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ABSTRACT

Effectively fusing scarce high-accuracy data with massive but noisy low-accuracy
data is a common challenge faced by machine learning across various fields, in-
cluding agriculture, medicine, and remote sensing. Existing methods, which either
directly concatenate datasets while ignoring accuracy differences or employ static
weighting for training, struggle to achieve optimal performance. To address this,
we introduce a deep learning framework incorporating a dynamic discard mech-
anism (DDL) that manages mixed-accuracy data through the selective, dynamic
removal of low-accuracy instances characterized by high Mean Absolute Error
(MAE) and the application of an adaptive weighting scheme. Our study validated
this approach using rice cultivation data from China’s four major rice-growing re-
gions: South, Central, North, and Northeast China. Using site characteristics and
nitrogen application rates as feature variables and rice yield as the target variable,
we designated the high-accuracy dataset as the test set. Compared to machine
learning models that process only single-accuracy datasets and other models de-
signed for mixed-accuracy data, our DDL framework demonstrated a performance
improvement of over 10% in metrics such as RMSE, MAE, and MAPE, achieving
significantly higher prediction accuracy. A crop yield prediction model capable of
handling multiple datasets simultaneously holds significant practical value for pol-
icymakers and other stakeholders. The dynamic discard mechanism and adaptive
weighting algorithm employed by DDL also have considerable reference value for
applications in other domains.

1 INTRODUCTION

Accurate estimation of crop yields is crucial for ensuring global food security and maintaining a
stable market economy (Basso & Liu, 2019; Lecerf et al., 2019). This is fundamental for developing
reasonable agricultural policies and effective food management (Zambrano et al., 2018), and also
promotes sustainable agricultural development. In genuine agricultural contexts, crop productivity
is synergistically governed by an intricate confluence of diverse parameters, notably edaphic and
climatic factors, as well as nutrient application rates(Lai et al., 2024; Shuai & Basso, 2022). The
intricate nature of these environmental variables makes it challenging to acquire a sufficient amount
of high-accuracy data, which constrains the improvement of model prediction accuracy and general-
ization ability. In this context, building a prediction model that can effectively integrate datasets of
mixed accuracy has become the core approach to enhancing estimation accuracy and generalization
capability.

Agricultural data obtained directly from field observations and experiments are highly accurate and
reliable but are limited in sample size due to high costs and labor-intensive processes. While existing
research has used various machine learning (ML) models and deep neural networks (DNNs) to
estimate crop yields and improve prediction accuracy (Akkem et al., 2023; Han et al., 2025). While
most of these studies rely on data augmentation to process existing datasets for model training. This
paucity of adequate sample diversity invariably compromises model generalizability, thereby failing
to ameliorate the intrinsic data scarcity bottleneck inherent in agricultural domains.

In contrast, data generated through existing agricultural process models offer a massive sample size
but are of lower accuracy. The simultaneous existence of high- and low-accuracy data presents both
a significant challenge and a potential solution to agricultural data scarcity. However, the effective
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fusion of scarce high-accuracy data with vast but noisy low-accuracy data remains an unresolved
problem. Most existing studies either directly concatenate datasets, thereby overlooking dispari-
ties in data accuracy, and attempt to mitigate the noise introduced by lower-accuracy data through
preprocessing methods (Zhang et al., 2022a). However, these approaches struggle to suppress the
negative impact on model training while simultaneously preserving the intrinsic information content
of the data. Alternatively, some studies employ static weighting strategies to enhance the fusion
effect of mixed-accuracy data (Gao & Xie, 2025), yet these methods inherently lack adaptability to
the dynamic changes occurring throughout the model training process.

To address these issues, this study proposes and validates a deep learning framework based on a
dynamic discard mechanism (DDL), which can train datasets of different accuracies simultaneously.
By leveraging a dynamic discard algorithm and an adaptive weighting mechanism, the framework
enhances the model’s prediction accuracy and generalization ability, effectively solving the mixed-
accuracy fusion problem.

The remainder of this paper is organized as follows: Section 2 reviews related work in this field;
Section 3 describes the data acquisition strategies and sources; Section 4 presents the DDL archi-
tectural design and various mechanisms; Section 5 shows the model results; and Section 6 discusses
the research findings and outlines future research directions.

2 RELATED WORK

Recent research has increasingly focused on strategies to address the challenges of integrating het-
erogeneous or uncertain datasets into predictive modeling.

CNN–GAN–based methods Methods combining Convolutional Neural Networks (CNNs) and
Generative Adversarial Networks (GANs) have been widely used to improve data quality and aug-
ment training samples. By learning high-level feature representations and generating realistic syn-
thetic samples, these approaches effectively mitigate the issue of insufficient training data and en-
hance model generalization. However, they typically assume a homogeneous data accuracy, often
performing poorly when there are systematic differences in the reliability of training samples(Zhang
et al., 2022b).

