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ABSTRACT

Data valuation is a ML field that studies the value of training instances towards
a given predictive task. Although data bias is one of the main sources of down-
stream model unfairness, previous work in data valuation does not consider how
training instances may influence both performance and fairness of ML models.
Thus, we propose Fairness-Aware Data ValuatiOn (FADO), a framework that can
be used to incorporate fairness concerns into a series of ML-related tasks (e.g.,
data pre-processing, exploratory data analysis, active learning). We propose an
entropy-based data valuation metric suited to address our two-pronged goal of
maximizing both performance and fairness, which is more computationally effi-
cient than existing metrics. We then show how FADO can be applied as the basis
for unfairness mitigation pre-processing techniques. Our methods achieve promis-
ing results — up to a 40 p.p. improvement in fairness at a less than 1 p.p. loss
in performance compared to a baseline — and promote fairness in a data-centric
way, where a deeper understanding of data quality takes center stage.

1 INTRODUCTION

A key ingredient in machine learning (ML) is the data used to train models (Hestness et al., 2017;
Najafabadi et al., 2015). Even specific instances have been shown to play a crucial part in the
performance of ML models (Toneva et al., 2019; Ngiam et al., 2018; Zhu et al., 2020): there can be
more valuable and less valuable training data instances, with respect to a certain metric of interest.
The field of data valuation has arisen in this context, with the goal of associating each training datum
with its corresponding value. Several approaches for data valuation have been proposed (Ghorbani
& Zou, 2019; Yoon et al., 2020; Ghorbani et al., 2020; Kwon & Zou, 2022; Sim et al., 2022) and
have been applied in a series of applications, such as noisy labels detection, and active learning,
with varying degrees of success (Ghorbani & Zou, 2019; Yoon et al., 2020; Kwon & Zou, 2022;
Ghorbani et al., 2021).

However, along with their exceptional performance in some tasks, ML algorithms have been shown
to have the potential to exacerbate and propagate biases embedded within data (Angwin et al., 2016;
Howard & Borenstein, 2018; O’Neil, 2016). This is especially true if such models are trained with
regards only to some performance metric, and if they are treated as unamenable black boxes. Such
a stance is particularly problematic in high-stakes decision-making domains, where biased policies
may result in certain social groups being systematically discriminated, and locked out of important
goods and services (e.g., by race, sex). This phenomenon has sparked the creation of the field of fair
ML, which has grown rapidly in recent years (Caton & Haas, 2020; Mehrabi et al., 2021; Pessach &
Shmueli, 2022).

Just as data plays a part in the performance of models, so does it play a part in their potential for
discrimination (Saleiro et al., 2020; Rodolfa et al., 2020; Chakraborty et al., 2021; Chen et al., 2018).
Indeed, data bias can shape the landscape of fairness and performance (Pombal et al., 2022a;b), but
little work has been made to understand the sources of these biases. Thus, we propose fairness-
aware data valuation (FADO), a data valuation framework that allows measuring which training
instances contribute the most to both performance and fairness of models. We also propose an
entropy-based data valuation metric that is specifically tailored to relate to model performance and
data bias concerns. We argue that the proposed framework embodies the ultimate goal of fair ML,
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which is to incorporate fairness concerns into ML systems, while keeping their performance high.
FADO can be used in the same ways as data valuation, and, as such, can be a vehicle to introduce
fairness concerns into a series of upstream and downstream tasks, such as data pre-processing, active
learning, data generation, and exploratory data analysis (EDA).

In summary, we make the following contributions: 1) we propose fairness-aware data valuation
framework based on a notion of utility that incorporates the value of specific instances towards both
performance and fairness (lack of data bias). It can be used with continuous and categorical targets
and protected attributes, as well as to promote subgroup fairness (see Section 3.1). 2) we introduce
an entropy-based notion of data value, which can be used to calculate an instance’s value towards
accurate prediction of a target Y , and data bias with respect to one or more protected attributes (see
Section 3.2) in any predictive task. 3) we conduct an evaluation of how the framework may be
leveraged for fairness-aware training data sampling and re-weighing, achieving promising results on
a real world use-case.

