliers.

Quantitative performance metrics and Baselines. As illustrated in Fig. [T{C), the ID/OOD bound-
ary (vertical) and error boundary (horizontal) divide the error-vs-likelihood scatter plot into 4 quad-
rants. We consider the null-hypothesis that testing samples are OOD and, based on this sub-division,
identify true positives (classified OOD, large error), false positives (classified OOD, small error),
true negatives (classified ID, small error) and false positives (classified ID, large error). Further
details can be found in SI[A.4]
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| - \ - | JLBC JDPath JSFNS JSBDDM JMSSM OODC |

ACC [ 0855 0864 0862 0865 0892 0545
Wave FPR | 0.040 0108 0095 0108 0066 0395
FDR | 0126 0359 0314 0359 0220 0453
AUROC | 0936 0912 0916 0913 0.946 _
ACC [ 0994 0988 00989 0988 0980 0603
NSpwe | FPR| 0001 0002 0002 0002 0002 0142
FDR | 0002 0003 0003 0003 0003 0.673
AUROC | 0.999 0999 0999 0999  0.999 _
ACC [ 0947 0788 0786 0788 0788 0424
nsamx | FPR [ 0009 002 0020 0021 0020 0.090
FDR | 0.024 0062 0058 0060 0058 0350
AUROC | 0992 0918 088 0913 0.891 ~
ACC 10956 0989 0922 098I 09087 07741
FPR | 0.034 0004 0067  0.001 0002 0259
MERRA2 | ohp | 0046 0006 0086  0.002 0003 0518
AUROC | 0992 0998 0989 0997  0.998 _
ACC 0743 0789 0727 0785 0772 0,709
FPR | 0077 0087 0169 0097 0123 0291
Brain FDR | 0253 0297 0580 0332 0422 0291
ARCB | 0743 0765 0381 0726 0611 0705
AUROC | 0.808 0808 0742 0802  0.782 -
ACC 0899 0884 0857 088l 0836 0617
average | FPR | 0033 0045 0071 0046 0043 0224
FDR | 0.091 0145 0208  0.151 0.141 0457
AUROC | 0.945 0927 0906 0925 0.923 ~

Table 1: Performance metrics on scientific datasets for proposed likelihood certificate, and several
OOD detection baselines (using joint input/output distribution).

To quantify the performance of the proposed certificate across our experiments, we finally report
relevant statistical metrics in Table Specifically, we report the accuracy (measuring correctly
classified samples), false positive rate (FPR), and false discovery rate (FDR). To ensure statistical
significance of our results, we also report the AUROC metric. The AUROC represents the prob-
ability that a randomly selected positive sample receives a higher classifier score than a randomly
selected negative one, and is inherently threshold-independent. The proposed likelihood certificate
(termed as JLBC) is compared to a number of diffusion-based baselines: a curvature-based cer-
tificate JDPath (see |Heng et al.| (2024b)), a certificate incorporating contributions both from the
curvature of the score function and from the score function itself (termed JSBDDM) |Abdi et al.
(2025b)), the sum of the score functions Joint Score Function Norm Score (JSFNS, introduced by us
in this paper), and a certificate based on sums of norms of the score, referred to in our framework
as JMSSM [Mahmood et al|(2020). All these baselines are still computed by using the denoiser to
calculate the score function for the joint distribution. All the previous works primarily relied on
input-distribution-based approaches. As part of our contribution, we extend these methods to the
joint-distribution setting (denoted with J) by adapting their approaches accordingly, ensuring a fair
and consistent comparison within our framework. We additionally include a non-diffusion baseline
0O0DC (see|D.1), which requires access to the ground-truth for some ftest samples. For the Wave
Equation experiment, we additionally compared our method against two Bayesian-style approaches
where the predicted epistemic uncertainty is used for OOD detection, namely MC-Dropout |Gal &
Ghahramani| (2016) and Rate-In Zeevi et al.| (2025)), both of which use dropout during training and
inference to enable stochastic forward passes (i.e., approximate Bayesian inference). Consult SI|C]
for further details on all the baselines.

Throughout all experiments, we find that certificates derived from diffusion models trained on the
Jjoint input/output distribution robustly classify inputs with large errors to be OOD, as indicated by
the low FPR. The results furthermore indicate that the likelihood based certificate is the most robust
among these certificates, as demonstrated by it being the best performing approach on average (Tab.
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[I). Moreover, the JLBC certificate is significantly more accurate for all metrics on the most chal-
lenging NS-MIX dataset, where the underlying training and test distributions are both mixtures of
multiple distributions. For this task, we also compute the ROC curve and compare it against several
baselines (see Figure[d] right). The JLBC demonstrates near-perfect OOD discrimination, whereas
the other models show considerably lower ability to distinguish between ID and OOD samples.
Regarding the comparison against Bayesian approaches, JLBC clearly surpasses both MC-Dropout
and Rate-In in the Wave Equation experiment, delivering substantially higher accuracy and AUROC
while also being considerably faster to evaluate (see SI Table 4 and SI[B.1.7). Finally, we conduct
an ablation study in SI[B.T.6|demonstrating that JLBC delivers reliable and stable OOD certificates
while requiring only a fraction of a second per sample for certificate computation, enabling fast and
robust inference in practice. These findings highlight the utility and potential of the proposed joint
input/output approach for identifying problematic predictions across a variety of datasets. Further
discussion and ablations on the choice of boundaries can be found in SI[A.4](cp. Table [2).

A Posteriori estimates on the prediction error. We reiterate that our proposed approach is zero-
shot as no access to any ground truth test samples is necessary. A natural question that arises is: can
we say more in case we have access to the ground truth for some test samples. Revisiting Eqn. (@),
we see that the error-(log-)likelihood relation is heuristically an approximate exponential. Hence,
we aim to fit a scaled and shifted exponential to the error log-likelihood relation for a small number
(~64) of samples of the test distribution for our regression tasks (Wave, NS-Mix and MERRA-2,
see SI[B.4]for details). We observe from Fig. [T| (D) and SI Fig. [27] that this exponential fit provides
areliable estimate of the error from the likelihood, yielding a quantitative a posteriori error estimate,
which can be very useful in scientific applications.

Inference on Training Distribution. . In some cases, the objective is to assess the model’s gener-
alization ability within its own training distribution. The main challenge here is to identify the most
challenging samples that still belong to that distribution. In this regard, we perform a posteriori
error estimation for the Wave-Eq and NS-PwC experiments using 64 training samples to determine
likelihood and error bounds, and a respective relationship between them. Uncertainty bounds of the
established relationship are derived via the 75th-percentile rule. For the NS-PwC experiment, we
present the error fits in Figure[d] We also examine how the uncertainty bounds depend on the chosen
confidence threshold by varying the percentile used to define the bands. As shown in SI Figure [29]
increasing the threshold from the 65th to the 95th percentile expands the bounds, capturing more
samples but also amplifying the associated uncertainty. For further details, see SI

NS-MIX: ROC Curves
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Figure 4: Left: Error fits and corresponding error—certificate histograms for the training distributions
(NS-PwC experiment). Right: ROC curves for the NS-MIX experiment, where JLBC shows near-
perfect OOD discrimination, while other models perform notably weaker.

5 CONCLUSION

In this work, we addressed the critical challenge of assessing the reliability of data-driven models
in scientific Al, where out-of-distribution failures can have significant consequences. We proposed
a novel, task-aware OOD detection method tailored for regression tasks. Our approach leverages a
score-based diffusion model to estimate a variety of certificates on the joint input/output distribution.
This is found to be crucial for an informative reliability score for regression tasks, where methods
based on the input distribution p(x) can completely fail. Thus, this work represents a foundational
step towards building verifiable “certificates of trust” for Al-based scientific predictions.
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A THEORY AND MOTIVATION

A.1  MOTIVATION FOR JOINT LOG-LIKELIHOODS AS CERTIFICATES

We are in the setting of (T) and assume that the loss function ¢ is of the form,
Uy, ¥(z)) = [y — ¥ (2))", (5)
for some 1 < p < oo. In practice, we set p = 1 or p = 2.

We further assume that there exists a parameter ¢*, such that the resulting minimized loss is given
by,

/ Uy, V- (z)) p(z,y)dedy < e << 1. (6)
XY
Hence, we assume that the generalization error of the trained model ¥* = W - is very small.

Next, we fix an 0 < o < 1 and define the following two sets,

A={(z,y) € X x Y : Ly, " (x))p(z,y) >€e*}, B:={(z,y) € X xY: Ly, V" (z)) > e"}.

)
Clearly A C B as p < 1. Denoting the probability measure [P as,
P(C) = / xc(z,y)p(x,y)dedy, V measurable C'C X x Y,
XxY
we have that P(A) < P(B).
By Chebychev’s inequality, we obtain that,
1
PA)SPB) < o [ oW @)pla,y)dudy < 70 ®)
€
XxY
Hence, we also obtain that,
P(A°) >1 -~ 1. 9)

Thus, under the assumption of a well-trained and generalizable model ¥*, we have, with very high
probability of 1 — €' =%, the event that

A= {(z,y) € X x Y : Ly, ¥"(x))p(z,y) < ¥}, (10)
occurs.

Under the assumption that p(z,y) # 0, for any (x,y) € X x Y, we can divide in (10} to conclude
that, with very high probability, we have a pointwise estimate of the form,

{(y, " (z)) <

60&

p(z,y)

Taking logarithms in (TT)) and observing that both its sides are positive results in the following
pointwise estimate (which holds with high probability),

log (£(y, ¥*(x))) < alog(e) — log(p(z,y)), (12)

(1)

for all (z,y) € A°
Under the assumption that log(p(x, y)) is locally Lipschitz in y, one can expand it around ¥* () to
obtain
log(p(z, ¥*(x))) < logp(z,y) + Lly — ¥ (z)|,
< logp(a,y) + Li(y, ¥ (2))%, from(5) (13)

log p(z,y) + O(e7),
where the last inequality follows from the fact that (x,y) € B°.