U-Net with ConvLSTM architectures To capture spatiotemporal dependencies in agricultural
and environmental applications, researchers have proposed hybrid models that fuse the U-Net archi-
tecture with Convolutional Long Short-Term Memory (ConvLSTM) modules. These models effec-
tively integrate sequential information with spatial context, leading to significant improvements in
tasks like crop monitoring. Nevertheless, their fusion process relies on a static architecture, lacking
a dynamic mechanism to adapt to variations in input data quality(Kamangir et al., 2025).

Remote sensing data assimilation with SCE-UA Another research path involves data assimila-
tion methods, such as utilizing optimization algorithms like the Shuffled Complex Evolution Al-
gorithm (SCE-UA) to combine remote sensing observations with process-driven models. These
approaches explicitly merge observations and simulated values, and can significantly enhance pre-
dictive accuracy, particularly when observations are sparse or noisy. However, they typically op-
erate within a deterministic optimization framework, lacking a mechanism to adaptively discard or
re-weight low-accuracy samples during training(Li et al., 2024).

Dynamic Reweighting and Data Selection While our work shares the goal of improving training
dynamics with methods like Population Based Augmentation (PBA) (Ho et al., 2019) and Sam-
ple Reweighting (Ren et al., 2018), there is a fundamental distinction necessitated by the nature
of mixed-accuracy scientific data. Traditional reweighting methods assign soft weights to high-loss
samples, effectively down-weighting outliers but retaining them in the optimization process. In the
context of simulations, high-error samples often represent systematic failures rather than aleatoric
noise. Retaining these samples, even with low weights, risks corrupting the feature manifold.

In contrast, DDL employs a hard Dynamic Discard mechanism. By completely removing samples
that persistently diverge from the high-accuracy distribution, DDL prevents the model from fitting
to systematic biases, offering a more robust solution for integrating heterogeneous scientific datasets
than augmentation or static reweighting strategies.
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3 DATA STRATEGY AND SOURCES

The primary objective of this study is to enhance the predictive accuracy and generalization capa-
bility of the model to the greatest extent possible. However, during data collection, we identified
a pervasive challenge: the quality and quantity of the required data exhibit an inverse relationship,
resulting in two distinct types of data sources. To address this challenge, we propose an integrative
strategy that combines the use of both high-accuracy and low-accuracy data.

The central premise of our data strategy is to combine the complementary strengths of these two
sources—namely, the precision of high-accuracy data and the breadth of low-accuracy data—to
construct a more robust and high-performing predictive model.

3.1 HIGH-ACCURACY DATA: COLLECTED EMPIRICAL OBSERVATIONS

We established a high-accuracy, field-scale rice yield dataset through systematic field observations
conducted between 2021 and 2024 across four major rice-growing regions. All data were collected
under standardized experimental protocols with rigorous quality control procedures, ensuring con-
sistency and reliability. In total, 704 observational records were obtained, providing a comprehen-
sive empirical basis for subsequent modeling and analysis.

3.2 LOW-ACCURACY DATA: DNDC-BASED SIMULATIONS

The DNDC (DeNitrification-DeComposition) model (Li et al., 1992) is a process-based biogeo-
chemical model of carbon and nitrogen dynamics in agroecosystems. By coupling microbial
metabolic processes with the soil’s physical environment, DNDC enables refined simulations of
C–N cycles in complex agricultural systems. In this study, we employed version 9.5 of the DNDC
model to simulate crop planting from paddy fields.

Soil property data and climate data obtained from the National Meteorological Science Data Center
(2024) were aggregated at a 0.5° resolution into a format compatible with DNDC input requirements.
We then ran the DNDC model in Region Mode, the simulation outputs include process-level crop
growth data. From these results, we selected key variables including latitude/longitude, SOC, clay
content, pH, bulk density (BD), average temperature, precipitation, irrigation, nitrogen application,
crop type, and yield. In total, we obtained 43447 simulated records.

