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Abstract

Knowledge distillation is a promising approach to transfer capabilities from1

resource-intensive teacher models to smaller, resource-efficient student models that2

can be deployed easily, particularly in task-aware scenarios. However, existing3

methods of task-aware distillation typically require substantial quantities of data4

which may be unavailable or expensive to obtain in many practical scenarios. In5

this paper, we address this challenge by introducing a novel strategy called COD6

for few-shot task-aware knowledge distillation by systematically infusing counter-7

factual explanations. Counterfactual explanations (CFE) refer to inputs that can flip8

the output prediction of the teacher model with minimum input perturbation. Our9

strategy COD, short for Counterfactual-explanation-infused Distillation leverages10

these CFEs to precisely map the teacher’s decision boundary with significantly11

fewer samples. We provide theoretical guarantees for motivating the role of CFEs12

in distillation, from both statistical and geometric perspectives. We mathematically13

show that CFEs can improve parameter estimation by providing more informative14

examples near the teacher’s decision boundary. We also derive geometric insights15

on how CFEs effectively act as knowledge probes, helping the students mimic the16

teacher’s decision boundaries more effectively than standard data. We perform17

experiments across various datasets and LLMs to show that COD outperforms18

standard distillation approaches in few-shot regimes (8 - 512 samples), achieving19

improved performance under equal number of shots which is essentially half of the20

original samples used by the baselines, infused with their corresponding CFEs.21

1 Introduction22

Large Language Models (LLMs) have demonstrated state-of-the-art performance across a broad23

spectrum of tasks [1–3]. However, as the size of LLMs grow, so does the associated computational24

burden, making them difficult to deploy in resource-constrained environments, e.g., mobile phones,25

edge devices, and embedded systems [4]. The challenge, therefore, lies in making large models26

more efficient and accessible without sacrificing performance. To this end, knowledge distillation27

(KD) (initially proposed in [5]; see surveys [6–8]) has emerged as a powerful technique for model28

compression, enabling smaller student models to mimic the performance of a larger teacher model.29

In the context of LLMs, KD plays a central role in transferring the broad capabilities such as natural30

language understanding [9], reasoning [10], instruction following [11], etc, onto smaller models.31

While LLMs are trained for a broad range of tasks, we may often want a smaller, task-specific32

language model when full task coverage is not required. To support this, task-aware knowledge33

distillation [12, 13] has been proposed to selectively transfer task-relevant knowledge from teacher to34

student language models. While effective, these methods typically assume access to large datasets [14].35

However, in many real-world applications, the amount of data available is often limited [15–18].36
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Despite advances on algorithmic strategies for task-aware KD in LLMs [14], the problem of data37

selection for KD has received limited interest, particularly in few-shot settings. In this work, we38

study few-shot and task-aware knowledge distillation for LLMs, where student models are distilled39

from teacher models using a small number of samples labeled for a task (also called shots). Few-shot40

task-aware distillation remains underexplored for LLMs. In classical ML, few-shot training has poor41

generalization [19], and thus causes ineffective distillation due to insufficient task coverage [20, 21].42

However, few-shot distillation holds potential for LLMs because they are pretrained on a large43

corpora, also drawing inspiration from the prior success of few-shot learning [22].44

In this work, we propose a few-shot task-aware knowledge distillation by systematically integrating a45

type of post hoc explainability technique called counterfactual explanations (CFE) [23–25]. CFEs46

are inputs that flip the output prediction of a model with minimum input perturbations. We find that47

CFEs can act as knowledge probes, helping the students mimic the teacher’s decision boundaries48

more effectively than standard data. Our work bridges explainability and model compression by49

turning explanations into actionable training signals, guiding the student into learning the teacher’s50

decision-making process more effectively. This results in more faithful knowledge transfer even with51

very limited data. Our contributions can be summarized as follows:52

• A counterfactual explanation-based strategy for few-shot distillation. We propose a novel53

framework COD, short for Counterfactual-explanation-infused Distillation, for task-aware knowl-54

edge distillation under few-shot regimes. By enriching the few-shot training set with CFEs, we55

improve the student’s ability to mimic the fine-grained details of the teacher’s decision boundary56

with fewer labeled examples. We validate this intuition through a synthetic experiment on the 2D57

moons dataset, showing that CFE-infused distillation better replicates the teacher’s decision surface58

compared to using standard few-shot samples (see Figure 2).59

• Theoretical guarantees motivating the role of CFEs in distillation. We provide theoretical60

guarantees that serve as motivation for our approach, from both statistical and geometric perspec-61