Plugging (13) into[T2] we obtain with high probability that,

log (¢(y, T*(z))) < alog(e) — log(p(z, ¥*(z))) + O (e%) , (14)
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which is precisely Eqn. (2) of the main text.

Note that the above form Eqn. (14)) clearly demonstrates that the loss is controlled in terms of the
joint likelihood-based certificate with very high-probability and motivates our use of these certifi-
cates.

In deriving (T4), we made some key assumptions, namely, i) that the model ¥* has very low general-
ization errors, i.e., it trains and generalizes well in-distribution ii) we have access to the likelihood (or
a good approximation of it) and iii) the ground truth probability density function is non-degenerate
and log-Lipschitz. In practice, these assumptions may not hold and we need to empirically verify
whether a likelihood-based certificate is a good indicator of the error or not. As demonstrated by the
many numerical experiments in the main text, this does appear to hold, in general.

Finally, the inequality in (I4) suggests that a high likelihood will result in a low error. This fact is
consistent with the observations in Table [T]that the ACC and FPR scores therein are very high and
very low, respectively. However, given the inequality in (I4), we might expect that a low likelihood
might correspond to a low error. Indeed, from Table [I] we see that the FDR is, on average, three
times higher than the FPR, making it consistent with the nature of the inequality in (T4).

A.2 Toy PROBLEM: ILLUSTRATE CONTRIBUTIONS TO JOINT LIKELIHOOD

In the following, we consider simple toy problems, where a simple multilayer-perceptron (MLP) is
trained to regress on functions in 1d. In these examples, x*, y* € R are real-valued, and connected
by a noisy relationship y* = f(«*) with function f.

In ST|A.2.1] we illustrate the importance of p(z*) by regressing on simple f(x), but with an unbal-
anced input data distribution p(x). In SIJA.2.2] we illustrate the importance of taking into consider-

ation p(Ypred | ©*) in regression tasks. Here, the input distribution p(z) is balanced by construction,
but the dependence of y* on z* is more complex for positive inputs, z* > 0, than for negative inputs,
x* < 0.

A.2.1 IMPORTANCE OF p(x*).

In this simple example, we will explore 1d regression using a basic two-layer MLP. Our objective
is to approximate a function f : R — R from data pairs (x;, f(x;) + €;)~_,, where N represents
the number of training samples. The noise term ¢; follows a normal distribution A/(0,0.1), and z is
drawn from a specific distribution that we will define shortly.

We are interested in a scenario where the distribution of training inputs exhibits two modes: one
that is sampled frequently and another that is sampled much less often. Specifically, we want to
explore a dataset where there are many samples for positive values of x, while negative values of
are significantly underrepresented. Let us define the density of training inputs to be:

1 (N(z;1,0.5), z >0,
p(x) == ‘

C \v-N(z;-1,0.5), z<0.
Note that there needs to be some normalization constant C' so that the integral of p over R is 1 (there
is also some cutoff at x = 0). Here, v represents the fraction of less represented mode in the data.

Given a function f that we seek to approximate, we construct our training inputs by first selecting the
number of positive samples, N, and drawing them from N'(1,0.5). Additionally, we include v N
samples drawn from N (—1,0.5) in the training set. For evaluation, we generate two test sets, one
for positive samples and one for negative samples, each containing 512 points drawn from N(1, 0.5)
and V' (—1,0.5), respectively.

First, we fix v = 0.1. We train an MLP, fy, to approximate four different functions. Figure [3]
presents the target functions, training samples, prediction errors, and overall performance of the
trained MLPs. Across all examples, we set N, = 100 or N; = 200. Notably, the performance on
the + set is consistently 3 to 10 times better in every case. For the exact error, please take a look at
the legend of middle figures.

Next, we fix ¥ = 0.1 and examine how the errors for the + and — sets change as we vary the
number of training samples, N4, for all the target functions. For each point on the graphs, 10
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Figure 5: Performance of the trained MLP fy on four different target functions. The figure illustrates
the target functions, training samples, prediction errors, and overall model performance. Training is
conducted with N = 100 or N = 200, and the results show that the performance on the + set is
consistently 3 to 10 times better. For exact error values, refer to the legend in the middle figures.

different models are trained,each time with new training set, the mean Lo error is calculated for
each model, and the median of these 10 errors is reported. The results are presented in the left figures
of Figure[6] We observe that the L, errors consistently decrease as N, increases, which is expected.
Similarly, the error for the — class also scales with the number of training samples.

Finally, we set N, = 200 (or N4 = 50 in case of linear function) and vary the fraction of negative
training samples, v. The right figures in Figure[6]illustrate how the Lo error evolves as v increases.
We observe that the performance on the — class improves with increasing v, while the performance
on the + class remains largely unaffected. For sufficiently large v, the errors for both classes become
nearly equal. Note that for each point on the graphs, we trained 10 different models and used the
same procedure as above to compute the errors.
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Figure 6: Impact of varying N4 and v on Lo errors for the regression problems from Figure [5| For
each point on the graphs, 10 different models are trained, each time with new training set, the mean
Ly error is calculated for each model, and the median of these 10 errors is reported. The figures on
the left show how errors for the + and — sets change as NV increases with v = 0.1, demonstrating
a consistent decrease in error. The figures on the right illustrate the effect of increasing v while
keeping IV, fixed, showing improved performance for the — class while the + class remains mostly

unaffected.
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Figure 7: (Left) Ground truth values f(x) and predicted values fy(z), (Center) Samples drawn from
the trained diffusion model, (Right) Joint prior log-likelihood log po(z, y).

A.2.2 IMPORTANCE OF DP(Ypred | T¥).

Let us study the function

sin(257x), x>0

The function f is continuous and exhibits a low-frequency behavior for negative inputs, while it
becomes highly oscillatory for positive inputs.

We define the training setas X = {(x, f(z))})_,, where z ~ U(—1,1) and N = 5000. This means
that, on average, half of the dataset represents the low-frequency region of f, while the other half
corresponds to the high-frequency region. We train a model (an MLP), denoted as fy, to approximate
the function f using the dataset X. The model is trained for 500 epochs. The function fy provides
a good approximation of f in the region of negative inputs. However, for positive values of x, a
phenomenon known as collapse to the mean value (as described in Molinaro et al.| (2025)) occurs.
In this region, where f has a high Lipschitz constant, fy lacks the capacity to accurately approximate
the function. The ground truth values of f, as well as the predictions of fy are given in the Figure[7]
(Left).

f(x):{sin(”;), <0 (15)

Next, we train a score-based diffusion denoiser, Dy, to generate samples from the joint distribution
(z, f(x)). We expect the diffusion model’s samples to be concentrated around the curve (z, f(x)).
For negative values of z, this curve occupies a relatively small region of the plane, whereas for pos-
itive values of z, it spans a much larger portion of the plane. For that reason, for positive values of
x, we expect the samples to be distributed (almost) uniformly in the region (0,1) x (—1, 1 In
Figure[/] the middle plot displays samples drawn from the trained diffusion model using the prob-
ability flow ODE sampler, while the right plot shows samples generated using the Euler-Maruyama
SDE sampler. We observe that in the region of negative = values, both techniques yield the samples
centered around the graph.

For any point (z, y) in the plane, one can estimate the log-likelihood log p(x, y) using the instanta-
neous change of variables formula in the probability flow ODE (see Tang & Zhao|(2024)) to get

T ~
log po(x(0)) = log pr(x(T)) + / V- By (x(t). 1) dt. (16)

In our choice of the forward SDE, we set T = 1, while fp can be expressed in terms of the (es-
timated) score function and the diffusion coefficient. The score function is conveniently computed
from the denoiser Dy using Tweedie’s formula. Note that the divergence term inside the integral in
[I6]can be estimated using Skilling-Hutchinson estimation (see[Tang & Zhao|(2024) for clarification).

Let us observe a 2d uniform, 1282 grid in the region [—1,1] x [~1,1]. For each grid point, we
compute the joint log-likelihood log po(x, y) using the formula The resulting likelihood values
are displayed in Figure[/| (Right). It is observed that for negative values of x, the density is concen-
trated around the graph, while for positive values of x, the probability is distributed across the entire

!"To be more precise, relevant analysis in[Molinaro et al.| (2025) suggests that the distribution has approxi-

mate density dz dy/+/1 — y2.
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region [0, 1] x [—1,1], as anticipated. We note that while estimating the log-likelihoods, an addi-
tional correction arises by solving the probability flow ODE backwards in time to obtain log-priors

log pr(xT, yr).

A.3 LIKELIHOOD ESTIMATION

Joint log-likelihoods (Eq. are computed using the RK38 solver from the integrate_torch library
for the initial value problem (and RK45 in 1d experiments). The divergence term is approximated
via a stochastic estimator (see (Tang & Zhaol 2024 Appendix D.2)) with 32 Monte Carlo samples.

A.4 DECISION BOUNDARIES

After training both the application-specific model and the diffusion model, the likelihood function
and error bounds must be defined to support decision-making and hypothesis testing. Suppose we are
given a task-specific model G : X — Y, alikelihood-estimation function Ly : (X,Y") — R (derived
from the trained diffusion model Dy), and a small set of M € N input—output pairs (z;,y;) € X XY,
i=1,..., M, sampled from the training distribution.