Figure 1: Mixed-accuracy datasets distribution
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4 METHODS

4.1 NOTATION AND PROBLEM SETTING

This study addresses the problem of joint prediction by leveraging a small-sample, high-accuracy
dataset and a large-sample, low-accuracy dataset. Let DH = {(xH

i , yHi )}nH
i=1 and DL =

{(xL
i , y

L
i )}

nL
i=1 denote the high-accuracy (collected) data and the low-accuracy (simulated) data re-

spectively. Here, xi represents an 11-dimensional feature vector: Longitude, Latitude, Tem (tem-
perature), Pre (precipitation), rate (fertilizer application N rate), SOC (soil organic carbon), Clay
(clay content), pH (soil pH), BD (soil bulk density), irrigation, and CropType and yi is the target
variable, Yield (rice yield per mu). The dataset sizes are nH = 704 and nL = 43, 447. Our primary
objective is to achieve superior predictive accuracy on a test set partitioned from the high-accuracy
dataset, while also maximizing the model’s generalization capability. In our pipeline the high-ac-
curacy dataset was split prior to model training: 20% of DH were reserved as a final, held-out test
set, 20% of the remaining high-accuracy samples were used as a validation set, and the remainder
were used for training (all random splits used seed 42). The two datasets therefore share the same
feature / label schema but differ in measurement accuracy and noise characteristics. The held-out
DH test subset was not used in any way during training, dynamic discard procedures, or adaptive
weight tuning.

4.2 ARCHITECTURE AND TECHNICAL DESIGN OF THE DDL FRAMEWORK

As illustrated in Figure 1, we propose the DDL architecture, which consists of an input layer, a
Feature Attention Gating Module, a Modified Residual Block, a fully connected layer, and a
multi-task output layer. The model incorporates a dynamic dropout mechanism and adaptive
dynamic weights. The specific technical principles of these components are detailed below.

Figure 2: Schematic overview of the DDL framework. The architecture comprises a Feature Atten-
tion Gating Module for input reweighting, Modified Residual Blocks to mitigate gradient vanishing,
and a multi-task output layer. The Dynamic Discard mechanism and Adaptive Dynamic Weights
operate during training to filter noise and balance task losses.
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4.2.1 DYNAMIC DISCARD STRATEGY

The core mechanism of our model is the Dynamic Discard (DD) strategy, which is not a static
data cleaning process performed before training. Instead, it is a progressive filtering mechanism that
evaluates and discards low-accuracy data samples during the training process based on the model’s
current predictive performance, thereby gradually filtering out noisy data.

Specifically, at epoch t, with current model parameters θt, we first perform a forward pass on all
low-accuracy data samples in DL = {

(
xL
i , y

L
i

)
}NL
i=1 to obtain their primary task (yield prediction)

predictions, ŷLi = fθt
(
xL
i

)
. We then calculate the absolute prediction error ei = |ŷLi − yLi | for each

low-accuracy sample.

To ensure the discard threshold adapts to the model’s performance at different training stages, we
compute the Mean Absolute Error (MAE) (Hodson, 2022) of all low-accuracy samples in the current
batch as a dynamic baseline:

MAEt =
1

nL

nL∑
i=1

|ŷLi − yLi |

Next, we normalize each sample’s error to obtain a deviation metric relative to the model’s current
average performance: ẽi = ei/MAEt.

Based on this deviation, we calculate a dynamic discard probability Pi for each sample, determined
by an exponential decay function:

Pi = γ · (1− exp (−ẽi))

where γ is a base discard probability factor that controls the steepness of the probability curve,
thereby regulating the penalty on high-error samples. Finally, a Bernoulli sampling process (Yu
et al., 2022) determines whether the sample is kept: a random number r is generated in the range
[0, 1]. If r < Pi, the sample is discarded; otherwise, it is retained for the current and subsequent
gradient updates.

This process can be conceptualized as a filtering operator Dt that acts on the low-accuracy dataset,
outputting a filtered subset:

Dt({(xL
i , y

L
i )}) = {(xL

j , y
L
j ) | rj ≥ pj}

This subset is then combined with the high-accuracy data DH to form the training data for epoch
t. Through this mechanism, the model can initially leverage the large volume of low-accuracy data
to quickly learn general features. With advancing training and enhanced model performance, the
DD mechanism adopts a more stringent approach, systematically filtering out low-quality samples
that persistently yield high errors and are likely indicative of noise or substantial divergence from
the true distribution. This allows the model to later focus on refining its predictive capabilities using
higher-quality data, effectively preventing the negative influence of low-quality data and achieving
a dynamic balance between data quality and quantity.

In summary, the dynamic discard probability formula of the proposed model is:

Pi = γ ·

(
1− exp

(
−NL · ei∑NL

j=1 ej

))

4.2.2 FEATURE ATTENTION GATING MODULE AND REGULARIZATION

The model’s input layer receives 11 types of features, including soil parameters, meteorological
factors, and crop data. To enhance the importance of features highly correlated with the target vari-
able, we designed a trainable Feature Attention Gating Module (Meng et al., 2022; Dhingra et al.,
2016). This module uses fully connected layers (Basha et al., 2020) to perform dynamic feature
weighting at the input layer, unlike the more computationally expensive self-attention mechanism,
ensuring core features play a primary role in the final prediction.