tives. First, in a logistic regression setting, we show that CFEs improve parameter estimation62

by maximizing the Fisher Information (see Definition 2 and Theorem 1). Our proof specifically63

leverages the fact that the CFEs lie quite close to the decision boundary to show that they reduce64

the expected estimation error of the student model compared to standard distillation. Next, moving65

beyond statistical guarantees and linear models, we also provide a geometric analysis for non-linear66

models, establishing that if a student matches the teacher’s predictions on the original data and67

their counterfactual pairs, then their decision boundaries will remain close: this is quantified by a68

provably small Hausdorff distance (see Definition 3 and Theorem 2) which is a formal measure of69

distance between two subsets within a space.70

• Empirical validation. We evaluate COD six different datasets (SST2 [26], Sentiment140 [27],71

IMDB [28], CoLA [29], Amazon Polarity [30], and Yelp [31]) using DeBERTa-v3 [32] and72

Qwen2.5 [2] model families. We compare against strong baselines for task-aware knowledge73

distillation including standard Knowledge Distillation (KD) [5], Layer-wise Distillation (LWD) [13],74

and Task-aware layer-wise Distillation (TED) [12] under various few-shot settings (k = 8, 16, 32,75

64, 128, and 512). Our results demonstrate that COD consistently outperforms baselines in few-shot76

regimes, with particularly significant improvements in extremely data-scarce scenarios (k ≤ 64).77

Notably, COD only uses half of the original labeled samples used by the baselines (i.e., k/278

original infused with their corresponding k/2 CFEs, leading to k shots), and still gives improved79

performance. For instance, with k = 8 samples on IMDB dataset, LWD + COD improves over80

standard LWD by more than 10 points (86.1% vs. 76.0%).81

Related Works: Knowledge distillation has emerged as a powerful framework for model compres-82

sion [5]. While early works focused on transferring soft labels via output logits [33], subsequent83

advances explored richer supervision signals such as intermediate feature alignment [13, 34–36].84

As LLMs grow in size and inference cost [37, 38], distillation has become increasingly important85

for transferring capabilities into smaller models [14, 6–8]. More recently, task-aware knowledge86

distillation for LLMs has gained traction, aiming to selectively distill knowledge relevant to a specific87

downstream task [12, 39]. Despite these algorithmic innovations [12], there has been relatively little88

focus on data selection for distillation, particularly in few-shot settings. Most prior works assume89

ample training data, leaving few-shot knowledge distillation largely underexplored. While some90

works [20, 16–18] have studied distillation in classical ML under low-data regimes, they do not91

address the challenges specific to distilling LLMs. In this work, we establish the paradigm of few-shot92
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distillation in LLMs by integrating explainable data selection. Our work is broadly aligned with the93

spirit of data-efficient ML, which aims to improve performance under limited supervision [40–42].94

Counterfactual explanations (CFEs) [23–25, 43–46] have been widely studied in classical ML,95

particularly in high-stakes applications such as finance, healthcare, and law, where they often provide96

algorithmic recourse to guide users toward desired outcomes [25, 47]. In the natural language domain,97

some methods have been proposed to generate semantically valid CFEs using either token-level98

perturbations [48] or controlled generation with language models [49, 50, 48], but they have not been99

integrated for knowledge distillation. Another line of work is counterfactual reasoning in causal100

inference, where the goal is to estimate the effect of interventions under a structural causal model [51],101

which is different from our objectives. These counterfactual data have been used to address the issue102

of spurious patterns in NLP tasks [52, 53], improve generalization [54, 55], and enhance performance103

on out-of-distribution data [56, 57]. In contrast, our work studies the role of CFE infusion in few-shot104

task-aware knowledge distillation, leveraging the teacher’s signal to more effectively mimic the105

teacher’s decision boundary in few-shot data settings.106

2 Preliminaries107

LLMs are highly effective for natural language processing. Built upon the transformer architec-108

ture [58], LLMs consist of multiple stacked layers, each containing a multi-head self-attention mecha-109

nism followed by a position-wise feed-forward neural network. Let g(·; θ) denote a transformer-based110

model parameterized by θ. The model takes an input sequence x ∈ X where X is the input space.111

The model output is a probability distribution over the vocabulary space, but for task-aware settings112

such as sentiment analysis, it is a probability distribution over C class labels, i.e., g : X → [0, 1]C .113

The loss function is defined as: L(θ) = Ex∼X [ℓ(g(x; θ))], where ℓ denotes the task-specific loss,114

such as cross-entropy for classification tasks or causal language modeling loss for generative models.115