2 BACKGROUND & RELATED WORK

This work focuses on supervised learning, where data valuation is usually framed in the following
way (Ghorbani & Zou, 2019; Ghorbani et al., 2021; 2020; Yoon et al., 2020; Karlaš et al., 2022):
given a set of training data with n data instances, each characterized by a feature vector xi (in which
one, or more, protected attribute(s) zi may be included), and a target variable yi, the goal is to find
the value vi of each training instance, with respect to some value metric of interest V , obtained by a
learning algorithm f trained to predict yi, given xi. How vi is calculated varies from work to work.
Ghorbani & Zou (2019) take a game-theoretical approach and calculate the Data Shapley value of
each data instance. Although this method enjoys a series of desirable properties, it is intractable to
compute, and approximations have been proposed by the original authors and in other works (Kwon
& Zou, 2022; Ghorbani et al., 2020; Karlaš et al., 2022). Conversely, Yoon et al. (2020) take a
reinforcement learning approach (DVRL), where a data valuator model is jointly trained with the
predictor of the task from which V is calculated.

As for the metric of interest, Ghorbani & Zou (2019) and Yoon et al. (2020) set V as the accuracy
of a predictor f on unseen data (test set), with vi being the importance of data instance i towards
achieving the performance that predictor f obtains when trained on the whole dataset. However,
V can be any metric of interest; Karlaš et al. (2022), for example, perform data valuation with
equalized odds difference (Hardt et al., 2016) as V . That said, a glaring gap in the literature is that
no work defines V as a combination of performance and fairness. These components, if fairness is
mentioned, are always shown separately. However, the main goal of fair ML is to maximize both
predictive performance and fairness. Furthermore, besides some applications in active learning and
noisy instance detection, data valuation has never been used for fairness-promoting interventions.To
bridge this gap, we lay out a framework that defines V as a function of both performance and data
bias (fairness), and show how it can be used to promote observational fairness. Being an inherently
data-centric task, we also believe that fairness-aware data valuation addresses the lack of exploratory
data analysis tools in fair ML.

3 FAIRNESS-AWARE DATA VALUATION

3.1 FRAMEWORK

As mentioned before, the key component of our framework is the definition of V as a function of
both performance and fairness, rather than having them be separate components. Our task is not
only to accurately predict Y, but also to do it fairly. We shall refer to our metric of interest as utility
(U ) from here on in. This nomenclature is inspired by literature on the field of Economics, where the
well-being (utility) of an individual is defined as a function of the utility derived from a weighted
combination of factors (e.g., economic goods), rather than a single one. In our case, utility is a
function of performance and fairness; how it is maximized depends on the definition of the function
and on the weights attributed to performance and fairness. Thus, the utility of a single data instance
can be written as Ui(vyi , vzi), where vyi is the performance-related valuation of instance i, and vzi
is the fairness-related one.
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We propose two types of utility functions; a linear scalarization one:

Ui = αvyi + (1− α)vzi , (1)

where α ∈ [0, 1] governs the relative weight placed on performance and fairness, and a multiplica-
tive scalarization one, inspired by the Cobb-Douglas formulation (Douglas, 1976) (widely used in
Economics):

Ui = vαyi
· v1−α

zi , (2)

where α plays the same role as above. Each of these utilities abide by the principles of fair ML
and, thus, the FADO framework, as they strike a balance between performance and fairness: both
unfair, high-performing systems, and fair, low-performing systems, are inferior in terms of utility
to systems that achieve acceptable values for both metrics. However, the two functions encode
distinct preferences as far as this balance goes. For example, the multiplicative utility is zero if
either valuation is zero, whereas the linear utility is not. Thus, if a practitioner is not interested in
gains in performance if they do not lead to gains in fairness, they should opt for the multiplicative
utility.

This general framework allows reasoning about and obtaining fairness-aware valuations for data
instances, which can then be used for downstream tasks. Our framework can also be extended to
applications concerned with subgroup fairness (fairness across a series of protected attributes and
their combinations); one needs only to include several Z terms in the utility function. For example,
in a case where there are k protected attributes Zk, a linear utility function can be defined as:

Ui = αvyi
+

k∑
j=1

βjvzji , (3)

In the next Section, we propose an entropy-based metric for FADO, which is versatile for both
performance- and fairness-related data valuation.