The mathematical formulation is as follows:

att = σ (Watt · x+ batt)

5
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output = x⊙ att

where σ is the attention gate vector, Watt and batt are trainable parameters, and ⊙ denotes element-
wise multiplication.

To prevent model overfitting, we introduce L2 regularization (Van Laarhoven, 2017), which modifies
the total objective function to:

Lreg = L+ λ ||Watt||2F
where λ = 10−4 is the regularization coefficient and || · ||F is the Frobenius norm of the weight
matrices. This regularization term can be interpreted as a Gaussian prior on the weight parameters,
ensuring that the attention weights do not become overly concentrated on a few features.

4.2.3 MODIFIED RESIDUAL BLOCK

To address the issue of gradient vanishing in deep networks (Tan & Lim, 2019), we designed
a modified residual block structure (Zhang et al., 2017; Tang et al., 2024). Each block consists
of two fully connected layers: the first employs a ReLU activation function (He et al., 2018)to
introduce non-linearity, while the second uses a linear activation to maintain numerical stability. A
skip connection then adds the block’s input to its output.

The mathematical expression is as follows:

x(l+1) = g
(
x(l)
)
+ F

(
x(l)
)

where g
(
x(l)
)

is a dimension-adapting function that acts as an identity mapping when the input
dimension dim

(
x(l)
)

matches the target output dimension dout ; otherwise, it performs a dimen-
sionality transformation via a projection matrix Ws :

g
(
x(l)
)
=

{
x(l), if dim

(
x(l)
)
= dout

Wsx
(l) + bs, otherwise

The residual function F
(
x(l)
)

is implemented with two fully connected layers, and its computa-
tional flow is given by the following equation:

F
(
x(l)
)
= W

(l)
2 · z3 + b

(l)
2

where z3 is an intermediate variable computed as follows:

z1 = δReLU

(
W

(l)
1 x(l) + b

(l)
1

)
z2 = BN(z1)

z3 = Dropout (z2)

Here, δReLU denotes the ReLU activation function. We constructed these identity mapping paths
within the 512- and 256-dimensional hidden layers. This allows gradients to be passed directly to
the shallower layers during backpropagation, effectively mitigating the vanishing gradient problem.
Combined with Dropout, this structure also provides a strong regularization effect.

4.2.4 ADAPTIVE DYNAMIC WEIGHTS

To enable the model to learn high-accuracy predictions from the small dataset while simultane-
ously improving its generalization from the large dataset, we designed a framework with adaptive
dynamic weights (Yang et al., 2022; Xiao & Zhang, 2021; Cao et al., 2023). This approach dynam-
ically balances the loss weights between the main task (regression prediction) and an auxiliary task
(data source classification).

The multi-task learning framework consists of a main task (predicting the target variable via regres-
sion) and an auxiliary task (predicting the data source as a binary classification task). The overall
loss function is defined as:

Ltotal = α · Lmain + (1− α) · Laux

6
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where α is a dynamic weighting coefficient, Lmain is the mean squared error (MSE) loss, and Laux is
the classification cross-entropy loss:

Lmain =
1

N

N∑
i=1

(yi − ŷi)
2

Laux = − 1

N

N∑
i=1

[si log (ŝi) + (1− si) log (1− ŝi)]

The initial value of α is set to 0.4 and is increased exponentially with each epoch, up to a specified
limit. This mechanism ensures that the model initially leverages the classification task to enhance
its generalization, then later focuses on optimizing predictive accuracy as the main task’s influence
increases. The dynamic weight update mechanism is as follows:

αepoch+1 = max (0.4,min (0.8, αepoch × 1.005))

5 RESULT

5.1 EXPERIMENTAL RESULTS AND DISCUSSION

The experimental results demonstrate that the proposed DDL framework significantly outperforms
existing mainstream methods for the rice yield prediction task. As shown in Table 1, DDL exhibits
superior performance across all four metrics: MAE, RMSE, R², and MAPE, surpassing traditional
machine learning models (e.g., XGBoost, Random Forest), process-based models (e.g., DNDC), and
domain-specific hybrid architectures (e.g., CNN+GAN, Remote Sensing Assimilation + SCE-UA).
The framework achieves an approximate 10% improvement on these metrics, with the predictive R²
value reaching 0.68. This strong agreement between predicted and observed yields is further visual-
ized in the scatter plot of Figure 3, where most samples cluster closely around the fitted regression
line, particularly in the mid-to-high yield range.

