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Abstract

Knowledge distillation is a promising approach to transfer capabilities from
resource-intensive teacher models to smaller, resource-efficient student models that
can be deployed easily, particularly in task-aware scenarios. However, existing
methods of task-aware distillation typically require substantial quantities of data
which may be unavailable or expensive to obtain in many practical scenarios. In
this paper, we address this challenge by introducing a novel strategy called CoD
for few-shot task-aware knowledge distillation by systematically infusing counter-
factual explanations. Counterfactual explanations (CFE) refer to inputs that can flip
the output prediction of the teacher model with minimum input perturbation. Our
strategy CoD, short for Counterfactual-explanation-infused Distillation leverages
these CFEs to precisely map the teacher’s decision boundary with significantly
fewer samples. We provide theoretical guarantees for motivating the role of CFEs
in distillation, from both statistical and geometric perspectives. We mathematically
show that CFEs can improve parameter estimation by providing more informative
examples near the teacher’s decision boundary. We also derive geometric insights
on how CFE:s effectively act as knowledge probes, helping the students mimic the
teacher’s decision boundaries more effectively than standard data. We perform
experiments across various datasets and LLMs to show that COD outperforms
standard distillation approaches in few-shot regimes (8 - 512 samples), achieving
improved performance under equal number of shots which is essentially half of the
original samples used by the baselines, infused with their corresponding CFEs.

1 Introduction

Large Language Models (LLMs) have demonstrated state-of-the-art performance across a broad
spectrum of tasks [1H3]]. However, as the size of LLMs grow, so does the associated computational
burden, making them difficult to deploy in resource-constrained environments, e.g., mobile phones,
edge devices, and embedded systems [4]. The challenge, therefore, lies in making large models
more efficient and accessible without sacrificing performance. To this end, knowledge distillation
(KD) (initially proposed in [5]; see surveys [6H8]]) has emerged as a powerful technique for model
compression, enabling smaller student models to mimic the performance of a larger teacher model.
In the context of LLMs, KD plays a central role in transferring the broad capabilities such as natural
language understanding [9], reasoning [[10], instruction following [[L 1], etc, onto smaller models.

While LLMs are trained for a broad range of tasks, we may often want a smaller, task-specific
language model when full task coverage is not required. To support this, task-aware knowledge
distillation [12}113] has been proposed to selectively transfer task-relevant knowledge from teacher to
student language models. While effective, these methods typically assume access to large datasets [14].
However, in many real-world applications, the amount of data available is often limited [[15H18]].
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Despite advances on algorithmic strategies for task-aware KD in LLMs [14]], the problem of data
selection for KD has received limited interest, particularly in few-shot settings. In this work, we
study few-shot and task-aware knowledge distillation for LLMs, where student models are distilled
from teacher models using a small number of samples labeled for a task (also called shots). Few-shot
task-aware distillation remains underexplored for LLMs. In classical ML, few-shot training has poor
generalization [19]], and thus causes ineffective distillation due to insufficient task coverage [20 [21].
However, few-shot distillation holds potential for LLMs because they are pretrained on a large
corpora, also drawing inspiration from the prior success of few-shot learning [22].

In this work, we propose a few-shot task-aware knowledge distillation by systematically integrating a
type of post hoc explainability technique called counterfactual explanations (CFE) [23H25]]. CFEs
are inputs that flip the output prediction of a model with minimum input perturbations. We find that
CFEs can act as knowledge probes, helping the students mimic the teacher’s decision boundaries
more effectively than standard data. Our work bridges explainability and model compression by
turning explanations into actionable training signals, guiding the student into learning the teacher’s
decision-making process more effectively. This results in more faithful knowledge transfer even with
very limited data. Our contributions can be summarized as follows:

* A counterfactual explanation-based strategy for few-shot distillation. We propose a novel
framework CoOD, short for Counterfactual-explanation-infused Distillation, for task-aware knowl-
edge distillation under few-shot regimes. By enriching the few-shot training set with CFEs, we
improve the student’s ability to mimic the fine-grained details of the teacher’s decision boundary
with fewer labeled examples. We validate this intuition through a synthetic experiment on the 2D
moons dataset, showing that CFE-infused distillation better replicates the teacher’s decision surface
compared to using standard few-shot samples (see Figure[2).

* Theoretical guarantees motivating the role of CFEs in distillation. We provide theoretical
guarantees that serve as motivation for our approach, from both statistical and geometric perspec-
tives. First, in a logistic regression setting, we show that CFEs improve parameter estimation
by maximizing the Fisher Information (see Definition [2]and Theorem|I). Our proof specifically
leverages the fact that the CFEs lie quite close to the decision boundary to show that they reduce
the expected estimation error of the student model compared to standard distillation. Next, moving
beyond statistical guarantees and linear models, we also provide a geometric analysis for non-linear
models, establishing that if a student matches the teacher’s predictions on the original data and
their counterfactual pairs, then their decision boundaries will remain close: this is quantified by a
provably small Hausdorff distance (see Definition 3] and Theorem [2) which is a formal measure of
distance between two subsets within a space.

* Empirical validation. We evaluate COD six different datasets (SST2 [26], Sentiment 140 [27],
IMDB [28], CoLA [29], Amazon Polarity [30], and Yelp [31]]) using DeBERTa-v3 [32] and
Qwen2.5 [2] model families. We compare against strong baselines for task-aware knowledge
distillation including standard Knowledge Distillation (KD) [S], Layer-wise Distillation (LWD) [[13],
and Task-aware layer-wise Distillation (TED) [[12] under various few-shot settings (k = 8, 16, 32,
64, 128, and 512). Our results demonstrate that COD consistently outperforms baselines in few-shot
regimes, with particularly significant improvements in extremely data-scarce scenarios (k < 64).
Notably, COD only uses half of the original labeled samples used by the baselines (i.e., k/2
original infused with their corresponding k /2 CFEs, leading to k shots), and still gives improved
performance. For instance, with £ = 8 samples on IMDB dataset, LWD + COD improves over
standard LWD by more than 10 points (86.1% vs. 76.0%).

Related Works: Knowledge distillation has emerged as a powerful framework for model compres-
sion [3]]. While early works focused on transferring soft labels via output logits [33], subsequent
advances explored richer supervision signals such as intermediate feature alignment [[13} |34H36]].
As LLMs grow in size and inference cost [37}38]], distillation has become increasingly important
for transferring capabilities into smaller models [14} |6H8]. More recently, task-aware knowledge
distillation for LLMs has gained traction, aiming to selectively distill knowledge relevant to a specific
downstream task [12}139]]. Despite these algorithmic innovations [12f], there has been relatively little
focus on data selection for distillation, particularly in few-shot settings. Most prior works assume
ample training data, leaving few-shot knowledge distillation largely underexplored. While some
works [20, [16-18]] have studied distillation in classical ML under low-data regimes, they do not
address the challenges specific to distilling LLMs. In this work, we establish the paradigm of few-shot
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distillation in LLMs by integrating explainable data selection. Our work is broadly aligned with the
spirit of data-efficient ML, which aims to improve performance under limited supervision [40-42].

Counterfactual explanations (CFEs) [23H25] 43-46] have been widely studied in classical ML,
particularly in high-stakes applications such as finance, healthcare, and law, where they often provide
algorithmic recourse to guide users toward desired outcomes [25}47]. In the natural language domain,
some methods have been proposed to generate semantically valid CFEs using either token-level
perturbations [48] or controlled generation with language models [49, 150, 48], but they have not been
integrated for knowledge distillation. Another line of work is counterfactual reasoning in causal
inference, where the goal is to estimate the effect of interventions under a structural causal model [51]],
which is different from our objectives. These counterfactual data have been used to address the issue
of spurious patterns in NLP tasks [[52, 53], improve generalization [54}55]], and enhance performance
on out-of-distribution data [56,|57]. In contrast, our work studies the role of CFE infusion in few-shot
task-aware knowledge distillation, leveraging the teacher’s signal to more effectively mimic the
teacher’s decision boundary in few-shot data settings.

