

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DDL: DYNAMIC DISCARD DEEP LEARNING FOR RICE YIELD PREDICTION ON MIXED-ACCURACY DATASETS

**Anonymous authors**

Paper under double-blind review

## ABSTRACT

Effectively fusing scarce high-accuracy data with massive but noisy low-accuracy data is a common challenge faced by machine learning across various fields, including agriculture, medicine, and remote sensing. Existing methods, which either directly concatenate datasets while ignoring accuracy differences or employ static weighting for training, struggle to achieve optimal performance. To address this, we introduce a deep learning framework incorporating a dynamic discard mechanism (DDL) that manages mixed-accuracy data through the selective, dynamic removal of low-accuracy instances characterized by high Mean Absolute Error (MAE) and the application of an adaptive weighting scheme. Our study validated this approach using rice cultivation data from China's four major rice-growing regions: South, Central, North, and Northeast China. Using site characteristics and nitrogen application rates as feature variables and rice yield as the target variable, we designated the high-accuracy dataset as the test set. Compared to machine learning models that process only single-accuracy datasets and other models designed for mixed-accuracy data, our DDL framework demonstrated a performance improvement of over 10% in metrics such as RMSE, MAE, and MAPE, achieving significantly higher prediction accuracy. A crop yield prediction model capable of handling multiple datasets simultaneously holds significant practical value for policymakers and other stakeholders. The dynamic discard mechanism and adaptive weighting algorithm employed by DDL also have considerable reference value for applications in other domains.

## 1 INTRODUCTION

Accurate estimation of crop yields is crucial for ensuring global food security and maintaining a stable market economy (Basso & Liu, 2019; Lecerf et al., 2019). This is fundamental for developing reasonable agricultural policies and effective food management (Zambrano et al., 2018), and also promotes sustainable agricultural development. In genuine agricultural contexts, crop productivity is synergistically governed by an intricate confluence of diverse parameters, notably edaphic and climatic factors, as well as nutrient application rates (Lai et al., 2024; Shuai & Basso, 2022). The intricate nature of these environmental variables makes it challenging to acquire a sufficient amount of high-accuracy data, which constrains the improvement of model prediction accuracy and generalization ability. In this context, building a prediction model that can effectively integrate datasets of mixed accuracy has become the core approach to enhancing estimation accuracy and generalization capability.

Agricultural data obtained directly from field observations and experiments are highly accurate and reliable but are limited in sample size due to high costs and labor-intensive processes. While existing research has used various machine learning (ML) models and deep neural networks (DNNs) to estimate crop yields and improve prediction accuracy (Akkem et al., 2023; Han et al., 2025). While most of these studies rely on data augmentation to process existing datasets for model training. This paucity of adequate sample diversity invariably compromises model generalizability, thereby failing to ameliorate the intrinsic data scarcity bottleneck inherent in agricultural domains.

In contrast, data generated through existing agricultural process models offer a massive sample size but are of lower accuracy. The simultaneous existence of high- and low-accuracy data presents both a significant challenge and a potential solution to agricultural data scarcity. However, the effective

054 fusion of scarce high-accuracy data with vast but noisy low-accuracy data remains an unresolved  
 055 problem. Most existing studies either directly concatenate datasets, thereby overlooking disparities  
 056 in data accuracy, and attempt to mitigate the noise introduced by lower-accuracy data through  
 057 preprocessing methods (Zhang et al., 2022a). However, these approaches struggle to suppress the  
 058 negative impact on model training while simultaneously preserving the intrinsic information content  
 059 of the data. Alternatively, some studies employ static weighting strategies to enhance the fusion  
 060 effect of mixed-accuracy data (Gao & Xie, 2025), yet these methods inherently lack adaptability to  
 061 the dynamic changes occurring throughout the model training process.

062 To address these issues, this study proposes and validates a deep learning framework based on a  
 063 dynamic discard mechanism (DDL), which can train datasets of different accuracies simultaneously.  
 064 By leveraging a dynamic discard algorithm and an adaptive weighting mechanism, the framework  
 065 enhances the model’s prediction accuracy and generalization ability, effectively solving the mixed-  
 066 accuracy fusion problem.

067 The remainder of this paper is organized as follows: Section 2 reviews related work in this field;  
 068 Section 3 describes the data acquisition strategies and sources; Section 4 presents the DDL archi-  
 069 tectural design and various mechanisms; Section 5 shows the model results; and Section 6 discusses  
 070 the research findings and outlines future research directions.

## 072 2 RELATED WORK

074 Recent research has increasingly focused on strategies to address the challenges of integrating het-  
 075 erogeneous or uncertain datasets into predictive modeling.

077 **CNN–GAN–based methods** Methods combining Convolutional Neural Networks (CNNs) and  
 078 Generative Adversarial Networks (GANs) have been widely used to improve data quality and aug-  
 079 ment training samples. By learning high-level feature representations and generating realistic syn-  
 080 thetic samples, these approaches effectively mitigate the issue of insufficient training data and en-  
 081 hance model generalization. However, they typically assume a homogeneous data accuracy, often  
 082 performing poorly when there are systematic differences in the reliability of training samples(Zhang  
 083 et al., 2022b).

084 **U-Net with ConvLSTM architectures** To capture spatiotemporal dependencies in agricultural  
 085 and environmental applications, researchers have proposed hybrid models that fuse the U-Net archi-  
 086 tecture with Convolutional Long Short-Term Memory (ConvLSTM) modules. These models effec-  
 087 tively integrate sequential information with spatial context, leading to significant improvements in  
 088 tasks like crop monitoring. Nevertheless, their fusion process relies on a static architecture, lacking  
 089 a dynamic mechanism to adapt to variations in input data quality(Kamangir et al., 2025).

090 **Remote sensing data assimilation with SCE-UA** Another research path involves data assimila-  
 091 tion methods, such as utilizing optimization algorithms like the Shuffled Complex Evolution Al-  
 092 gorithm (SCE-UA) to combine remote sensing observations with process-driven models. These  
 093 approaches explicitly merge observations and simulated values, and can significantly enhance pre-  
 094 dictive accuracy, particularly when observations are sparse or noisy. However, they typically op-  
 095 erate within a deterministic optimization framework, lacking a mechanism to adaptively discard or  
 096 re-weight low-accuracy samples during training(Li et al., 2024).

097 **Dynamic Reweighting and Data Selection** While our work shares the goal of improving training  
 098 dynamics with methods like Population Based Augmentation (PBA) (Ho et al., 2019) and Sam-  
 099 ple Reweighting (Ren et al., 2018), there is a fundamental distinction necessitated by the nature  
 100 of mixed-accuracy scientific data. Traditional reweighting methods assign soft weights to high-loss  
 101 samples, effectively down-weighting outliers but retaining them in the optimization process. In the  
 102 context of simulations, high-error samples often represent systematic failures rather than aleatoric  
 103 noise. Retaining these samples, even with low weights, risks corrupting the feature manifold.

104 In contrast, DDL employs a hard Dynamic Discard mechanism. By completely removing samples  
 105 that persistently diverge from the high-accuracy distribution, DDL prevents the model from fitting  
 106 to systematic biases, offering a more robust solution for integrating heterogeneous scientific datasets  
 107 than augmentation or static reweighting strategies.

108 **3 DATA STRATEGY AND SOURCES**  
 109

110 The primary objective of this study is to enhance the predictive accuracy and generalization capa-  
 111 bility of the model to the greatest extent possible. However, during data collection, we identified  
 112 a pervasive challenge: the quality and quantity of the required data exhibit an inverse relationship,  
 113 resulting in two distinct types of data sources. To address this challenge, we propose an integrative  
 114 strategy that combines the use of both high-accuracy and low-accuracy data.

115 The central premise of our data strategy is to combine the complementary strengths of these two  
 116 sources—namely, the precision of high-accuracy data and the breadth of low-accuracy data—to  
 117 construct a more robust and high-performing predictive model.

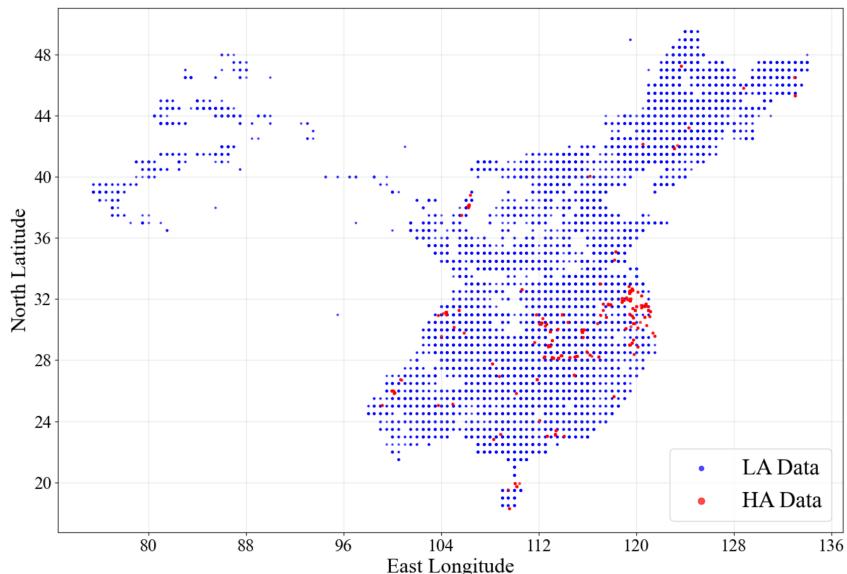
119 **3.1 HIGH-ACCURACY DATA: COLLECTED EMPIRICAL OBSERVATIONS**  
 120

121 We established a high-accuracy, field-scale rice yield dataset through systematic field observations  
 122 conducted between 2021 and 2024 across four major rice-growing regions. All data were collected  
 123 under standardized experimental protocols with rigorous quality control procedures, ensuring con-  
 124 sistency and reliability. In total, 704 observational records were obtained, providing a comprehen-  
 125 sive empirical basis for subsequent modeling and analysis.

