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ABSTRACT

Data contamination, i.e., the presence of test data from downstream tasks in the
training data of large language models (LLMs), is a potential major issue in mea-
suring LLMs’ real effectiveness on other tasks. We propose a straightforward yet
effective method for identifying data contamination within LLMs. At its core,
our approach starts by identifying potential contamination at the instance level;
using this information, our approach then assesses wider contamination at the
partition level. To estimate contamination of individual instances, we employ
“guided instruction:” a prompt consisting of the dataset name, partition type, and
the random-length initial segment of a reference instance, asking the LLM to com-
plete it. An instance is flagged as contaminated if the LLM’s output either exactly
or nearly matches the latter segment of the reference. To understand if an entire
partition is contaminated, we propose two ideas. The first idea marks a dataset par-
tition as contaminated if the average overlap score with the reference instances (as
measured by ROUGE-L or BLEURT) is statistically significantly better with the
completions from guided instruction compared to a “general instruction” that does
not include the dataset and partition name. The second idea marks a dataset parti-
tion as contaminated if a classifier based on GPT-4 with few-shot in-context learn-
ing prompt marks multiple generated completions as exact/near-exact matches of
the corresponding reference instances. Our best method achieves an accuracy be-
tween 92% and 100% in detecting if an LLM is contaminated with seven datasets,
containing train and test/validation partitions, when contrasted with manual evalu-
ation by human experts. Further, our findings indicate that GPT-4 is contaminated
with AG News, WNLI, and XSum datasets.1

1 INTRODUCTION

The rise of Transformer networks (Vaswani et al. 2017) has spurred the development of large lan-
guage models (LLMs), marking a new epoch in Natural Language Processing (NLP). This shift
has led to an extensive range of LLMs (Touvron et al. 2023a;b; Biderman et al. 2023; Köpf et al.
2023; Chung et al. 2022; Penedo et al. 2023, inter-alia) which excel in various professional and
academic benchmarks (Bang et al. 2023; Bubeck et al. 2023). Their superior performance is pri-
marily attributed to the massive web data consumed by these billion/trillion-parameter LLMs during
training. However, the impressive LLM performance observed on many downstream tasks (e.g.,
summarization, natural language inference, text classification) may be inflated due to data contami-
nation, i.e., the presence of test data from these downstream tasks in the pre-training data of LLMs.
Guaranteeing lack of contamination is not trivial due to two potential sources of contamination:
directly from ingesting the official version of a dataset (easier to control), and indirectly through
duplicated data found somewhere on the web (nearly impossible to control).2 The potential of data
contamination is especially relevant for closed models such as the GPT-3/3.5 family (Brown et al.

∗Corresponding author.
1See the paper’s repo at https://github.com/shahriargolchin/time-travel-in-llms.
2While dataset licensing reduces indirect contamination to a certain extent, it does not eliminate it. For

example, websites such as the Hugging Face page for datasets (Wolf et al. 2020) currently host copies of the
OntoNotes (Weischedel et al. 2013) and CoNLL-2003 (Tjong Kim Sang & De Meulder 2003) datasets, despite
the fact that their respective licenses prohibit it.
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2020) and GPT-4 (OpenAI 2023; Bubeck et al. 2023), and, needless to say, raises questions on the
validity of evaluations and benchmarks conducted so far (Chang et al. 2023; Zhu et al. 2023; Bordt
& von Luxburg 2023; Ray 2023; Penedo et al. 2023).

To address this issue, we propose an inexpensive and robust approach to detect data contamination
for a given dataset partition automatically. Importantly, our approach functions under two realistic
assumptions: (a) we lack direct access to the pre-training data of the LLMs, and (b) we have limited
computational resources. Intuitively, our method starts by identifying potential contamination in
individual instances that are drawn from a small random sample of the corresponding dataset parti-
tion (we use samples of 10 instances in this work). Using the information obtained from individual
instances, our approach then assesses if an entire dataset partition is contaminated.

More formally, to identify contamination of individual instances, we employ a “guided instruction:”
a prompt that integrates distinct identifiers from the source dataset from which the reference instance
originates. Such information includes the dataset name, its partition (e.g., train, test, or validation),
and a randomly selected initial portion of the reference instance, complemented by its label when
relevant. With these signals in the prompt, we instruct the LLM to finish the given partial instance.
Using these generated individual completions, we propose two heuristics to estimate if an entire
dataset partition is contaminated. The first heuristic states that a partition is likely to be contaminated
if the average overlap score between generated completions and reference instances (as measured
by ROUGE-L (Lin 2004) and BLEURT (Sellam et al. 2020)) observed with the guided instruction
is statistically significantly larger than the one measured with a “general instruction,” which does
not include the dataset and partition name. The second heuristic labels a partition as contaminated
if a classifier based on GPT-4 with few-shot in-context learning (ICL; Brown et al. (2020)) marks
at least one generated completion as an exact match with the reference instance or at least two
generated completions as near-exact matches, where near-exact match indicates a completion that
exhibits considerable semantic and lexical alignment with the reference instance.

The primary contributions of this paper are as follows:

(1) We propose a novel data contamination detection method for LLMs that is inexpensive and ro-
bust. As indicated above, our method combines a “guided instruction” to complete partial instances
randomly drawn from the investigated dataset partition and several heuristics to generalize from
instance- to partition-level contamination decisions.

(2) We evaluate our proposed methods in 28 distinct scenarios. These scenarios are created by two
state-of-the-art LLMs: GPT-3.5 and GPT-4, and span seven datasets for classification, summariza-
tion, and natural language inference (NLI) tasks. The rationale behind the 28 scenarios is that for
each dataset, we separately explore potential data contamination in the train and test splits (or the
validation set, in cases where the labeled test set is not publicly available). Our evaluation indicates
that our best method is the one that uses guided instruction to complete partial instances, and the
one that evaluates these completions by the GPT-4 few-shot ICL classifier, achieving 92%–100%
accuracy compared to contamination labels assigned by human experts for dataset partitions.

(3) Our analysis indicates that GPT-4 showed evidence of contamination within the test partitions
of AG News (Zhang et al. 2015), WNLI (Wang et al. 2018), and XSum (Narayan et al. 2018)
datasets. These findings support the observation that data contamination is a serious issue that must
be considered in downstream evaluations when using LLMs.

2 RELATED WORK

Despite its importance, the topic of data contamination is not as thoroughly examined as its closely
related field, data memorization (Carlini et al. 2023; Kandpal et al. 2022; Carlini et al. 2021; Razeghi
et al. 2022). Among the limited investigations focusing specifically on data contamination in LLMs,
we find notable examples in Radford et al. (2019) and Brown et al. (2020) on GPT-2 and GPT-3,
respectively. They used high-order n-grams (e.g., 13-gram) to detect overlapping content between
the pre-training data and the evaluation dataset. Most research subsequent to Brown et al. (2020)
adopted similar methods for detecting data contamination (Touvron et al. 2023b; Du et al. 2022;
Chowdhery et al. 2022; Wei et al. 2021), and most recently, substring matching for GPT-4 (OpenAI
2023). However, the scope of existing research has been predominantly confined to model providers,
and it encounters specific limitations, particularly when applied to closed-source LLMs. These
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limitations primarily involve the need for access to pre-training data (Brown et al. 2020; Du et al.
2022; Wei et al. 2021), the requirement for substantial computational resources (Touvron et al.
2023b), or the need for extensive manual labor (Chowdhery et al. 2022). Our approach aims to
overcome these hurdles, enabling the assessment of data contamination in scenarios where the pre-
training data is either not openly accessible or when significant computational hardware is not
available despite having access to the pre-training data.