Knowledge Distillation (KD). KD is a technique that transfers knowledge from a large, pre-trained116

teacher model to a smaller, student model [59]. Let gt(·; θt) be the teacher model with parameters θt117

and gs(·; θs) be the student model with parameters θs. The teacher model gt(·; θt) provides soft labels118

to assist in training the student model gs(·; θs). The student is trained using a loss function that is a119

combination of the task-specific loss and the distillation loss as follows: minθs L(θs)+αLKD(θt, θs).120

Here, L(θs) is the task-specific loss, e.g., the cross-entropy loss between the student’s outputs and true-121

labels, and LKD(θt, θs) = Ex∼X [d(gt(x; θt), gs(x; θs))] is the distillation loss which captures the122

distance between the outputs of the teacher and student. Typically, the distance is computed using the123

Kullback-Leibler (KL) divergence, i.e., KL(gt(x; θt) ∥ gs(x; θs)) =
∑C

c=1 g
(c)
t (x; θt) log

g
(c)
t (x;θt)

g
(c)
s (x;θs)

,124

where the superscript (c) is for the assigned probability for class c by each model.125

Layer-Wise Distillation (LWD). In large transformer-based models, the teacher’s outputs may not126

fully capture the knowledge embedded in intermediate layers. Beyond matching final outputs, one127

can also align the intermediate features of the teacher and student [13]. At a few selected layers, the128

teacher’s hidden activations hl
t and the student’s activations hl

s (optionally projected into the same129

dimension) are computed and their difference is also penalized using a mean-squared-error loss [13].130

The student is trained using a loss as follows:131

min
θs

L(θs) + α LKD(θt, θs) + β LLWD(θt, θs) (1)

Here, LLWD(θt, θs) is the additional layer-wise alignment term added alongside the task-specific loss132

and distillation loss, e.g., Ex∼X [
∑

l∈I ∥hl
t − hl

s∥22] where {hl
t, h

l
s}l∈I are the teacher and student133

activations for a given input x over a set I of layers, and α, β ≥ 0 balance the three objectives.134

Counterfactual Explanations (CFEs). Given a model’s decision on an input x, a CFE [23–25]135

finds the minimal modification x′ such that the model’s output changes in a desired way. These136

explanations help interpret model decisions and provide actionable guidance to users to flip the137

prediction. In our context, we look into CFEs in the NLP domain where the inputs are token138

sequences. A counterfactual in this setting is a minimally perturbed sentence that causes the teacher139

LLM’s prediction to flip. For instance, given the sentence I loved the movie, labeled as positive140

sentiment, a CFE would be I hated the movie, a semantically similar but sentiment-flipped variant.141

Our Problem Setting. We consider a binary classification setting where the teacher model will be142

denoted as ft : X → [0, 1]. The input space X ⊆ Rn×d, with n being the sequence length and d is143
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Figure 1: Overview of our framework: Counterfactual Explanation-Infused Distillation (COD).

the model dimension, after the entire input sequence has already been passed through the tokenizer144

and embedding layers of the LLM. The teacher model ft(x) gives the class-1 probability output145

of the model for input x, i.e., ft(x) := g
(1)
t (x; θt), where the superscript (1) is for the assigned146

probability for class 1. The final predicted class is given by f̂t(x) = I [ft(x) ≥ 0.5] ∈ {0, 1}.147

Definition 1 (Closest CFE C(x, ft)). Given x ∈ Rn×d such that ft(x) < 0.5, the closest CFE is a148

point x′ ∈ Rn×d with opposite prediction that minimizes the Frobenius-norm ∥x− x′∥F :149

C(x, ft) = arg min
x′∈Rn×d

∥x− x′∥F such that ft(x′) ≥ 0.5. (2)

Definition 1 naturally extends to multiclass settings, where a CFE can be defined as the minimum150

perturbation that changes the predicted class to any other target class.151

Remark 1 (Data Manifold Counterfactual Explanations). In practice, unconstrained counterfactuals152

may lead to unrealistic or out-of-distribution examples. To address this, we can constrain x′ to lie153

within the data manifold X ′ ⊆ Rn×d, ensuring that generated counterfactuals remain semantically154

plausible. These data-manifold counterfactuals preserve natural language structure. In our work, we155

use a hybrid generation strategy that combines LLM-based prompting with teacher model feedback156

to generate such data-manifold CFEs. Further details are provided later in Section 3.157

Given a training data budget k (few-shots) and a teacher model ft, our goal is to distill a smaller158

student model fs : X → [0, 1] with high-performance at a specific task by leveraging CFEs.159