127 **3.2 LOW-ACCURACY DATA: DNDC-BASED SIMULATIONS**  
 128

129 The DNDC (DeNitrification-DeComposition) model (Li et al., 1992) is a process-based biogeo-  
 130 chemical model of carbon and nitrogen dynamics in agroecosystems. By coupling microbial  
 131 metabolic processes with the soil’s physical environment, DNDC enables refined simulations of  
 132 C–N cycles in complex agricultural systems. In this study, we employed version 9.5 of the DNDC  
 133 model to simulate crop planting from paddy fields.

134 Soil property data and climate data obtained from the National Meteorological Science Data Center  
 135 (2024) were aggregated at a  $0.5^\circ$  resolution into a format compatible with DNDC input requirements.  
 136 We then ran the DNDC model in Region Mode, the simulation outputs include process-level crop  
 137 growth data. From these results, we selected key variables including latitude/longitude, SOC, clay  
 138 content, pH, bulk density (BD), average temperature, precipitation, irrigation, nitrogen application,  
 139 crop type, and yield. In total, we obtained 43447 simulated records.



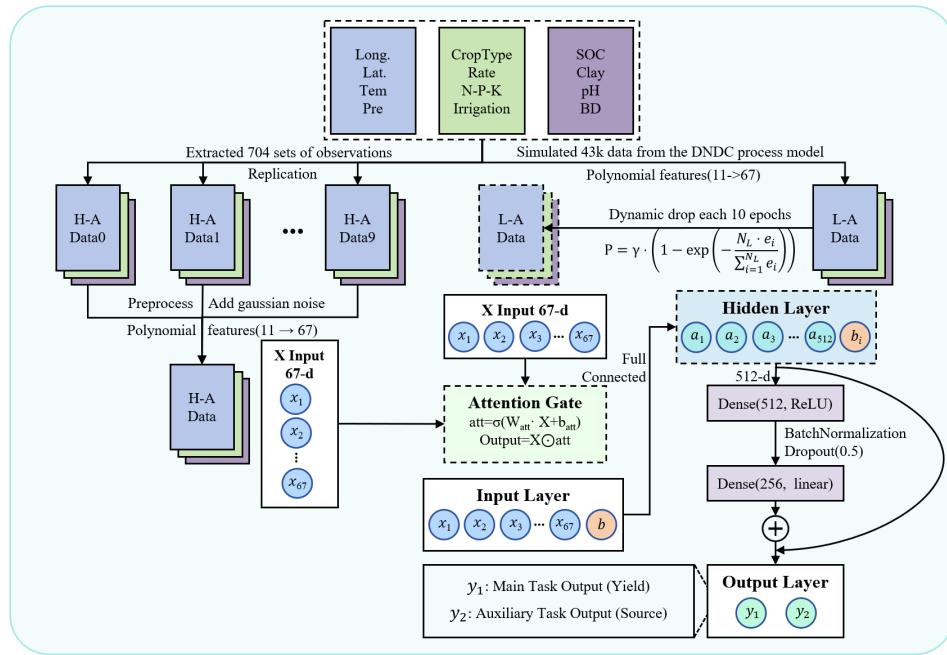
160 **Figure 1: Mixed-accuracy datasets distribution**  
 161

162 4 METHODS  
163164 4.1 NOTATION AND PROBLEM SETTING  
165

166 This study addresses the problem of joint prediction by leveraging a small-sample, high-accuracy  
167 dataset and a large-sample, low-accuracy dataset. Let  $D^H = \{(x_i^H, y_i^H)\}_{i=1}^{n_H}$  and  $D^L =$   
168  $\{(x_i^L, y_i^L)\}_{i=1}^{n_L}$  denote the high-accuracy (collected) data and the low-accuracy (simulated) data re-  
169 spectively. Here,  $x_i$  represents an 11-dimensional feature vector: **Longitude**, **Latitude**, **Tem** (tem-  
170 **perature**), **Pre** (precipitation), **rate** (fertilizer application **N** rate), **SOC** (soil organic carbon), **Clay**  
171 (**clay content**), **pH** (soil pH), **BD** (soil bulk density), **irrigation**, and **CropType** and  $y_i$  is the target  
172 variable, **Yield** (rice yield per mu). The dataset sizes are  $n_H = 704$  and  $n_L = 43,447$ . Our primary  
173 objective is to achieve superior predictive accuracy on a test set partitioned from the high-accuracy  
174 dataset, while also maximizing the model’s generalization capability. **In our pipeline the high-ac-**  
175 **curacy dataset was split prior to model training: 20% of  $D^H$  were reserved as a final, held-out test**  
176 **set, 20% of the remaining high-accuracy samples were used as a validation set, and the remainder**  
177 **were used for training (all random splits used seed 42).** The two datasets therefore share the same  
178 **feature / label schema but differ in measurement accuracy and noise characteristics.** The held-out  
179  **$D^H$  test subset was not used in any way during training, dynamic discard procedures, or adaptive**  
180 **weight tuning.**

182 4.2 ARCHITECTURE AND TECHNICAL DESIGN OF THE DDL FRAMEWORK  
183

184 As illustrated in Figure 1, we propose the DDL architecture, which consists of an input layer, a  
185 **Feature Attention Gating Module**, a **Modified Residual Block**, a fully connected layer, and a  
186 multi-task output layer. The model incorporates a **dynamic dropout mechanism** and **adaptive**  
187 **dynamic weights**. The specific technical principles of these components are detailed below.



211 Figure 2: **Schematic overview of the DDL framework.** The architecture comprises a Feature Atten-  
212 **Gation Module for input reweighting, Modified Residual Blocks to mitigate gradient vanishing,**  
213 **and a multi-task output layer. The Dynamic Discard mechanism and Adaptive Dynamic Weights**  
214 **operate during training to filter noise and balance task losses.**

216 4.2.1 DYNAMIC DISCARD STRATEGY  
217

218 The core mechanism of our model is the **Dynamic Discard (DD) strategy**, which is not a static  
219 data cleaning process performed before training. Instead, it is a progressive filtering mechanism that  
220 evaluates and discards low-accuracy data samples during the training process based on the model’s  
221 current predictive performance, thereby gradually filtering out noisy data.

222 Specifically, at epoch  $t$ , with current model parameters  $\theta_t$ , we first perform a forward pass on all  
223 low-accuracy data samples in  $D^L = \{(x_i^L, y_i^L)\}_{i=1}^{N_L}$  to obtain their primary task (yield prediction)  
224 predictions,  $\hat{y}_i^L = f_{\theta_t}(x_i^L)$ . We then calculate the absolute prediction error  $e_i = |\hat{y}_i^L - y_i^L|$  for each  
225 low-accuracy sample.

226 To ensure the discard threshold adapts to the model’s performance at different training stages, we  
227 compute the Mean Absolute Error (MAE) (Hodson, 2022) of all low-accuracy samples in the current  
228 batch as a dynamic baseline:

$$229 MAE_t = \frac{1}{n_L} \sum_{i=1}^{n_L} |\hat{y}_i^L - y_i^L|$$

230 Next, we normalize each sample’s error to obtain a deviation metric relative to the model’s current  
231 average performance:  $\tilde{e}_i = e_i / MAE_t$ .

232 Based on this deviation, we calculate a dynamic discard probability  $P_i$  for each sample, determined  
233 by an exponential decay function:

$$234 P_i = \gamma \cdot (1 - \exp(-\tilde{e}_i))$$

235 where  $\gamma$  is a base discard probability factor that controls the steepness of the probability curve,  
236 thereby regulating the penalty on high-error samples. Finally, a Bernoulli sampling process (Yu  
237 et al., 2022) determines whether the sample is kept: a random number  $r$  is generated in the range  
238  $[0, 1]$ . If  $r < P_i$ , the sample is discarded; otherwise, it is retained for the current and subsequent  
239 gradient updates.

240 This process can be conceptualized as a filtering operator  $\mathcal{D}_t$  that acts on the low-accuracy dataset,  
241 outputting a filtered subset:

$$242 \mathcal{D}_t(\{(x_i^L, y_i^L)\}) = \{(x_j^L, y_j^L) \mid r_j \geq p_j\}$$

243 This subset is then combined with the high-accuracy data  $D^H$  to form the training data for epoch  
244  $t$ . Through this mechanism, the model can initially leverage the large volume of low-accuracy data  
245 to quickly learn general features. With advancing training and enhanced model performance, the  
246 DD mechanism adopts a more stringent approach, systematically filtering out low-quality samples  
247 that persistently yield high errors and are likely indicative of noise or substantial divergence from  
248 the true distribution. This allows the model to later focus on refining its predictive capabilities using  
249 higher-quality data, effectively preventing the negative influence of low-quality data and achieving  
250 a dynamic balance between data quality and quantity.

251 In summary, the dynamic discard probability formula of the proposed model is:

$$252 P_i = \gamma \cdot \left( 1 - \exp \left( \frac{-N_L \cdot e_i}{\sum_{j=1}^{N_L} e_j} \right) \right)$$

253 4.2.2 FEATURE ATTENTION GATING MODULE AND REGULARIZATION  
254

255 The model’s input layer receives 11 types of features, including soil parameters, meteorological  
256 factors, and crop data. To enhance the importance of features highly correlated with the target variable,  
257 we designed a trainable **Feature Attention Gating Module** (Meng et al., 2022; Dhingra et al.,  
258 2016). This module uses fully connected layers (Basha et al., 2020) to perform dynamic feature  
259 weighting at the input layer, unlike the more computationally expensive self-attention mechanism,  
260 ensuring core features play a primary role in the final prediction.