Our paper is closest in spirit to the work of Sainz et al. (2023), who also detected contamination
when access to the pre-training data is not available. This effort prompted ChatGPT, particularly
when GPT-3.5 is its base model, to generate the first instances from different dataset partitions. The
underlying assumption here is that if an LLM can reproduce dataset instances, it must have been
trained using that particular split. However, our research shows that this method can be unreliable
and subject to failure. Such failures can result either from the sparsity introduced by the request to
reproduce the first instances of a dataset split or from the inability to bypass the safety filters set by
the model provider when the model is asked to generate copyrighted content like dataset instances.
Throughout this paper, we refer to this approach as “ChatGPT-Cheat?,” taking inspiration from the
title of the referenced blog post.

3 APPROACH

In our approach, we operate under two core assumptions: (1) lacking direct access to the pre-training
data of the LLMs, and (2) having limited computational resources. Given these premises, our detec-
tion strategy for data contamination is anchored by two pivotal insights. First, we examine individual
instances within a dataset partition to spot contamination at the instance level. Second, given that
LLMs are pre-trained on large-scale data, detecting contaminated instances can act as a signal of
broader contamination. As a result, the associated partition can be labeled as being leaked to the
LLM’s pre-training data.

To discern contamination at the instance level, we focus on replicating instances by the LLM. In
this context, exact replicas of instances serve as red flags for contamination in the corresponding
partition. Note that, due to the inherent probabilistic behavior of LLMs, achieving perfect replicas
is not always possible even when contamination is certain. Nevertheless, instances that are closely
replicated have a twofold function: while they can offer insightful indications of potential contam-
ination, the fact that many datasets draw from web-based sources implies that partial replicas can
also arise by happenstance. This overlap introduces uncertainty in drawing a definitive conclusion
about the underlying partition. Thus, it is essential to check for consistent and significant signs of
contamination within the partition.

In the following sections, we first elaborate on our method and the necessary components to compel
LLM into reproducing dataset instances. We then delve into the procedure for evaluating the con-
tamination status of existing LLMs for an entire partition based on these instances. Furthermore,
leveraging the fine-tuning option offered by OpenAI for the GPT-3.5 base model, we undertake a
study in which we intentionally contaminate the GPT-3.5 base model with partitions that our method
detected as uncontaminated. Subsequently, we subject the contaminated GPT-3.5 to our technique,
further showcasing our method’s effectiveness in pinpointing data contamination within LLMs.

3.1 DETECTING INSTANCE-LEVEL CONTAMINATION

3.1.1 COMPONENTS TO MEASURE INSTANCE-LEVEL CONTAMINATION

To gauge instance-level contamination, we utilize two distinct methods: the first leverages BLEURT
and ROUGE-L scores, while the second draws on few-shot ICL prompting with GPT-4. Each
method employs particular components; however, the first two—guided instruction and the next
token prediction mechanism—are shared. The third component—general instruction—is exclusive
to the first method. For both methods, we begin our process by steering the LLM towards the (po-
tentially contaminated) dataset partition using guided instruction that integrates the dataset name,
partition of interest, and the random-length initial segment of a randomly selected instance and its
label if it is available. The LLM is then instructed to complete it. For the first method, we repeat
this step using general instruction that omits the dataset and partition name. An example of a guided
versus a general instruction is depicted in Figure 1. We detail all the required components below.
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Instruction: You are provided with Sentence 1 from
the validation split of the WNLI dataset. Finish Sen-
tence 2 as appeared in the dataset. Sentence 2 must
exactly match the instance in the dataset.

Sentence 1: The dog chased the cat, which ran up a
tree. It waited at the top.

Label: 1 (entailment)

Sentence 2:

The cat waited at the top.

Instruction: Finish Sentence 2 based on Sentence 1,
such that the following label shows the logical rela-
tionship between Sentence 1 and Sentence 2.

Sentence 1: The dog chased the cat, which ran up a
tree. It waited at the top.

Label: 1 (entailment)

Sentence 2:

The cat was at the top of the tree after

being chased by the dog.

Figure 1: An example of a guided (left) and general (right) instruction employed for a paired-
instance dataset. In this example, using GPT-4, the guided instruction results in an exact match,
whereas the general instruction does not.

(1) Guided Instruction—A Means to Navigate the LLM’s Output. By employing instruction-
tuning on top of causal language modeling (CLM; Vaswani et al. (2017); Radford et al. (2018)),
LLMs can be guided by human directives (Wei et al. 2022; Sanh et al. 2022; Chung et al. 2022).
This serves as a tool for controlling the LLM’s output using natural language. Thus, we form guided
instruction such that it incorporates the dataset and split name in the input prompt, thereby directing
the LLM towards the underlying dataset split. A comprehensive list of all the instructions used in
this study for different tasks/datasets can be found in Table 5 in Appendix A.

(2) Next Token Prediction—A Means to Unravel Data History. Primarily, data contamination
occurs during the CLM pre-training phase since it constitutes the largest part of training in LLMs and
utilizes web data. Without instruction tuning, an LLM only attempts to complete an input prompt
based on data seen during the CLM pre-training phase (Ouyang et al. 2022). Notable models that
exhibit this behavior include GPT-2 and GPT-3. We, therefore, employ the next token prediction
mechanism to trace data history. In particular, we feed the model the variable-length initial segment
of a dataset instance, chosen randomly from a particular split, prompting it to finish the partial
instance. For labeled instances, we integrate the corresponding labels in the input prompt. This
reflects that if an instance was ingested during the LLM’s pre-training, its label was ingested too.3

For paired-instance datasets, we present the model with the initial sentence and its corresponding
label. In the case of single-instance datasets, instances with multiple sentences are arbitrarily cut at
the end of a complete sentence, whereas for instances containing a single (long) sentence, a random
sentence fragment is eliminated. Finally, the LLM is tasked with finishing the provided initial part.
Figure 1 shows this process for a paired-instance dataset.

Therefore, once a contaminated LLM is prompted with guided instruction, its output should mirror
the subsequent segment of the reference instance under the guidance of the dataset and split name.

(3) General Instruction—An Alternative Facet of Causal Language Modeling. We formulate
the general instruction to measure the impact of the guidance given in the guided instruction. This
general instruction only requests the completion of the partial instance without specifying the dataset
or its partition. As a result, when using this instruction, the generated sequence solely relies on the
CLM pre-training phase, akin to autoregressive models without instruction tuning. This enables us
to establish a baseline for generated random replicas and assess how much the guided instruction
influences the LLM-generated part of the input partial instance. We assess this influence in terms of
overlap, semantics, and structural similarity with the reference instance. This analysis is crucial as
even when the output of LLM does not perfectly match the reference instance, it still enables us to
detect potential signs of contamination.

3.1.2 MEASURING INSTANCE-LEVEL CONTAMINATION

We introduce two methods for measuring contamination at the instance level:

3Incorporating labels in the input prompt is essential to account for false positives when generating down-
stream completions. Illustrations of the impact of label integration on downstream completions are provided in
Table 6 in Appendix B.
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BLEURT & ROUGE-L: To quantify the overlap between the completions—produced under both
guided and general instructions—and reference instances, we employ two metrics: ROUGE-L (Lin
2004) and BLEURT (Sellam et al. 2020). While ROUGE-L assesses lexical similarity, BLEURT
gauges the semantic relevance and fluency of the resulting sequence with respect to the reference
instance. Instance-level contamination is detected if the average overlap scores from either metric,
when applied to completions from the guided instruction, exceed those from the general instruction.