2 Preliminaries

LLMs are highly effective for natural language processing. Built upon the transformer architec-
ture [S8]], LLMs consist of multiple stacked layers, each containing a multi-head self-attention mecha-
nism followed by a position-wise feed-forward neural network. Let g(+; #) denote a transformer-based
model parameterized by 6. The model takes an input sequence x € X where X is the input space.
The model output is a probability distribution over the vocabulary space, but for task-aware settings
such as sentiment analysis, it is a probability distribution over C class labels, i.e., g : X — [0,1]¢.
The loss function is defined as: £(0) = Ex.x[€(g(x;0))], where ¢ denotes the task-specific loss,
such as cross-entropy for classification tasks or causal language modeling loss for generative models.

Knowledge Distillation (KD). KD is a technique that transfers knowledge from a large, pre-trained
teacher model to a smaller, student model [39]]. Let ¢, (-; 6;) be the teacher model with parameters 6,
and g (-; 65) be the student model with parameters 6. The teacher model g;(-; 8;) provides soft labels
to assist in training the student model g, (-; 85). The student is trained using a loss function that is a
combination of the task-specific loss and the distillation loss as follows: ming_ £(6s)+ aLxp (6, 65).
Here, £(0) is the task-specific loss, e.g., the cross-entropy loss between the student’s outputs and true-
labels, and Lxp(0t,05) = Exx[d(g:(x;0:), gs(x;05))] is the distillation loss which captures the
distance between the outputs of the teacher and student. Typically, the distance is computed using the
Kullback-Leibler (KL) divergence, i.e., KL(g:(x;6¢) || gs(x;65)) = Zle gt(c) (x;0:)log %,
where the superscript (c¢) is for the assigned probability for class ¢ by each model.

Layer-Wise Distillation (LWD). In large transformer-based models, the teacher’s outputs may not
fully capture the knowledge embedded in intermediate layers. Beyond matching final outputs, one
can also align the intermediate features of the teacher and student [13]. At a few selected layers, the
teacher’s hidden activations k! and the student’s activations k. (optionally projected into the same
dimension) are computed and their difference is also penalized using a mean-squared-error loss [[13].
The student is trained using a loss as follows:

min £(0;) + a Lxp(0:,05) + B Lrwp (0, 6s) M

Here, L1wp(0;, 05) is the additional layer-wise alignment term added alongside the task-specific loss
and distillation loss, e.g., Ex~x > ,c7 || bt — hL||3] where {h{, h.},cz are the teacher and student
activations for a given input x over a set Z of layers, and «, 8 > 0 balance the three objectives.

Counterfactual Explanations (CFEs). Given a model’s decision on an input x, a CFE [23125]]
finds the minimal modification x’ such that the model’s output changes in a desired way. These
explanations help interpret model decisions and provide actionable guidance to users to flip the
prediction. In our context, we look into CFEs in the NLP domain where the inputs are token
sequences. A counterfactual in this setting is a minimally perturbed sentence that causes the teacher
LLM’s prediction to flip. For instance, given the sentence I loved the movie, labeled as positive
sentiment, a CFE would be I hated the movie, a semantically similar but sentiment-flipped variant.

Our Problem Setting. We consider a binary classification setting where the teacher model will be
denoted as f; : X — [0, 1]. The input space X C R™*4, with n being the sequence length and d is
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Figure 1: Overview of our framework: Counterfactual Explanation-Infused Distillation (COD).

the model dimension, after the entire input sequence has already been passed through the tokenizer
and embedding layers of the LLM. The teacher model f;(x) gives the class-1 probability output
of the model for input x, i.e., f;(x) := ggl)(x; 6;), where the superscript (1) is for the assigned

probability for class 1. The final predicted class is given by f(x) = I[f:(x) > 0.5] € {0,1}.

Definition 1 (Closest CFE C(x, f;)). Given x € R™*% such that f,(x) < 0.5, the closest CFE is a
point x' € R"*< with opposite prediction that minimizes the Frobenius-norm ||x — x'|| p:

C(x, fi) = arg min||x — x'||  such that fi(x') > 0.5. 2

x!€Rnxd

Definition E]naturally extends to multiclass settings, where a CFE can be defined as the minimum
perturbation that changes the predicted class to any other target class.

Remark 1 (Data Manifold Counterfactual Explanations). In practice, unconstrained counterfactuals
may lead to unrealistic or out-of-distribution examples. To address this, we can constrain X' to lie
within the data manifold X' C R"*? ensuring that generated counterfactuals remain semantically
plausible. These data-manifold counterfactuals preserve natural language structure. In our work, we
use a hybrid generation strategy that combines LLM-based prompting with teacher model feedback
to generate such data-manifold CFEs. Further details are provided later in Section 3}

Given a training data budget k (few-shots) and a teacher model f;, our goal is to distill a smaller
student model f, : X — [0, 1] with high-performance at a specific task by leveraging CFEs.

3 Main Contributions

We begin with an experiment on 2D synthetic data that demonstrates how CFEs help student models
mimic the teacher’s decision boundary more effectively than standard data. Next, we provide
theoretical results motivating our approach from both statistical and geometric perspectives. Finally,
we describe our CFE generation pipeline for natural language inputs, which leverages LLMs to
produce semantically plausible CFEs, leading to our proposed framework COD.

Synthetic Dataset Experiments to Illustrate the Role of CFE in Distillation: We conduct experi-
ments on the 2D moons dataset [60] and show that infusing few-shot data with CFEs significantly
improves student-teacher alignment in distillation (see Figure [2). We train a reacher model—a
two-layer neural network with architecture [2 — 64 — 64 — 2] on the full dataset. The student
network with a smaller architecture [2 — 16 — 2]. To simulate few-shot supervision, we randomly
sample k = 20 original points (10 per class). For the original points, we compute their closest
CFE (recall Definition [I)), a minimally perturbed input that flips the teacher’s predicted class. We
follow a gradient-based method [23] to compute CFEs by perturbing each point in the direction of the
teacher’s logit margin until the predicted class flips. We consider two student models: one trained on
the k few-shot samples alone, and another trained on k /2 few-shot samples and their CFEs. In both
cases, we perform knowledge distillation by minimizing a combination of cross-entropy loss on the
hard labels and KL-divergence between the student and teacher soft predictions. Figure[2{shows the
decision boundaries of the teacher, the baseline student, and the CFE-infused student. CFEs cluster
near the decision boundary, enriching the distillation data in high-uncertainty regions. The student
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Figure 2: Decision boundaries for teacher and two student models trained on a synthetic 2D dataset
under few-shot settings. The teacher (a) is trained on the full dataset and serves as the distillation target. First
student (b) is distilled using 20 randomly sampled data points, and results in a poorly aligned decision boundary
with the teacher. Second student (c) is also trained on 20 total samples, 10 original data points and their 10 CFEs.
This student learns a decision boundary that aligns more closely with the teacher, as the KD loss encourages the
student to match the teacher’s soft predictions, guiding the CFEs to lie near the decision boundary.

trained with CFEs aligns more closely with the teacher, thus motivating the use of boundary-targeted
examples for improved knowledge distillation.

Statistical Guarantees Motivating Our Approach: Here, we provide a theoretical motivation for
the use of CFEs in few-shot knowledge distillation. We analyze a logistic regression setting using a
measure from estimation theory called Fisher Information [61] (also see Definition [2) that captures
the information contained by a random variable about a parameter to be estimated. We show that a
dataset containing CFEs, which essentially lie much closer to the teacher’s decision boundary, yields
a Fisher Information Matrix with higher overall information content for parameter estimation. As a
result, the student’s expected estimation error is lower compared to training on standard samples.

Definition 2 (Fisher Information Matrix [61]]). Let L£(0) be the log-likelihood of a parametric
distribution p(y, x; 0), where 0 is the parameter vector to be estimated. The Fisher Information
Matrix (FIM) at parameter 0 is defined as:

Z(0) = Bx.y [Vologp(y,x;0) Vo logp(y,x;6) "] .

Intuitively, Fisher Information measures the curvature of the log-likelihood: flatter regions (low
curvature) imply high uncertainty in estimating 6, while sharper regions (high curvature) indicate that
small changes in 6§ cause large changes in likelihood, enabling more precise parameter estimation.