261 The mathematical formulation is as follows:

$$262 \text{att} = \sigma(W_{\text{att}} \cdot x + b_{\text{att}})$$

output =  $x \odot \text{att}$

where  $\sigma$  is the attention gate vector,  $W_{\text{att}}$  and  $b_{\text{att}}$  are trainable parameters, and  $\odot$  denotes element-wise multiplication.

To prevent model overfitting, we introduce L2 regularization (Van Laarhoven, 2017), which modifies the total objective function to:

$$\mathcal{L}_{req} = \mathcal{L} + \lambda \left\| W_{att} \right\|_F^2$$

where  $\lambda = 10^{-4}$  is the regularization coefficient and  $\|\cdot\|_F$  is the Frobenius norm of the weight matrices. This regularization term can be interpreted as a Gaussian prior on the weight parameters, ensuring that the attention weights do not become overly concentrated on a few features.

### 4.2.3 MODIFIED RESIDUAL BLOCK

To address the issue of **gradient vanishing** in deep networks (Tan & Lim, 2019), we designed a modified residual block structure (Zhang et al., 2017; Tang et al., 2024). Each block consists of two fully connected layers: the first employs a **ReLU** activation function (He et al., 2018) to introduce non-linearity, while the second uses a linear activation to maintain numerical stability. A skip connection then adds the block's input to its output.

The mathematical expression is as follows:

$$x^{(l+1)} = g\left(x^{(l)}\right) + \mathcal{F}\left(x^{(l)}\right)$$

where  $g(x^{(l)})$  is a dimension-adapting function that acts as an identity mapping when the input dimension  $\dim(x^{(l)})$  matches the target output dimension  $d_{\text{out}}$ ; otherwise, it performs a dimensionality transformation via a projection matrix  $W_s$ :

$$g\left(x^{(l)}\right) = \begin{cases} x^{(l)}, & \text{if } \dim(x^{(l)}) = d_{\text{out}} \\ W_s x^{(l)} + b_s, & \text{otherwise} \end{cases}$$

The residual function  $\mathcal{F}(x^{(l)})$  is implemented with two fully connected layers, and its computational flow is given by the following equation:

$$\mathcal{F}(x^{(l)}) = W_2^{(l)} \cdot z_3 + b_2^{(l)}$$

where  $z_3$  is an intermediate variable computed as follows:

$$z_1 = \delta_{\text{ReLU}} \left( W_1^{(l)} x^{(l)} + b_1^{(l)} \right)$$

$$z_2 = \text{BN}(z_1)$$

$$z_3 = \text{Dropout}(z_2)$$

Here,  $\delta_{\text{ReLU}}$  denotes the ReLU activation function. We constructed these identity mapping paths within the 512- and 256-dimensional hidden layers. This allows gradients to be passed directly to the shallower layers during backpropagation, effectively mitigating the vanishing gradient problem. Combined with **Dropout**, this structure also provides a strong regularization effect.

#### 4.2.4 ADAPTIVE DYNAMIC WEIGHTS

To enable the model to learn high-accuracy predictions from the small dataset while simultaneously improving its generalization from the large dataset, we designed a framework with **adaptive dynamic weights** (Yang et al., 2022; Xiao & Zhang, 2021; Cao et al., 2023). This approach dynamically balances the loss weights between the main task (regression prediction) and an auxiliary task (data source classification).

The multi-task learning framework consists of a main task (predicting the target variable via regression) and an auxiliary task (predicting the data source as a binary classification task). The overall loss function is defined as:

$$f_{total} \equiv \alpha \cdot f_{main} + (1 - \alpha) \cdot f_{aux}$$

324 where  $\alpha$  is a dynamic weighting coefficient,  $\mathcal{L}_{\text{main}}$  is the mean squared error (MSE) loss, and  $\mathcal{L}_{\text{aux}}$  is  
 325 the classification cross-entropy loss:

$$327 \quad L_{\text{main}} = \frac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2$$

$$330 \quad \mathcal{L}_{\text{aux}} = -\frac{1}{N} \sum_{i=1}^N [s_i \log(\hat{s}_i) + (1 - s_i) \log(1 - \hat{s}_i)]$$

333 The initial value of  $\alpha$  is set to 0.4 and is increased exponentially with each epoch, up to a specified  
 334 limit. This mechanism ensures that the model initially leverages the classification task to enhance  
 335 its generalization, then later focuses on optimizing predictive accuracy as the main task's influence  
 336 increases. The dynamic weight update mechanism is as follows:

$$337 \quad \alpha_{\text{epoch}+1} = \max(0.4, \min(0.8, \alpha_{\text{epoch}} \times 1.005))$$

## 339 5 RESULT

### 341 5.1 EXPERIMENTAL RESULTS AND DISCUSSION

343 The experimental results demonstrate that the proposed DDL framework significantly outperforms  
 344 existing mainstream methods for the rice yield prediction task. As shown in Table 1, DDL exhibits  
 345 superior performance across all four metrics: MAE, RMSE, R<sup>2</sup>, and MAPE, surpassing traditional  
 346 machine learning models (e.g., XGBoost, Random Forest), process-based models (e.g., DNDC), and  
 347 domain-specific hybrid architectures (e.g., CNN+GAN, Remote Sensing Assimilation + SCE-UA).  
 348 The framework achieves an approximate 10% improvement on these metrics, with the predictive R<sup>2</sup>  
 349 value reaching 0.68. This strong agreement between predicted and observed yields is further visual-  
 350 ized in the scatter plot of Figure 3, where most samples cluster closely around the fitted regression  
 351 line, particularly in the mid-to-high yield range.

352 Table 1: Performance Comparison of Various Models on Regression Tasks

| 354 Model                    | MAE ↓         | RMSE ↓         | R <sup>2</sup> ↑ | MAPE ↓        | Reference                    |
|------------------------------|---------------|----------------|------------------|---------------|------------------------------|
| <b>355 ML Model</b>          |               |                |                  |               |                              |
| 356 Gradient Boosting R      | 1001.96       | 1287.90        | 0.6348           | 0.1648        | (Friedman, 2001)             |
| 357 LightGBM                 | 1011.40       | 1316.29        | 0.6186           | 0.1678        | (Ke et al., 2017)            |
| 358 Random Forest            | 1076.34       | 1436.98        | 0.5454           | 0.1754        | (Breiman, 2001)              |
| 359 XGBoost Regression       | 1064.40       | 1388.34        | 0.5757           | 0.1750        | (Chen & Guestrin, 2016)      |
| 360 <b>GPR</b>               | 1296.37       | 1808.19        | 0.3381           | 0.2098        | (Rasmussen & Williams, 2006) |
| <b>MHA-MLP</b>               | 1115.07       | 1496.70        | 0.5465           | 0.1767        | -                            |
| <b>361 Related Work</b>      |               |                |                  |               |                              |
| 362 CNN+GAN                  | 1115.56       | 1637.84        | 0.3587           | 0.2026        | (Zhang et al., 2022b)        |
| 363 UNet-ConvLSTM            | 1075.91       | 1357.26        | 0.5497           | 0.1672        | (Kamangir et al., 2025)      |
| 364 <b>PBA-ResNet</b>        | 1082.35       | 1462.31        | 0.4823           | 0.1612        | (He et al., 2016)            |
| 365 <b>PBA-MLP</b>           | 1108.91       | 1642.98        | 0.4535           | 0.1635        | (Ho et al., 2019)            |
| <b>Broad Learning System</b> | 1160.32       | 1559.85        | 0.5074           | 0.1815        | (Liu & Chen, 2018)           |
| <b>366 Process Model</b>     |               |                |                  |               |                              |
| 367 DNDC Model               | 1439.35       | 1754.55        | 0.2910           | 8.7361        | (Li et al., 1992)            |
| <b>368 DDL Model</b>         |               |                |                  |               |                              |
| 369 Ours                     | <b>852.30</b> | <b>1212.14</b> | <b>0.6837</b>    | <b>0.1424</b> | -                            |

### 371 5.2 ABLATION STUDY

373 An ablation study was conducted to validate the necessity and effectiveness of each component  
 374 within the DDL framework. The results confirm that the absence of any single component leads  
 375 to a decline in model performance. Specifically, a "single-accuracy" version of the model trained  
 376 exclusively on the high-accuracy data demonstrated significantly limited performance. Similarly,  
 377 models that did not employ the **dynamic discard mechanism** during mixed-precision training or  
 those that used a static weighting strategy in place of the **adaptive dynamic weights** both performed

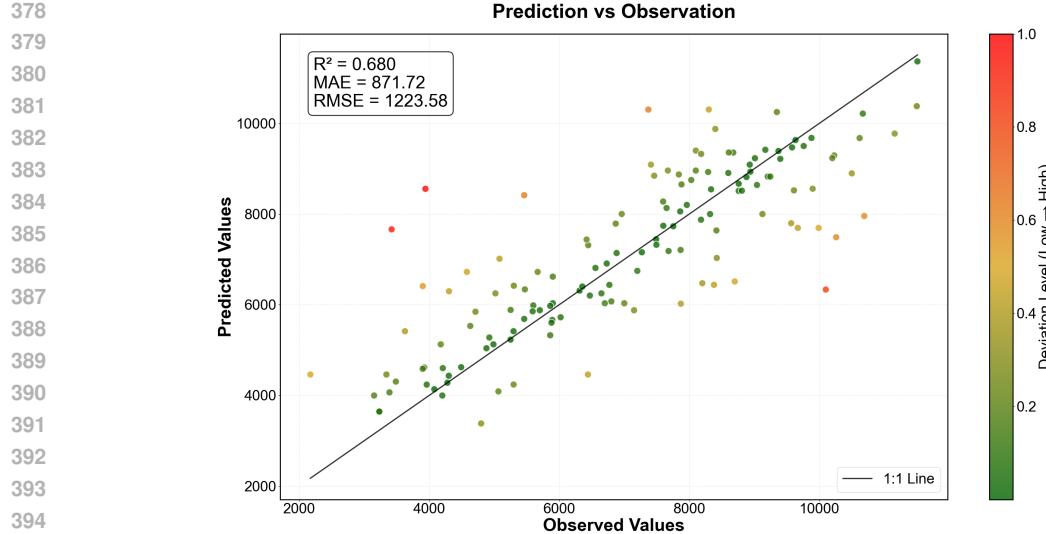


Figure 3: Scatter plot of predicted versus observed rice yield values. Each point corresponds to a sample, with its color indicating the absolute deviation from the fitted regression line: green denotes close agreement (small error), gradually transitioning to red for larger deviations (poor agreement)

worse than the complete framework. These findings in Table 2 suggest that static data fusion or the unfiltered use of low-accuracy data fails to effectively suppress noise interference. The synergistic design of the **dynamic discard** and **adaptive dynamic weights** is, therefore, crucial for DDL’s ability to achieve high-precision predictions. The results of the ablation study fully validate the necessity and efficacy of the proposed mechanisms in fusing mixed-precision data.