The decision boundaries illustrated in Figure [T(C) in the main text are derived using a small subset
of input—output pairs from the training set (dark blue points). The vertical dashed line represents
the certificate threshold. Samples to the right of this line are classified as in-distribution (ID), while
those to the left are classified as out-of-distribution (OOD). The horizontal dashed line represents
the error threshold. We expect samples with low certificate values to lie above this line with high
probability (i.e., they have large prediction errors), while samples with high certificate values will
generally lie below it (i.e., they have small errors). This separation defines four quadrants:

* Quadrant I (upper right, high certificate + high error): These are the most problematic
cases. They are classified as ID based on certificate, but their large errors indicate they
should be OOD, i.e. false positives.

* Quadrant II (upper left, low certificate + high error): Ideally, these are true positives for
OOD detection — correctly identified as OOD due to low certificate and high error.

* Quadrant IIT (lower left, low certificate + low error): These are false negatives, samples
classified as OOD even though their prediction error is small. These occur as a trade-off to
keep Quadrant I small; the horizontal error threshold is chosen not to be too high.

* Quadrant IV (lower right, high certificate + low error): These are true negatives, correctly
identified as ID, with both high certificate and low error.

Our objective is to maximize the number of true positives (Quadrant II) and true negatives (Quad-
rant IV) while minimizing false positives (Quadrant I). False negatives (Quadrant III) are an accept-
able trade-off for stricter control over false positives.

There are multiple ways to define the certificate and error boundaries. Given M testing input—output
pairs, we first compute the certificate values

l; = Le(xia gap(xl))

and the errors

ei = [lyi — G (@) lp-
We then calculate the median of the certificate values, m = median(l;), and their standard deviation,
o = std(l;). The certificate boundary (vertical line) is defined as

lpy=m—a-o,

where « is a tunable parameter, set to & = 1.5 in all our regression experiments. The error boundary
ep (horizontal line) is defined as the (100 — j)th percentile of the error values. In our regression
experiments, we set 5 = 0.05. We also conduct ablation studies to compare alternative methods for
deriving [, and e;, and to assess the stability of the resulting boundaries across different definitions.
Note that the error boundary is introduced only to define the quadrants. One should keep in mind
that the error boundary may be defined differently, depending on the use case and the acceptable
margin of error.
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Figure 8: Wave equation. A randomly selected ID sample (g dist.). Absolute L; error is 0.097.
The estimated log likelihood is 19.78. Parameters for this samples are K = 28 and r = —0.79. A
posteriori error estimate (defined in[B.4) is 0.10 4 0.02.

B EXPERIMENTS

B.1 WAVE EQUATION

Problem Setup. In this experiment, we study Wave equation

utt_CQAu:()? inDX (O7T)7 Uo(l',y):f(m,y"f',K,aij) (17)
with constant speed of propagation ¢ = 0.1 and the initial condition given by
K
f(xa Yy ‘ T, K7 aij) =TT Z aij : (7’2 +j2)_lr Sin(’]TZ'.’E) Sin(wjy), (18)
ij=1

where K controls the number of active Fourier modes, r controls the spectral decay and a;; are
coefficients of the respective modes. The exact solution at time ¢ > 0 is given by

K
u(z,y,t) = wZaij - (i% + §2) 7" sin(wiz) sin(7jy) cos (cmt i2 +j2) , V(z,y) € D.
2]}
Our objective is to approximate the operator G : f — u(-, T = 5).

Data distributions. As described in the main text, we define the training distribution p as follows:
For each initial condition, the parameters are distributed as r ~ 2/(0.75,0.85), K ~ Ugiscrete (20, 28),

and a;; ~ U(—1.0,1.0). Once the model G, is trained on the training set X = (f,, g(fn))ﬁf:l,
we want to test its performance on the testing distribution ¢ defined as follows: For each initial
condition, the parameters are distributed as r ~ U(.675,0.925), K ~ Ugiscrere (16, 32), and a;; ~
U(—1.0,1.0). We observe that the supp(p) C supp(q). Therefore, we anticipate that some samples
drawn from distribution ¢ will be similar to those from p, while others may differ significantly. Note
that we use only N = 1000 samples in the training set.

Wave Equation - Critical Region (CD) To better analyze the intermediate region for the Wave
equation, we further split the OOD class. We define a critical (CD) subset where certificate values
fall within (I, — 30, ,1 — 1.50), while samples with certificates below [ — 3o are classified as (pure)
OOD.

B.1.1 JOINT LOG LIKELIHOOD VS L; ERROR

We present an example of a predicted and a ground-truth sample from ID and OOD classes in Figures
[fland 0] We observe that the parameter K and the decay r of the ID sample in Figure [§] align with
the parameter group of the p-distribution. The OOD sample in Figure [9] corresponds to K = 31, a
value not encountered during training, and is associated with » = —0.85 decay factor. This leads to
inaccurate model predictions, as indicated by the error and the notably low likelihood value.

We show a scatter plot of the estimated likelihood certificate vs the L error in Figure

We show the joint histograms of the parameter values (K, r) for ID samples (left), critical samples
(center), and OOD samples (right) (see Figure [TT). The ID samples predominantly correspond to
high values of the decay parameter, specifically » < 0.75, which is the minimum observed value of r
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Figure 9: Wave equation. A randomly selected OOD sample (g dist.). Absolute L; error is 0.227.
The estimated log likelihood is 16.12. Parameters for this samples are X' = 31 and r = —0.85. A
posteriori error estimate (defined in[B.4) is 0.21 + 0.02.
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Figure 10: Wave equation. Likelihood—error plane illustrating in-distribution (ID) and out-of-
distribution (OOD) classification boundaries, with quadrants indicating true/false positives and neg-
atives.

in the training set. Critical samples tend to have intermediate values of r, whereas OOD samples are
characterized by both low r values and typically high K values—regions where the model exhibits
the poorest generalization.

B.1.2 SENSITIVITY TO THE DIFFUSION MODEL

We now examine the extent to which the diffusion model needs to be trained to be effective for OOD
detection. Specifically, we train the model for 500 epochs, corresponding to approximately 8000
gradient steps. The estimated likelihoods shown in Figure[T0|of the main text are obtained from the
diffusion model trained for 500 epochs. We now repeat the likelihood estimation using intermediate
checkpoints of the model trained for fewer epochs. Figure [[3]illustrates the progression of the L
error versus the estimated joint log-likelihood log pg(, Yprea) throughout training. As the model is
trained for more epochs, the estimated likelihood becomes increasingly aligned with the prediction
error, with the final model (trained for 500 epochs) showing a pronounced correlation between the
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Figure 11: Wave equation. 2d histograms of the values of the parameter K and the decay r for ID
samples (left), critical samples (middle) and OOD samples (right). The rectangular region in red
represents parameters of the training distribution.
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Figure 12: Wave equation. Left: Histogram of estimated likelihoods of the samples drawn from
p distribution (training) and ¢ distribution (testing). Right: Histogram of relative L, errors for the
same samples.

gttt 1 « 100 Epochs
: 1:}.‘_*‘.‘ : . « 200 Epochs
! "-"six‘ﬁ; « 250 Epochs
: MY . 300 Epochs
L _____ :_: 503 ; N « 500 Epochs
51071
g —)
5 .
- %
e
L3
B3 '.-)' *
[} K 2
. '. * N
5 < 10 15 20 25

loint Log Likelihood - /0 p(X, Vnrred)

Figure 13: Evolution of the joint log-likelihood log p(z, Yprea) Versus the L error across training
checkpoints of the diffusion model. Likelihoods are estimated using models trained for 100, 200,
250, 300, and 500 epochs. As training progresses, the joint likelihood estimates become more
informative for error detection, with the final model (500 epochs) exhibiting a clear correlation
between likelihood and prediction error.

We observe that the average estimated log-likelihood over both the training and testing distributions
increases steadily throughout training. Figure[I4]displays the evolution of the median estimated log-
likelihood on the training distribution (red curve) alongside the validation EMA loss (blue curve).
Initially, the median log-likelihood remains close to zero for the first 150 epochs. It then rises rapidly
over the subsequent 250 epochs, before gradually saturating toward the end of training, coinciding
with the plateauing of the validation loss.

In Figure [T5] the model evaluated at epoch 400 is shown on the left, and at epoch 500 on the
right. The two plots are nearly identical, indicating that the model’s explanation of the data remains
consistent across these checkpoints. This suggests that once the diffusion model is sufficiently
trained, it provides reliable performance for OOD detection.

B.1.3 CLASSIFICATION SENSITIVITY

In this section, we address the following question: What is the number of samples required to achieve
reliable classification performance?

Figure [T6)illustrates how the classification boundaries, based on the estimated joint log-likelihood,
evolve as the number of randomly selected training samples increases. With only 4 samples, the
classification is conservative, resulting in many test samples being labeled as OOD. As the number
of samples used for decision-making increases, the boundaries become progressively more stable
and reliable. At 128 samples, the classification boundaries are well-formed and yield satisfactory
performance.
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Figure 14: Evolution of the median estimated joint log-likelihood on the training distribution (red)
and the EMA validation loss (blue) over the course of training. The estimated log-likelihood remains
low during the initial phase, increases rapidly between epochs 150 and 400, and saturates as the
validation loss begins to plateau.
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Figure 15: Comparison of the L; error versus estimated joint log-likelihood log p(x, ypred) at train-
ing epochs 400 (left) and 500 (right). The similarity between the two plots indicates that the model’s
predictive behavior stabilizes, and the likelihood estimates remain consistent once sufficient training
is achieved.
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Figure 16: Effect of the number of training samples on the stability of classification boundaries
based on the estimated joint log-likelihood log p(«, Ypred ). Each subplot shows the L; error versus
estimated log-likelihood for different numbers of randomly selected training samples: 4, 8, 32, and
128.
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Figure 17: Comparison of L, errors and estimated joint log-likelihoods log p(x, yprea) for different
regression architectures (ViT, UNet, C-FNO) using the same diffusion model. While low likelihoods
consistently correspond to high-error samples within each model, the absolute likelihood values are
not comparable across models.