We consider a binary classification setting where both the teacher and student are logistic regression
models. Suppose the teacher, parameterized by w, defines the true data-generating distribution with
predicted probabilities p;(y = 1|x) = o(w, x) where o(-) is the softmax function. Suppose, the
student, with parameters w, is obtained via maximum likelihood estimation (MLE) [61] using either
a standard dataset D or a CFE-infused dataset D.¢. Since the CFEs lie close to the teacher’s decision
boundary, we have W;r X, ~ 0 when %, is a CFE, and we further assume second-moment matching
Ex[xx "] = Ex, [x.x. ] (intuitively, CFEs are generated by minimally perturbing original points, so
their overall spread and feature correlations remain similar).

Theorem 1 (CFEs Improve Model Parameter Estimation). Let wy and WSCf) be the student parame-
ters obtained via MLE on D (standard) and D¢+ (CFE-infused). Assuming the teacher’s parameters

w, capture the true data-generating distribution, and that CFEs lie near the decision boundary, the

estimation error satisfies: E | |w{™ — wt||2] <E[[ws —we]?].

Proof Sketch: The key step in our proof relies on showing that the Fisher Information is given by
I(wi; D) = > pe(y = 1xi) (1 — pe(y = 1|x;))x;x, . The scalar weight p(y = 1[x)(1 — pi(y =
1]x)) is maximized when p;(y = 1|x) = 0.5, i.e., x lies on the decision boundary. Standard samples
in few-shot settings typically lie far from the boundary and contribute little to the FIM, whereas
CFEs are constructed to lie near it and thus contribute significantly more. As a result, the FIM of
the CFE-infused dataset D.; dominates that of the standard dataset D in Loewner order [62] (i.e.,
Z(wy¢; Dey) = I(wy; D)). The CFE-infused dataset provides strictly more information for parameter
estimation than the standard dataset, ultimately leading to the bound on expected estimation error.
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The full proof is in Appendix B} Notably, while this result mathematically motivates the advantages
of CFEs in few-shot distillation, it still assumes linear models and same student-teacher capacity
(size). For more general non-linear settings, we provide a geometric perspective as discussed next.

Geometric Insight for Using CFEs for Distillation: Here, we examine the geometric effect of CFEs
on student-teacher alignment in non-linear settings. Specifically, we show that when data points
and their CFE pairs are included during distillation, the student’s decision boundary comes much
closer to the teacher’s boundary, as quantified by a formal measure called Hausdorff distance 63|
between their respective decision surfaces. The Hausdorff distance (see Figure [3) captures the worst-
case discrepancy between two sets (in our case, the decision boundaries of

the teacher and student models) by quantifying how far any point on one sup inf d(x,u)
boundary is from the closest point on the other. XM 22

Let M;={x € R"*?| f;(x) = 0.5} and M,={x € R"*?¢ | f,(x) = 0.5}
denote the decision boundaries of the teacher and student. Our goal is to
examine how close is the student’s decision boundary to the teacher’s. To
quantify this alignment, we define the Hausdorff distance as follows:

Definition 3 (Hausdorff Distance). Let M, M, C R™*? be two non-empty
subsets of a metric space. The Hausdorff distance is defined as: Sup A 4w
H(M, My) = max{xseupt 11}&5 I —ullF, ubelia xler}\f/(t Jlu — X”F}' Figure 3: Hausdorff
Distance.
We observe that for each training sample x; and its CFE x, the segment joining them cuts the
teacher’s decision boundary because they have different predictions. Essentially, there exists an
intersection point x} on this segment such that f;(x7) = 0.5. Now, if the student is taught to match
the teacher at the sample x; and its CFE x/, the student would also have another intersection point on
this segment. These two intersection points lying on the teacher and student decision boundaries will
act as clamps, pulling the two boundaries close to each other, since their own gap gets smaller as x;
and its CFE x| comes closer.

Lemma 1 (Existence of Boundary Crossing for Counterfactual Pairs). Let f; : R"*¢ — [0,1] be
a continuous function. For a datapoint and its counterfactual pair (X;,X}), there exists a point
x; = ax; + (1 — a)x] for an o € (0, 1) (on the line joining x; and x}) such that: f,(x}) = 0.5.

Theorem 2 (Teacher—Student Boundary Proximity). Let f;, fs : R"*% —;[0, 1] be the teacher and
student model, with decision boundaries M; = {x | fi(x) = 0.5} and M = {x | fs(x) = 0.5},
respectively. Assume we observe a CFE-infused dataset Dy = {(xi, x5) }le satisfying, for every
pair (x;,x}): (Al) Minimal perturbation: ||x; — X}||r < a with o > 0; (A2) Exact distillation:
fs(x:) = fe(x:) and fs(x}) = fe(X}); and (A3) e-spread along the teacher boundary: For each pair,
let the teacher’s crossing point be x; = ax; + (1 — @)X} for o € (0,1) such that f;(x}) = 0.5.
Furthermore, suppose that for every a € My, there exists an @ with ||a — x}||2 < €. Then the
Hausdorff distance between the decision boundaries obeys: H(Ms, M) < a + e.

Consequently, tight (small o) and well-spread (small ) CFE pairs guarantee that the student boundary
remains inside an (o + €)-tube around the teacher boundary.

Interpretation of the assumptions and bound. Our theorem makes three intuitive assumptions.
(AI) Minimal perturbation requires each input and its CFE pair (x,x’) to differ by at most . CFEs
are by definition the minimal changes that flips the teacher’s prediction, so « is typically much
smaller than the distance between arbitrary training points (note that we do no need CFEs to sit
exactly on the teacher’s boundary, i.e., f; =0.5). It suffices that the perturbation is small and flips the
label—capturing the practical way CFEs are produced. (A2) Exact distillation agreement assumes
the student matches the teacher’s outputs on the input and CFE pairs. This is reasonable, as these
examples are directly used in training, and their logits are aligned through the distillation (KL) loss.
(A3) e-spread assumes the inputs are reasonably well spread. No region of the teacher’s boundary
is more than € away from a crossing point. Under these assumptions, the Hausdorff gap between
student and teacher boundaries is tightly bounded by « + €. This ensures the student’s decision
boundary stays within an (« + €)-tube around the teacher’s, illustrating the geometric faithfulness we
want in few-shot knowledge distillation. See proofs in Appendix [C}

Proposed Algorithm (CoD). We propose CoD, a Counterfactual Explanation-infused Distillation
strategy for few-shot, task-aware distillation of LLMs. The first step is CFE generation. Existing meth-
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ods primarily fall into optimization-based [23]], search-based [64], and generative approaches [[63].
These methods can be computationally expensive for LLMs, and frequently yield out-of-distribution
or semantically implausible examples. To address this, we adopt a hybrid approach that combines
the teacher model predictions with an LLM as an oracle for CFE generation. Specifically, given an
input and its original label, we prompt an LLM (e.g., GPT-4o [66]]) to generate a semantically similar
sentence intended to flip the label with minimal changes to the input. We then check whether this
generated example indeed flips the teacher model’s prediction, ensuring its utility as a true CFE. Once
validated, each CFE is paired with its original input (x,x’) and added to the training set. During
distillation, we ensure that each input—CFE pair is included in the same mini-batch, enabling the
student to jointly learn from both examples. The student is then trained using a combination of task
loss, KL-based distillation loss, and optional layer-wise alignment. An overview of this process is
described in Algorithm [I] with full implementation details and prompts provided in Appendix

4 Experiments

Datasets. We evaluate COD across six text classifica-
tion benchmarks that span a range of domains. SST2
isa l.)lnary. sentiment class1ﬁcat10n. task derived frpm Algorithm 1 CoD: CFE-infused Distillation
movie review snippets [26]. Sentiment140 consists _

of tweets labeled as positive or negative, reflecting Require: TeaCheZ ge, student gs, data set
user sentiment in short social media posts [27]. IMDB D:{(X_iv yi)Yi=1, CFGen, learning rate 7,
is a binary sentiment classification dataset contain- loss weights o (KD), 5 (LWD)

ing full-length movie reviews [28]]. CoLA (Corpus of é ?cr 0

o Srdtad AT : for all (x,y) € Dy do
Linguistic Acceptability) is a grammaticality judg- 5. "+ "~ Eq en(x, g:)
ment task that requires the model to identify whether 4. p . p_ {(X’/ 1—y)
a sentence is linguistically acceptable [29]. Amazon 5. end for
Polarity contains customer reviews labeled as pos-  6: Dyyin < Di U Dot
itive or negative sentiment [30]]. Yelp is another sen- 7: fore =1 to E do
timent classification dataset based on user-generated ~ 8:  for all (x,y) € Diuin do
restaurant reviews [31]]. 9: Lhara < CE(g5(x), )