GPT-4 Evaluation: While both BLEURT and ROUGE-L quantify the overlap between the gen-
erated and reference instances, they fall short of pinpointing near-exact matches. To bridge this
gap, we adopt few-shot ICL prompting (Brown et al. 2020) to dictate the detection of exact/near-
exact matches based on human judgments (see Section 4: Human Evaluation for our definition of
a near-exact match). Specifically, this method includes a few representative examples of exact and
near-exact matches—sourced from human evaluations—in the prompt, which are used to assess all
other generated completions. We chose GPT-4 for this task as it requires no specialized prompting
technique (Bubeck et al. 2023), enhancing the reliability of its results. A visual representation of the
few-shot ICL prompt used in our study can be seen in Figure 3 in Appendix C. Also, detailed ex-
amples, including their ROUGE-L and BLEURT scores, as well as both human and GPT-4 few-shot
ICL evaluations, are listed in Table 7 in Appendix D.

3.2 DETECTING PARTITION-LEVEL CONTAMINATION

To generalize from instance-level contamination to partition-level discrete decisions (i.e., the parti-
tion is/is not contaminated), we take advantage of two observations:

Idea 1: A dataset is likely to be contaminated if the average overlap score with the reference in-
stances (as measured by ROUGE-L and BLEURT) observed with completions from the guided in-
struction is significantly larger than the one measured with the completions from the general instruc-
tion. The motivation behind this idea is that since the only difference between the two instructions
is that the guided instruction contains the dataset and partition name as guidance, the improvement
can only be explained by contamination.

Idea 2: A dataset is likely to be contaminated if GPT-4 using few-shot ICL prompting detects at
least one exact match or at least two near-exact matches. The intuition behind this idea is that even
a small contaminated part of the sample of instances is likely indicative of a larger dataset partition
leak. While the presence of an exact match among replicas generated by LLM is a clear sign of
contamination, the approach to handling exact or near-exact matches—and deciding the number of
such matches that indicates broader contamination—can be tailored depending on specific research
objectives. In this paper, we intuitively establish the above-mentioned criterion to extrapolate from
the instance-level to the partition-level contamination. An empirical validation of our approach is
also provided in Section 3.3.

We propose two algorithms, each implementing one of these ideas respectively.

Algorithm 1: A dataset partition is labeled as contaminated if the average overlap score (as provided
by BLEURT and ROUGE-L) between the reference instances and generated texts with the guided
instruction on a sample of ten instances is statistically significantly better than those produced by
general instruction under a non-parametric bootstrap resampling test.4

The advantage of this algorithm is that it is non-parametric, i.e., we do not need to decide on an
arbitrary threshold on the ROUGE-L or BLEURT scores to indicate contamination. However, its
drawback is that even a significant increase in overlap may still come from generated instances that
a human would not consider an exact or near-exact match. Algorithm 2 addresses this limitation.

Algorithm 2: A dataset partition is labeled as contaminated if GPT-4 with few-shot ICL prompting
flags at least one generated completion as an exact match or a minimum of two completions as near-
exact matches within a sample of ten instances. All completions in this setting are generated solely
by guided instruction.

We evaluate both these algorithms in Section 5.

4Details of our bootstrap resampling method can be found in Appendix E.
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Instruction: You are provided with Sentence 1 from the train split of the RTE dataset. Finish Sentence 2 as ap-
peared in the dataset. Sentence 2 must exactly match the instance in the dataset.
Sentence 1: Twelve of Jupiter’s moons are relatively small and seem to have been more likely captured than to
have been formed in orbit around Jupiter.
Label: 0 (not entailment)
Sentence 2:
———————————————————————————————————————————————
GPT-3.5: The formation of Jupiter’s twelve relatively small moons is more likely

due to their capture rather than being formed in orbit around Jupiter.
———————————————————————————————————————————————
Contaminated GPT-3.5: Jupiter has twelve moons.

Figure 2: An example of an exact match generated by the GPT-3.5 contaminated with the train split
of the RTE dataset versus an inexact match generated by the GPT-3.5 base model, both under the
same guided instruction. This example is one of the training instances used during contamination.

Table 1: Results after introducing intentional
contamination to the GPT-3.5 base model us-
ing guided instruction. A tick (✓) indicates the
identification of at least one exact replica from
the training instances used for contamination
by our top-performing method (Alg. 2: GPT-4
ICL) and human evaluation.

Method AG News RTE XSum

Alg. 2: GPT-4 ICL ✓ ✓ ✓
Human Evaluation ✓ ✓ ✓

Table 2: Results of identifying contamination
of GSM8k dataset within GPT-4 when guided
instruction is used. A double tick (✓✓) sig-
nals the identification of two or more near-
exact replicas from the train split of this dataset
by our top-performing method (Alg. 2: GPT-4
ICL) and human evaluation.

Method GSM8k

Alg. 2: GPT-4 ICL ✓✓
Human Evaluation ✓✓

3.3 INSTANCE REPLICATION: A VALID APPROACH TO DETECT DATA CONTAMINATION

To validate our choice for the hyperparameters used in Algorithm 2, i.e., the number of exact/near-
exact matches to declare contamination, we performed a controlled study in which an LLM is con-
taminated on purpose with several datasets. To this end, we used the GPT-3.5 base model and a
subset of the train partition of the following datasets (one dataset from each task in question): AG
News, RTE, and XSum. Note that all these partitions were marked as uncontaminated for GPT-3.5
by the human evaluators (see Table 4 and Section 4: Human Evaluation). To mimic the LLM’s
pre-training on web data, we retained only minimal metadata about the datasets as they appear on
the web when scraped. In particular, we used: the dataset title, the partition name, and the entire
instance.5 Following training, we evaluate the generated completions by our best-performing tech-
nique (Algorithm 2: GPT-4 ICL) (see Table 3). Figure 2 visualizes the generated replicas before
and after contamination in one of our experiments when guided instruction is utilized.6 In addition,
Table 1 summarizes our findings from this study. The key conclusion of this experiment is that the
contaminated LLM generated at least one exact match in each setting. This underscores that the
replication of even one exact match stands as a robust and undeniable indicator of contamination.7

As a second experiment, we employed GPT-4 and the GSM8k dataset (Cobbe et al. 2021). This
choice was motivated by OpenAI’s technical report on GPT-4, which indicates contamination from
its train split (OpenAI 2023). Given that this dataset comprises mathematical problems, our ob-
jective is to replicate the questions in the dataset while withholding their corresponding answers.8
Table 2 reports our results from this experiment. Our results highlight that contamination is not
solely identified through exact matches; near-exact matches are also indicative. To account for the
probabilistic nature of LLMs, we set a threshold of two for the minimum number of near-exact
matches to indicate contamination. As shown, this is supported by the data.

5All data formats used for the contamination of GPT-3.5 are detailed in Table 10 in Appendix F.
6Further examples are provided in Table 11 in Appendix G.
7Details on the continued training of the GPT-3.5 base model are presented in Appendix F.
8An example of this replication process is provided in Table 11 in Appendix G.
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4 EXPERIMENTAL SETUP

Data: Our evaluation employs seven datasets derived from various tasks, namely classification,
summarization, and NLI. The datasets in question involve IMDB (Maas et al. 2011), AG News
(Zhang et al. 2015), Yelp Full Reviews (Zhang et al. 2015), SAMSum (Gliwa et al. 2019), XSum
(Narayan et al. 2018), WNLI (Wang et al. 2018), and RTE (Wang et al. 2019). In order to ensure
a comprehensive experimental setup, all our experiments are carried out on both the training and
test/validation splits of the aforesaid datasets. We make use of the publicly available divisions,
working with the training and test splits for each. However, for the last two datasets, only the
validation splits were publicly accessible with their labels. Considering our research’s emphasis on
pinpointing data contamination with minimal dataset instances, the resource constraints, and our
intention to facilitate the replication of this approach by other researchers, we randomly chose 10
instances from each split for our experiments.