3.2 ENTROPY METRIC

The main challenge posed by the framework is to define and calculate a vy for the predictive task at
hand, and vz for the fairness component of the utility. These could be, for example, the Data Shapley
value with respect to a validation set accuracy in the predictive task (vy) and the Shapley value with
respect to, for instance, a validation set equality of opportunity difference among protected groups in
the same predictive task (vz). Such a choice would be appropriate within the framework, but entails
two difficulties: first, it limits the user to a specific fairness metric, which as we have seen, often
implies sacrificing others; second, data Shapley values are intractably hard to compute, thus they
must be approximated. Instead, we propose a more metric-agnostic valuation, which is inspired by
the literature on uncertainty estimation and active learning (for vy), and on the data bias taxonomy
proposed by Pombal et al. (2022a).

For some data instance i, we propose to define vyi as the corresponding prediction Shannon entropy,
averaged over the output of one or more trained models1. In binary classification, the Shannon
entropy (E) for uncertainty sampling for an instance i and prediction ŷi is:

Vyi
= Eyi

= ŷi · log2 ŷi + (1− ŷi) · log2(1− ŷi) (4)

The rationale behind choosing the entropy without the target label is inspired by active learning,
where there is abundant data outside the training set, but a small budget to label it, and thus it is vital
to choose which instances to label. A popular method in active learning is uncertainty sampling
(Lewis & Gale, 1994; Settles, 2009), where an ML model trained on data subsequently chooses to
obtain labels for the observations on which it is most unsure (with the highest entropy). The idea is

1In the binary classification case; for multi-class, the metric could be entropy for non-binary distributions;
for regression, the metric would have to be the prediction’s difference from the sample mean, for example.
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that the model will learn more from adding these observations to the training set, than from adding
observations on which the model is sure, as the training data already contains that information. This
metric is not perfect, since being confident does not necessarily mean being right, and high entropy
observations may simply be noisy and not necessarily useful. However, it is a useful valuation
heuristic, which has been shown to work well in many settings, including fraud detection (Lewis &
Gale, 1994; Yang & Loog, 2018; Barata et al., 2021). We extend this rationale to data valuation and
attribute the highest values to the instances with the highest entropy. In other words, we attribute
less value to instances where the model is very sure, since there is reason to believe that these encode
redundant information to the task at hand.

As for vzi , the metric is the same, but using a predictor of Z, rather than of Y. For an instance i, a
binary protected attribute zi, and predicted group ẑi, we have:

Vzi = Ezi = ẑi · log2 ẑi + (1− ẑ)i · log2(1− ẑi) (5)

Notice that the metric is essentially the same for vy and vz , but for different reasons. In the first
case, we want to prioritize observations on which the model had more difficulty during training,
since these might contain less redundant information. In the second case, where the variable in
question (Z) is not the target for the task at hand, and is seen by the model even at inference time,
we prioritize observations where the model had more difficulty in establishing a relationship among
X, Y, and Z, leveraging the fact the model has no explicit incentive to draw such relationships. This
is directly related to mitigating the base bias condition of the taxonomy of Pombal et al. (2022a)
(P[X,Y ] ̸= P[X,Y |Z]), and so related to promoting fairness. This metric can also be seen as a
means to promote “procedural” fairness (Greenberg, 1987) in the learning process of the model: we
are “telling” the model to pay less attention during training to the protected attribute, and whatever
variables may be related with it.

The resulting combination of vy and vz is a utility measure that balances both performance and
fairness by assigning lower value to redundant information about Y and excessive information about
Z in the data. Using a linear scalarization utility function, we would get:

Ui = αEyi
+ (1− α)Ezi (6)

Recently, Xu et al. (2022) proposed using entropy as a measure of data value for online ML tasks
(with respect only to performance). Other metrics, such as data shapley, are not suitable for these
settings, as they require a fixed dataset. Our rationale for using entropy is similar to that of Xu et
al., but we extend it seamlessly to the context of data bias and fairness, and to offline ML tasks.
In terms of computation, our method requires only the additional training of a model for Z. This
corresponds — in our case of binary classification and a binary protected attribute — to a roughly
two-fold increase in training time, which is much faster than Data Shapley or DVRL alternatives.