B.1.4 REGRESSION MODEL ARCHITECTURE ABLATION

In this section, we evaluate the proposed framework using various regression architectures. Instead
of the previously used CNO model, we now consider ViT |Dosovitskiy et al.| (2020), UNet Ron-
neberger et al.| (2015)), and C-FNO Molinaro et al.| (2025) architectures (see for architectural
details). The same diffusion model trained in earlier sections is employed throughout. Each regres-
sion model is trained on the same dataset used for the CNO experiments. Figure |17 presents the
L, errors plotted against the estimated joint log-likelihoods log pg (z, yprea) for the different models.
Similar to the CNO case, we observe that samples with low likelihoods correspond to high prediction
errors, whereas samples with high likelihoods exhibit lower errors across all tested architectures.

We find that this method cannot be reliably used for model selection. Although the estimated log-
likelihoods for the C-FNO model are higher than those for the ViT and UNet models, its correspond-
ing prediction errors are also higher. This indicates that only the relative likelihoods within a single
model are meaningful, while comparisons of estimated likelihoods across different models are not
easily interpretable.

B.1.5 DECISION BOUNDARIES ABLATION

We now analyze the dependency and stability of the accuracy, FPR, and FNR as the positions of the
likelihood certificate and error boundaries are varied (defined in[A.4). While the error boundary is
consistently defined using a percentile-based approach, for the likelihood certificate boundary we
compare the median-and-std method with an alternative percentile-based definition. Table [2] shows
the variation in accuracy, FPR, and FNR as the parameters for the error- and likelihood-boundary
estimations are adjusted. We find that accuracy remains relatively stable, even when Sggrg is as high
as 0.25. The primary change is in the balance between FPR and FNR. The best results are achieved
with az, = 1.5 and Sgrr € {0.01,0.05}. One should keep in mind that the error boundary can
also be specified manually. This section presents an ablation study on our approach to defining this
boundary.

B.1.6 COMPUTATIONAL COMPLEXITY OF THE JLBC FOR OOD DETECTION

As discussed in SMA.3] our certificate estimation procedure uses the RK38 solver. We use a single
integration step from £ = 0 to ¢ = 1. Because RK38 is a fourth-order Runge—Kutta method, this
requires only four internal substeps to solve the probability-flow ODE. The Skilling—Hutchinson
divergence is estimated using a random tensor of size 32. This choice was made in a largely
heuristic manner. To evaluate the impact of this choice, we perform an ablation study on the
random-tensor size. All inference experiments were conducted on a single RTX 4090 GPU. The
corresponding performance metrics and per-sample certificate computation times are reported in
Table[3]

The results indicate that the complete certification process requires only a fraction of a second per
sample. The metrics remain highly stable even when the random-tensor size is reduced to as few as 2,
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Berr  Pr ar Accuracy FPR  FNR

0.05 L5 0.855 0.040 0.105
0.01 - 1.5 0.861 0.026 0.113
0.25 - 1.5 0.813 0.133  0.054
0.05 - 1.0 0.827 0.019 0.154
0.01 - 1.0 0.821 0.012 0.117
0.25 - 1.0 0.819 0.095 0.086
0.05 - 20 0.865 0.069 0.066
0.01 - 20 0.877 0.054 0.069
0.25 - 20 0.777 0.186  0.037
005 005 - 0.857 0.061 0.082
005 001 - 0.851 0.106 0.043
005 025 - 0.770 0.010 0.220

Table 2: Wave equation. Performance metrics (accuracy, FPR, and FNR) for different configurations
of the error-boundary percentile Sgrgr and the likelihood-boundary parameters: either percentile-
based (51,) or median-and-standard-deviation-based (a;,) definitions.

in which case the per-sample inference time is approximately 0.02s. Importantly, the diffusion model
requires no retraining or finetuning at inference time, as the proposed method identifies ID/OOD
samples in a fully zero-shot manner.

JLBC Tensor size  Certificate time [s] AUROC ACC

32 0.211 0.936  0.855
8 0.062 0.936  0.859
2 0.020 0.937  0.857

Table 3: Computation time and performance of the JLBC certificate across different random-tensor
sizes.

B.1.7 COMPARISON WITH BAYESIAN APPROACHES

The OOD detection problem can be interpreted through the lens of epistemic uncertainty. High
epistemic uncertainty, reflecting the model’s lack of knowledge, typically indicates that an input
lies outside the training distribution. Estimating this uncertainty and using it as a scalar score
thus enables Bayesian-style models to act as OOD detectors. In this context, methods such as
MC-Dropout|Gal & Ghahramani|(2016) and Rate-In|[Zeevi et al.|(2025) employ dropout during both
training and inference, allowing for stochastic forward passes that approximate Bayesian inference
by randomly sampling subnetworks.

We evaluate our model on the Wave Equation experiment against MC-Dropout and Rate-In. MC-
Dropout estimates predictive uncertainty by performing multiple stochastic forward passes with
dropout activated during inference, effectively approximating a Bayesian ensemble. The Rate-In
method can be viewed as a more advanced variant of MC-Dropout, where the dropout rates used
during inference are adaptively tuned to preserve information flow. This adaptation increases in-
ference time compared to standard MC-Dropout, but yields notably higher accuracy and AUROC.
We also re-evaluate the JLBC model (marked with x in Table [) using a newly trained version
that includes dropout (p = 0.1). Overall, the diffusion-based approach remains dominant, achiev-
ing significantly higher performance while requiring only about 0.02,s per sample for certificate
computation, roughly five times faster than Rate-In despite its lower accuracy. Note that model ac-
curacies are computed using a fixed threshold corresponding to the mean plus/minus 1.5 standard
deviations of the score, while the AUROC metric remains threshold-independent. Figure [I8]shows
the histograms of error versus certificate values for JLBC, MC-Dropout, and Rate-In. Among the
three, JLBC provides the most pronounced separation between ID and OOD samples, with Rate-In
performing second best and MC-Dropout showing the weakest distinction in this setting.
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JLBC* Tensor size Certificate time [s] AUROC ACC

32 0.211 0.955 0.873

2 0.020 0.955 0.869
MC-Dropout Tensor size  Certificate time [s] AUROC ACC
32 0.028 0.526 0.407

2 0.002 0.642 0.676

Rate-In Tensor size Certificate time [s] AUROC ACC
128 0.240 0.809 0.742

32 0.150 0.816 0.762

2 0.120 0.714 0.693

Table 4: Comparison of diffusion-based certificates, MC-Dropout, and Rate-In approaches across
different random tensor sizes. JLBC employs random tensors for estimating the divergence term
in the probability-flow ODE, whereas the other two methods use them for Monte Carlo estimation.
The diffusion certificates achieve high accuracy and AUROC with minimal computation time, while
MC-Dropout and Rate-In provide weaker yet complementary uncertainty estimates, with Rate-In
offering moderate improvements over MC-Dropout at the cost of higher runtime. With sufficiently
large tensor sizes used during Rate-In inference, the performance eventually reaches a saturation
point.

(a) MC-Dropout (b) Rate-In (c) JLBC*

o - —

35

o 15 20 25 30
Rate-In Certificate

o5 10 15 20 25
MC-Dropout Certificate

Figure 18: Histogram of error versus certificate values across different methods. JLBC and Rate-
In are evaluated using 32 random samples, while MC-Dropout uses 2 samples (corresponding to
its best-performing configuration). JLBC exhibits the strongest separation between ID and OOD
samples, followed by Rate-In, whereas MC-Dropout performs the weakest under these settings.
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B.2 NAVIER-STOKES

Problem Setup. In this experiment, we study Navier-Stokes equations

ur+ (u-Viu+Vp=vAu, divu=0, (19)

in the torus D = T? with periodic boundary conditions and viscosity v = 4 x 10~%, only applied to
high-enough Fourier modes (those with amplitude > 12). The data is taken from the papers Raonic
et al.|(2023)) and [Herde et al.| (2024).

In this section, we validate our intuition on time-dependent 2D Navier-Stokes equation problems.
To achieve this, we define six datasets of varying difficulty (mainly taken from |Herde et al.|(2024)),

namely:

1.

NS-Sines. We consider the following initial conditions,

p
Qg g . . . .
u(z,y) = ”z_:l m sin(2miz + B; ;) sin(2mjy + v5,5)
7= (20)
p
Q5 . .
uy(z,y) = i]Z::1 m cos(2miz + f; ;) cos(2mjy + i ;)

where the random variables are chosen as v; j ~ U[_1 1), Bi.j ~ Ujp, 2], and 7v; j ~ Ujo 2)-
The number of modes p is chosen to be p = 10, while the spectral decay is ¢ = 1/2.

. NS-Sines Moderate. The initial conditions have the same form as in 20] but with the

spectral decay ¢ = 1. The higher order modes are dampened to a greater extent, making
the solution less chaotic.