. . . 10: Lxp = KL(g:(x) || gs(x))

Model. We experiment with two prominent model . Liwp — 3 109 — 102
families: DeBERTa-v3 [32] and Qwen2.5 [2]. For 1,. L Lo —01651:1(:3 I ,BESLw;
DeBERTa-v3, we use the “base” model (100M pa- 3. Update 0, « 0, —n Vo, L

rameters) as the teacher and distill into two smaller 14:  end for

“small” (44M) and “xsmall” (22M) variants as stu- 15: end for

dents. For Qwen2.5, we use Qwen2.5-1.5B as the 16: return distilled student g,
teacher and distill into the smaller Qwen2.5-0.5B.
Full training details are in Appendix

Baselines. We compare our method against three task-aware knowledge distillation baselines: (i)
Standard knowledge distillation (KD) where the student learns from the teacher’s soft predictions
using KL divergence [67]; (ii) Layer-wise distillation (LWD), which extends KD by additionally
aligning the student’s intermediate hidden representations with those of the teacher using mean
squared error [13]]; and (iii) TED (Task-aware Layer-wise Distillation) which incorporates task-
specific neural filters at each layer to selectively transfer task-relevant information from teacher to
student [[12]]. All methods are evaluated under k-shot training settings, and student models are trained
on identical few-shot splits to ensure a fair comparison (see details in Appendix D).

Setup. As in prior works on task-aware distillation [[12], we first train a teacher model on the full
training dataset to serve as a strong source of supervision. A student model is then initialized and
distilled using only % datapoints, where k € {8, 16, 32,64, 128, 512}. We apply our strategy COD
to three standard distillation baselines: KD, LWD, and TED. For a fair comparison, COD uses k/2
original samples and their k/2 corresponding CFE (a total of & shots) while the baseline methods are
trained on k original samples. Performance is evaluated using accuracy on the test set for each dataset.
All experimental results are averaged over five runs, with the mean and standard deviation reported.
Results for the DeBERTa-v3-base teacher and DeBERTa-v3-small student are shown in Table[l]
while results for the smaller DeBERTa-v3-xsmall student are in Appendix D} For experiments using
the Qwen2.5-1.5B teacher and the Qwen2.5-0.5B student, see TableE} We report the accuracy of
teacher models trained on the full datasets in Table []in Appendix
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Table 1: Classification accuracy (+ std) across datasets with varying total training sizes k. For
CoD, training data consists of k/2 standard and k/2 CFEs. Teacher model DeBERTa-v3-base and
student model DeBERTa-v3-small.

Total Samples (k)
Dataset Method 8 16 32 64 128 512
KD 0.671 0046  0.71220033 0.758 20032  0.789 0022  0.823 x0016  0.846 x0.007

Amazon +CoD 0.758 20027  0.795:0033  0.819:0035 0.812:0004 0.837 20014 0.860 0015

Polarity

LWD 0.676 20000 0.738 0033  0.777 20000 0.809 0015  0.827 x0.025  0.842 x0.019

+CoD 0.724 20052 0.779 0056  0.811:0015 0.828 w0015 0.81620020 0.841 x0013

KD 0.693 0062  0.707 20029  0.721 20012 0.747 20005  0.758 0000  0.771 x0.003

CoLA +CoD 0.739 20026 0.755:0017  0.769 20011 0.769 0016  0.772 0006  0.791 20.004
LWD 0.713 20031 0.698 20037  0.731x0021  0.744 0007  0.750x0018  0.761 x0.011

+CoD  0.730:0035 0.744 10031 0.762:0011  0.752:0000 0.756 20010 0.784 +0.003

KD 0.714 20047 0.817 20028  0.87520027 0.896x0008 0.912:0000 0.917 +0.006

IMDB + CoD 0.835:0078  0.888:0005 0.890:0011  0.899:0007 0.907 20006 0.913 x0.005
LWD 0.760 20046 0.836 20045 0.875z0024 0.889x0013  0.905 0008  0.914 +0.006

+CoD  0.861:0017 0.886:0011 0.893:0006 0.898:000s 0.905:0010 0.913:0010

KD 0.617 20022 0.712x0052  0.757 20063  0.820x0019  0.848 20013  0.899 +0.007

SST2 + CoD 0.719 20063 0.781 20034  0.821 20013 0.827 z0008 0.853 0015 0.892 x0.018
LWD 0.627 20053 0.721x0055 0.776 0031  0.817 0005 0.829 0013  0.892 x0.012

+CoD  0.694:0079 0.785:0028 0.832:0011 0.830:0007 0.835:0012 0.880 0020

KD 0.714 2008 0.817 20031 0.855:0021 0.878 0006 0.88520018  0.916 x0.007

Yelp + CoD 0.740 20004 0.832:0045 0.860 0018 0.874+0006 0.888:0013 0.913 0011
LWD 0.733 20070 0.832x0026 0.857 0011  0.868 0006 0.881 0017  0.920 x0.010

+CoD  0.738:0093 0.865:0010 0.870:0017 0.871:0019 0.885:0007 0.913 0013

KD 0.580:0030 0.597 0042  0.645:0023 0.690x0035 0.752z0011  0.802 x0.006

Sent 140 + CoD 0.629 20036 0.640 0048  0.731 20022  0.754 20017  0.778 20007  0.784 x0.019

LWD 0.581 20041 0.593 20030 0.665x0027 0.708 20020 0.751 20000 0.785 =0.019
+CoD  0.628:0032 0.652:0038 0.706:0016 0.741 0014 0.729 10063 0.760 x0.023

Results and Analysis. Across all datasets, we observe that COD significantly improves performance
in the low-data regime, particularly when & < 64. For example, on Amazon Polarity with only 8
labeled examples, KD + COD achieves 75.8% accuracy compared to 67.1% for standard KD (8.7
points improvement). Similarly, for IMDB at £ = 8, LWD + C0oD improves over standard LWD by
more than 10 points (86.1% vs. 76.0%). As the number of labeled examples increases, the benefits of
CFE augmentation diminish. At k = 512, the performance of standard and COD becomes nearly
identical in many cases. However, even in these larger settings, it is important to note that our method
achieves comparable results while using only /2 real samples and k/2 CFE, effectively halving the
amount of labeled data required to reach similar performance. The effectiveness of CFEs varies by
dataset. On CoLA, we observe consistent improvements across all k£ values for both KD and LWD,
indicating that CFEs are well-aligned with the task’s grammaticality decision boundary. In contrast,
datasets like Sentiment140 show strong early gains. For datasets such as IMDB and SST2, CFE
provides substantial improvements at low k, but underperforms slightly at k = 512, possibly due to
redundancy. Among distillation methods, LWD generally performs on par with or slightly better than
KD across most settings, with CoD offering similar relative improvements for both.

We also compare with TED which has been found to work well with larger distillation datasets [12].
We note that TED introduces additional complexity by requiring the training of task-specific filters
prior to distillation. Interestingly, we find that TED does not consistently outperform classical
methods like KD or LWD in the few-shot settings (see Table[2). Nonetheless, TED + CoOD yields
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Table 2: Classification accuracy (& std) with TED and TED + COD across datasets and varying to-
tal training sizes k. For COD, training data consists of k/2 standard and k/2 CFEs. Teacher model is
DeBERTa-v3-base and student model is DeBERTa-v3-small.