4 UNFAIRNESS MITIGATION PRE-PROCESSING WITH FADO

4.1 DATASET

Based on the proposed framework, we apply unfairness mitigation pre-processing interventions on
AOF, a real-world large-scale bank account-opening fraud dataset. Fraud detection is an extremely
pertinent field for fair ML, since holding a bank account is seen as a basic right in the European
Union (European Parliament and Council, 2014). In this use case of fraud, fraudsters attempt to
impersonate someone to open an account, and quickly exhaust its line of credit. Each row in the
dataset corresponds to an application for opening a bank account, submitted via the online portal
of a large retail bank. Data was collected over an 8-month period and contains over 500K rows.
The first 6 months are used for training and the last 2 months are used for testing, mimicking the
procedure of a real-world production environment2.

2Because of client-related privacy issues, no further details on the data can be provided; however, the
dataset introduced by Jesus et al. (2022) was generated to be faithful to the one used here. Please see
https://www.kaggle.com/datasets/sgpjesus/bank-account-fraud-dataset-neurips-2022 for more information.
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4.2 EVALUATION FRAMEWORK

Fraud rate (positive label prevalence) is about 1% in both sets. This means that a naı̈ve classifier
that labels all observations as not fraud achieves a test set accuracy of almost (99%). Such large
class imbalance entails certain additional challenges for learning (He & Garcia, 2009), and calls for
a specific evaluation framework. In particular, bank account providers are not willing to go above a
certain level of FPR, because each false positive may lead to customer attrition (unhappy clients who
may wish to leave the bank). At an enterprise-wide level, this may represent losses that outweigh the
gains of detecting fraud. The goal is then to maximize the detection of fraudulent applicants (high
global true positive rate, TPR), while maintaining low customer attrition (low global false positive
rate). As such, we evaluate the model’s TPR at a fixed FPR, imposed as a business requirement in
our case-study; we assess the FPR ceiling of 5%. As for fairness, we consider three popular metrics
for classification settings: the ratio of group-wise FPRs, predictive equality (Corbett-Davies et al.,
2017), the ratio of group-wise FNRs, a form of equality of opportunity (Hardt et al., 2016), and the
ratio of group-wise predicted positive rate, demographic parity (Dwork et al., 2012). The protected
attribute used will be the client’s age (to counteract ageism).

4.3 EXPERIMENTAL SETUP

We wish to apply some pre-processing method on our training data in order to maximize perfor-
mance and fairness on unseen data. To this end, our pre-processing method consists of three steps:
first, computing each training instance’s value with respect to Y and Z. Second, computing the utility
of each instance, given a utility function and respective parameters. Third, sampling or reweighing
the training set before training models. When sampling is done, the instances with lower utility
that belong to the protected group with lowest fraud prevalence are discarded first. In the case
of reweighting, the instances with higher utility are assigned larger weights during training. We
consider two strategies: utility-aware prevalence sampling (UASP), and utility-aware reweighting
(UAR). UASP consists of undersampling the data, such that protected groups end up with the same
prevalence (fraud rate); in our dataset, this means discarding label negatives of the group with the
lowest fraud rate, starting with the instances with the least utility, until fraud rates are balanced.
UAR implies assigning weights to each observation in the training set prior to training, where the
weight corresponds to the instance’s utility — the full training set is used. We experiment with
several hyperparameter configurations of the above approaches (see Appendix C).

After each preprocessing intervention, the resulting dataset (and instance weights, if it is the case)
is used to train 25 LighGBM models (with hyperparameters sampled from a grid), which are then
used to make predictions on a test set (the same 25 models are used throughout). LightGBM was
chosen for being a state-of-the-art algorithm for tabular data, and for easily allowing weights to be
assigned to instances during training. To highlight the models that achieve the best performance-
fairness trade-offs, we also analyze the Pareto frontier (Pareto, 1919) of the landscape. We also
outline the 80% rule (Meier et al., 1984) threshold as a guideline for how fair models should be:
the best models are those that achieve the highest performance above this threshold of fairness. We
compare our fairness-aware data valuation approaches to the case of no intervention (the full training
set), random prevalence sampling (RPS, same as UASP, but observations are randomly discarded,
instead of using a utility-based order) and reweighing (RW) (Kamiran & Calders, 2012).