. NS-Gauss. Given a two-dimensional velocity field u = (ug,u,), its vorticity is given by

the scalar w = curl v = Oyuy — Oyu,. We specify the initial conditions in terms of the
vorticity, given by,

wo(z,y) :Z&exp <— (x—xi)2+(y—yi)2> 21

2
— 0i 20;

where we chose p = 100 Gaussians with «; ~ U[_1 1}, 0 ~ U[.01,0.1]> Ti ~ Uo,1], and
Yi ~ U[o,l]-

. NS-Shear Layer. We take as initial conditions the shear layer,

tanh 27Ty;2'25 fory + o5(x) <

UO(‘rv y) =
tanh 2#% otherwise (22)
’UO((E7 y) =0
where o5 : [0,1] — R is a perturbation of the initial data given by
p
os(x) =E+0 Z ag sin(2rkx — By). (23)
k=1

The parameters are chosen to be p ~ Uyz s .12} ar ~ U 1), Bk ~ Ujo,2x), 0 = 0.025,
p~ U[o.o&o.w], and § ~ U[—0.0625,0.0625]~

. NS-Brownian. We generate Brownian Bridges directly in Fourier space with the following

method: 1

W(zx) = Z — Z a,(fmnz)scm(x)scn(x)sw(x) (24)

ko< K3 mon.eefo,1}
where
sin(z) fori=0
i) = . 25
sei(x) {cos(x) fori =1 25)

and the a;mne) ~ U[_1,1]- These Brownian Bridges are propagated through the discretized
Navier-Stokes system from time ¢ = —0.5tot = 0.
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- - LBC DPath SFNS SBDDM MSSM | Joint LBC
NS-MIX ACC | 0.404 0487 0.486 0.487 0.484 0.947
p(X) FPR | 0.187 0345 0.339 0.345 0.343 0.009
FDR | 0.518 0.994 0.976 0.994 0.988 0.024

Table 5: Approximation of p(z) used for OOD detection for NS-MIX fails completely for diffusion-
based baselines. We here include our proposed Joint LBC (JLBC) based on estimating p(«, Ypred) a5
a reference for comparison.

6. NS-PwC. The initial vorticity is assumed to be constant along a uniform (square) partition
of the underlying domain and is given by,

wo(z,y) = cijin [w_1, 2] X [y;-1, ;] (26)

forx; = y; = % fori =0,1,2,...,p, and ¢; ; ~ U[_1,1). The number of squares in each
direction was chosen to be p = 10.

Each dataset consists trajectories that are made of 11 solution snapshots (an input + 10 solution
snapshots). Note that in |Herde et al.| (2024), the original trajectories have a length of 21, but we
subsampled them to a length of 11 by selecting every other snapshot in time. For both the regression
and diffusion tasks, we employ an all2all training strategy, as recommended in the original work.

For the NS-MIX dataset, training is conducted on a combination of:

¢ NS-Sines
¢ NS-Gauss
* NS-Shear Layer

The model is trained on full trajectories, with 18K trajectories in total, yielding nearly 3M I/O pairs.

For the NS-PwC dataset, training uses 5K trajectories of length 8 (the first 8 snapshots). Figure
shows the L' error vs the likelihood certificate for two experimental settings. Note that the
decision boundaries for the NS-MIX dataset are derived only from the NS-Gauss and NS-Shear
Layer datasets. Although the model was trained on the NS-Sines distribution as well, its errors there
remain very large. This is because NS-Sines requires substantially more training trajectories than
18k to achieve (highly) accurate predictions.

In both NS-MIX and NS-PwC, the models are evaluated across all six distributions described above,
with the final evaluation performed on the 8th solution snapshot.

In the NS-MIX experiment, we present randomly selected samples from all test distributions, in-
cluding the inputs, ground truth solutions, predictions, and corresponding absolute errors. Notably,
while the predictions for NS-Sines and NS-Sines Moderate may not appear highly inaccurate at first
glance, the diffusion-based certificate successfully identified them as OOD, since their errors are
significantly larger compared to other distributions. This is also evident in the absolute error plots,
where large values occur only for NS-Sines and NS-Sines Moderate. For details, see Figure

In the NS-PwC experiment, we additionally display randomly selected samples from all test dis-
tributions (see [24). While the solutions from the NS-PwC and NS-Brownian distributions are well
approximated, the trained model fails to generalize to the other four distributions, whose samples
are classified as OOD.

B.2.1 INSUFFICIENCY OF p(z) AS CERTIFICATE

In the Table 5] we show the accuracy rates and other metrics for baselines (defined in[C) on the NS-
MIX problem, based on estimating the input distribution p(z) alone. We observe that all certificates
derived from such a task-agnostic approach completely fail on this dataset. This result highlights
the necessity of a joint-distribution-based approach to obtain reliable certificates.
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Figure 20: Ablation Study for the certificate. Training distribution is NS-MIX.

B.2.2 ABLATION STUDY ABOUT THE EVALUATION OF THE LIKELIHOOD

If the models are evaluated autoregressively (AR), our certificate for the time-dependent problems
is evaluated as

s(z) = 0.5 p(x,yprr) + 0.5 p(z,yar),

where y4 g is the autoregressive prediction, while yprg is the prediction obtained by directly ap-
proximating the solution at the test time 7. We do not use only the p(z,y4r), as the model is not
trained to make predictions in autoregressive manner. The model is trained to directly predict the
solution, so yprg is the real indicator of how well and accurate our model performs. In the paper
Herde et al.| (2024), the authors noted that AR evaluation is sometimes beneficial for the model
performance, but it is unclear when this strategy leads to better performance. For NS-MIX and NS-
PwC, we employ uniform AR rollouts, using 7 AR steps, with the final evaluation corresponding to
the 8th solution snapshot.

Let us now test sar(z) = p(x,yar) as our certificate. For sufficiently complex training distribu-
tions, such as NS-MIX, s or(x) is good certificate, as seen in Figure

However, s ar(x) is not always the best possible indicator. Take for example NS-Sines Moderate
training distribution. We trained a regression and a diffusion models on 4.5K trajectories of length
8. If sqyr(x) is used, some of the samples that have larger than 20% relative error are classified
as in-distribution. This may, or may not be a large error, depending on the use case. The mixed
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Figure 22: Ablation Study for the certificate. Training distribution is NS-Sines Moderate. Evaluation

with mixed certificate.

certificate is more conservative, as it punishes the model’s inability to directly predict the solution,
with one forward pass. In Figure we show the performance of the certificate ssg(x). In the
same figure, right, we show the error of the direct evaluation vs p(z, ypsr). We see that the model
is generally unable to accurately predict the solution with direct evaluation in case of NS-Gauss.
Thus, we cannot expect the performance of the AR evaluation to be accurate, either. The results of

the mixed certificate are shown in
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B.3 HUMIDITY FORECAST

In this experiment, we utilize MERRA-2 satellite data to forecast surface-level specific humidity
over various global regions, from January—April. Refer to Figure 26 for an illustration of the data
format. The objective is to predict specific humidity 12 hours into the future. We evaluate our
models on humidity prediction for the year 2023 using four distinct test datasets:

1. South America - Training region
2. Australia and Oceania region
3. African region

4. Asian region

Since humidity patterns vary significantly across continents, we anticipate poor performance in re-
gions that differ from the training domain. Figure[25]presents L, errors plotted against the estimated
log-likelihood p(z, ypred), where y,,-¢q denotes the 12-hour predicted humidity. We observe that the
diffusion model assigns high likelihoods, corresponding to low prediction errors, to samples from
South America. Samples from Australia receive slightly lower likelihoods and are mostly identified
as OOD. As anticipated, the African and Asian datasets fall entirely within the OOD region.

We observe that the predicted humidity fields appear overly smooth, lacking fine-scale structures.
This is expected, as capturing such small-scale features is challenging without providing additional
contextual information, such as boundary conditions, or auxiliary variables like wind speed, air tem-
perature, and pressure. In fact, our regression task is mathematically ill-posed, so perfect predictions
are not expected. Nonetheless, in Figure 23] (Right), we compare the error histogram of our model’s
12-hour humidity predictions with that of a persistence forecasting baseline, where the humidity is
assumed constant over time (i.e., the output is identical to the input). The comparison shows that
our model clearly outperforms the persistence baseline, as evidenced by its error distribution being
shifted to the left. Note that all the statistics are computed over normalized data.
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Figure 27: Fitted exponential curves of regression error as a function of the certificate (estimated
log-likelihood) for the Wave Equation, NS-MIX, and MERRAZ2 test cases. Shaded regions denote
the 75th-percentile deviation bands, within which the majority of test samples are contained.

B.4 A POSTERIORI ERROR ESTIMATES

Once the regression and diffusion models are trained on the training distribution, and a set of test
samples is available, the prediction error can be analyzed as a function of the certificate (in our
case, the estimated log-likelihood). We illustrate this relation in three settings: Wave Equation, NS-
MIX, and MERRA?2. We assume the availability of approximately 64 samples (input-output pairs)
from the test distribution for constructing the error—certificate curve. For the Wave Equation, all
64 samples come from a single test distribution. In the NS-MIX case, with six test distributions,
we take 11 samples from each (66 in total). For MERRA2, which has four test distributions, we
consider 16 samples per distribution (64 in total).