Setting: We use snapshots of GPT-3.5 and GPT-4 from June 13, 2023—specifically
gpt-3.5-turbo-0613 and gpt-4-0613—both accessed via the OpenAI API, as our founda-
tion LLMs. To obtain deterministic results, we set the temperature to zero and capped the maximum
completion length at 500 tokens. Contrarily, our comparative method (ChatGPT-Cheat?) uses the
chat user interface (UI), which we also leveraged for conducting the experiment under this method.
Specifically, we used the UI versions of GPT-4 and GPT-3.5 that were released on July 20, 2023.

Human Evaluation: We undertake a human evaluation, led by two domain experts,9 to characterize
contamination by identifying both exact matches and near-exact matches of individual instances.
The term “exact matches” is self-explanatory; “near-exact matches” are completions by the LLM
that, while not identical, show considerable overlap and maintain significant semantic and structural
similarity to the reference instance. To generalize from individual instances to entire partitions,
the human annotators followed the rule described in Algorithm 2 that was validated empirically in
Section 3.3: a partition is flagged as contaminated if the instance-based evaluation identifies at least
one exact match or at least two near-exact matches.

Evaluation Metrics: In our analysis, the computation of the BLEURT score varies based on the
structure of the dataset/instance, as this metric hinges on the fluency and quality of the generated se-
quence. For single-instance datasets, where individual instances are randomly cut off mid-sentence
and then completed by the LLM, we join the model-produced continuation to the severed reference
instance and then calculate the BLEURT score. Conversely, for instances from paired-instance and
multi-sentence single-instance datasets, the BLEURT score is computed solely for the newly pro-
duced sequence. We highlight that our BLEURT score computations use the most recent checkpoint
provided, i.e., BLEURT-20 (Pu et al. 2021). On the other hand, regardless of the dataset/instance
type, the ROUGE-L score calculation exclusively pertains to the portions of the text finished by the
LLM. This is due to the score’s dependency on statistical attributes rather than semantic consistency.

Comparative Framework: We compare our proposed methods against the ChatGPT-Cheat?
method (Sainz et al. 2023). Unlike our method, which uses a binary scale to determine contamina-
tion, the comparison approach includes a “suspicious” category. This designation is invoked when
the LLM, upon being asked to generate the first instances of a dataset split, outputs characteristic
attributes such as data format, IDs, or other dataset-specific details instead of the actual instances. If
the model, on the other hand, fails to produce these characteristics, it is deemed uncontaminated.

5 RESULTS AND DISCUSSION

Table 3 lists the overall accuracy of our proposed methods in 28 distinct settings: two LLMs (GPT-
4 and GPT-3.5) × 14 dataset partitions coming from seven datasets. Table 4 provides a detailed
breakdown of each method per dataset partition and the respective LLM. We draw the following
observations from our experiments:

(1) Algorithm 1, which hinges on the difference in average overlap scores between outputs from
guided instruction and those from general instruction, performs well in the majority of settings. Its
best performance is a success rate of 13/14 when using GPT-4 as the underlying model and 9/14

9The two annotators had almost perfect inter-rater agreement across all settings. This is due to the fact that
a small subset of instances was used for contamination detection, and contamination is evident when it occurs.
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Table 3: Overall accuracy at detecting contamination across 14 partitions for GPT-4 and GPT-3.5.
The two LLMs are evaluated against human annotators. The “Success Rate” shows how often each
method matches human judgment, while the “Accuracy” gives the corresponding percentages.

GPT-4 GPT-3.5

Method Success Rate Accuracy Success Rate Accuracy

Strict Eval.: ChatGPT-Cheat? 0/14 0.00% 11/14 78.57%
Lenient Eval.: ChatGPT-Cheat? 9/14 64.29% 13/14 92.86%
Algorithm 1: BLEURT 11/14 78.57% 9/14 64.29%
Algorithm 1: ROUGE-L 13/14 92.86% 7/14 50.00%
Algorithm 2: GPT-4 ICL 14/14 100.00% 13/14 92.86%

when using GPT-3.5. We consider these results exciting given the algorithm’s simplicity. However,
Table 3 shows that: (a) its performance is not universally good—it performs at chance level when
using ROUGE-L on GPT-3.5 outputs (7/14), and (b) its success rate varies depending on the metric
in use (i.e., BLEURT or ROUGE-L).

(2) In contrast, Algorithm 2, which relies on GPT-4 evaluation using the few-shot ICL prompt, aligns
closely with human evaluations. Specifically, in experiments run on GPT-4 and GPT-3.5, its success
rates are 14/14 and 13/14, respectively. These accuracies are higher than any produced by Algorithm
1 and maintain consistency across all the settings with the two LLMs.

(3) Upon assessing the results of ChatGPT-Cheat? method, we discover that this method invariably
labels partitions as suspicious—likely due to the precaution against generating copyrighted content
which is activated by safety filters—for all scenarios involving GPT-4. Given this, we interpret the
outcomes of this method through two lenses: strict and lenient evaluation. In the strict evaluation,
we do not interpret the suspicious label as contaminated or uncontaminated. Under this assessment,
no partition is correctly classified according to human evaluation (0/14) in settings with GPT-4, and
11/14 in settings with GPT-3.5. In the lenient evaluation, we convert the suspicious label to either
contaminated or uncontaminated in a way that maximizes the performance of this method. In this
setting, the ChatGPT-Cheat? method correctly identifies 9/14 and 13/14 in settings with GPT-4 and
GPT-3.5, respectively. However, this lenient evaluation is unrealistic due to the overfitting in inter-
preting the suspicious label. These findings support our observation that identifying contamination
at the instance level, before extrapolating to the partition level, is a more resilient strategy.

(4) Last but not least, the human evaluation reveals that the train and test/validation splits of both the
AG News and WNLI datasets were included in GPT-4’s pre-training data. However, for IMDB and
RTE, only the training partitions were incorporated, while for XSum, only the test split was leaked.
For GPT-3.5, the only data exposure was the test partition of the XSum dataset. These findings
confirm that, despite their creators’ efforts, today’s LLMs have ingested NLP datasets. We hope that
this observation informs the design of better scientific experiments with LLMs in the NLP space.

6 CONCLUSION

We proposed a novel method to detect data contamination in LLMs, assuming no access to their
pre-training data. Our approach begins by pinpointing data contamination at the instance level. This
was achieved by prompting the LLM to produce the replica of the secondary segment of a dataset
instance given its random-length initial segment, dataset name, and partition type, a process we
called “guided instruction.” From here, we adopted a set of rules to generalize from instance-level
to broader partition-level contamination. This involved leveraging statistically significant differ-
ences from BLEURT and ROUGE-L scores between generated completions by guided and general
instructions, as well as evaluations from GPT-4 with few-shot in-context learning prompting.

Our evaluation spanned 28 different settings, including seven datasets along with their respective
train and test/validation partitions and two LLMs: GPT-4 and GPT-3.5. Our findings indicated that
while the replication technique via guided instruction is notably effective, the most accurate eval-
uation approach that was closely aligned with human judgments for detecting data contamination
was the few-shot in-context learning prompt with GPT-4, which integrates a few example instances
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Table 4: An assessment of our proposed methods in contrast to ChatGPT-Cheat? method. We
evaluate Algorithm 1 using BLEURT and ROUGE-L, as well as Algorithm 2 which relies on GPT-4
decisions via few-shot ICL prompting. The evaluations are performed on 10 instances randomly
drawn from each split of a particular dataset, with GPT-4 and GPT-3.5 serving as the LLMs that are
investigated. Partition-level contamination is represented in the following ways: (1) While asterisks
(*) indicate statistically significant differences between the completions produced by guided and
general instructions (measured by BLEURT and ROUGE-L), underlined numbers indicate settings
that align with human evaluations (Algorithm 1). (2) A single tick (✓) points to the presence of at
least one exact match, while a double tick (✓✓) signals the identification of two or more near-exact
matches (Algorithm 2). A cross sign (×) denotes that neither of the aforesaid conditions were met.
For the ChatGPT-Cheat? method, this cross sign indicates that the model’s output does not contain
any specific information about the first instances of the dataset partition upon the request to generate
them. For the same method, the question mark (?) highlights partitions that are deemed suspicious.