4.4 RESULTS & DISCUSSION

Figures 1 summarizes the performance-fairness trade-off landscape achieved by the models in the
test set, trained on data that underwent the pre-processing techniques mentioned in the previous
section. It plots performance on the x-axis, and fairness on the y-axis; circles represent the no
intervention and literature baselines, while triangles and squares represent our prevalence sampling
and reweighing methods, respectively. On our methods, the color varies between green and red.
Greener points were trained on data that was pre-processed with a higher weight on fairness in the
FADO utility function; redder points had a higher weight placed on performance. The underlying
goal of this task is to maximize both performance and fairness, so the best points are the ones
closest to the top right corner of the plots. In particular, we care about the points with the highest
performance above the 0.8 line, since this represents the aforementioned 80% rule.
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Figure 1: Each point corresponds to one of 25 LightGBM models trained on the corresponding pre-processesed
training set (see legend). The axes represent performance and fairness on the test set in the task of predicting
fraud (Y). Points that lie on the Pareto frontier are represented by the larger opaque markers; small opaque
markers are present to aid the visibility of baselines. The α colorbar represents the weight attributed to perfor-
mance (α) and fairness (1 - α) in the utility function of our methods.

First, as expected, there seems to be a relationship between alpha (the parameter that governs the
weight placed on performance and data bias in the utility functions) and the fairness-accuracy land-
scape — the top performing models tend to be related to a higher α, while the fairest models feature
lower α. Furthermore, the best trade-offs on the Pareto frontier (high performance and high fairness)
seem to be achieved by mid-range values (α around 0.5), which suggests that a balanced valuation
of points allows models to be much fairer at little loss in performance. Notice, for example, on the
leftmost plot of Figure 1, the opaque squares with TPR around 0.77 and fairness above 0.85. It also
seems that, for all fairness metrics, steep increases in fairness can be achieved with only slight drops
in performance. The relative abundance of points coloured between blue and red can be explained
by the fact that for each of our proposed methods (UAPS, and UAR) there are more hyperparameters
to choose from, and with which we experimented.

Comparing our methods with those from the literature, ours present the best performance above the
0.8 fairness line for all three fairness metrics tested. Figure 1 shows that even outside the Pareto
frontier, our methods seem to occupy spaces of higher fairness, for a given level of performance,
than RPS and RW — especially our reweighing approach (UAR). This meets our expectations, since
our methods attempt to tackle all sources of data bias, instead of just prevalence disparity which is
the case with RPS and RW (though the latter achieves this in an indirect way, without discarding
examples). Comparing among our own methods, reweighing approaches seem to obtain the best
trade-offs. Not only do they feature several points on the Pareto frontier of all fairness metrics, but
they also seem to perform better in general. This was in part to be expected, as these methods do
not require examples to be discarded, thus, in principle, leaving more information in the data for
models to learn from. Disregarding fairness for a moment, we can see that our approaches, for high
values of α, are useful to increase the performance of ML models. They can reach up to about 1
extra TPR point, when compared to the best performing models trained on the training set without
intervention.

5 CONCLUSIONS AND FUTURE WORK

We introduced a framework and metric to relate performance and data bias to specific data instances.
Our framework can be applied with any type of classification or regression task, as well with any
number of categorical and continuous protected attributes. We also introduced an entropy-based
notion of value and utility, which incorporates both performance and fairness concerns. To validate
the framework and the proposed metric, we showed how they could be applied in the context of
an unfairness mitigation pre-processing intervention in a binary classification setting (training set
sampling and reweighing). A benchmark on our real-world fraud detection dataset showed that our
methods often outperform existing ones in the literature, in terms of fairness-accuracy trade-offs.
In the future, we would like to extend this benchmark to inlcude other datasets and baselines. We
believe that tracing data bias to specific training instances is a promising practice to further the
understanding of algorithmic unfairness and to add another layer of insight to data exploration and
other tasks along the ML pipeline, like active learning — a priority for future work as well.
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A ALGORITHMS TO COMPUTE ENTROPY

Computing the required entropy-based metric for v is not as straightforward as in active learning,
since our goal is to obtain valuations for a fully-labeled training set, and for two variables (Y and Z).
With this in mind, we propose two algorithms. The first relies on creating bags from the training data
of seen and unseen data, and training several models on each bag, from which entropy is obtained
— akin to k-fold cross-validation. This is more closely related to active learning, since it involves a
component of unseen data for which the model makes predictions. The second algorithm is arguably
more straightforward as it does not involve sampling the training set, but is more a measure of
epistemic uncertainty rather than a combination of epistemic and aleatoric uncertainty (Hora, 1996)
(as is the case with the active learning case)3.