Table 2: Ablation Study of the DDL Framework

| Model                     | MAE ↓         | RMSE ↓         | R <sup>2</sup> ↑ | MAPE ↓        |
|---------------------------|---------------|----------------|------------------|---------------|
| <b>ML Model</b>           |               |                |                  |               |
| Gradient Boosting R       | 1001.96       | 1287.90        | 0.6348           | 0.1648        |
| <b>Related Work</b>       |               |                |                  |               |
| UNet-ConvLSTM             | 1075.91       | 1357.26        | 0.5497           | 0.1672        |
| <b>Process Model</b>      |               |                |                  |               |
| DNDC Model                | 1439.35       | 1754.55        | 0.2910           | 8.7361        |
| <b>DDL Model</b>          |               |                |                  |               |
| Ours(High-Accuracy Only)  | 958.62        | 1335.92        | 0.6158           | 0.1602        |
| Ours(w/o Dynamic Discard) | 887.10        | 1273.89        | 0.6506           | 0.1477        |
| Ours(w/ Static Weighting) | 870.31        | 1249.90        | 0.6637           | 0.1439        |
| Ours(Full)                | <b>852.30</b> | <b>1212.14</b> | <b>0.6837</b>    | <b>0.1424</b> |

### 5.3 GENERALIZATION ABILITY

**Cross-Species Transfer** To assess the generalization ability of our proposed DDL approach beyond rice, we conducted cross-species experiments on Wheat and Maize. For Wheat we further collected a high-accuracy dataset of 500 samples and a low-accuracy dataset of 52,450 samples; for Maize the high-accuracy dataset contains 567 samples and the low-accuracy dataset contains 38,492 samples. We retrained and evaluated our full DDL model on each species and compared its predictive performance against a broad set of baselines. Tables 8 and 9 summarize the results for each method. From the results shown in these tables, it’s evident that—even when evaluated on other crops—our DDL model remains highly competitive.

**Sparse-Region Generalization** To evaluate model robustness across regions with varying data densities, we designed a validation experiment based on spatial grid partitioning. Specifically, the geographic space was divided into grids with a resolution of  $1^\circ \times 1^\circ$  in both latitude and longitude,

432 Table 3: All Performance Comparison of Various Models on Regression Tasks for Wheat  
433

| 434 Model                 | 435 MAE ↓          | 436 RMSE ↓         | 437 R <sup>2</sup> ↑ | 438 MAPE ↓        | 439 Reference          |
|---------------------------|--------------------|--------------------|----------------------|-------------------|------------------------|
| <b>ML Models</b>          |                    |                    |                      |                   |                        |
| 440 Gradient Boosting R   | 441 1143.22        | 442 1576.82        | 443 0.4907           | 444 0.2698        | 445 (Friedman, 2001)   |
| 446 LightGBM              | 447 <b>1061.73</b> | 448 1445.15        | 449 <b>0.5722</b>    | 450 0.2651        | 451 (Ke et al., 2017)  |
| 452 MHA-MLP               | 453 1200.85        | 454 1579.87        | 455 0.4802           | 456 0.2707        | 457 -                  |
| <b>Related Work</b>       |                    |                    |                      |                   |                        |
| 458 PBA-MLP               | 459 1134.83        | 460 1508.56        | 461 0.4750           | 462 0.2638        | 463 (Ho et al., 2019)  |
| 464 Broad Learning System | 465 1197.73        | 466 1613.30        | 467 0.4580           | 468 0.2839        | 469 (Liu & Chen, 2018) |
| <b>DDL Model</b>          |                    |                    |                      |                   |                        |
| 470 Ours(Full)            | 471 1118.22        | 472 <b>1434.27</b> | 473 0.5590           | 474 <b>0.2641</b> | 475 -                  |

445 Table 4: All Performance Comparison of Various Models on Regression Tasks for Maize  
446

| 447 Model                 | 448 MAE ↓          | 449 RMSE ↓         | 450 R <sup>2</sup> ↑ | 451 MAPE ↓        | 452 Reference          |
|---------------------------|--------------------|--------------------|----------------------|-------------------|------------------------|
| <b>ML Models</b>          |                    |                    |                      |                   |                        |
| 453 Gradient Boosting R   | 454 1513.57        | 455 2013.99        | 456 <b>0.6838</b>    | 457 0.3206        | 458 (Friedman, 2001)   |
| 459 LightGBM              | 460 1506.19        | 461 2032.21        | 462 0.6781           | 463 0.3251        | 464 (Ke et al., 2017)  |
| 465 Random Forest         | 466 1561.46        | 467 2063.54        | 468 0.6681           | 469 0.3350        | 470 (Breiman, 2001)    |
| <b>Related Work</b>       |                    |                    |                      |                   |                        |
| 471 PBA-MLP               | 472 2115.14        | 473 2706.12        | 474 0.3155           | 475 0.6853        | 476 (Ho et al., 2019)  |
| 477 Broad Learning System | 478 1672.19        | 479 2335.77        | 480 0.3393           | 481 <b>0.2178</b> | 482 (Liu & Chen, 2018) |
| <b>DDL Model</b>          |                    |                    |                      |                   |                        |
| 483 Ours (Full)           | 484 <b>1382.21</b> | 485 <b>1847.46</b> | 486 <b>0.6735</b>    | 487 0.2542        | 488 -                  |

459 and the density of both high- and low-accuracy data within each grid was quantified. Based on these  
460 densities, we constructed different testing scenarios (Table ??).  
461

462 As shown in the results, reducing the quantity of high-accuracy data (transitioning from Case A  
463 to Case B) results in a moderate performance decrease, with  $R^2$  dropping from 0.7480 to 0.7115.  
464 While this indicates that high-accuracy data contributes to refining predictions, the model main-  
465 tains a relatively high performance level. In stark contrast, limiting the availability of low-accuracy  
466 data (Case C) leads to a substantial deterioration in performance ( $R^2$  plummets to 0.2644), even  
467 when high-accuracy data is abundant. These findings refute the notion that high-accuracy data alone  
468 is sufficient for broad generalization and underscore that the massive low-accuracy dataset acts as  
469 a critical stabilizer, enabling the DDL framework to generalize effectively even in regions where  
470 empirical observations are sparse.  
471

472 Table 5: Generalization Ability of the DDL Framework  
473

| 474 Data Configuration | 475 MAE ↓   | 476 RMSE ↓  | 477 R <sup>2</sup> ↑ | 478 MAPE ↓ |
|------------------------|-------------|-------------|----------------------|------------|
| 479 Case A             | 480 810.27  | 481 1091.62 | 482 0.7480           | 483 0.1308 |
| 484 Case B             | 485 616.35  | 486 867.91  | 487 0.7115           | 488 0.0835 |
| 489 Case C             | 490 1386.74 | 491 1944.45 | 492 0.2644           | 493 0.2649 |
| 494 Case D             | 495 -       | 496 -       | 497 -                | 498 -      |

499 **Note:** Grids were ranked by the **density of high-accuracy samples**.

500 - **Top 50%**: Regions with high density of empirical observations (Data-Rich).

501 - **Bottom 50%**: Regions with low density of empirical observations (Data-Sparse).

502 *Configuration Details:*

503 - **Case A**: Full low-accuracy data + High-accuracy data from Top 50% regions.

504 - **Case B**: Full low-accuracy data + High-accuracy data from Bottom 50% regions.

505 - **Case C**: Sparse low-accuracy data + High-accuracy data from Top 50% regions.