Model Method Split Instruct.
Datasets

IMDB AG News Yelp RTE WNLI SAMSum XSum

GPT-4

Alg. 1: BLEURT
Train

General 0.43 0.63 0.43 0.54 0.47 0.58 0.54
Guided 0.48 *0.70 0.41 *0.60 *0.62 0.58 0.60

Test/Valid
General 0.43 0.62 0.41 0.50 0.50 0.58 0.64
Guided 0.42 *0.72 0.38 *0.53 *0.65 0.59 0.67

Alg. 1: ROUGE-L
Train

General 0.14 0.17 0.15 0.41 0.26 0.13 0.18
Guided *0.24 *0.35 0.17 *0.51 *0.59 0.14 *0.38

Test/Valid
General 0.16 0.16 0.15 0.31 0.36 0.12 0.23
Guided 0.16 *0.37 0.16 0.34 *0.63 0.15 *0.38

Alg. 2: GPT-4 ICL
Train Guided ✓ ✓ × ✓✓ ✓ × ×
Test/Valid Guided × ✓✓ × × ✓ × ✓

ChatGPT-Cheat?
Train Guided ? ? ? ? ? ? ?
Test/Valid Guided ? ? ? ? ? ? ?

Human Evaluation
Train Guided ✓ ✓ × ✓✓ ✓ × ×
Test/Valid Guided × ✓✓ × × ✓ × ✓

GPT-3.5

Alg. 1: BLEURT
Train

General 0.45 0.58 0.45 0.50 0.49 0.59 0.54
Guided 0.39 *0.64 0.42 0.50 *0.56 0.58 0.56

Test/Valid
General 0.45 0.60 0.42 0.47 0.47 0.58 0.62
Guided 0.43 0.62 0.40 *0.53 *0.54 0.59 0.62

Alg. 1: ROUGE-L
Train

General 0.12 0.06 0.13 0.37 0.29 0.10 0.14
Guided 0.12 *0.16 *0.16 0.32 *0.43 0.11 0.22

Test/Valid
General 0.13 0.10 0.11 0.23 0.32 0.13 0.18
Guided 0.14 *0.20 *0.14 0.31 *0.42 0.17 0.23

Alg. 2: GPT-4 ICL
Train Guided × × × × × × ×
Test/Valid Guided × × × × × × ×

ChatGPT-Cheat?
Train Guided × × × × ? × ×
Test/Valid Guided × × × × ? × ×

Human Evaluation
Train Guided × × × × × × ×
Test/Valid Guided × × × × × × ✓✓

from human assessments in the input prompt. This method yielded a success rate in pinpointing data
contamination across 14/14 scenarios for GPT-4 and 13/14 for GPT-3.5.10

10Limitations. Data contamination can arise from different sources and manifest in various ways, e.g., direct
inclusion of dataset instances, metadata contamination, etc. Our best-performing method for detecting contam-
ination (guided instruction with GPT-4 ICL) does not distinguish between different types of contamination,
treating both exact and near-exact replicas of dataset instances as indicators of data contamination. Therefore,
we encourage future research that can detect contamination, pinpoint its sources, and identify its various forms.
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Appendices

A LIST OF ALL GUIDED AND GENERAL INSTRUCTIONS

Table 5 presents a thorough collection of all the guided and general instructions employed through-
out our study.

Table 5: A comprehensive list of all guided and general instructions used in our experiments.
Placeholders include: {split name} for the partition (or split) name; {dataset name} for
the dataset name; {first piece} for the first part of the dataset instance cut at the tail randomly
or the whole first sentence in NLI-based datasets; and {label} for the corresponding label of the
incomplete input instance.

Task Guided Instruction General Instruction

Classification
(single-instance)

Instruction: You are provided with
the first piece of an instance from
the {split name} split of the
{dataset name} dataset. Finish the
second piece of the instance as exactly
appeared in the dataset. Only rely on
the original form of the instance in the
dataset to finish the second piece.
Label: {label}
First Piece: {first piece}
Second Piece:

Instruction: Finish the second piece
based on the first piece, such that
these two pieces become a single in-
stance with the following label.
Label: {label}
First Piece: {first piece}
Second Piece:

NLI
(paired-instance)

Instruction: You are provided with
Sentence 1 from the {split name}
split of the {dataset name}
dataset. Finish Sentence 2 as appeared
in the dataset. Sentence 2 must ex-
actly match the instance in the dataset.
Sentence 1: {first piece}
Label: {label}
Sentence 2:

Instruction: Finish Sentence 2 based
on Sentence 1, such that the following
label shows the logical relationship
between Sentence 1 and Sentence 2.
Sentence 1: {first piece}
Label: {label}
Sentence 2:

Summarization
(single-instance)

Instruction: You are provided with
the first piece of a summary from
the {split name} split of the
{dataset name} dataset. Finish
the second piece of the summary as
exactly appeared in the dataset. Only
rely on the original form of the sum-
mary in the dataset to finish the sec-
ond piece.
First Piece: {first piece}
Second Piece:

Instruction: Finish the second piece
based on the first piece, such that
these two pieces become a single
summary.
First Piece: {first piece}
Second Piece:

One-sentence
Summary
(single-instance)

Instruction: You are provided with
the first piece of a one-sentence sum-
mary from the {split name} split
of the {dataset name} dataset.
Finish the second piece of the sum-
mary as exactly appeared in the
dataset. Only rely on the original
form of the summary in the dataset
to finish the second piece.
First Piece: {first piece}
Second Piece:

Instruction: Finish the second piece
based on the first piece, such that
these two pieces become a single one-
sentence summary.
First Piece: {first piece}
Second Piece:
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B IMPACT OF LABEL INTEGRATION ON DOWNSTREAM COMPLETION

To emphasize the impact of incorporating labels into the input prompt on generating downstream
completions and to demonstrate their significance in reducing the generation of false positives, Table
6 presents illustrative examples. These examples compare completions produced when a dataset
instance is paired with both a correct and an incorrect label in the input prompt. Specifically, when
the LLM is prompted with the initial segment of a reference instance and its correct label, the
completion aligns exactly with the subsequent part of that reference instance, resulting in an exact
match. In contrast, the completion generated under the same initial segment of the reference instance
but paired with an incorrect label shows an inexact match.

Table 6: A side-by-side comparison of completions generated by guided instruction when an initial
segment of a reference instance is paired with a correct and an incorrect label in the input prompt.
In every example, completion under the correct label produces an exact match for the subsequent
segment of the reference instance in the input prompt, whereas that with the incorrect label leads to
an inexact match. All completions in these examples are generated by GPT-4, as the base model.

Completion under Correct Label (Exact Match) Completion under Incorrect Label (Inexact Match)

Instruction: You are provided with Sentence 1
from the validation split of the WNLI dataset. Fin-
ish Sentence 2 as appeared in the dataset. Sen-
tence 2 must exactly match the instance in the
dataset.
Sentence 1: The dog chased the cat, which ran up
a tree. It waited at the top.
Label: 1 (entailment)
Sentence 2:
The cat waited at the top.

Instruction: You are provided with Sentence 1
from the validation split of the WNLI dataset. Fin-
ish Sentence 2 as appeared in the dataset. Sen-
tence 2 must exactly match the instance in the
dataset.
Sentence 1: The dog chased the cat, which ran up
a tree. It waited at the top.
Label: 0 (not entailment)
Sentence 2:
The dog waited at the top.