Table 1: Performance Comparison of Various Models on Regression Tasks

Model MAE ↓ RMSE ↓ R2 ↑ MAPE ↓ Reference
ML Model
Gradient Boosting R 1001.96 1287.90 0.6348 0.1648 (Friedman, 2001)
LightGBM 1011.40 1316.29 0.6186 0.1678 (Ke et al., 2017)
Random Forest 1076.34 1436.98 0.5454 0.1754 (Breiman, 2001)
XGBoost Regression 1064.40 1388.34 0.5757 0.1750 (Chen & Guestrin, 2016)
GPR 1296.37 1808.19 0.3381 0.2098 (Rasmussen & Williams, 2006)
MHA-MLP 1115.07 1496.70 0.5465 0.1767 -
Related Work
CNN+GAN 1115.56 1637.84 0.3587 0.2026 (Zhang et al., 2022b)
UNet-ConvLSTM 1075.91 1357.26 0.5497 0.1672 (Kamangir et al., 2025)
PBA-ResNet 1082.35 1462.31 0.4823 0.1612 (He et al., 2016)
PBA-MLP 1108.91 1642.98 0.4535 0.1635 (Ho et al., 2019)
Broad Learning System 1160.32 1559.85 0.5074 0.1815 (Liu & Chen, 2018)
Process Model
DNDC Model 1439.35 1754.55 0.2910 8.7361 (Li et al., 1992)
DDL Model
Ours 852.30 1212.14 0.6837 0.1424 -

5.2 ABLATION STUDY

An ablation study was conducted to validate the necessity and effectiveness of each component
within the DDL framework. The results confirm that the absence of any single component leads
to a decline in model performance. Specifically, a ”single-accuracy” version of the model trained
exclusively on the high-accuracy data demonstrated significantly limited performance. Similarly,
models that did not employ the dynamic discard mechanism during mixed-precision training or
those that used a static weighting strategy in place of the adaptive dynamic weights both performed

7
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Figure 3: Scatter plot of predicted versus observed rice yield values. Each point corresponds to a
sample, with its color indicating the absolute deviation from the fitted regression line: green denotes
close agreement (small error), gradually transitioning to red for larger deviations (poor agreement)

worse than the complete framework. These findings in Table 2 suggest that static data fusion or the
unfiltered use of low-accuracy data fails to effectively suppress noise interference. The synergistic
design of the dynamic discard and adaptive dynamic weights is, therefore, crucial for DDL’s
ability to achieve high-precision predictions. The results of the ablation study fully validate the
necessity and efficacy of the proposed mechanisms in fusing mixed-precision data.

Table 2: Ablation Study of the DDL Framework

Model MAE ↓ RMSE ↓ R2 ↑ MAPE ↓
ML Model
Gradient Boosting R 1001.96 1287.90 0.6348 0.1648
Related Work
UNet-ConvLSTM 1075.91 1357.26 0.5497 0.1672
Process Model
DNDC Model 1439.35 1754.55 0.2910 8.7361
DDL Model
Ours(High-Accuracy Only) 958.62 1335.92 0.6158 0.1602
Ours(w/o Dynamic Discard) 887.10 1273.89 0.6506 0.1477
Ours(w/ Static Weighting) 870.31 1249.90 0.6637 0.1439
Ours(Full) 852.30 1212.14 0.6837 0.1424

5.3 GENERALIZATION ABILITY

Cross-Species Transfer To assess the generalization ability of our proposed DDL approach beyond
rice, we conducted cross-species experiments on Wheat and Maize. For Wheat we further collected
a high-accuracy dataset of 500 samples and a low-accuracy dataset of 52,450 samples; for Maize the
high-accuracy dataset contains 567 samples and the low-accuracy dataset contains 38,492 samples.
We retrained and evaluated our full DDL model on each species and compared its predictive perfor-
mance against a broad set of baselines. Tables 8 and 9 summarize the results for each method. From
the results shown in these tables, it’s evident that—even when evaluated on other crops—our DDL
model remains highly competitive.