506

486 5.4 SENSITIVITY TO NOISE IN LOW-ACCURACY DATA  
487488 To test whether the predictive accuracy of our DDL model is tightly constrained by the quality of the  
489 low-accuracy dataset, we injected zero-mean Gaussian noise into the low-accuracy data at relative  
490 magnitudes of 0%, 10%, 20%, 30% and 40% (noise standard deviation expressed as a fraction of the  
491 original signal standard deviation). We retrained and evaluated the full DDL model under each noise  
492 condition and compared its  $R^2$  against representative baselines. Results in Table 6 show that even  
493 with 20% Gaussian noise the DDL model outperforms the strongest baselines, indicating limited  
494 sensitivity to simulation noise in the low-accuracy source.  
495496 Table 6: Robustness to Noise Injected into Low-Accuracy Data ( $R^2$ )  
497

| 498 Model / Condition                                             | 499 $R^2 \uparrow$ | 500 Reference           |
|-------------------------------------------------------------------|--------------------|-------------------------|
| <b>501 Machine-Learning Baselines</b>                             |                    |                         |
| 502 Gradient Boosting Regression                                  | 0.6348             | (Friedman, 2001)        |
| 503 LightGBM                                                      | 0.6186             | (Ke et al., 2017)       |
| 504 XGBoost Regression                                            | 0.5757             | (Chen & Guestrin, 2016) |
| <b>505 Related Work</b>                                           |                    |                         |
| 506 UNet-ConvLSTM                                                 | 0.5497             | (Kamangir et al., 2025) |
| 507 Broad Learning System                                         | 0.5074             | (Liu & Chen, 2018)      |
| <b>508 DDL (Ours) — noise levels applied to low-accuracy data</b> |                    |                         |
| 509 Ours (0% noise)                                               | <b>510 0.6837</b>  | -                       |
| 511 Ours (10% noise)                                              | <b>0.6681</b>      | -                       |
| 512 Ours (20% noise)                                              | <b>0.6452</b>      | -                       |
| 513 Ours (30% noise)                                              | 0.6134             | -                       |
| 514 Ours (40% noise)                                              | 0.5662             | -                       |

515 6 CONCLUSION AND FUTURE WORK  
516517 This study proposes a Deep Learning framework with Dynamic Dropping mechanism, designed to  
518 achieve a deep and organic integration of large-scale low-accuracy datasets with small-scale high-  
519 accuracy datasets. The framework provides an effective solution for further improving both the  
520 accuracy and generalization ability of crop yield prediction models. At its core, DDL introduces a  
521 dynamic dropping strategy, which contrasts with traditional static data-cleaning approaches that dis-  
522 card noisy samples or retain uninformative data prior to training (Ashfaq et al., 2025). By embedding  
523 data handling as a continuous, dynamic process throughout training, DDL enhances generalization  
524 and stability on high-accuracy test sets. This strategy mitigates the inherent trade-off between data  
525 quantity and data quality, reducing the reliance on stringent requirements for high-quality datasets.  
526 Consequently, training with heterogeneous data sources becomes more reliable in domains such as  
527 agriculture and industry, where access to high-quality data is limited (Paudel et al., 2022).528 Despite these promising results, three directions remain for further exploration. Firstly, the dropping  
529 strategy in this work primarily relies on absolute prediction error, without accounting for intrinsic  
530 data distribution characteristics. Future research may incorporate distributional differences between  
531 datasets when estimating dropping probabilities (Egele et al., 2024). Secondly, the current weight  
532 adjustment scheme follows a linear schedule. Although it alleviates the need for manual weight tun-  
533 ing and provides some adaptivity, it lacks adjustments based on real-time training dynamics. Closing  
534 this loop through validation-based feedback mechanisms would be critical for further improving pre-  
535 dictive accuracy (Caljon et al., 2025). Eventually, while this study focuses on rice yield prediction  
536 in agriculture, the proposed framework could be extended to other domains, offering a generalizable  
537 solution for integrating heterogeneous data and enhancing model generalization (Zhang et al., 2025).538 In summary, the DDL framework presents a practical approach to jointly train on small high-ac-  
539 curacy and large low-accuracy datasets; empirical results on crop yield tasks show consistent im-  
540 provements over examined baselines. While these results are encouraging, we avoid broad claims  
541 about universal generalizability and instead emphasize that DDL is a promising mechanism whose  
542 applicability to other domains should be explored in future work.

## 540 REFERENCES

542 Yaganteeswarudu Akkem, Saroj Kumar Biswas, and Aruna Varanasi. Smart farming using artificial  
543 intelligence: A review. *Engineering Applications of Artificial Intelligence*, 120:105899, 2023.  
544 ISSN 0952-1976. doi: 10.1016/j.engappai.2023.105899.

545 M. Ashfaq, I. Khan, D. Shah, et al. Predicting wheat yield using deep learning and multi-source  
546 environmental data. *Scientific Reports*, 15:26446, 2025. doi: 10.1038/s41598-025-11780-7.

547 S. S. Basha, S. R. Dubey, V. Pulabaigari, and S. Mukherjee. Impact of fully connected layers on  
548 performance of convolutional neural networks for image classification. *Neurocomputing*, 378:  
549 112–119, 2020.

550 Bruno Basso and Li Liu. Seasonal crop yield forecast: Methods, applications, and accuracies.  
551 *Advances in Agronomy*, 154:201–255, 2019.

553 Leo Breiman. Random forests. *Machine Learning*, 45(1):5–32, 2001.

554 Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. *Classification and Regression  
555 Trees*. Wadsworth, Belmont, CA, 1984.

557 Daan Caljon, Jeff Vercauteren, Simon De Vos, Wouter Verbeke, and Jente Van Belle. Using dynamic  
558 loss weighting to boost improvements in forecast stability. *International Journal of Forecasting*,  
559 2025. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2025.07.002.

560 Yuting Cao, Linhao Zhao, Qishui Zhong, Shiping Wen, Kaibo Shi, Jianying Xiao, and Tingwen  
561 Huang. Adaptive fixed-time output synchronization for complex dynamical networks with multi-  
562 weights. *Neural Networks*, 163:28–39, 2023. ISSN 0893-6080. doi: 10.1016/j.neunet.2023.03.  
563 032.

564 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the  
565 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp.  
566 785–794, 2016.

568 B. Dhingra, H. Liu, Z. Yang, W. W. Cohen, and R. Salakhutdinov. Gated-attention readers for text  
569 comprehension, 2016.

570 Harris Drucker, Christopher JC Burges, Linda Kaufman, Alexander Smola, and Vladimir Vapnik.  
571 Support vector regression machines. In *Advances in Neural Information Processing Systems*,  
572 volume 9, 1996.

574 Romain Egele, Felix Mohr, Tom Viering, and Prasanna Balaprakash. The unreasonable effectiveness  
575 of early discarding after one epoch in neural network hyperparameter optimization. *Neurocom-  
576 puting*, 597:127964, 2024. ISSN 0925-2312. doi: 10.1016/j.neucom.2024.127964.

577 Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. *Annals of  
578 Statistics*, pp. 1189–1232, 2001.

580 Jingjing Gao and Xiangpeng Xie. A weighted switching sequence optimization algorithm for static  
581 output feedback control synthesis of nonlinear systems. *Applied Mathematics and Computation*,  
582 489:129152, 2025. ISSN 0096-3003. doi: 10.1016/j.amc.2024.129152.

583 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016.

584 Dianchen Han, Peijuan Wang, Junxian Tang, Yang Li, Qi Wang, and Yuping Ma. Enhancing crop  
585 yield forecasting performance through integration of process-based crop model and remote sens-  
586 ing data assimilation techniques. *Agricultural and Forest Meteorology*, 372:110696, 2025. ISSN  
587 0168-1923. doi: 10.1016/j.agrformet.2025.110696.

588 J. He, L. Li, J. Xu, and C. Zheng. ReLU deep neural networks and linear finite elements, 2018.

589 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning  
590 for image recognition. In *Proceedings of the IEEE Conference on Computer Vision  
591 and Pattern Recognition (CVPR)*, pp. 770–778. IEEE, 2016. doi: 10.1109/CVPR.2016.  
592 90. URL [https://openaccess.thecvf.com/content\\_cvpr\\_2016/html/He\\_Deep\\_Residual\\_Learning\\_CVPR\\_2016\\_paper.html](https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html).

594 Daniel Ho et al. Population based augmentation: Efficient learning of augmentation policy sched-  
 595 ules. In *International Conference on Machine Learning*, pp. 2731–2741. PMLR, 2019.  
 596

597 T. O. Hodson. Root mean square error (RMSE) or mean absolute error (MAE): When to use them  
 598 or not. *Geoscientific Model Development Discussions*, pp. 1–10, 2022.

599 Hamid Kamangir, Brent S. Sams, Nick Dokoozlian, Luis Sanchez, and J. Mason Earles. Predict-  
 600 ing crop yield lows through the highs via binned deep imbalanced regression: A case study on  
 601 vineyards. *International Journal of Applied Earth Observation and Geoinformation*, 139:104536,  
 602 2025. ISSN 1569-8432. doi: 10.1016/j.jag.2025.104536.

603 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-  
 604 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In *Advances in Neural*  
 605 *Information Processing Systems*, volume 30, 2017.

606 Pei Lai, Michael Marshall, Roshanak Darvishzadeh, et al. Characterizing crop productivity under  
 607 heat stress using MODIS data. *Agricultural and Forest Meteorology*, 355:110116, 2024.

609 Romain Lecerf, Andrej Ceglar, Raúl López-Lozano, et al. Assessing the information in crop model  
 610 and meteorological indicators to forecast crop yield over Europe. *Agricultural Systems*, 168:  
 611 191–202, 2019.

613 Changsheng Li, Steve Frolking, and T. A. Frolking. A model of nitrous oxide evolution from soil  
 614 driven by rainfall events: The DNDC model. *Journal of Geophysical Research: Atmospheres*, 97  
 615 (D9):9757–9776, 1992.

616 Qiang Li, Maofang Gao, Sibo Duan, Guijun Yang, and Zhao-Liang Li. Integrating remote sensing  
 617 assimilation and SCE-UA to construct a grid-by-grid spatialized crop model can dramatically  
 618 improve winter wheat yield estimate accuracy. *Computers and Electronics in Agriculture*, 227:  
 619 109594, 2024. ISSN 0168-1699. doi: 10.1016/j.compag.2024.109594.

620 C. L. Liu and C. L. Philip Chen. Broad learning system: An effective and efficient incremental  
 621 learning system without the need for deep architecture. *IEEE Transactions on Neural Networks*  
 622 and *Learning Systems*, 29(1):10–24, January 2018.