Algorithm 1 FADO Out-of-bag Entropy Algorithm
Input: training set D; variable of interest var; number of bags n bags; % of train in each unseen set
in each bag pct unseen; models to train (pre-defined by user) M
Output: valuation vector with respect to var V

1: in bag sets, out of bag sets ← Split D into n bags, each with pct unseen of D into an out-of-
bag set, and the rest into an in-bag set ▷ Data is sampled without replacement within
each bag, but with replacement across bags; each observation must appear in at least one set of
out-of-bag data

2: v list← Empty list for intermediate target variable valuations
3: for in bag, out of bag ∈ [in bag sets, out of bag sets] do
4: for m ∈ M do
5: fitted m← Train m on in bag to predict var
6: v← Vector of entropies of all predictions of fitted m on out of bag
7: v list← Append v
8: end for
9: end for

10: V ← Average entropies of each observation over all intermediate valuations in v list

Algorithm 2 FADO In-bag Entropy Algorithm
Input: training set D; variable of interest var; models to train (pre-defined by user) M
Output: valuation vector with respect to var V

1: for m ∈ M do
2: fitted m← Train m on D to predict var
3: v← Vector of entropies of all predictions of fitted m on D
4: v list← Append v
5: end for
6: V ← Average entropies of each observation over all intermediate valuations in v list

Training dataset

In-bag samples

Out-of-bag 
samples

Y model

Z entropies

Utilities

Training set is divided 
into bags of seen and 

unseen data

Models are trained on 
these samples

Models obtain predictions 
for these samples

Entropy is calculated 
for all predictions

Instance-wise entropies are 
combined to yield utilities, and  

appended to current list

Z model

Y entropies

Figure 2: One iteration of the bagging-based algorithm, with one bag, one model for Y, and one model for
Z. The final utility vector is obtained by averaging out all entropies obtained over each iteration, for each
observation, and combining them into utilities.

3Loosely speaking, the latter pertains to uncertainty incorporated by the model, while the former pertains to
uncertainty inherent to the data.
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To obtain a measure of utility, one must run either algorithm with Y as the target (to calculate vy)
and with Z as the target (to obtain vz), for the same training set, models, and bagging splits (if
algorithm 1 is chosen). The final utility measure is then dependent on the chosen utility function,
and its parameters. As we argued in the previous section, we believe this entropy-based valuation is
best suited for a utility function to which both vy and vz contribute positively (e.g., the linear and
multiplicative utilities shown in Section 3.1). In terms of the desiderata for data valuation strategies
put forth recently by Sim et al. (2022), our entropy-based metric satisfies D1-D3, and D7 and D9 if
the sum of the entropies of each observation is seen to be the value of the whole dataset.
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Figure 3: Zoomed out version of Figure 1.

C HYPERPARAMETERS

Hyperparameter Distribution Values Description
boosting type - “goss” Boosting type
n estimators Log-uniform {20, 10000} Number of base tree learners
num leaves Log-uniform {10, 1000} Maximum leaves of a tree
min child samples Log-uniform {5, 300} Min. num. samples needed to create a leaf node
max depth Log-uniform {2, 20} Maximum depth of a tree
learning rate Log-uniform [0.02, 0.5] Boosting learning rate

Table 1: Model hyperparameter grid for LightGBM.

To compute data valuations, all permutations of the hyperparameters below were tried (vy is the
entropy of the Y classifier, vz is the entropy of the Z classifier):

Utility functions: U = αvy + (1− α)vz , U = αvy − (1− α)vz ,U = vαy v
1−α
z ;

alpha (α): [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1];

Weights scaling: “min-max scaling”, “no scaling” (only used for UAR);

Entropy algorithms: “bagging”, “epistemic” (the ones proposed in Section A);
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