Instruction: You are provided with the first piece
of an instance from the train split of the AG News
dataset. Finish the second piece of the instance as
exactly appeared in the dataset. Only rely on the
original form of the instance in the dataset to finish
the second piece.
Label: 2 (Business)
First Piece: Oil and Economy Cloud Stocks’ Out-
look (Reuters) Reuters - Soaring crude prices plus
worries about the economy
Second Piece:
and the outlook for earnings are

expected to hang over the stock

market next week during the depth of

the summer doldrums.

Instruction: You are provided with the first piece
of an instance from the train split of the AG News
dataset. Finish the second piece of the instance as
exactly appeared in the dataset. Only rely on the
original form of the instance in the dataset to finish
the second piece.
Label: 3 (Sci/Tech)
First Piece: Oil and Economy Cloud Stocks’ Out-
look (Reuters) Reuters - Soaring crude prices plus
worries about the economy
Second Piece:
and the outlook for the dollar
pressured stocks on Friday, leaving

the market nearly unchanged.

C FEW-SHOT IN-CONTEXT LEARNING PROMPT

Figure 3 showcases the few-shot ICL prompt employed to evaluate the model-generated candidate
against the reference text using GPT-4. Within this prompt, we present GPT-4 with one exact match
and three exemplary instances of near-exact matches, all pre-labeled by human evaluation. These
examples guide GPT-4 in discerning the difference between near-exact and inexact matches, in line
with human assessment.

D ILLUSTRATIONS OF EXACT, NEAR-EXACT, AND INEXACT MATCHES

Displayed in Table 7 are examples of exact, near-exact, and inexact replicas of the reference instance
when guided instruction and GPT-4 are used. This table also includes computed metrics such as
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Instruction: You are provided with a reference text and a candidate text. The candidate text is a generated
replica of the reference text. Your task is to determine if the candidate text is an exact or near-exact match
of the reference text. Near-exact match candidates must precisely match the reference candidates in terms
of sentence structure, overlap, and contextual similarity. Respond only with ”Yes” or ”No”.
- - -
Example 1:
Reference Text: The cat waited at the top.
Candidate Text: The cat waited at the top.
Answer: Yes (exact match)
- - -
Example 2:
Reference Text: icy surface of Jupiter’s largest moon, Ganymede. These irregular masses may be rock
formations, supported by Ganymede’s icy shell for billions of years.
Candidate Text: icy surface of Jupiter’s largest moon, Ganymede. These irregular masses may be rock
formations, supported by Ganymede’s icy shell for billions of years. This discovery supports the theory
that Ganymede has a subsurface ocean. Scientists used gravity data from NASA’s Galileo spacecraft to cre-
ate a geophysical model of the interior of Ganymede.
Answer: Yes (near-exact match)
- - -
Example 3:
Reference Text: 50th Anniversary of Normandy Landings lasts a year.
Candidate Text: The 50th anniversary celebration of the first Normandy landing will last a year.
Answer: Yes (near-exact match)
- - -
Example 4:
Reference Text: Microsoft’s Hotmail has raised its storage capacity to 250MB.
Candidate Text: Microsoft has increased the storage capacity of its Hotmail e-mail service to 250MB.
Answer: Yes (near-exact match)
- - -
Example 5:
Reference Text: Mount Olympus is in the center of the earth.
Candidate Text: Mount Olympus is located at the center of the earth.
Answer:

Yes (near-exact match)

Figure 3: A display of the few-shot ICL prompt utilized for instance-level data contamination detec-
tion using GPT-4. In this illustration, examples 1 through 4 are part of the prompt, while example
5 is updated with a new input reference and candidate for evaluation, depending on whether there
is an exact, near-exact, or inexact match. While Example 1 represents an exact match, the other
examples display variations indicating near-exact matches: Example 2 reveals a scenario where the
candidate text has substantial overlap with the reference but includes added details; Examples 3 and
4 highlight situations where the candidate text possesses both semantic and structural similarity to
the reference text.

ROUGE-L, BLEURT, and results from human and GPT-4 few-shot ICL evaluations. In addition,
Table 8 showcases comparative outcomes for the same examples using general instruction.

E STATISTICAL ANALYSIS: BOOTSTRAP RESAMPLING

We examine the statistical significance of results stemming from guided versus general instructions.
Bootstrap resampling technique, involving 10,000 samples in the resampling process, is employed
for this investigation (Efron 1979; Efron & Tibshirani 1993; Efron 2003). We concentrate on the
alternative hypothesis that posits guided instructions produce outcomes closer to reference instances
than those generated from general instructions, as evaluated by fluency, quality, and similarity. The
performance metrics utilized here are BLEURT and ROUGE-L scores. We regard the ROUGE-L
and BLEURT scores as statistically significant if the p-values ≤ 0.05. We list all the computed p-
values in Table 9 and highlight the statistically significant results by marking them with an asterisk
in Table 4.
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Table 7: Examples of exact, near-exact, and inexact matches along with their respective BLEURT
and ROUGE-L scores, and judgments from GPT-4 few-shot ICL and human evaluations. These
examples are generated by GPT-4, as the underlying language model.

Metric/Method Reference Instance and Its Replica by Guided Instruction

Reference Instance:
Review: Bromwell High is a cartoon comedy. It ran at the same time as some other programs about school
life, such as ”Teachers”. My 35 years in the teaching profession lead me to believe that Bromwell High’s
satire is much closer to reality than is ”Teachers”. The scramble to survive financially, the insightful stu-

dents who can see right through their pathetic teachers’ pomp, the pettiness of the whole situation, all
remind me of the schools I knew and their students. When I saw the episode in which a student repeatedly
tried to burn down the school, I immediately recalled ......... at .......... High. A classic line: INSPECTOR:
I’m here to sack one of your teachers. STUDENT: Welcome to Bromwell High. I expect that many adults
of my age think that Bromwell High is far fetched. What a pity that it isn’t!
Label: 1 (positive)

BLEURT Score: 0.99
ROUGE-L Score: 1.00
GPT-4 ICL: Exact Match
Human Eval.: Exact Match

Instruction: You are provided with the first piece of an instance from the train split of the IMDB
dataset. Finish the second piece of the instance as exactly appeared in the dataset. Only rely on
the original form of the instance in the dataset to finish the second piece.

Label: 1 (positive)

First Piece: Bromwell High is a cartoon comedy. It ran at the same time as some other pro-
grams about school life, such as ”Teachers”. My 35 years in the teaching profession lead me to
believe that Bromwell High’s satire is much closer to reality than is ”Teachers”.

Second Piece:

The scramble to survive financially, the insightful students who can

see right through their pathetic teachers’ pomp, the pettiness of the

whole situation, all remind me of the schools I knew and their students.

When I saw the episode in which a student repeatedly tried to burn down

the school, I immediately recalled ......... at .......... High. A

classic line: INSPECTOR: I’m here to sack one of your teachers.

STUDENT: Welcome to Bromwell High. I expect that many adults of my age

think that Bromwell High is far fetched. What a pity that it isn’t!

Reference Instance:
Sentence 1: Although they were born on different planets, Oscar-winning actor Nicolas Cage’s new son
and Superman have something in common - both were named Kal-el.
Sentence 2: Nicolas Cage’s son is called Kal-el.
Label: 1 (entailment)

BLEURT Score: 0.87
ROUGE-L Score: 0.82
GPT-4 ICL: Near-exact Match
Human Eval.: Near-exact Match

Instruction: You are provided with Sentence 1 from the train split of the RTE dataset. Finish
Sentence 2 as appeared in the dataset. Sentence 2 must exactly match the instance in the dataset.

Sentence 1: Although they were born on different planets, Oscar-winning actor Nicolas Cage’s
new son and Superman have something in common - both were named Kal-el.

Label: 1 (entailment)

Sentence 2:

Nicolas Cage’s new son is named Kal-el.