624 Q. Meng, M. Zhao, L. Zhang, W. Shi, C. Su, and L. Bruzzone. Multilayer feature fusion network  
 625 with spatial attention and gated mechanism for remote sensing scene classification. *IEEE Geo-  
 626 science and Remote Sensing Letters*, 19:1–5, 2022.

627 National Meteorological Science Data Center. National meteorological science data center. <https://data.cma.cn>, 2024. Accessed: September 2024.

630 D. R. Paudel, D. Marcos Gonzalez, A. J. W. de Wit, H. L. Boogaard, and I. N. Athanasiadis. A  
 631 weakly supervised framework for high-resolution crop yield forecasts, 2022. Paper presented at  
 632 ICLR 2022.

633 Carl Edward Rasmussen and Christopher K. I. Williams. *Gaussian Processes for Machine Learning*,  
 634 volume 2. MIT Press, Cambridge, MA, USA, 2006.

636 Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for  
 637 robust deep learning. In *Proceedings of the 35th International Conference on Machine Learning*,  
 638 volume 80 of *Proceedings of Machine Learning Research*, pp. 4331–4340. PMLR, 2018. URL  
 639 <http://proceedings.mlr.press/v80/ren18a.html>.

640 George AF Seber and Alan J Lee. *Linear Regression Analysis*. John Wiley & Sons, 2nd edition,  
 641 2012.

642 Guan Shuai and Bruno Basso. Subfield maize yield prediction improves when in-season crop water  
 643 deficit is included in remote sensing imagery-based models. *Remote Sensing of Environment*, 272:  
 644 112938, 2022.

646 H. H. Tan and K. H. Lim. Vanishing gradient mitigation with deep learning neural network optimiza-  
 647 tion. In *2019 7th International Conference on Smart Computing & Communications (ICSCC)*,  
 pp. 1–4. IEEE, 2019.

648 Wentao Tang, Xianhuan Wen, Miao Li, Yuqi Chen, and Zelin Hu. ResiAdvNet: A named entity  
 649 recognition model for potato diseases and pests based on progressive residual structures and  
 650 adversarial training. *Computers and Electronics in Agriculture*, 227:109543, 2024. ISSN 0168-  
 651 1699. doi: 10.1016/j.compag.2024.109543.

652 T. Van Laarhoven. L2 regularization versus batch and weight normalization, 2017.

654 N. Xiao and L. Zhang. Dynamic weighted learning for unsupervised domain adaptation. In *Pro-  
 655 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15242-  
 656 15251, 2021.

657 D. Yang, C. Su, H. Wu, X. Xu, and X. Zhao. Construction of novel self-adaptive dynamic window  
 658 approach combined with fuzzy neural network in complex dynamic environments. *IEEE Access*,  
 659 10:104375-104383, 2022.

661 F. Yu, Z. Xu, C. Liu, D. Stamoulis, D. Wang, Y. Wang, and X. Chen. AntiDoteX: Attention-based  
 662 dynamic optimization for neural network runtime efficiency. *IEEE Transactions on Computer-  
 663 Aided Design of Integrated Circuits and Systems*, 41(11):4694-4707, 2022.

664 Francisco Zambrano, Anton Vrielink, Andy Nelson, Michele Meroni, and Tsegaye Tadesse. Pre-  
 665 diction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall  
 666 estimates, and climate oscillation indices. *Remote Sensing of Environment*, 219:15-30, 2018.  
 667 ISSN 0034-4257. doi: 10.1016/j.rse.2018.10.006.

669 Can Zhang, Zhaocai Wang, Cheng Ding, and Junhao Wu. A robust spatiotemporal prediction model  
 670 for dissolved oxygen in eutrophic lakes using stochastic optimized hybrid deep learning and multi-  
 671 source data fusion. *Journal of Water Process Engineering*, 77:108490, 2025. ISSN 2214-7144.  
 672 doi: 10.1016/j.jwpe.2025.108490.

673 Jingqi Zhang, Huiren Tian, Pengxin Wang, Kevin Tansey, Shuyu Zhang, and Hongmei Li. Improving  
 674 wheat yield estimates using data augmentation models and remotely sensed biophysical indices  
 675 within deep neural networks in the Guanzhong Plain, PR China. *Computers and Electronics in  
 676 Agriculture*, 192:106616, 2022a. ISSN 0168-1699. doi: 10.1016/j.compag.2021.106616.

678 Jingqi Zhang, Huiren Tian, Pengxin Wang, Kevin Tansey, Shuyu Zhang, and Hongmei Li. Improving  
 679 wheat yield estimates using data augmentation models and remotely sensed biophysical indices  
 680 within deep neural networks in the Guanzhong Plain, PR China. *Computers and Electronics in  
 681 Agriculture*, 192:106616, 2022b. ISSN 0168-1699. doi: 10.1016/j.compag.2021.106616.

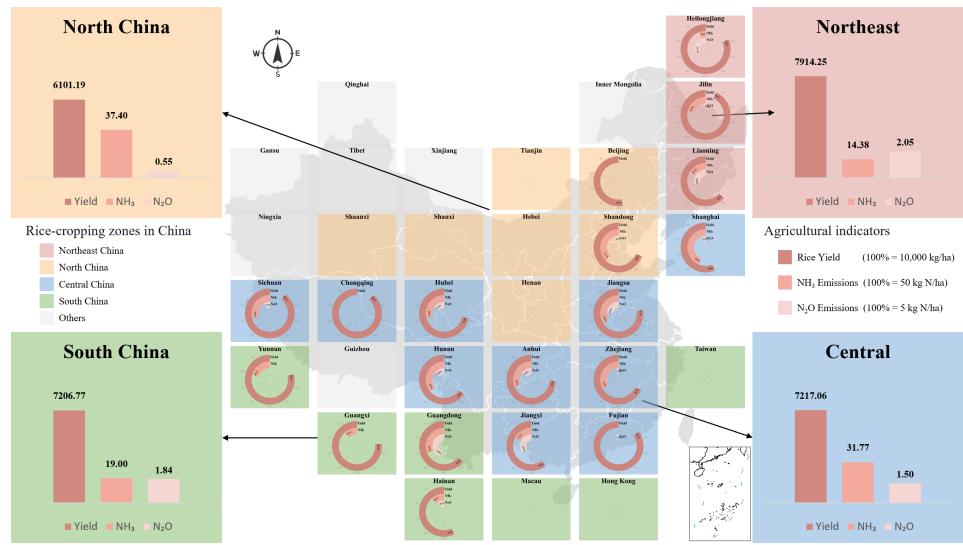
682 K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu. Residual networks of residual networks:  
 683 Multilevel residual networks. *IEEE Transactions on Circuits and Systems for Video Technology*,  
 684 28(6):1303-1314, 2017.

685  
 686  
 687  
 688  
 689  
 690  
 691  
 692  
 693  
 694  
 695  
 696  
 697  
 698  
 699  
 700  
 701

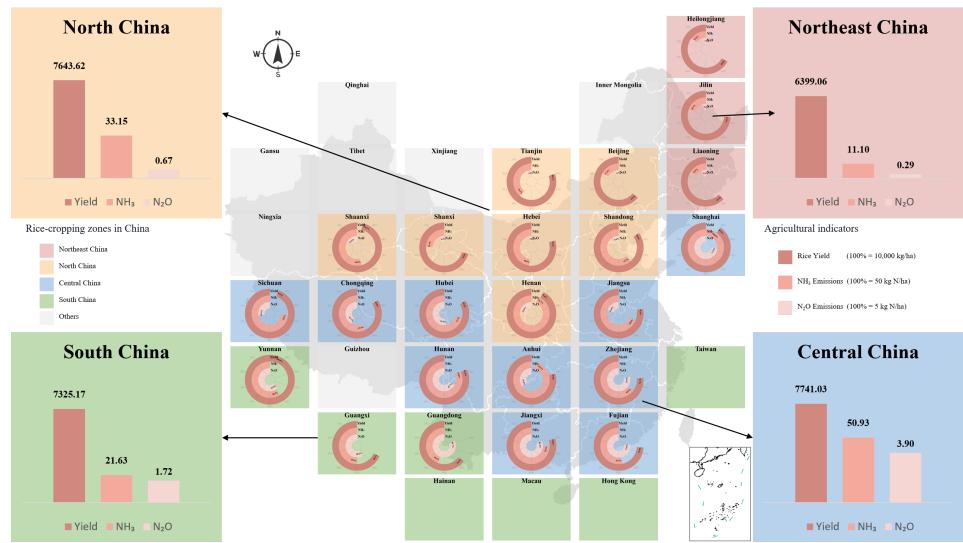
## A APPENDIX

## A.1 DATA DISTRIBUTION

The following shows the average yield per mu of the Mixed-accuracy dataset across four rice-growing regions and its distribution across various provinces, as illustrated in Figure 4a.