Sparse-Region Generalization To evaluate model robustness across regions with varying data den-
sities, we designed a validation experiment based on spatial grid partitioning. Specifically, the ge-
ographic space was divided into grids with a resolution of 1◦ × 1◦ in both latitude and longitude,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: All Performance Comparison of Various Models on Regression Tasks for Wheat

Model MAE ↓ RMSE ↓ R2 ↑ MAPE ↓ Reference

ML Models
Gradient Boosting R 1143.22 1576.82 0.4907 0.2698 (Friedman, 2001)
LightGBM 1061.73 1445.15 0.5722 0.2651 (Ke et al., 2017)
MHA-MLP 1200.85 1579.87 0.4802 0.2707 -

Related Work
PBA-MLP 1134.83 1508.56 0.4750 0.2638 (Ho et al., 2019)
Broad Learning System 1197.73 1613.30 0.4580 0.2839 (Liu & Chen, 2018)

DDL Model
Ours(Full) 1118.22 1434.27 0.5590 0.2641 -

Table 4: All Performance Comparison of Various Models on Regression Tasks for Maize

Model MAE ↓ RMSE ↓ R2 ↑ MAPE ↓ Reference

ML Models
Gradient Boosting R 1513.57 2013.99 0.6838 0.3206 (Friedman, 2001)
LightGBM 1506.19 2032.21 0.6781 0.3251 (Ke et al., 2017)
Random Forest 1561.46 2063.54 0.6681 0.3350 (Breiman, 2001)

Related Work
PBA-MLP 2115.14 2706.12 0.3155 0.6853 (Ho et al., 2019)
Broad Learning System 1672.19 2335.77 0.3393 0.2178 (Liu & Chen, 2018)

DDL Model
Ours (Full) 1382.21 1847.46 0.6735 0.2542 -

and the density of both high- and low-accuracy data within each grid was quantified. Based on these
densities, we constructed different testing scenarios (Table ??).

As shown in the results, reducing the quantity of high-accuracy data (transitioning from Case A
to Case B) results in a moderate performance decrease, with R2 dropping from 0.7480 to 0.7115.
While this indicates that high-accuracy data contributes to refining predictions, the model main-
tains a relatively high performance level. In stark contrast, limiting the availability of low-accuracy
data (Case C) leads to a substantial deterioration in performance (R2 plummets to 0.2644), even
when high-accuracy data is abundant. These findings refute the notion that high-accuracy data alone
is sufficient for broad generalization and underscore that the massive low-accuracy dataset acts as
a critical stabilizer, enabling the DDL framework to generalize effectively even in regions where
empirical observations are sparse.

Table 5: Generalization Ability of the DDL Framework

Data Configuration MAE ↓ RMSE ↓ R2 ↑ MAPE ↓
Case A 810.27 1091.62 0.7480 0.1308
Case B 616.35 867.91 0.7115 0.0835
Case C 1386.74 1944.45 0.2644 0.2649
Case D – – – –

Note: Grids were ranked by the density of high-accuracy samples.
– Top 50%: Regions with high density of empirical observations (Data-Rich).
– Bottom 50%: Regions with low density of empirical observations (Data-Sparse).
Configuration Details:
– Case A: Full low-accuracy data + High-accuracy data from Top 50% regions.
– Case B: Full low-accuracy data + High-accuracy data from Bottom 50% regions.
– Case C: Sparse low-accuracy data + High-accuracy data from Top 50% regions.
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5.4 SENSITIVITY TO NOISE IN LOW-ACCURACY DATA

To test whether the predictive accuracy of our DDL model is tightly constrained by the quality of the
low-accuracy dataset, we injected zero-mean Gaussian noise into the low-accuracy data at relative
magnitudes of 0%, 10%, 20%, 30% and 40% (noise standard deviation expressed as a fraction of the
original signal standard deviation). We retrained and evaluated the full DDL model under each noise
condition and compared its R2 against representative baselines. Results in Table 6 show that even
with 20% Gaussian noise the DDL model outperforms the strongest baselines, indicating limited
sensitivity to simulation noise in the low-accuracy source.

Table 6: Robustness to Noise Injected into Low-Accuracy Data (R2)

Model / Condition R2 ↑ Reference

Machine-Learning Baselines
Gradient Boosting Regression 0.6348 (Friedman, 2001)
LightGBM 0.6186 (Ke et al., 2017)
XGBoost Regression 0.5757 (Chen & Guestrin, 2016)

Related Work
UNet-ConvLSTM 0.5497 (Kamangir et al., 2025)
Broad Learning System 0.5074 (Liu & Chen, 2018)

DDL (Ours) — noise levels applied to low-accuracy data
Ours (0% noise) 0.6837 -
Ours (10% noise) 0.6681 -
Ours (20% noise) 0.6452 -
Ours (30% noise) 0.6134 -
Ours (40% noise) 0.5662 -

6 CONCLUSION AND FUTURE WORK

This study proposes a Deep Learning framework with Dynamic Dropping mechanism, designed to
achieve a deep and organic integration of large-scale low-accuracy datasets with small-scale high-
accuracy datasets. The framework provides an effective solution for further improving both the
accuracy and generalization ability of crop yield prediction models. At its core, DDL introduces a
dynamic dropping strategy, which contrasts with traditional static data-cleaning approaches that dis-
card noisy samples or retain uninformative data prior to training (Ashfaq et al., 2025). By embedding
data handling as a continuous, dynamic process throughout training, DDL enhances generalization
and stability on high-accuracy test sets. This strategy mitigates the inherent trade-off between data
quantity and data quality, reducing the reliance on stringent requirements for high-quality datasets.
Consequently, training with heterogeneous data sources becomes more reliable in domains such as
agriculture and industry, where access to high-quality data is limited (Paudel et al., 2022).