We compute the L, errors of the regression model on the available test samples and estimate the
corresponding certificates. A parametric exponential function of the form
y(x) = a-exp(—bx) + ¢

is then fitted to the certificate—error pairs. Figure[27]presents the fitted curves for the Wave Equation,
NS-MIX, and MERRA?2 experiments. From each set of samples, we evaluate the absolute deviation
between the fitted curves and the true errors, and calculate the 75th percentile of these deviations.
Majority of the test samples are contained within the 75th-percentile bands.
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B.4.1 INFERENCE ON TRAINING DISTRIBUTION

In certain situations, the goal is to evaluate how well the model generalizes within its own training
distribution. The challenge in this setting is to identify the “most difficult solutions” that lie inside
the training distribution. In such cases, one can also perform a posteriori error estimates. We carry
out these estimates on the training distributions of the Wave Equation and NS-PwC experiments.
A set of 64 samples from the training distribution is used to determine both the likelihood and the
error bounds, as well as to fit the exponential relationship between the certificate and the error.
To establish the uncertainty bounds, we apply the 75th-percentile rule. We present the error fits
alongside the corresponding error—certificate histograms for the Wave-Eq and NS-PwC experiments
in Figure 28]

Ablation of threshold. In the preceding cases, the uncertainty bands were defined using the 75th
percentile of the absolute error deviations as the threshold. We now vary this threshold and illus-
trate how the uncertainty bounds evolve as the threshold value increases. Figure 29]illustrates this
evolution for the 65th, 75th, 85th, and 95th percentile bounds for the Wave-Eq experiment. We find
that at the 75th percentile, the vast majority of samples lie within the bounds while the associated
uncertainty remains moderate. At the 95th percentile, nearly all samples are contained within the
bounds, though at the cost of significantly larger uncertainty.
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Figure 28: Error fits and corresponding error—certificate histograms for the training distributions.

The top panels show results for the Wave Equation, while the bottom panels correspond to the NS-
PwC experiment.
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Certificate Certificate

(a) 65-percentile (b) 75-percentile (c) 85-percentile (d) 95-percentile
Figure 29: Evolution of the uncertainty bounds for thresholds set at the 65th, 75th, 85th, and 95th
percentiles. Lower thresholds (e.g., 75th) capture most samples with moderate uncertainty, while
higher thresholds (e.g., 95th) enclose nearly all samples but result in larger uncertainty.
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B.5 IMAGE CLASSIFICATION

Let = be an image with ¢ channels (where ¢ = 3 for RGB images and ¢ = 1 for grayscale images).
Let y be the label associated with that image. The goal of classification task is that a model ¥
predict the label y of the image x. In probabilistic terms, it is challenging to work with p(x, Yiryue)
and interpret p(x, ypreq) in a continuous sense, since y is a discrete label. Although the predicted
label is discrete, the model W, is trained using a softmax-based loss function, which assigns log-
probabilities to all possible labels and maximizes the log-probability corresponding to the true label
Y.

On top of the classifier, we train a diffusion model to predict the joint probability function p(x, y).
During training, we concatenate an additional channel containing the constant value y to the ¢ chan-
nels of the image x. However, during testing, if we use only the predicted label y,,,.cq as the value
for the concatenated channel in likelihood estimation, we are not fully leveraging the classifier’s
output, only the label corresponding to the highest log-probability. In other words, relying solely
on the predicted class does not capture the model’s confidence in its prediction. To address this, we
define the predicted label as a function of the full set of log-probabilities produced by the classifier
(the last layer before the softmax is applied). Let M be the number of classes and (l2, [, ..., I5r)
be the corresponding log-probabilities. Let m € {1,..., M} and let us define the probability p,, as
a softmax applied to the log-probabilities, that is,

o = exp(ly,/T)
Soaly exp(le/T)’

where T is the temperature parameter that we set to 7' = 1. Let s be the resolution of the image,

i.e. each channel of the image is in R*". Instead of assigning a constant value for each pixel of
the channel corresponding to label, we observe pixels as single realizations of independently and
identically distributed random variable that follow discrete distribution over the support {1, 2, ...,
M}, with associated probabilities [p1, po, .. .,pan]. In this way, predictions with low confidence
introduce variability into the label channel, effectively “corrupting” those samples. Consequently,
samples for which the classifier is confident remain mostly unaffected. By incorporating uncertain
label values, we effectively perturb the one-dimensional manifold on which the labels reside.

Note that the classifier can predict wrong label with high confidence, but our hope is in the following:

* This does not happen often. The classifier is usually uncertain about OOD samples.

* The diffusion model itself understands that some label is wrongly predicted (i.e. classifier
predicted a bird instead of a truck).

B.6 CIFARI10

In this experiment, we train both a classifier and a diffusion model using the CIFAR dataset, which
contains 10 distinct classes. As described in the main text, we designate the class “trucks” as the
out-of-distribution (OOD) class. In Figure [31] we show the predicted labels passed to the diffusion
model together with estimated log-likelihoods. Some of the labels are uncorrupted, while some are
very noisy. We observe the following:

* The classifier is rarely overconfident in the wrong label.

* Even when the classifier is overconfident in the wrong label (the truck in the first row,
for instance), the estimated likelihood is still much lower than the ones obtained when the
classifier is overconfident in the correct label.

B.7 MNIST
For the MNIST, we do the same experiment. The OOD class is the number 9. Note that the classi-

fication task is very easy, so almost all the ID samples are properly classified. Figure [33]shows the
predicted labels passed to the diffusion model together with estimated log-likelihoods for this task.
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Figure 31: CIFAR Dataset. Labels passed to the diffusion model
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Figure 33: MNIST Dataset. Up: Labels passed to the diffusion model. Down: Samples to be
classified.

39



Under review as a conference paper at ICLR 2026

B.7.1 ABLATION STUDIES

InRen et al.|(2019)), the authors investigated OOD detection using likelihood-based methods. They
found that non-semantic elements, such as background pixels in natural images, can significantly
affect likelihood estimates and, in some cases, lead to incorrect OOD decisions. For example, a
likelihood-based model trained on the CIFAR-10 dataset may assign higher likelihoods to samples
from the SVHN dataset, despite having never seen them during training.

In our setup, the first three channels represent the image, while the fourth channel encodes the
image label. Although the label is originally a discrete scalar, we embed it into a much higher-
dimensional space (specifically, a 322-dimensional space). Similar to background pixels in natural
images, this low-entropy, high-dimensional embedding can disproportionately influence likelihood
estimation. To mitigate this effect, we perturb the label channel, one of the motivations behind this
design choice. By introducing noise and incorporating information from the classifier’s output, we
effectively increase the entropy of the label channel, thereby reducing its dominance in the likelihood
estimation process.

Now, we use unperturbed labels for likelihood estimation by assigning the pixel values of the label
channel to the class with the highest predicted probability from the classifier. In the left panel of Fig-
ure we plot the classification accuracy of each label against the median estimated likelihood of
the corresponding samples. We observe no clear correlation between accuracy and likelihood. No-
tably, the most accurate class exhibits the lowest likelihood, which contrasts with the trend observed
when using noisy label channels. This suggests that the estimated likelihood is heavily influenced by
background pixels and the unperturbed label channel, rather than reflecting true semantic content.
To further support this hypothesis, we evaluate our models on the SVHN dataset, which contains
images of street view house numbers. Since the classifier has never been exposed to SVHN labels
during training, its predictions are incorrect for all SVHN samples. Nevertheless, we can still esti-
mate the joint likelihood p(z, Ypreq) using the diffusion model, where .4 denotes the unperturbed
predicted labels. In the right panel of Figure[34] we compare the histograms of estimated likelihoods
for the CIFAR-10 and SVHN datasets. Interestingly, the SVHN samples exhibit generally higher
likelihoods than those from CIFAR-10. This failure mode has also been documented in [Nalisnick
et al. (2019b).

We now evaluate our setup using noisy labels (NL abbreviation) for likelihood estimation (see [36]
for SVHN samples). In Figure [35a] we compare the histograms of estimated likelihoods for all
samples in the CIFAR-10 and SVHN test sets. Unlike the previous results with unperturbed labels,
the SVHN samples no longer exhibit higher likelihoods; however, the two distributions now overlap
substantially.

To improve OOD detection, we progressively refine the subset of CIFAR-10 samples. In Figure
[35b] we restrict the analysis to correctly classified CIFAR-10 samples (CC abbreviation). Figure
shows results for high-confidence samples, those for which the classifier assigns at least 90%
confidence to a single class (HC abbreviation). Finally, in Figure[35d, we focus on samples that are
both highly confident and correctly classified.

In these last two figures, the CIFAR-10 likelihood histogram shifts noticeably to the right, creating
a clearer separation from the SVHN distribution. This shift enables more robust OOD detection. By
selecting a subset of confidently and correctly classified CIFAR-10 samples and defining a threshold
around the median estimated likelihood (e.g., within one standard deviation), we can successfully
filter out a large portion of SVHN samples as OOD. This analysis further supports our assumption
that the classifier is rarely overconfident in incorrect labels, provided the true label belongs to the
classifier’s label space, and that the estimated likelihoods for incorrect labels are typically lower
than those for correct ones. Further separation between SVHN and CIFAR-10 likelihoods requires
reducing the influence of background pixels on the likelihood estimates, as demonstrated in Ren
et al. (2019). Mitigating the impact of non-semantic pixels is essential for effective OOD detection
in segmentation tasks.
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Figure 34: Left: Median estimated likelihood vs. classification accuracy for each CIFAR-10 class
using unperturbed labels. Right: Histogram of estimated likelihoods for CIFAR-10 and SVHN
samples; SVHN exhibits higher likelihoods despite being OOD.
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Figure 35: Histograms of estimated likelihoods for CIFAR-10 and SVHN test samples under dif-
ferent filtering strategies of CIFAR-10 dataset. (a) All test samples using noisy labels (NL). (b)
Only correctly classified (CC) CIFAR-10 samples. (c) Only high-confidence (HC) samples, where
the classifier assigns > 90% probability to a predicted label. (d) Samples that are both correctly
classified and high-confidence (CC + HC). As the selection becomes more refined, the CIFAR-10
likelihood distribution shifts to the right, improving separation from SVHN and enabling more ro-
bust OOD detection.
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Figure 36: SVHN Dataset. Up: Labels passed to the diffusion model. Down: Samples to be
classified.
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B.8 BRAIN TUMOR SEGMENTATION

This section contains additional results for the evaluation of our approach on binary segmentation
tasks. Since the segmentation is nothing but pixel-wise classification, our method follows a simi-
lar strategy to that used for classification tasks, with one key distinction: we explicitly reduce the
influence of non-semantic pixels by corrupting them with white noise during the training. We will
explain the method after we explain our datasets.