Reference Instance:
Summary: Kim is about to tell mom that Harry bought a new sofa, and he needs grey pillows.

BLEURT Score: 0.48
ROUGE-L Score: 0.12
GPT-4 ICL: Inexact Match
Human Eval.: Inexact Match

Instruction: You are provided with the first piece of a summary from the test split of the SAM-
Sum dataset. Finish the second piece of the summary as exactly appeared in the dataset. Only
rely on the original form of the summary in the dataset to finish the second piece.

First Piece: Kim is about to tell mom that Harry bought

Second Piece:

a new car but is worried mom will be upset. Kim is advised to tell mom in

a positive way, focusing on Harry’s happiness.
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Table 8: Completions generated by GPT-4 under general instruction for examples shown in Table 7.
Metric Reference Instance and Its Replica by General Instruction

Reference Instance:
Review: Bromwell High is a cartoon comedy. It ran at the same time as some other programs about school
life, such as ”Teachers”. My 35 years in the teaching profession lead me to believe that Bromwell High’s
satire is much closer to reality than is ”Teachers”. The scramble to survive financially, the insightful stu-

dents who can see right through their pathetic teachers’ pomp, the pettiness of the whole situation, all
remind me of the schools I knew and their students. When I saw the episode in which a student repeatedly
tried to burn down the school, I immediately recalled ......... at .......... High. A classic line: INSPECTOR:
I’m here to sack one of your teachers. STUDENT: Welcome to Bromwell High. I expect that many adults
of my age think that Bromwell High is far fetched. What a pity that it isn’t!
Label: 1 (positive)

BLEURT Score: 0.18
ROUGE-L Score: 0.41

Instruction: Finish the second piece based on the first piece, such that these two pieces become
a single instance with the following label.

Label: 1 (positive)

First Piece: Bromwell High is a cartoon comedy. It ran at the same time as some other pro-
grams about school life, such as ”Teachers”. My 35 years in the teaching profession lead me to
believe that Bromwell High’s satire is much closer to reality than is ”Teachers”.

Second Piece:

The show is incredibly insightful, with characters that are truly

believable and situations that mirror the real-life experiences in a

typical high school. The humor is sharp and intelligent, making it a

refreshing change from the usual sitcoms. It’s a shame that it didn’t

run for longer, as it was a brilliant depiction of school life that was

both entertaining and thought-provoking. Bromwell High is definitely

a show that deserves more recognition for its realistic portrayal of

the education system.

Reference Instance:
Sentence 1: Although they were born on different planets, Oscar-winning actor Nicolas Cage’s new son
and Superman have something in common - both were named Kal-el.
Sentence 2: Nicolas Cage’s son is called Kal-el.
Label: 1 (entailment)

BLEURT Score: 0.62
ROUGE-L Score: 0.57

Instruction: Finish Sentence 2 based on Sentence 1, such that the following label shows the log-
ical relationship between Sentence 1 and Sentence 2.

Sentence 1: Although they were born on different planets, Oscar-winning actor Nicolas Cage’s
new son and Superman have something in common - both were named Kal-el.

Label: 1 (entailment)

Sentence 2:

Nicolas Cage’s new son and Superman share the same name, Kal-el.

Reference Instance:
Summary: Kim is about to tell mom that Harry bought a new sofa, and he needs grey pillows.

BLEURT Score: 0.44
ROUGE-L Score: 0.27

Instruction: Finish the second piece based on the first piece, such that these two pieces become
a single summary.

First Piece: Kim is about to tell mom that Harry bought

Second Piece:

a new car without consulting her first.

18



Published as a conference paper at ICLR 2024

Table 9: p-values for differences between BLEURT and ROUGE-L scores of guided and general
instructions, computed using bootstrap resampling with 10,000 resampling samples. p-values ≤
0.05 indicate statistically significant results.

Model Metric Split Instruction
Datasets

IMDB AG News Yelp RTE WNLI SAMSum XSum

GPT-4

BLEURT
Train Guided 0.319 0.005 0.981 0.041 0.000 0.478 0.115
Test/Valid Guided 1.000 0.000 1.000 0.075 0.035 0.283 0.170

ROUGE-L
Train Guided 0.017 0.000 0.073 0.000 0.000 0.424 0.000
Test/Valid Guided 0.509 0.000 0.465 0.165 0.003 0.105 0.000

GPT-3.5

BLEURT
Train Guided 1.000 0.006 1.000 0.465 0.008 0.746 0.093
Test/Valid Guided 0.992 0.134 0.932 0.030 0.020 0.293 0.321

ROUGE-L
Train Guided 0.374 0.000 0.000 0.968 0.000 0.312 0.068
Test/Valid Guided 0.190 0.042 0.000 0.051 0.044 0.147 0.152

F CONTINUED TRAINING OF GPT-3.5 BASE MODEL FOR INTENTIONAL
CONTAMINATION

For our validation study for contamination using the GPT-3.5 base model, we employ the previously
referenced snapshot, gpt-3.5-turbo-0613. To conduct continued training on GPT-3.5, we
submit a fine-tuning job via the OpenAI API. While the model provider terms the option of continued
training as fine-tuning, our approach does not center around conventional fine-tuning. Our objective
is to reproduce what the LLM—in our case, GPT-3.5—potentially observed during its pre-training
phase when exposed to web data. To achieve this, we format the data in a way that encompasses the
dataset title and its associated division, coupled with the entire details of the instance. We embed
this information since it represents the minimal metadata an instance might possess when extracted
from web data.

All data formats we used to introduce data contamination are listed in Table 10. Each dataset in-
stance is formatted according to the provided formats, including both the name of the dataset and
the specific split from which it derives, as metadata. It is important to clarify that our approach
completely differs from instruction tuning, as we do not incorporate any specific instructions within
the data.

Due to our project’s budget limitations and our emphasis on a manageable number of training sam-
ples, we opt to work with one dataset for each task in our validation study. In particular, we take 100
random samples, ensuring they were evenly distributed based on the label, from the training splits of
the AG News, RTE, and XSum datasets to expose the GPT-3.5 base model. For training, all default
hyperparameters set by OpenAI are maintained during our continued training phase. Upon training
completion, we utilize particular checkpoints provided by OpenAI. For every experiment, the base
model of GPT-3.5 is separately contaminated using each dataset split, resulting in three separate
checkpoints, each associated with one of the aforementioned dataset splits.

G EXAMPLES OF REPLICAS GENERATED PRE AND POST CONTAMINATION
OF GPT-3.5

In Table 11, we showcase two examples of exact replicas derived from our controlled contamina-
tion study with GPT-3.5. These replicas are generated from the contaminated checkpoints obtained
through additional training of the GPT-3.5 base model on the subset of the training partitions of
the AG News and XSum datasets. Additionally, we highlight a near-exact match achieved from an
instance in the training set of the GSM8k dataset when using GPT-4 as the underlying LLM. All
these replicas are produced via the guided instructions.
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Table 10: A complete list of all data formats used to contaminate the GPT-3.5 base model by fur-
ther training. Each of these data formats is separately used to format every single instance with
respect to the dataset task. Placeholders are as follows: {split name} indicates the split name;
{dataset name} refers to the dataset name; {instance} represents a full instance in classifi-
cation datasets; {sentence1} and {sentence2} stand for premise and hypothesis in NLI-based
datasets; {document} and {summary} correspond to entire document and its summary for a sin-
gle instance in the summarization datasets; and {label} is replaced with the input instance’s label
where applicable.

Task Data Format

Classification
This is an instance from the {split name} split of the {dataset name} dataset.

Instance: {instance}
Label: {label}

NLI

This is an instance from the {split name} split of the {dataset name} dataset.

Sentence 1: {sentence1}
Sentence 2: {sentence2}
Label: {label}

Summarization
This is an instance from the {split name} split of the {dataset name} dataset.