Total Samples (k)
Dataset  Method 8 16 32 64 128 512

Amazon TED 0.646 0075  0.697 20033  0.758 20012 0.81620023 0.814:0020 0.846x0.025
Polarity 4+ CoD  0.731:00s¢ 0.754:0056 0.802:0007 0.818:0013 0.805:0005 0.848 0010

TED 0.750 002 0.737 20028  0.731 20020 0.746x0011  0.7600011  0.772 x0010

CoLA +CoD  0.748x0028  0.757 z0023  0.767 :0021  0.768 20016  0.780 0007  0.791 +0.006
IMDB TED 0.695z:0018  0.800:0042 0.854 10023 0.876x0012 0.908 0009 0.917 +0.006
+CoD  0.827:0056 0.879:0003 0.884:0007 0.887 0010 0.895x0010 0.916 0,005
SST2 TED 0.597 z0052  0.701 20055 0.732:0026 0.812x0026 0.829 20002  0.904 +0.006
+ CoD 0.658 0087 0.779:0012  0.813:0017 0.833 0014 0.836:0030 0.879 0011
Yelp TED 0.699 0048  0.815:0014 0.846x0020 0.869z:0012 0.894 20000 0.914 10,012

+ CoD 0.742 0005  0.837 20016 0.868 0015  0.878 0019 0.886:0013  0.913 0008

Table 3: Classification accuracy (+ std) of Qwen2.5 on CoLA and Yelp datasets with varying training sizes
k. For CoD training data consists of k/2 standard and k/2 CFEs. Teacher model is Qwen2.5-1.5B and student
model is Qwen2.5-0.5B. Refer to Appendix D] for other datasets.

Total Samples (k)
Dataset Method 8 16 32 64 128 512
KD 0.681 0012 0.676:0023 0.6680042 0.654 20032 0.676:0020 0.732 20014
CoLA +CoD  0.683:0016 0.686:0018 0.697 0015 0.711:0020 0.7360017 0.757 0011
LWD 0.681 20012  0.657 20031  0.678+001s 0.650x0039 0.636:0029 0.712 10014
+CoD  0.682:0018 0.687 0013 0.704 0010 0.714:0020 0.719:0022  0.755 x0.013
KD 0.684 20021  0.759:0040 0.827 20030 0.861x0017 0.887 0012 0.920 0010
Yelp +CoD  0.745:0029 0.779:0048 0.828:0072 0.886:0007 0.883 0010 0.916 x0.008

LWD 0.685:0019  0.777 20036  0.837 0027 0.876x0020 0.898 20008 0.920 0005
+CoD  0.746:0028 0.778 20035 0.847 20000 0.876:0014 0.883 20010 0.909 x0.000

consistent gains over standard TED, demonstrating that our approach is broadly applicable. Our
findings suggest that simpler distillation approaches like KD or LWD are preferable when data
is scarce: they are easier to implement and, when combined with CoD, deliver much stronger
performance gains without the overhead of filter training.

Conclusion. In this paper, we introduced CoD, a novel approach for task-aware KD in few-shot
settings that leverages CFEs to enhance the data efficiency of KD. Our results show that CoD
consistently outperforms existing distillation approaches in low-data regimes. Importantly, we
demonstrate that COD can achieve improved performance over baselines while effectively using
only half the number of original data, with the remainder consisting of generated CFEs. This finding
has significant implications for reducing the cost of data collection in real-world scenarios where
sourcing high-quality data is expensive or time-consuming [68]. Our approach offers an explanation-
driven perspective on distillation. By including CFE’s, we implicitly highlight the key features most
important to flipping a teacher’s decision. This may help the student model reduce its reliance on
spurious correlations, especially in few-shot settings. In effect, CFE’s guide the student to attend
to “why” a label changes, not just “what” the label is. This bridges explainability and compression,
turning explanations into actionable data for KD. As research increasingly focuses on getting more
from less data [69, [70]], future work could extend our approach to generative models. See Appendix
[Al for limitations.
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Appendix

A Limitations and Societal Impact

Limitations. While the counterfactual-explanation-infused knowledge distillation (COD) method
demonstrates strong empirical performance, several limitations remain. First, generating counter-
factual explanations (CFEs) introduces additional computational overhead compared to standard
distillation approaches. Moreover, our current CFE generation strategy, which relies on prompting
LLMs, does not guarantee that we would get the closest counterfactual (as defined in Definition E]),
potentially limiting the precision of our distilled knowledge. Future work could explore alternate
methods for generating closer and semantically valid CFEs. Additionally, as with knowledge distilla-
tion in general, COD is inherently dependent on the quality of the teacher model. Any inaccuracies
or biases present in the teacher’s decision boundary may be inherited by the student. Addressing
robustness to flawed teachers remains an important direction for future research.
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Societal Impact. CoD offers several potential societal impacts, particularly in reducing the cost and
effort associated with data collection [68]. By enabling the distillation of high-performance models
with fewer data samples, this approach can significantly lower data collection costs, making machine
learning more accessible in low-resource environments. This is especially valuable in industries
where data is often scarce and expensive to obtain [71,168]]. Moreover, by requiring fewer samples
and targeting smaller student models, COD contributes to more efficient model training and scalable
deployment. Our method leverages explanations as a tool for more effective model compression. In
doing so, it bridges the gap between explainability and model compression.

B Background on Fisher Information and Proof of Theorem 1]

This section provides background on Fisher information and a formal proof for Theorem I} which
quantifies the reduction in estimation error from using CFE-infused training data.

B.1 Background on Fisher Information Matrix

Definition 4 (Positive Semi-definite Matrices). A matrix A € R**? s said to be positive semi-definite
if it is symmetric and for all non-zero vectors x € R%, the following condition holds:

xTAx >0 forall xecR%
The eigenvalues of a positive semi-definite are non-negative, i.e., \;(A) > 0 for all eigenvalues \; of
Definition 5 (Lowner Order). Let A, B € R4*? be symmetric matrices. We say that A is greater

than or equal to B in the Léwner order, denoted A = B, if and only if the matrix A — B is positive
semi-definite. That is,

A= B ifandonlyif zT(A—B)x>0 forall zeR%

If A = B, then A — B is positive definite, meaning A is strictly greater than B in the Lowner order.

Lemma 2 (Trace Inequality for Positive Semi-definite Matrices). For positive semi-definite matrices
A, B € R4 ywhere A = B, then:

Tr(A_l) < Tr(B_l)

Proof. Since A = B, we have B~! = A~! by the Lowner order inversion property. The trace
operator preserves this inequality because for any X > Y > 0:

d d
Tr(X) =D X(X) > > X(Y) =Tr(Y)
i=1 i=1
where \;(-) denotes eigenvalues in descending order. O

Definition 2 (Fisher Information Matrix [61]]). Let L£(0) be the log-likelihood of a parametric
distribution p(y, x; 0), where 0 is the parameter vector to be estimated. The Fisher Information
Matrix (FIM) at parameter 0 is defined as:

Z(0) = Exy [Vologp(y, x;0) Vo logp(y,x;0) '] .

Fisher information captures the amount of information that an observable random variable x carries
about an unknown parameter 6 of a distribution that models x. We use the notation Z(6;y,x) to
denote the Fisher information about 6 carried by single observation y, x.

B.2 Proof of Theorem/[]

Theorem 1 (CFEs Improve Model Parameter Estimation). Let w4 and ng) be the student parame-

ters obtained via MLE on D (standard) and Dt (CFE-infused). Assuming the teacher’s parameters
w; capture the true data-generating distribution, and that CFEs lie near the decision boundary, the

estimation error satisfies: E ||wng) - Wt||2] <E[[lws —we|?].
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Proof. For a single observation (x, y), the log-likelihood is:

log p(ylx; w) = ylogo(w "x) + (1 — y)log(1 — o(w 'x)) 3)
Taking the gradient with respect to w:
Vw log plylx; w) = (y — o(w ' x))x )

To prove Theorem [I] we first (1) Characterize the Fisher information for individual observations,
(2) Establish asymptotic normality of MLE, (3) Compare information matrices of standard vs. CFE-
infused datasets, and (4) Apply trace inequality to connect information to estimation error.

(1) Fisher Information for Logistic Regression: For a logistic regression model with parameters w,
Lets denote Fisher Information Matrix (FIM) for observations ¥, x as:

I(w;y,x) =E, [VW log p(y,x; W)V logp(y,x;W)T] 5)
Vw log p(y,x; w) = Vi log p(y[x; W) + Vi log p(x) . (©6)
=0

The gradient of log p(x) is zero because p(x) is independent of the model parameters w.