Our objective is to perform brain tumor segmentation on the BraTS2020 dataset. This dataset
contains 3D brain MRI volumes with a standardized shape of 240 x 240 x 155. The data is divided
into two categories:

* High-grade gliomas (HGG)
* Low-grade gliomas (LGG)

Each brain scan is accompanied by a multi-class segmentation mask with the following label assign-
ments:

* 0: background
¢ 1: necrotic core
e 2: edema

* 3: enhancing tumor

For our task, we convert these multi-class masks into binary masks. The transformed labels are
defined as:

* 0: non-tumor (background)

* 1: tumor (any of the original classes 1, 2, or 3)

We train our segmentation model using brain scans with HGG tumors. The dataset comprises 210
HGG brain volumes, from which we select 190 for training, 10 for validation, and 10 for testing.
To extract 2D slices, we sample 100 axial slices per brain along the z-axis, corresponding to slice
indices 30 through 130. Each slice is resized to a resolution of 1282. The pixel values of each
brain slice are normalized to [0, 1]. During training, we apply a range of augmentation techniques,
including horizontal and vertical flips, random rotations, and random shifts and scalings. The input
images are FLAIR MRI scans.

In parallel with the segmentation model, we also train a diffusion model on the same dataset, exclud-
ing rotation-based augmentations. The diffusion model is trained on the joint distribution p(z, y),
whre x represents the 2d MRI scan of the brain, while y is the binary segnmentation mask. Our
evaluation is conducted on 10 held-out HGG brains and an additional set of 10 LGG brains. For the
HGG cases, we evaluate the model not only on FLAIR MRI scans, which were used during training,
but also on T,-weighted scans, representing a different MRI modality. For the LGG cases, perfor-
mance is assessed on both axial (z-axis) slices, aligned with the training direction, and x-axis slices,
offering a side view of the brain and allowing us to test the model’s generalization to previously
unseen anatomical orientations. Note that we test our approach on the brain slices with at least 0.3%
tumor content present (i.e. at least 50 pixels). For the segmentation model backbone, we use a CNO
architecture Raonic et al.|(2023)) with silu activation function.

To reduce the impact of non-semantic regions, namely, background pixels in the brain slices and
non-tumor areas in the segmentation masks, we apply masking during diffusion model training.
Specifically, these pixels are replaced with low-variance Gaussian noise sampled from N(0, 0.025).
During inference, no perturbation is applied. We also present an ablation study in which the diffusion
model is trained on unperturbed data for comparison.

Figure |37 shows the relationship between the relative L; error on the segmentation masks and the
estimated log-likelihood of p(z, yprea) for the four test scenarios described earlier. We define the
OOD threshold as the median of the estimated log-likelihoods computed over the HGG ID test set.
Most cases with low segmentation errors are correctly classified as ID. Notably, the vast majority
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Figure 37: Scatter plots showing the relationship between relative L; error and estimated log-
likelihood for test samples across different brain MRI datasets. (a) HGG dataset representing in-
distribution (ID) samples, (b) LGG dataset, (c) HGG samples from a different MRI modality (75
MRI), and (d) LGG samples plotted along the x-axis. The plots illustrate how low likelihood values
generally correspond to higher errors and out-of-distribution (OOD) samples, while higher likeli-
hoods align with lower errors typical of ID data.
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Figure 38: Histograms illustrating the relationship between segmentation quality and model likeli-
hood across various test cases. (Left) Joint distribution of the relative L; segmentation error and the
estimated log-likelihood log p(, Yprea). (Middle) Distribution of log-likelihoods across test sam-
ples. (Right) Distribution of segmentation errors across the same groups. These plots demonstrate
that low-likelihood samples often correspond to poor segmentation quality and can be effectively
identified as OOD, including samples from a different MRI modality (e.g., 15).

of cases where the segmentation model either predicts an entirely empty tumor mask or produces a
mask that has no overlap with the ground truth (i.e., relative L, error > 1.0) are correctly identified
as OOD. Furthermore, it is crucial to highlight that our approach effectively identifies OOD samples
originating from a different MRI modality, namely 75 MRI scans (refer to the third subfigure in
Figure[37).

We now combine the test samples from all datasets. In Figure [38] the first sub-figure displays a 2d
histogram of relative L error vs. estimated log-likelihood. We first note that the region of highest
density corresponds to low likelihood values and errors close to 1.0, which are classified as OOD.
Additionally, many low-error points lie near the classification threshold, but are classified as ID. The
second sub-figure presents the histogram of estimated log-likelihoods, which is noticeably skewed to
the right, favoring higher likelihood values. In the final sub-figure, we show histograms of errors for
samples classified as ID (in blue) and OOD (in red). The ID histogram predominantly contains low-
error samples, whereas the OOD histogram includes some low-error samples but mostly consists of
high-error ones. Notably, the OOD error histogram has a prominent peak around error 1.0, indicating
that most completely incorrect predictions are classified as OOD.

B.8.1 ABLATION STUDY - NOISE INJECTION

We now retrain the diffusion model without adding white noise to the non-semantic pixels during
training. In the left panel of Figure [42] we plot the relative L error of the predicted segmentation
masks against the estimated log-likelihood log p(&, Yprea). The results show that many of the high-
likelihood samples correspond to predictions with large errors (i.e., relative error > 1.0). This
indicates that the highest likelihood predictions often correspond to cases where the model fails
to detect any tumor, despite its presence in the ground truth. Since the majority of pixels in the
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Figure 39: An example of an HGG brain samples (first row), ground truth segmentation masks
(second row) and predicted segmentation masks (third row).
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Figure 40: An example of an LGGx brain samples (first row), ground truth segmentation masks
(second row) and predicted segmentation masks (thrid row).

44



Under review as a conference paper at ICLR 2026

E--- n

Figure 41: An example of an HGG-T2 brain samples (first row), ground truth segmentation masks
(second row) and predicted segmentation masks (thrid row).

12 —
e HGG - Nor:jnoisy 5] ID
== = HGG - median ne . ———
101 e e see 00D
° L]

5 | e s 41
2 08 C .
LE - Ir ~ Y 2 >
~ P |'c ] 33
@ 0.6 . » e
> . L4 L] [ [
% K oe '. K !c. ° ° a
g 0.4 9:'-‘: : ® o."e.i.. .':qr . : ’]

- ® ] 'Of .0. : s

o8 /4 [y 5 .\3 % e®
“ L]
0.2 J _t.!b g’f.m': PO PR !
., SRR
23 24 25 2 27 28 0 0.2 0.4 0.6 0.8 1.0
Jolnt Log Likelihood - log p(X, Ypred) Relative L; Error

Figure 42: Ablation study: diffusion model trained without noise injection into non-semantic pixels.
(Left) Relative L; error of the predicted segmentation masks versus the estimated log-likelihood
log p(2, Yprea). High-likelihood samples frequently correspond to large segmentation errors, often
representing cases where the model predicts no tumor despite its presence. (Right) Histogram of
segmentation errors for ID and OOD samples, where ID is defined by likelihoods above the median.
Unlike the noise-injected setting, ID samples now span both low and high error regions, while OOD
samples tend to have low errors—highlighting the failure of the method without noise injection.

segmentation masks represent non-tumor regions, and no noise was applied during training, the
model tends to assign higher likelihood to completely non-semantic (no-tumor) predictions.

The right panel of Figure 42| presents the error histograms for ID and OOD samples, where ID
samples are defined as those with likelihoods above the median across all predictions. Unlike the
behavior observed when noise was injected during training, we now see that ID samples span both
low and high error values, while OOD samples predominantly correspond to low-error cases. This
reversal indicates that, without noise injection, the model fails to reliably associate high likelihoods
with accurate predictions—suggesting that noise injection during training is crucial for effective
OOD detection.
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Scantype pPgrr oL | Accuracy FPR  FNR ARCB
HGG 0.675 0.003 0.322
LGG 01 095 0.733 0.056 0.211 3
HGG L2 ’ ) 0.720 0.143 0.137
LGGx 0.844 0.106  0.005
average 0.743 0.077 0.180 0.743
HGG 0.530 0.002  0.468
LGG 01 0.00 0.677 0.027 0.296 3
HGG L2 ’ ’ 0.759 0.079 0.162
LGGx 0.670 0.041 0.289
average 0.659 0.037 0.304 0.827
HGG 0.787 0.028 0.185
LGG 01 0.50 0.783 0.080 0.137 3
HGG L2 ) ) 0.704 0.208 0.088
LGGx 0.816 0.142  0.042
average 0.772 0.114 0.114 0.611

Table 6: Performance of the segmentation experiments for different values of oy, with Sgrg fixed
at 0.1. Results are reported for different scan types (HGG, LGG, HGG L2, and LGGx) in terms of
accuracy, false positive rate (FPR), false negative rate (FNR), and accuracy on critical brain cases
(ARCB). Averages across scan types are also provided.

B.8.2 CLASSIFICATION SENSITIVITY

For the segmentation experiments, the accuracy is more sensitive to the choice of boundary param-
eters. In brain segmentation, particular attention must be paid to highly problematic cases, such
as:

* No cancer pixels are detected despite their presence.
* Cancer pixels are detected in a cancer-free brain slice.