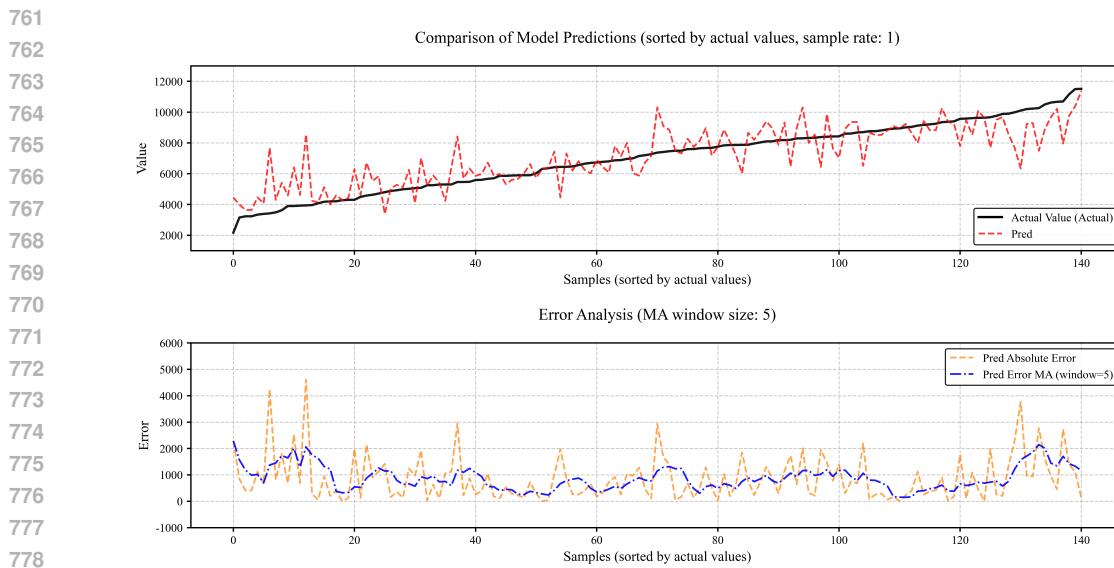
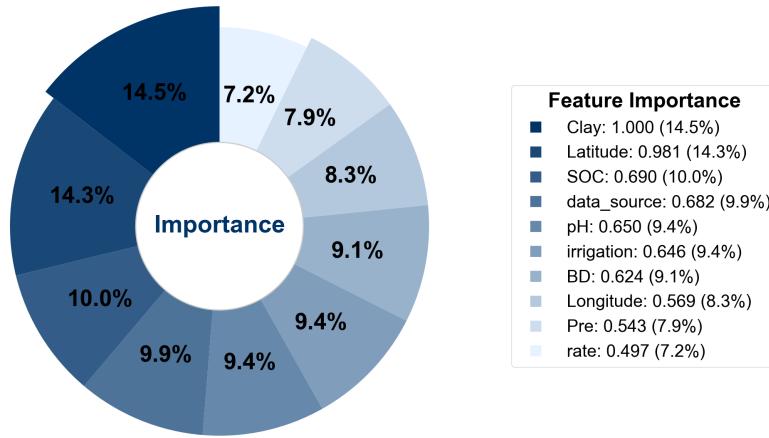


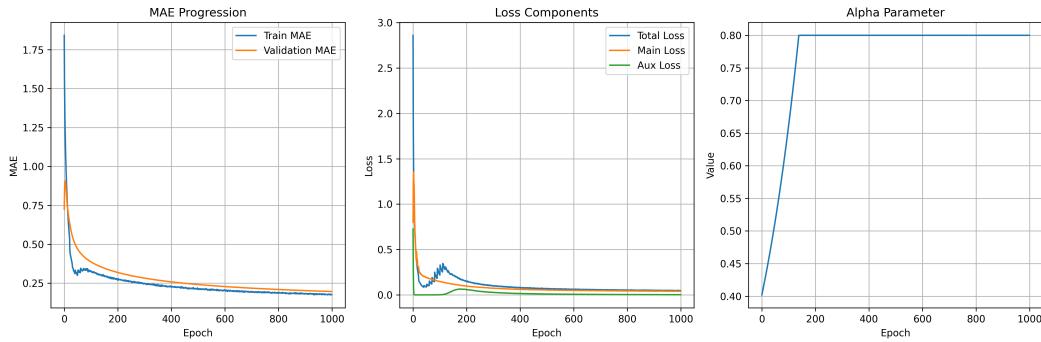
(a) Prediction performance on the Mixed-accuracy dataset (low-accuracy subset).



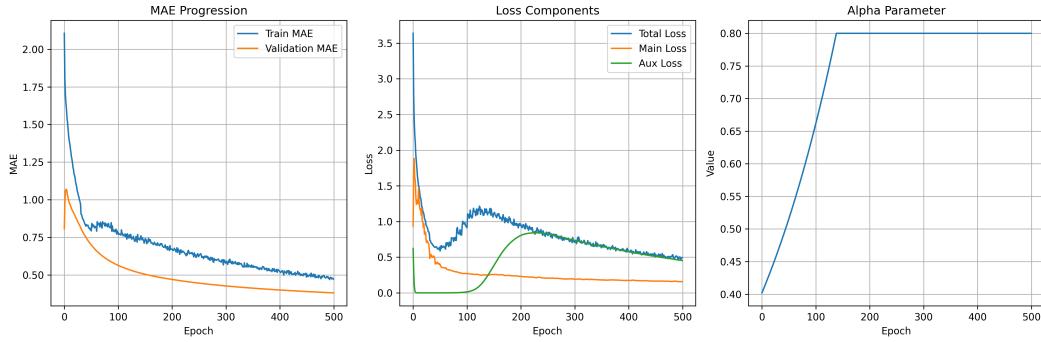
(b) Prediction performance on the Mixed-accuracy dataset (high-accuracy subset).

Figure 4: Comparison of model prediction accuracy across subsets of the Mixed-accuracy dataset.

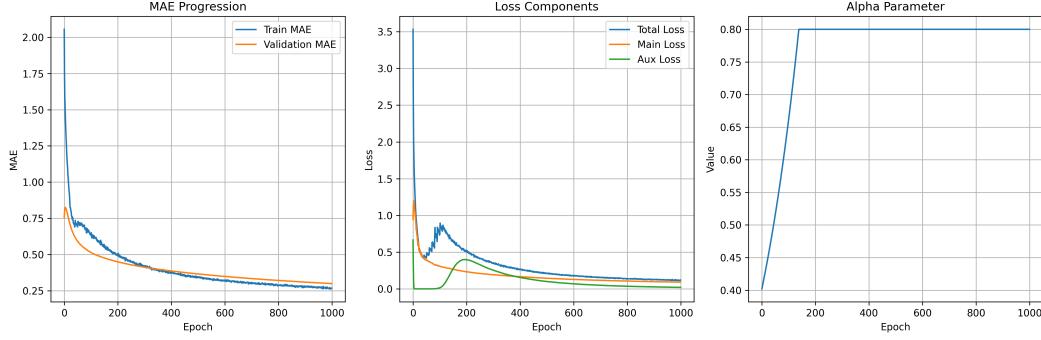
756 A.2 TRAINING DETAILS  
757758 To further investigate model behavior, we present two complementary visualizations: one character-  
759 izing prediction fidelity across samples, and another revealing the contribution of input features to  
760 the model’s decisions.  
761779 Figure 5: Temporal-style prediction and error analysis across samples. The upper panel displays the  
780 actual rice yield (solid black line) alongside model predictions (dashed blue line) ordered by sample  
781 index. The lower panel shows the per-sample absolute error (orange dashed line) and its moving  
782 average (blue dash-dot line), computed using a sliding window to suppress noise and highlight  
783 systematic bias or regional error patterns. A larger window width improves trend visibility but  
784 reduces sensitivity to local error spikes.  
785786 **Feature Importance Distribution**  
787804 Figure 6: Relative importance of input features in the predictive model, visualized as a donut chart.  
805 Features are ranked by their contribution to prediction accuracy, with the top- and bottom-ranked  
806 features explicitly labeled and color-highlighted. The hollow center enhances visual focus on the  
807 proportional influence of each variable, underscoring which agronomic or environmental factors  
808 drive model performance.  
809

810  
811  
812  
813  
814  
815

(a) Rice training curves



(b) Wheat training curves



(c) Maize training curves

Figure 7: Training curves of the DDL framework across three major crops. Each subplot shows three key metrics: (1) MAE progression for both training and validation sets, (2) Loss components including total loss, main loss (yield prediction), and auxiliary loss (data source classification), and (3) Alpha parameter evolution that dynamically balances the main and auxiliary tasks during training. The consistent convergence patterns across all three crops validate the generalizability of the DDL framework for different crop yield prediction scenarios.

851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863

864 A.3 RESULT DETAILS  
865

866 Tables 7, 8, and 9 comprehensively evaluate the predictive performance of our DDL framework  
867 against various baseline models across three major crops: rice, wheat, and maize. These tables  
868 present detailed comparisons using multiple evaluation metrics. The results validate the general-  
869 **izability of the DDL framework beyond rice to other important cereal crops.**

870  
871 Table 7: All Performance Comparison of Various Models on Regression Tasks for Rice  
872