Despite these promising results, three directions remain for further exploration. Firstly, the dropping
strategy in this work primarily relies on absolute prediction error, without accounting for intrinsic
data distribution characteristics. Future research may incorporate distributional differences between
datasets when estimating dropping probabilities (Egele et al., 2024). Secondly, the current weight
adjustment scheme follows a linear schedule. Although it alleviates the need for manual weight tun-
ing and provides some adaptivity, it lacks adjustments based on real-time training dynamics. Closing
this loop through validation-based feedback mechanisms would be critical for further improving pre-
dictive accuracy (Caljon et al., 2025). Eventually, while this study focuses on rice yield prediction
in agriculture, the proposed framework could be extended to other domains, offering a generalizable
solution for integrating heterogeneous data and enhancing model generalization (Zhang et al., 2025).

In summary, the DDL framework presents a practical approach to jointly train on small high-ac-
curacy and large low-accuracy datasets; empirical results on crop yield tasks show consistent im-
provements over examined baselines. While these results are encouraging, we avoid broad claims
about universal generalizability and instead emphasize that DDL is a promising mechanism whose
applicability to other domains should be explored in future work.
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A APPENDIX

A.1 DATA DISTRIBUTION

The following shows the average yield per mu of the Mixed-accuracy dataset across four rice-
growing regions and its distribution across various provinces, as illustrated in Figure 4a.

(a) Prediction performance on the Mixed-accuracy dataset (low-accuracy subset).

(b) Prediction performance on the Mixed-accuracy dataset (high-accuracy subset).

Figure 4: Comparison of model prediction accuracy across subsets of the Mixed-accuracy dataset.
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A.2 TRAINING DETAILS

To further investigate model behavior, we present two complementary visualizations: one character-
izing prediction fidelity across samples, and another revealing the contribution of input features to
the model’s decisions.

Figure 5: Temporal-style prediction and error analysis across samples. The upper panel displays the
actual rice yield (solid black line) alongside model predictions (dashed blue line) ordered by sample
index. The lower panel shows the per-sample absolute error (orange dashed line) and its moving
average (blue dash-dot line), computed using a sliding window to suppress noise and highlight
systematic bias or regional error patterns. A larger window width improves trend visibility but
reduces sensitivity to local error spikes.

Figure 6: Relative importance of input features in the predictive model, visualized as a donut chart.
Features are ranked by their contribution to prediction accuracy, with the top- and bottom-ranked
features explicitly labeled and color-highlighted. The hollow center enhances visual focus on the
proportional influence of each variable, underscoring which agronomic or environmental factors
drive model performance.
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(a) Rice training curves

(b) Wheat training curves

(c) Maize training curves

Figure 7: Training curves of the DDL framework across three major crops. Each subplot shows three
key metrics: (1) MAE progression for both training and validation sets, (2) Loss components includ-
ing total loss, main loss (yield prediction), and auxiliary loss (data source classification), and (3)
Alpha parameter evolution that dynamically balances the main and auxiliary tasks during training.
The consistent convergence patterns across all three crops validate the generalizability of the DDL
framework for different crop yield prediction scenarios.
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A.3 RESULT DETAILS

Tables 7, 8, and 9 comprehensively evaluate the predictive performance of our DDL framework
against various baseline models across three major crops: rice, wheat, and maize. These tables
present detailed comparisons using multiple evaluation metrics. The results validate the general-
izability of the DDL framework beyond rice to other important cereal crops.

Table 7: All Performance Comparison of Various Models on Regression Tasks for Rice