Document: {document}
Summary: {summary}

H DETAILED DESCRIPTION OF DATASETS

IMDB Movie Reviews Dataset. The IMDB Movie Reviews dataset is a balanced corpus of 50,000
movie reviews used for sentiment analysis tasks. It is split evenly into 25,000 training and 25,000
testing reviews, each further balanced for positive and negative sentiments. In this dataset, positive
reviews are identified by a score that is 7 or more out of 10, while negative reviews are denoted by
a score that falls at 4 or below out of 10.

AG News Dataset. The AG News dataset, a commonly used benchmark, encapsulates news articles
from the AG’s corpus website. It is neatly divided into four categorical classes, namely world,
sports, business, and science/technology. The dataset contains 496,835 categorized news articles
from 2,000 news sources. For each class, the AG News dataset furnishes 30,000 training and 1,900
test samples.

Yelp Dataset. The dataset is sourced from the Yelp Dataset Challenge conducted in 2015, containing
a massive number of 1,569,264 samples, all of which include review texts. This dataset is the
foundation for two distinct classification tasks. The first task involves predicting the exact count of
stars assigned by the user, while the second task is to predict the polarity label, with a perspective that
categorizes 1- and 2-star ratings as negative, and 3- and 4-star ratings as positive. For the full-scale
star rating prediction, the dataset includes 130,000 training samples and 10,000 testing samples for
each star category. Similarly, the polarity-based dataset comprises 280,000 training samples along
with 19,000 test samples, distributed among each polarity category.

Recognizing Textual Entailment (RTE) Dataset. The Recognizing Textual Entailment (RTE)
dataset originates from a succession of annual textual entailment challenges. These datasets were
combined by the authors of the benchmark using data from four different editions: RTE1 (Dagan
et al. 2005), RTE2 (Haim et al. 2006), RTE3 (Giampiccolo et al. 2007), and RTE5 (Bentivogli
et al. 2009). The examples within these datasets were primarily formulated using text from news
and Wikipedia sources. To maintain consistency, all these datasets were adapted into a two-class
split. For those datasets that initially consisted of three classes, the categories of ”neutral” and
”contradiction” were combined to form a single class termed ”not entailment”. The RTE dataset
combined has 2,490 examples for training, 277 examples for validation, and 3,000 examples for
testing.
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Table 11: Examples of exact matches from GPT-3.5 after contamination with a subset of train splits
of AG News and XSum datasets, alongside a near-exact instance reproduction from the GSM8k
training set using GPT-4. Match types (exact/near-exact matches) are provided only for the gener-
ated completions from contaminated GPT-3.5 checkpoints, when contrasted with the completions
from the GPT-3.5 base model (all completions by the GPT-3.5 base model are inexact matches). All
completions are generated by guided instruction.

Method Reference Instance and Its Replica by Guided Instruction

Reference instance from the train split of AG News dataset:

Article: Report: Pennington Set to Sign Extension with Jets (Reuters) Reuters - The New York Jets and
quarterback Chad Pennington are close to a deal that would make the quarterback the highest- paid player

in franchise history.
Label: 1 (Sports)

GPT-4 ICL: Exact Match
Human Eval.: Exact Match

Instruction: You are provided with the first piece of an instance from the train split of the AG
News dataset. Finish the second piece of the instance as exactly appeared in the dataset. Only
rely on the original form of the instance in the dataset to finish the second piece.

Label: 1 (Sports)

First Piece: Report: Pennington Set to Sign Extension with Jets (Reuters) Reuters - The New
York Jets and quarterback Chad Pennington are close to a deal that would make the

Second Piece:
————————————————————————————————————————-
GPT-3.5:

28-year-old signal caller the highest-paid player in franchise history,

according to sources familiar with the negotiations. The extension is

expected to keep Pennington with the Jets for the next five seasons,

solidifying his position as the team’s leader on the field. The deal

comes after Pennington’s impressive performance last season, where he

led the Jets to the playoffs and earned the NFL Comeback Player of the

Year award. With this extension, the Jets are showing their commitment

to Pennington and their belief in his ability to lead the team to
success.

————————————————————————————————————————-
Contaminated GPT-3.5:

quarterback the highest- paid player in franchise history.

Reference instance from the train split of XSum dataset:

Summary: Astronomers have found evidence for a planet being devoured by its star, yielding insights
into the fate that will befall Earth in billions of years.

GPT-4 ICL: Exact Match
Human Eval.: Exact Match

Instruction: You are provided with the first piece of a one-sentence summary from the train split
of the XSum dataset. Finish the second piece of the summary as exactly appeared in the dataset.
Only rely on the original form of the summary in the dataset to finish the second piece.

First Piece: Astronomers have found evidence for a planet being devoured by its star, yielding
insights

Second Piece:
————————————————————————————————————————-
GPT-3.5:

into the process of planetary destruction and the fate of exoplanets.

————————————————————————————————————————-
Contaminated GPT-3.5:

into the fate that will befall Earth in billions of years.

Reference instance from the train split of GSM8k dataset:

Question: John writes 20 pages a day. How long will it take him to write 3 books that are 400 pages
each?

GPT-4 ICL: Near-exact Match
Human Eval.: Near-exact Match

Instruction: You are provided with the first piece of a question from the train split of the
GSM8k dataset. Finish the second piece of the question as exactly appeared in the dataset. Only
rely on the original form of the question in the dataset to finish the second piece.

First Piece: John writes 20 pages a day. How long will it take him to write 3

Second Piece:
————————————————————————————————————————-
GPT-4:

books of 400 pages each?
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Winograd Natural Language Inference (WNLI) Dataset. The WNLI (Winograd Natural Lan-
guage Inference) dataset is a benchmark for natural language understanding tasks, particularly for
evaluating coreference resolution and pronoun disambiguation in context. The dataset is derived
from the original Winograd Schema Challenge (Levesque et al. 2012) and contains sentence pairs
where a pronoun needs to be resolved by determining whether it refers to the same entity as the
previous sentence. While the dataset has a balanced training set between two classes, the test set is
imbalanced, with 635 training examples, 146 testing examples, and 71 validation examples.

SAMSum Dataset. The SAMSum dataset, compiled by the Samsung R&D Institute in Poland,
comprises around 16,000 English messenger-style conversations with summaries. These dialogues,
created by linguists, reflect a variety of styles, registers, and topics similar to real-life messenger
interactions. Each conversation is annotated with a third-person summary and categorized based on
the number of utterances, ranging from 3-30. The dataset primarily consists of two-person dialogues.

Extreme Summarization (XSum) Dataset. The Extreme Summarization (XSum) dataset serves
as an evaluation dataset for abstractive single-document summarization systems. Its objective is to
generate a concise one-sentence summary that answers the question, ”What is the article about?”.
The dataset comprises 226,711 news articles, each accompanied by a one-sentence summary. These
articles were collected from BBC articles spanning the years 2010 to 2017 and cover a wide range
of domains, including news, politics, sports, weather, business, technology, science, health, family,
education, entertainment, and arts. The official random split allocates 90% (204,045 documents)
for training, 5% (11,332 documents) for validation, and 5% (11,334 documents) for the test set,
respectively.

Grade School Math 8k (GSM8k) Dataset. The GSM8k dataset is a curated dataset consisting of
8,500 linguistically diverse grade school math word problems, crafted meticulously by human au-
thors. This collection is divided into 7,500 training examples and 1,000 designated for testing. The
complexity of these problems varies, requiring between 2 to 8 sequential steps for resolution. Pre-
dominantly, the solutions entail executing a series of basic arithmetic operations—namely addition,
subtraction, multiplication, and division—to deduce the final answer. This dataset is ideal for tasks
involving multi-step mathematical reasoning.
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