Using the law of total expectation:

I(w;y, %) = Ex[Byx [Vw log p(y[x; W)V log p(ylx; w) ] ™

Substituting Equation [4}
I(w;y,x) = Ex [Eyx[(y — o(w'x))*xx"]] ®)
= Ex [xx"Eyjx[(y — o(wx))?]] ©)

The term E, [(y — a(wa))Q} is the variance of y|x. Where y|x ~ Bernoulli(o(w x)), we

compute:
Eyjx[(y — o(w'x))%] = Var(y|x) = o(wx)(1 — o(wx)) (10)

Thus:

T(w;y,x) = Ex[o(w x)(1 — o(w x))xx ] (11)

T

The variance term is maximized when w ' x = 0 (i.e., at the decision boundary), where it equals 0.25.

(2) Asymptotic Distribution of MLE: Under regularity conditions [71], the MLE estimator satisfies:
VE(ws —wy) 5 N0, (wy; D)) (12)

where Z(wy; D) = Zle Z(wy; yi, x;) is the total Fisher information of k independent observations
of y;, x; (Additivity property of fisher information [72])).
The mean squared error (MSE) [73] decomposes as:

Ellw, — i[> = Tr(Cov(w.)) + |[Bias(w.)| (13)

Variance Bias
For MLE, Bias(w) — 0 as k — 00, so: E||w, — wy||? = Tr(Z~(w; D))

The next step of the proof we compare the fisher information between a standard dataset and CFE-
infused dataset.
Let D = {x;}¥_, be a dataset of k standard samples, and let Dt = {xl}fﬁ U {x, }ffl be an

CFE-infused dataset containing k/2 standard samples and k/2 CFEs.

Standard Samples: Far from decision boundary = w, x; >> 0 or < 0. Thus:

o(w/!x)(1 —o(w/x;)) = ¢ <025 (14)
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Their FIM contribution is: Z(wy; x;) = Ex[e;xix, |.
CFE Samples: Near boundary = w, x. = 0 = ¢(0) = 0.5. Thus:
o(w) x.)(1 —o(w] x.)) = 0.25 (15)
Their FIM contribution is maximal: Z(wy; x.) = Ex[0.25x.x/].
Since 0.25 > €;, we have Z(wy; D.¢) > Z(wy; D) in the Léwner order (see Definition [5).

Remark 2 (Feature Spanning). Note that for logistic regression the feature vector is augmented with
the parameter bias term, i.e., x = [1,% | T, hence,the outer product xx ' has a non-zero norm. The
first element of x is always 1, ensuring ||x||> > 1. Thus, xx ' cannot be the zero matrix, even if
X = 0. This guarantees that each CFE example X contributes a non-degenerate rank-1 term to the
FIM.

The final step of the proof leverages the trace inequality for covariance matrices (see Lemma[2). If
I(w;Dey) = I(wy; D) then Tr(Z Y (wy; Deg)) < Tr(Z~(wy; D)). Thus, CFE infusion reduces
parameter estimation error:

E [[|w§? — wi|*] < E[[[ws —we|?] (16)
Remark 3 (Datapoint Diversity). For the total FIM Z(wy; D) to be invertible, the set of feature

vectors {x; } must span R? which will hold if we have enough samples.

O

C Background on Hausdorff Distance and Proofs of Lemma 1| and Theorem 2|

This section provides definitions and geometric preliminaries, along with proofs for Lemma I]and
Theorem 21

C.1 Background on Hausdorff Distance
Definition 6 (Line Segment). Let x;,x; € R"*? be two points in the n x d space. The line segment
[x;, X}] connecting x; and X, is defined as the set of points y(\) for A € [0, 1], where
Y(A) = (1 = Nx; + Ax;, A €0,1].
This defines all the points on a space between x; and X/, in R"*4.

Lemma 3 (Intermediate Value Theorem). Let f : [a,b] — R be a continuous function, and let
f(a) # f(b). Ify is any value between f(a) and f(b), then there exists ¢ € (a,b) such that f(c) = y.

Definition 3 (Hausdorff Distance). Let M;, My C R"*? be two non-empty subsets of a metric
space. The Hausdorff distance is defined as:

H(M,, My) = max{ inf [|x — inf fu— x| r }.
R s A R

C.2 Proofs of Lemma[Iland Theorem

Lemma 1 (Existence of Boundary Crossing for Counterfactual Pairs). Let f; : R"*¢ — [0, 1] be
a continuous function. For a datapoint and its counterfactual pair (x;,X}), there exists a point
xF = ax; + (1 — a)x} foran a € (0, 1) (on the line joining x; and X}) such that: f;(x}) = 0.5.

Proof. Define the line segment from z; to z} using a parameterization: v(\) = (1 — N)z; +
Azl, for A € [0,1].

This defines a continuous path from z; to 2 in R%. Now define the real-valued function g : [0, 1] — R
by: g(A) = fe(y (X)) = fol(1 = M)z + Azy).

Since f; is continuous on R%, and () is continuous in ), the composition g()) is continuous on the
closed interval [0, 1].

16



635

636

638

639

641

642

643
644
645
646
647

648
649
650

651

652
653

654
655
656

657

658

659

660

661

0.5k —- _ ___________

Output Probability

Boundary
leacher _

@
=l
ic
=

o
i

|Student

7

x X x x
Point =) Small Gap 4= CFE

Figure 4: Intuition for Theorem 2]

Now, evaluate the endpoints of this function: g(0) = f¢(z;) < 0.5,¢9(1) = fi(z;) > 0.5.

Thus, we have g(0) < 0.5 < g(1), and by the Intermediate Value Theorem (see Lemma 3], since g is
continuous on [0, 1], there exists A* € (0, 1) such that: g(A*) = 0.5.

Define 27 = y(\*) = (1 — A*)a; + Nz} € [z;,2%]. Then: fi(aF) = g(A*) = 0.5.

Hence, the point z} € [z;, z}] lies on the segment and satisfies f¢(x}) = 0.5, as required. O

Theorem 2 (Teacher—Student Boundary Proximity). Let f;, fs : R"*% —;[0, 1] be the teacher and
student model, with decision boundaries M, = {x | fi(x) = 0.5} and My = {x | fs(x) = 0.5},
respectively. Assume we observe a CFE-infused dataset Doy = {(x;,x}) }le satisfying, for every
pair (x;,%}): (Al) Minimal perturbation: ||x; — xX;||r < « with o > 0; (A2) Exact distillation:
fs(x:) = fi(x;) and fs(x}) = fi(x}); and (A3) e-spread along the teacher boundary: For each pair,
let the teacher’s crossing point be X} = ax; + (1 — a)x} for o € (0,1) such that fi(x}) = 0.5.
Furthermore, suppose that for every a € My, there exists an i with ||a — x}||2 < e. Then the
Hausdorff distance between the decision boundaries obeys: H(Ms, M) < a + e.

Proof. To prove Theorem 2] we bound the Hausdorff distance between the student’s and teacher’s
decision boundaries using the given assumptions. We bound each term separately of the Hausdorff
distance (see Defintion [3).

We first bound sup, ¢ v, infuen, ||x — ul|F:

For any a € M, by assumption (A3), there exists a CFE pair (x;, x}) with teacher crossing point
x; € M, such that:
la—x}|r <e. (17)

The segment [x;, x}] has length ||x; — x|z < o (Al). By Lemmal(I]and (A2) Exact distillation, the
student’s boundary M intersects [x;, X}] at some u} € M. Since x} and u} lie on [x;, X}], their
distance satisfies:

i —uillr < lxi = xillr < o (18)

Combining Equation[I8]and
la —uillr <lla—xlr+x; —uillr <e+a (19)

Thus, infye .

a —u||p < €+ «. Taking the supremum over a € Mj:

sup inf |x—ul|lr <e+a. (20)
XEM; ueM,

Next we bound sup,,¢ v, infxenm, [[u— x| F:

From Al, the distance between the student’s cutpoint u; and the teacher’s cutpoint x} satisfies:

[ = x7llr < [lx; = xillr < 2D
For any other u € M,:

[u=xjllr < flu=uil[r +[luj = xj[[r <c+a, (22)
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Assuming the CFE pairs (x;,x}) intersection points are e—spread (well spread) along the student
decision boundary.