» Cancer pixels are present but completely missed, with other pixels incorrectly detected
instead.

These situations correspond to relative L; errors of > 1.0. A crucial capability of the OOD detector
is to classify such cases as OOD. For this reason, in the segmentation task we introduce an additional
metric, ARCB (accuracy rate — critical brains), which measures accuracy rate specifically on these
critical cases.

We observed that the values of Sgrr (defined in in the range (0.1, 0.25) yield the most stable
performance. For all subsequent evaluations, we fix Sgrr = 0.1. Note that the horizontal (error)
boundary could also be defined entirely manually. We then vary the parameter oy, and report the
corresponding performance of our method in Table[§] We observe that increasing oy, leads to higher
overall accuracy, but also results in a higher FPR and a lower ARCB. This indicates a clear trade-off
between maximizing accuracy and maintaining a high ARCB with a low FPR. The most balanced
performance is achieved at a;, = 0.25.

Figure [43[shows the brain segmentation results for the HGG L2 case, where each plot presents the
corresponding likelihood and error decision boundaries, illustrating how the choice of o7, influences
the separation between ID and OOD.
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(a) HGG L2, ar, = 0.0 (b) HGG L2, ar, = 0.25 (c) HGG L2, ar, = 0.5
Figure 43: Brain segmentation results for the HGG L2 case. Each plot includes the corresponding
likelihood and error decision boundaries, illustrating how the choice of o, affects the separation of
ID and OOD.
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C DIFFUSION-BASED CERTIFICATES

Let us observe the probability flow ODE of the form

d 1
i o7s(Ye;t), 27)

dt 2
where s(Y;t) &~ V, log p:(x) is the score function learned during training. As noted in the section
one estimate the true log-likelihood log p(x) of a data point x, by numerically solving Eqn.
backwards in (diffusion) time. We call this approach Joint Likelihood Based Certificate (or JLBC).
We train a score-based diffusion model to estimate V log p;(x), where z is the joint distribution
(z0,¥(x0)), where W is the operator of interest.

Once the score function has been estimated, additional probability-flow ODE-based certificates can
be constructed. Importantly, all such certificates originate from the same diffusion model trained
on the joint distribution of inputs and outputs. Unlike the classification baseline, diffusion-based
methods require no extra samples for OOD detection. Let us define the rescaled score function as

e(Yi;t) = —oy - s(Yist).

One may define a unified, score-based certificate as

S
> e(Yist)
t=1

Here, t = 1,...,5 denotes the discrete time steps used in the numerical approximation of the
solution of the probability flow ODE (RK steps), and «, 3, € {0, 1}. The partial derivatives with
respect to time (second term in the equation) are approximated with a finite difference scheme.
When @ = v = 0 and 8 = 1, the certificate reduces to the curvature-based quantity proposed in
Heng et al.|(2024b) for image classification (referred to as DiffPath). Our method differs in that it is
trained on the joint distribution, and we therefore refer to it as JDPath. When o« = = 1 and v = 0,
the certificate incorporates contributions both from the curvature of the score function and from the
score function itself. This approach was proposed for medical image classification in |Abdi et al.
(2025b)) (termed SBDDM). In our joint-distribution, score-based settings, we denote this variant as
JSBDDM. Finally, when @ = 1 and 8 = v = 0, only the contribution from the sum of the score
functions remains. We refer to this approach as the Joint Score Function Norm Score (JSFNS). For
v = 1,a = f = 0, a variant of the certificate introduced in [Mahmood et al.| (2020) is referred
to in our framework as JMSSM. As noted above, we unified different certificates into one single
expression, and made them fully operational in our joint-distribution, score-based diffusion settings.

p

+

S

Je(Yy;t)
2o

t=1

P S
a(Y)=a +9> e )P
t=1

For M testing sample used to define the OOD boundary, we evaluate the different certificates. Then,
we compute the median, m, together with the standard deviation, o. The OOD boundary is defined
as

l=m+c-o,

where c is a tunable parameter, fixed to ¢ = 1.5 in all our regression experiments and ¢ = —0.5
in the segmentation experiment. Note that the definition of / involves a plus sign, in contrast to the
likelihood-based approach, since larger errors correspond to larger certificate values (in the regres-
sion cases).
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D MODELS AND ARCHITECTURES

D.1 CLASSIFICATION BASELINE

We compare our approach against a classification baseline that we construct. Specifically, after
training a task-specific model, we draw M samples from the test distribution. Using the horizon-
tal (error) boundary e;, we assign labels to these M samples: ID (label 0) or OOD (label 1). A
classification model is then trained on this labeled set, with 0.2 - M samples reserved for valida-
tion, and 0.8 - M for training. Once trained, this model is used to predict the ID/OOD classes of
the remaining test samples. Note that the classification training was performed on the (, Yprea)
samples.

In each setting, the classification baseline is trained on 112 test samples (90 training and 22 vali-
dation samples) . For experiments involving multiple test distributions, we sample an equal number
of trajectories from each distribution to construct the baseline’s training set. If the testing distribu-
tion contains K datasets, we use samples from K /2 of them to train the baselines, ensuring a fairer
comparison with our method. The M samples used for training are excluded from inference. It
is important to note that this comparison is inherently unfair, since our method is able to identify
ID/OOD samples in a zero-shot manner. Moreover, the baseline relies on access to }/ ground-
truth solutions for the test samples, precisely the requirement we aim to eliminate. We call this
classification-based approach OODC.

D.2 TASK-SPECIFIC MODELS

For all our tasks, we employed the CNO [Raonic et al.| (2023)) architecture with silu activations. In
all the regression tasks, the model is augmented by transformer blocks at selected layers. We refer
to this modified design as the Operator-UViT architecture. We used architecture of different sizes,
depending on the problem. We report the architectural details and the training setups for all the
problems in Table[7]

Setting

Wave Eq.
(CNO-Very-Small)

NS-PwC
(CNO-Small)

MERRA2
(CNO-Small)

NS-MIX
(CNO-Base)

Brain-Segm.
(CNO-Small-NoAtt)

MNIST
(CNO-Small-NoAtt2)

CIFARIO
(CNO-Small-NoAtt2)

Architecture

Lifting dimension

# Up/Down layers
Residual blocks (bottleneck)
Residual blocks (middle)
Attention layers used
Attention blocks/layer
Attention hidden dim
Attention MLP dim
Attention heads
Attention head dim
Parameters (M)

32
4
4
2
[TETET]
4

256
256
4
128
21.8

48
4
4
2
[TETET]
4

256
384
8
128
41.8

48

4

4

2
[TETET]

4

256
384
8
128
41.8

64
4
4
4
[TETET]
6

384
512
8
256
113.0

32

4

8

8
[EEEEF]

N

6

32

4

6

6
[EEEEF]

12

32
4
6

6
[EEEEF]

11.2

Training setup

Optimizer
Scheduler

Initial LR
Training samples
Epochs

Batch size

AdamW
Cosine
104
IK
100
64

AdamW
Cosine
10-3
~140K
100
64

AdamW
Cosine
5-1074
~63K
100
64

AdamW
Cosine
2.107*
~2.97TM
100
32

AdamW
StepLP
5-1074
~18K
100
32

Adam

5-107*
~2K
50
96

Adam
5-107%
~40K
50
64

Table 7: Architectures and training setups across different problems.

D.3 DIFFUSION MODELS

For the diffusion denoisers Dy, we adopted the UVIiT architecture from [Molinaro et al.| (2025)),
combined with exponential noise scheduling and a variance-exploding diffusion scheme. Further
details are provided in Section 6.3 of [Molinaro et al.[(2025).

For all non-classification tasks, we use 4-layer UVIiT architectures with channel counts adapted
to task difficulty. For classification tasks, where the input resolution is lower, we employ 1-layer
UViTs.

For the Wave Equation problems, we use the following architecture of the UViT:

¢ Number of layers: 4
¢ Channels per layer: [32, 64, 128, 256]
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¢ Number of attention blocks per layer 4
¢ Attention hidden dimension: 128

¢ Attention Heads: 4

* Attention Head dimension: 128

* Trainable parameters: 22.2M

For the MERRA?2, NS-PwC and the segmentation problem, we use the following architecture of the
UVIiT:

* Number of layers: 4

¢ Channels per layer: [48, 96, 192, 384]

* Number of attention blocks per layer 6

* Attention hidden dimension: 256

* Attention MLP dimension: 128

» Attention Heads: 8

* Attention Head dimension: 128

e Trainable parameters: 69.3M

For the classification problems, we use the following architecture of the UViT:

* Number of layers: 1

* Channels per layer: [256]

* Number of attention blocks per layer 4
* Attention hidden dimension: 512

¢ Attention Heads: 4

* Attention Head dimension: 256

* Trainable parameters: 34.0M

D.4 OTHER REGRESSION MODELS (WAVE EQ.)
The architecture of the UNet model used in the ablation study is:

* Number of layers: 4

¢ Channels in the layers: [60, 120, 240, 480]
* Number of ResNets in the bottleneck: 2

* Trainable parameters: 19.2M

The architecture of the ViT model used in the ablation study [B.T.4]is:

* Number of attention blocks 6

¢ Attention hidden dimension: 256
¢ Attention MLP dimension: 512

* Attention Heads: 6

¢ Attention Head dimension: 64

* Trainable parameters: 9.7M

The architecture of the C-FNO model used in the ablation study [B.1.4]is:

* Number of Fourier Layers 4

* Number of Fourier Modes: 16
* Latent Dimension: 96

* Conv. kernels per layer: [3, 5]
* Trainable parameters: 19.0M
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