Model MAE ↓ RMSE ↓ R2 ↑ MAPE ↓ Reference
ML Model
Decision Tree R 1098.62 1495.59 0.5076 0.1752 (Breiman et al., 1984)
Gradient Boosting R 1001.96 1287.90 0.6348 0.1648 (Friedman, 2001)
LightGBM 1011.40 1316.29 0.6186 0.1678 (Ke et al., 2017)
Linear Regression 1344.19 1684.27 0.3755 0.2309 (Seber & Lee, 2012)
Random Forest 1076.34 1436.98 0.5454 0.1754 (Breiman, 2001)
SVR 1777.09 2123.63 0.0072 0.3108 (Drucker et al., 1996)
XGBoost Regression 1064.40 1388.34 0.5757 0.1750 (Chen & Guestrin, 2016)
Deep Learning Regression 2938.72 3500.50 -1.6976 0.4183 (Goodfellow et al., 2016)
GPR 1296.37 1808.19 0.3381 0.2098 (Rasmussen & Williams, 2006)
MHA-MLP 1115.07 1496.70 0.5465 0.1767 -
Related Work
CNN+GAN 1115.56 1637.84 0.3587 0.2026 (Zhang et al., 2022b)
UNet-ConvLSTM 1075.91 1357.26 0.5497 0.1672 (Kamangir et al., 2025)
Remote Sensing + SCE-UA 4025.99 5391.50 -2.7046 0.7144 (Li et al., 2024)
PBA-ResNet 1082.35 1462.31 0.4823 0.1612 (He et al., 2016)
PBA-MLP 1108.91 1642.98 0.4535 0.1635 (Ho et al., 2019)
Broad Learning System 1160.32 1559.85 0.5074 0.1815 (Liu & Chen, 2018)
Process Model
DNDC Model 1439.35 1754.55 0.2910 8.7361 (Li et al., 1992)
DDL Model
Ours(High-Accuracy Only) 958.62 1335.92 0.6158 0.1602 -
Ours(w/o Dynamic Discard) 887.10 1273.89 0.6506 0.1477 -
Ours(w/ Static Weighting) 870.31 1249.90 0.6637 0.1439 -
Ours(Full) 852.30 1212.14 0.6837 0.1424 -

Table 8: All Performance Comparison of Various Models on Regression Tasks for Wheat

Model MAE ↓ RMSE ↓ R2 ↑ MAPE ↓ Reference
ML Model
Decision Tree R 1326.32 1929.20 0.2377 0.3192 (Breiman et al., 1984)
Gradient Boosting R 1143.22 1576.82 0.4907 0.2698 (Friedman, 2001)
LightGBM 1061.73 1445.15 0.5722 0.2651 (Ke et al., 2017)
Linear Regression 1454.95 1817.08 0.3237 0.3653 (Seber & Lee, 2012)
Random Forest 1143.93 1617.93 0.4638 0.2849 (Breiman, 2001)
SVR 1819.56 2213.53 -0.0036 0.5500 (Drucker et al., 1996)
XGBoost Regression 1129.97 1634.62 0.4527 0.2770 (Chen & Guestrin, 2016)
Deep Learning Regression 2967.98 3651.12 -1.7305 0.5131 (Goodfellow et al., 2016)
GPR 1557.16 1945.91 0.2115 0.4009 (Rasmussen & Williams, 2006)
MHA-MLP 1200.85 1579.87 0.4802 0.2707 -
Related Work
PBA-MLP 1134.83 1508.56 0.4750 0.2638 (Ho et al., 2019)
Broad Learning System 1197.73 1613.30 0.4580 0.2839 (Liu & Chen, 2018)
DDL Model
Ours(Full) 1118.22 1434.27 0.5590 0.2641 -

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: All Performance Comparison of Various Models on Regression Tasks for Maize

Model MAE ↓ RMSE ↓ R2 ↑ MAPE ↓ Reference
ML Model
Decision Tree R 1936.85 2685.83 0.4377 0.3633 (Breiman et al., 1984)
Gradient Boosting R 1513.57 2013.99 0.6838 0.3206 (Friedman, 2001)
LightGBM 1506.19 2032.21 0.6781 0.3251 (Ke et al., 2017)
Linear Regression 2215.98 2901.25 0.3439 0.4816 (Seber & Lee, 2012)
Random Forest 1561.46 2063.54 0.6681 0.3350 (Breiman, 2001)
SVR 2656.28 3589.16 -0.0042 0.6257 (Drucker et al., 1996)
XGBoost Regression 1635.27 2188.98 0.6265 0.3221 (Chen & Guestrin, 2016)
Deep Learning Regression 6155.25 6969.60 -2.7866 0.7119 (Goodfellow et al., 2016)
GPR 1901.65 2587.13 0.1895 0.2673 (Rasmussen & Williams, 2006)
MHA-MLP 1841.45 2493.63 0.2470 0.2619 -
Related Work
PBA-MLP 2115.14 2706.12 0.3155 0.6853 (Ho et al., 2019)
Broad Learning System 1672.19 2335.77 0.3393 0.2178 (Liu & Chen, 2018)
DDL Model
Ours(Full) 1382.21 1847.46 0.6735 0.2542 -
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dently developed and conducted by the authors. The LLM’s role was strictly limited to enhancing
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