Since x; € My, we have:

inf — < —xi|r < . 2
Jnf u—xlp < - xir <cta 3)

Taking the supremum over u € M:

sup inf [[u—x|p <e+a. (24)
ueM, XeM;

Combining both bounds, the Hausdorff distance is the maximum of the two suprema:

HMg, M) <max{e+a, et+a}=c+a (25)

D Additional Experiments and Details

This appendix provides additional experimental details and results to supplement the main paper.
In Appendix [D.T| we describe the datasets used in our few-shot experiments and preprocessing
choices. In Appendix we include the prompt templates used to generate counterfactual explana-
tions. Baseline methods are summarized in Appendix [D.3] and complete hyperparameter settings
are detailed in Appendix Finally, Appendix presents extended results using the smaller
DeBERTa-v3-xsmall student and the Qwen2 .5 model family.

D.1 Datasets Details.

We evaluate COD across six text classification benchmarks that span a range of domains. For each
k-shot setup, we sample a balanced subset from the processed training data, selecting k/2 examples
per class. All experiments are repeated across 5 random seeds, each with a different sampled subset.

* Yelp [31]: We use the Yelp Review Full dataset, filtering for reviews with at most 250 tokens and
discarding neutral labels. Labels are binarized: 1-2 as negative and 4-5 as positive. The processed
dataset contains 106,624 training examples, 1,000 for validation, and 7,074 for testing, with a
slightly imbalanced class distribution (64% negative).

» IMDB [28]: We retain only reviews with shorter lengths. The original test and unsupervised splits
are repurposed as validation and test sets, respectively. The resulting data includes 782 training,
858 validation, and 1,578 test samples, with the test set unlabeled.

* SST2 2 [26]: We use the full GLUE-provided training, validation, and test splits without modifi-
cation. The train/val sets contain 67,349 and 872 examples, respectively. The test set has 1,821
unlabeled examples.

* CoLA [29]: We adopt the standard GLUE splits of the CoLA dataset, yielding 8,551 training,
1,043 validation, and 1,063 unlabeled test samples. The task is binary classification of linguistic
acceptability.

* Sentiment140 [27]]: We filter the dataset to exclude neutral tweets. The final dataset includes
1,598,400 training, 1,600 validation, and 359 test examples, with balanced label distributions.

* Amazon Polarity [30]: We select examples with shortest length. The processed data includes
1,111 training and 113 validation samples, with roughly balanced sentiment labels.

D.2 Counterfactual Explanation Generation Prompt Templates.

Here we provide prompt templates used for counterfactual explanation generation across datasets.
Each prompt instructs the model to minimally modify a given input to flip the class label (e.g., senti-
ment or grammaticality) while preserving meaning and structure. We used gpt-40-2024-11-20 [66]
for our CFE generation.
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SST-2 / IMDB / Sentiment140 / Amazon

You are an Al assistant tasked with generating counterfactual explanations for sentiment analysis.
Given a sentence and its true sentiment label, your goal is to make the minimal necessary change to flip
the sentiment while preserving the structure and meaning as much as possible.

For example, if the input is:

Sentence: "I love this movie."

True sentiment: Positive

A suitable counterfactual explanation would be: "I dislike this movie."

Now, generate a counterfactual explanation for the following sentence:

Sentence: {sentence}

True sentiment: {sentiment}

Return only the counterfactual sentence, without any additional information.

Yelp

You are an Al assistant tasked with generating counterfactual explanations for sentiment analysis of
Yelp reviews.

Given a sentence (a Yelp review) and its true sentiment label (positive or negative), your goal is to make
the minimal necessary change to flip the sentiment while preserving the structure and meaning as much
as possible.

For example, if the input is:

Sentence: "This restaurant is fantastic, the food was amazing!"

True sentiment: Positive

A suitable counterfactual explanation would be: "This restaurant is terrible, the food was awful!"
Now, generate a counterfactual explanation for the following sentence:

Sentence: {sentence}

True sentiment: {sentiment}

Return only the counterfactual sentence, without any additional information.

| '
\

CoLA

You are an Al assistant tasked with generating counterfactual explanations for grammaticality judgment.
Given a sentence and its true grammaticality label (Acceptable or Unacceptable), your goal is to make
the minimal necessary change to flip the grammaticality while preserving the structure and meaning as
much as possible.

For example, if the input is:

Sentence: "She is going to the store."

True grammaticality: Acceptable

A suitable counterfactual explanation would be: "She is go to the store."

Now, generate a counterfactual explanation for the following sentence:

Sentence: {sentence}

True grammaticality: {sentiment}

Return only the counterfactual sentence, without any additional information.

D.3 Baselines Details.

We compare COD against three task-aware knowledge distillation methods widely used for distillation.
CoD uses k /2 original samples and their k /2 corresponding CFE (a total of & shots) while the baseline
methods are trained on k original samples.

* Knowledge Distillation (KD) [67]]: A classical distillation approach where the student model
learns to mimic the teacher’s soft target probabilities using Kullback-Leibler (KL) divergence. This
method transfers predictive behavior but does not supervise intermediate representations.

 Layer-wise Distillation (LWD) [13]: An extension of KD that additionally aligns the student’s
intermediate hidden representations with those of the teacher. This is typically done via a mean
squared error loss over corresponding layers, encouraging the student to internalize not only the
final outputs but also the hierarchical feature representations of the teacher.
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Table 4: Teacher accuracy (%) across datasets. Reporting Qwen2.5-1.5B and DeBERTa-v3-base
when fine-tuned on full training dataset for each benchmark. These teachers are used as sources of
supervision for student models during knowledge distillation.

Model Amazon Polarity CoLA IMDB SST2 Yelp Sentiment140
Qwen2.5-1.5B 88.5 83.0 943 937 954 86.1
DeBERTa-v3-base 86.7 875 938 958 956 86.8

» Task-aware Layer-wise Distillation (TED) [12]: TED augments LWD with learned neural filters
at each layer of both teacher and student models. These filters are trained to select task-relevant
information from intermediate representations before computing the distillation loss. This selective
transfer enables more effective compression by focusing on information critical to task performance.

D.4 Models and Hyperparameters.

* DeBERTa-V3 [32]. We fine-tune the teacher model using DeBERTaV3-base, initialized with a
classification head for each target task. For the teacher, we use a dropout rate of 0.1, linear learning
rate decay, and train for 8 epochs with a fixed learning rate of 2 x 10~5 and batch sizes of {32,
64}. Optimization is performed using Adam with e = 1 X 1076, 81 = 0.9, and By = 0.98, without
weight decay. Mixed-precision training with FP16 is used throughout.

For distillation, the student is initialized from a pre-trained DeBERTa-v3-small or
DeBERTa-v3-xsmall model. We search learning rates in the range [1 x 107°,5 x 1075], and use
a fixed batch size of 8 in our few-shot experiments. All student models are trained for 10 epochs
using Adam with the same optimizer settings as the teacher. For KD and LWD baselines, we set
the distillation loss weight to 20. For the TED baseline, we use the same hyperparameters for both
the filter training and distillation phases, consistent with [12].

* Qwen2.5 [2]. We use Qwen/Qwen2.5-1.5B as the teacher and Qwen/Qwen2.5-0.5B as the
student, both loaded from Hugging Face with sequence classification heads. We fine-tune using
a batch size of 16 and train for 10 epochs. For KD and LWD baselines, we set the distillation
loss weights to 20 and 5, respectively. All other settings closely follow the DeBERTaV3 setup,
including the optimizer, learning rate schedule, and use of mixed-precision training.

All experiments are conducted on a server equipped with four NVIDIA RTX A6000 GPUs.

D.5 Additional Results and Discussion.

We provide results using the smaller DeBERTa-v3-xsmall (22M parameters) student as well as the
full evaluation table for the Qwen2.5 family. Results for the smaller DeBERTa-v3-xsmall student
are shown in TableE} While experiments using the Qwen2.5-1.5B teacher and the Qwen2.5-0.5B
student are shown in Table|6l We also include the full fine-tuned teacher model accuracies across
all datasets in Table ] which are used as supervision targets during knowledge distillation. All
experimental results are averaged over five runs, with the mean and standard deviation reported.