| 873 Model                     | 874 MAE ↓   | 875 RMSE ↓  | 876 R <sup>2</sup> ↑ | 877 MAPE ↓ | 878 Reference                    |
|-------------------------------|-------------|-------------|----------------------|------------|----------------------------------|
| <b>ML Model</b>               |             |             |                      |            |                                  |
| 875 Decision Tree R           | 876 1098.62 | 877 1495.59 | 878 0.5076           | 879 0.1752 | 880 (Breiman et al., 1984)       |
| 876 Gradient Boosting R       | 877 1001.96 | 878 1287.90 | 879 0.6348           | 880 0.1648 | 881 (Friedman, 2001)             |
| 877 LightGBM                  | 878 1011.40 | 879 1316.29 | 880 0.6186           | 881 0.1678 | 882 (Ke et al., 2017)            |
| 878 Linear Regression         | 879 1344.19 | 880 1684.27 | 881 0.3755           | 882 0.2309 | 883 (Seber & Lee, 2012)          |
| 879 Random Forest             | 880 1076.34 | 881 1436.98 | 882 0.5454           | 883 0.1754 | 884 (Breiman, 2001)              |
| 880 SVR                       | 881 1777.09 | 882 2123.63 | 883 0.0072           | 884 0.3108 | 885 (Drucker et al., 1996)       |
| 881 XGBoost Regression        | 882 1064.40 | 883 1388.34 | 884 0.5757           | 885 0.1750 | 886 (Chen & Guestrin, 2016)      |
| 882 Deep Learning Regression  | 883 2938.72 | 884 3500.50 | 885 -1.6976          | 886 0.4183 | 887 (Goodfellow et al., 2016)    |
| 883 GPR                       | 884 1296.37 | 885 1808.19 | 886 0.3381           | 887 0.2098 | 888 (Rasmussen & Williams, 2006) |
| 884 MHA-MLP                   | 885 1115.07 | 886 1496.70 | 887 0.5465           | 888 0.1767 | 889 -                            |
| <b>Related Work</b>           |             |             |                      |            |                                  |
| 885 CNN+GAN                   | 886 1115.56 | 887 1637.84 | 888 0.3587           | 889 0.2026 | 890 (Zhang et al., 2022b)        |
| 886 UNet-ConvLSTM             | 887 1075.91 | 888 1357.26 | 889 0.5497           | 890 0.1672 | 891 (Kamangir et al., 2025)      |
| 887 Remote Sensing + SCE-UA   | 888 4025.99 | 889 5391.50 | 890 -2.7046          | 891 0.7144 | 892 (Li et al., 2024)            |
| 888 PBA-ResNet                | 889 1082.35 | 890 1462.31 | 891 0.4823           | 892 0.1612 | 893 (He et al., 2016)            |
| 889 PBA-MLP                   | 890 1108.91 | 891 1642.98 | 892 0.4535           | 893 0.1635 | 894 (Ho et al., 2019)            |
| 890 Broad Learning System     | 891 1160.32 | 892 1559.85 | 893 0.5074           | 894 0.1815 | 895 (Liu & Chen, 2018)           |
| <b>Process Model</b>          |             |             |                      |            |                                  |
| 891 DNDC Model                | 892 1439.35 | 893 1754.55 | 894 0.2910           | 895 8.7361 | 896 (Li et al., 1992)            |
| <b>DDL Model</b>              |             |             |                      |            |                                  |
| 894 Ours(High-Accuracy Only)  | 895 958.62  | 896 1335.92 | 897 0.6158           | 898 0.1602 | 899 -                            |
| 895 Ours(w/o Dynamic Discard) | 896 887.10  | 897 1273.89 | 898 0.6506           | 899 0.1477 | 900 -                            |
| 896 Ours(w/ Static Weighting) | 897 870.31  | 898 1249.90 | 899 0.6637           | 900 0.1439 | 901 -                            |
| 897 Ours(Full)                | 898 852.30  | 899 1212.14 | 900 0.6837           | 901 0.1424 | 902 -                            |

900 Table 8: All Performance Comparison of Various Models on Regression Tasks for Wheat  
901

| 902 Model                    | 903 MAE ↓          | 904 RMSE ↓         | 905 R <sup>2</sup> ↑ | 906 MAPE ↓        | 907 Reference                    |
|------------------------------|--------------------|--------------------|----------------------|-------------------|----------------------------------|
| <b>ML Model</b>              |                    |                    |                      |                   |                                  |
| 904 Decision Tree R          | 905 1326.32        | 906 1929.20        | 907 0.2377           | 908 0.3192        | 909 (Breiman et al., 1984)       |
| 905 Gradient Boosting R      | 906 1143.22        | 907 1576.82        | 908 0.4907           | 909 0.2698        | 910 (Friedman, 2001)             |
| 906 LightGBM                 | 907 <b>1061.73</b> | 908 1445.15        | 909 <b>0.5722</b>    | 910 0.2651        | 911 (Ke et al., 2017)            |
| 907 Linear Regression        | 908 1454.95        | 909 1817.08        | 910 0.3237           | 911 0.3653        | 912 (Seber & Lee, 2012)          |
| 908 Random Forest            | 909 1143.93        | 910 1617.93        | 911 0.4638           | 912 0.2849        | 913 (Breiman, 2001)              |
| 909 SVR                      | 910 1819.56        | 911 2213.53        | 912 -0.0036          | 913 0.5500        | 914 (Drucker et al., 1996)       |
| 910 XGBoost Regression       | 911 1129.97        | 912 1634.62        | 913 0.4527           | 914 0.2770        | 915 (Chen & Guestrin, 2016)      |
| 911 Deep Learning Regression | 912 2967.98        | 913 3651.12        | 914 -1.7305          | 915 0.5131        | 916 (Goodfellow et al., 2016)    |
| 912 GPR                      | 913 1557.16        | 914 1945.91        | 915 0.2115           | 916 0.4009        | 917 (Rasmussen & Williams, 2006) |
| 913 MHA-MLP                  | 914 1200.85        | 915 1579.87        | 916 0.4802           | 917 0.2707        | 918 -                            |
| <b>Related Work</b>          |                    |                    |                      |                   |                                  |
| 914 PBA-MLP                  | 915 1134.83        | 916 1508.56        | 917 0.4750           | 918 0.2638        | 919 (Ho et al., 2019)            |
| 915 Broad Learning System    | 916 1197.73        | 917 1613.30        | 918 0.4580           | 919 0.2839        | 920 (Liu & Chen, 2018)           |
| <b>DDL Model</b>             |                    |                    |                      |                   |                                  |
| 917 Ours(Full)               | 918 1118.22        | 919 <b>1434.27</b> | 920 0.5590           | 921 <b>0.2641</b> | 922 -                            |

918 Table 9: All Performance Comparison of Various Models on Regression Tasks for Maize  
919

| 920 <b>Model</b>             | 921 <b>MAE</b> ↓   | 922 <b>RMSE</b> ↓  | 923 <b>R</b> <sup>2</sup> ↑ | 924 <b>MAPE</b> ↓ | 925 <b>Reference</b>         |
|------------------------------|--------------------|--------------------|-----------------------------|-------------------|------------------------------|
| <b>ML Model</b>              |                    |                    |                             |                   |                              |
| 926 Decision Tree R          | 927 1936.85        | 928 2685.83        | 929 0.4377                  | 930 0.3633        | (Breiman et al., 1984)       |
| 926 Gradient Boosting R      | 927 1513.57        | 928 2013.99        | 929 <b>0.6838</b>           | 930 0.3206        | (Friedman, 2001)             |
| 926 LightGBM                 | 927 1506.19        | 928 2032.21        | 929 0.6781                  | 930 0.3251        | (Ke et al., 2017)            |
| 926 Linear Regression        | 927 2215.98        | 928 2901.25        | 929 0.3439                  | 930 0.4816        | (Seber & Lee, 2012)          |
| 926 Random Forest            | 927 1561.46        | 928 2063.54        | 929 0.6681                  | 930 0.3350        | (Breiman, 2001)              |
| 926 SVR                      | 927 2656.28        | 928 3589.16        | 929 -0.0042                 | 930 0.6257        | (Drucker et al., 1996)       |
| 926 XGBoost Regression       | 927 1635.27        | 928 2188.98        | 929 0.6265                  | 930 0.3221        | (Chen & Guestrin, 2016)      |
| 926 Deep Learning Regression | 927 6155.25        | 928 6969.60        | 929 -2.7866                 | 930 0.7119        | (Goodfellow et al., 2016)    |
| 926 GPR                      | 927 1901.65        | 928 2587.13        | 929 0.1895                  | 930 0.2673        | (Rasmussen & Williams, 2006) |
| 926 MHA-MLP                  | 927 1841.45        | 928 2493.63        | 929 0.2470                  | 930 0.2619        | -                            |
| <b>Related Work</b>          |                    |                    |                             |                   |                              |
| 932 PBA-MLP                  | 933 2115.14        | 934 2706.12        | 935 0.3155                  | 936 0.6853        | (Ho et al., 2019)            |
| 932 Broad Learning System    | 933 1672.19        | 934 2335.77        | 935 0.3393                  | 936 <b>0.2178</b> | (Liu & Chen, 2018)           |
| <b>DDL Model</b>             |                    |                    |                             |                   |                              |
| 935 Ours(Full)               | 936 <b>1382.21</b> | 937 <b>1847.46</b> | 938 0.6735                  | 939 0.2542        | 940 -                        |

937 **B. ETHICS STATEMENT**

938 This research adheres to the ICLR Code of Ethics. No human subjects or animal experiments were  
939 involved in this study. All datasets used were obtained in accordance with their respective usage  
940 guidelines to ensure no violation of privacy. We have made every effort to avoid bias or discrimina-  
941 tory outcomes in our research. No personally identifiable information was used, and no experiments  
942 were conducted that could raise privacy or security concerns. We are committed to maintaining  
943 transparency and integrity throughout this research.

944 **C. REPRODUCIBILITY STATEMENT**

945 We have made every effort to ensure that the results presented in this paper are reproducible. All code  
946 and datasets have been submitted as supplementary materials to facilitate replication and verification  
947 by others.

948 **D. LARGE LANGUAGE MODEL (LLM) USAGE STATEMENT**

949 A large language model (LLM) was used to assist in the writing and editing of this manuscript.  
950 Specifically, we employed an LLM to help improve language expression, enhance readability, and  
951 ensure clarity across all sections of the paper. The model provided support in tasks such as sentence  
952 rephrasing, grammar checking, and improving overall textual fluency.

953 It is important to emphasize that the LLM did not contribute to the conception of research ideas,  
954 methodology, or experimental design. All research concepts, insights, and analyses were indepen-  
955 dently developed and conducted by the authors. The LLM’s role was strictly limited to enhancing  
956 the linguistic quality of the manuscript and did not involve any scientific content or data analysis.

957 The authors take full responsibility for all content in the manuscript, including any text generated  
958 or refined by the LLM. We have ensured that all LLM-assisted text complies with ethical standards  
959 and does not constitute plagiarism or academic misconduct.

960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971