Overall, our findings corroborate the central insight that infusing CFEs into knowledge distillation
significantly boosts model performance in few-shot settings. For the smaller DeBERTa-v3-xsmall
student, we observe that the benefits of CFE infusion remain substantial across tasks, especially when
k < 64. For example, on IMDB at k = 8, KD + CoD improves from 74.3% to 89.3%, and LWD +
CoD improves from 77.3% to 87.7%, showing that even with a much smaller student, CFEs offer
a powerful training signal. Similar patterns are seen on SST2 and Amazon Polarity. While the
performance gap narrows at higher k values, our method still matches or slightly outperforms standard
distillation, despite using only half as many real samples. These results highlight the scalability of
CoD across student model sizes.

We also evaluate COD on Qwen2. 5 models, using Qwen2.5-1.5B as the teacher and Qwen2.5-0.5B
as the student. Results on CoLA, Yelp, Amazon Polarity, and IMDB show that our method consis-
tently outperforms standard KD and LWD, particularly in few-shot regimes. On IMDB with k=8,
KD + CoD reaches 80.0% vs. 67.8% for standard KD - a remarkable 12.2 percentage point gain.
Similarly, LWD + CoD improves CoLA accuracy by 8.3 points at k=128 (71.9% vs. 63.6%). With
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Table 5: Classification accuracy (+ std) across datasets with varying total training sizes k. For
CoD, training data consists of k/2 standard and k/2 CFEs. Teacher model DeBERTa-v3-base and
student model DeBERTa-v3-xsmall.

Total Samples (k)
Dataset  Method 8 16 32 64 128 512
KD 0.628 0055  0.690x0034 0.766 0032  0.827 0021  0.835:0037  0.846 20009

Amazon + CoD 0.697 0117 0.782:0033 0.823 0018  0.844 10000 0.814:0013 0.855 z0.018

Polarity

LWD 0.660 0061  0.699:0044 0.777 20042 0.82510015  0.839 0015  0.839 20013

+CoD  0.712:0039 0.743:0051 0.811:0016 0.832:0015 0.830x0010 0.850 0013

KD 0.724 0045 0.735:0052  0.776x0026  0.773 20020  0.799 20011 0.806 x0.004

CoLA +CoD  0.752:0042 0.766:0018  0.790:0012  0.799 10004  0.803 0008 0.817 +0.007
LWD 0.699 :0042  0.744 20039  0.75510043  0.787 20008  0.803 20009 0.808 x0.008

+ CoD 0.685:0190 0.780:0018 0.790 0004  0.798 20007 0.802 10005  0.813 20003

KD 0.743 z0070  0.849:0037  0.882:0032  0.904 0004 0.912:0005 0.920 +0.004

IMDB + CoD 0.893 20007  0.896:0007 0.900:0005 0.904 10005 0.910:0008 0.918 x0.003
LWD 0.773 x0034  0.82310041  0.87620027  0.903 0008 0.915:0007 0.914 20014

+CoD  0.877:0022 0.888:0006 0.900:0005 0.902:0000 0.911x0008 0.921 x0.001

KD 0.591 20040 0.66620030 0.754 20047 0.816x0024 0.8610015 0.887 20033

SST2 +CoD  0.685:0112 0.763:008¢ 0.829:0028 0.850:0015 0.862:0016 0.905 0011
LWD 0.580 0064  0.664 20024 0.726x0036 0.818 20019 0.847 20020  0.912 x0.005

+CoD  0.658:0.107 0.675:0074 0.839:0017 0.841:0019 0.859:0016 0.877 +0.044

KD 0.704 0062 0.793 20042  0.861 0011  0.887 20004  0.907 0007  0.922 +0.008

Yelp + CoD 0.759 20086  0.758 20084  0.870 0008 0.889 0000 0.897 10009 0.920 0006
LWD 0.714 0040  0.815:0028 0.870x0013 0.875x0012  0.907 20006  0.925 0006

+ CoD 0.758 z0060  0.757 0082 0.873 0012  0.884 10007 0.894 10009 0.919 x0.006

KD 0.580:0032  0.594 10026 0.634:0047 0.681x0046 0.740x0012  0.796 20013

Sent140 + CoD 0.573 0078 0.612:006¢  0.721 0019  0.737 20030  0.767 0014 0.795 x0.006

LWD 0.576 :0038 0.585:0025 0.624 10020 0.684 10044 0.728 20035  0.799 20007
+CoD  0.561:0064 0.592:0050 0.681:0043 0.723:0025 0.763 0019 0.773 x0.026

(k=8), CoD boosts Yelp performance by 6.1 points for both KD (74.5% vs. 68.4%) and LWD (74.6%
vs. 68.5%). These gains demonstrate the generality of our approach: it is effective even for decoder
transformer families like Qwen?2. 5.

Taken together, our findings affirm the broad applicability of CFE-infused distillation. The consistent
improvements across datasets, model families, and student capacities support our central claim: CFEs
are a powerful, data-efficient tool for improving teacher-student alignment in low-resource scenarios.
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Table 6: Classification accuracy (4 std) of Qwen2.5 across datasets with varying training sizes
k. For COD, training data consists of k/2 standard and k/2 CFEs. Teacher model is Qwen2.5-1.5B
and student model is Qwen2.5-0.5B.

Total Samples (k)
Dataset  Method 8 16 32 604 128 512
KD 0.681 0012  0.67620023 0.668 0042 0.654 100322 0.676x0020 0.732:0014
CoLA + CoD 0.683 :0016  0.686:0018  0.697 w0015 0.711 20020 0.736:0017  0.757 0011
LWD 0.681 0012  0.657 20031  0.678 0018 0.650x0039 0.636x0029 0.712 20014
+ CoD 0.682 :0018  0.687 0013  0.704 20010  0.714 0020 0.719:0022  0.755 20013
KD 0.684 0021 0.759 0040 0.827 20030 0.861 0017 0.887 w0012  0.920 0010
Yelp + CoD 0.745 20020  0.779 20048  0.828 20072  0.886 0007 0.883 0010 0.916 20008

LWD 0.685z0019 0.777 20036 0.837 0027 0.876x0020 0.898 20008 0.920 x0.005
+ CoD 0.746 :0008  0.778 0035 0.847 0020 0.876 0014 0.883 0010  0.909 0009

KD 0.589 0057 0.635:0044 0.706x0083 0.781 20033 0.807 x0031  0.862 x0.013
Amazon + CoD 0.605 0051 0.660:0042 0.712:0077  0.793 20030 0.805:0041  0.835 x0.021

Polarity

LWD 0.589 10057  0.628 20096 0.680x0052 0.779x0026 0.823 0027  0.858 20015

+ CoD 0.607 0051 0.662 0060 0.692 0080 0.795:0041  0.823:0023 0.853 x0.020

KD 0.678 x00s4  0.758 20079  0.817 20057  0.890 0017 0.903x0012  0.926 20003

IMDB +CoD  0.800:005¢« 0.845:0061 0.877 0038 0.889x0014 0.912:0010 0.921 x0.003
LWD 0.678 20054  0.740:0076 0.832:0035 0.883 10014 0.906:0014  0.925 +0.003

+CoD  0.800:0055 0.835:0048 0.869:0012 0.893:0013 0.909:0008 0.920 x0.007

KD 0.568 20061  0.621 10084 0.719:0102  0.827 20038 0.878 20020  0.904 x0.010

SST9 + CoD 0.578 :0064  0.663 0081  0.767 0085 0.779:0.137  0.87010019  0.886 0005
LWD 0.568 :0062  0.642:0107 0.704 20065 0.825:0034  0.869 0026 0.890 0010

+ CoD 0.577 0063 0.677 x0076  0.782 0133  0.779 20085 0.792:0118  0.878 x0.011

KD 0.586 20047  0.599:0047 0.641:0030 0.708 0027 0.756x0020 0.813 0010

Sent140 + CoD 0.556 20038  0.591:0046 0.616x0055 0.711 20061  0.757 x0023  0.805 x0.010

LWD 0.587 :0051  0.596:0038 0.639:0063 0.718 0038 0.765x0024  0.805 x0.011
+CoD  0.556:0038 0.588:0059 0.621zx0051 0.715z0059 0.765x0012  0.805 x0.008
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