3 Main Contributions160

We begin with an experiment on 2D synthetic data that demonstrates how CFEs help student models161

mimic the teacher’s decision boundary more effectively than standard data. Next, we provide162

theoretical results motivating our approach from both statistical and geometric perspectives. Finally,163

we describe our CFE generation pipeline for natural language inputs, which leverages LLMs to164

produce semantically plausible CFEs, leading to our proposed framework COD.165

Synthetic Dataset Experiments to Illustrate the Role of CFE in Distillation: We conduct experi-166

ments on the 2D moons dataset [60] and show that infusing few-shot data with CFEs significantly167

improves student-teacher alignment in distillation (see Figure 2). We train a teacher model—a168

two-layer neural network with architecture [2 → 64 → 64 → 2] on the full dataset. The student169

network with a smaller architecture [2 → 16 → 2]. To simulate few-shot supervision, we randomly170

sample k = 20 original points (10 per class). For the original points, we compute their closest171

CFE (recall Definition 1), a minimally perturbed input that flips the teacher’s predicted class. We172

follow a gradient-based method [23] to compute CFEs by perturbing each point in the direction of the173

teacher’s logit margin until the predicted class flips. We consider two student models: one trained on174

the k few-shot samples alone, and another trained on k/2 few-shot samples and their CFEs. In both175

cases, we perform knowledge distillation by minimizing a combination of cross-entropy loss on the176

hard labels and KL-divergence between the student and teacher soft predictions. Figure 2 shows the177

decision boundaries of the teacher, the baseline student, and the CFE-infused student. CFEs cluster178

near the decision boundary, enriching the distillation data in high-uncertainty regions. The student179
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Figure 2: Decision boundaries for teacher and two student models trained on a synthetic 2D dataset
under few-shot settings. The teacher (a) is trained on the full dataset and serves as the distillation target. First
student (b) is distilled using 20 randomly sampled data points, and results in a poorly aligned decision boundary
with the teacher. Second student (c) is also trained on 20 total samples, 10 original data points and their 10 CFEs.
This student learns a decision boundary that aligns more closely with the teacher, as the KD loss encourages the
student to match the teacher’s soft predictions, guiding the CFEs to lie near the decision boundary.

trained with CFEs aligns more closely with the teacher, thus motivating the use of boundary-targeted180

examples for improved knowledge distillation.181

Statistical Guarantees Motivating Our Approach: Here, we provide a theoretical motivation for182

the use of CFEs in few-shot knowledge distillation. We analyze a logistic regression setting using a183

measure from estimation theory called Fisher Information [61] (also see Definition 2) that captures184

the information contained by a random variable about a parameter to be estimated. We show that a185

dataset containing CFEs, which essentially lie much closer to the teacher’s decision boundary, yields186

a Fisher Information Matrix with higher overall information content for parameter estimation. As a187

result, the student’s expected estimation error is lower compared to training on standard samples.188

Definition 2 (Fisher Information Matrix [61]). Let L(θ) be the log-likelihood of a parametric189

distribution p(y, x; θ), where θ is the parameter vector to be estimated. The Fisher Information190

Matrix (FIM) at parameter θ is defined as:191

I(θ) = Ex,y

[
∇θ log p(y,x; θ)∇θ log p(y,x; θ)

⊤] .
Intuitively, Fisher Information measures the curvature of the log-likelihood: flatter regions (low192

curvature) imply high uncertainty in estimating θ, while sharper regions (high curvature) indicate that193

small changes in θ cause large changes in likelihood, enabling more precise parameter estimation.194

We consider a binary classification setting where both the teacher and student are logistic regression195

models. Suppose the teacher, parameterized by wt, defines the true data-generating distribution with196

predicted probabilities pt(y = 1|x) = σ(w⊤
t x) where σ(·) is the softmax function. Suppose, the197

student, with parameters ws, is obtained via maximum likelihood estimation (MLE) [61] using either198

a standard dataset D or a CFE-infused dataset Dcf . Since the CFEs lie close to the teacher’s decision199

boundary, we have w⊤
t xc ≈ 0 when xc is a CFE, and we further assume second-moment matching200

Ex[xx
⊤] = Exc

[xcx
⊤
c ] (intuitively, CFEs are generated by minimally perturbing original points, so201

their overall spread and feature correlations remain similar).202

Theorem 1 (CFEs Improve Model Parameter Estimation). Let ws and w
(cf)
s be the student parame-203

ters obtained via MLE on D (standard) and Dcf (CFE-infused). Assuming the teacher’s parameters204

wt capture the true data-generating distribution, and that CFEs lie near the decision boundary, the205

estimation error satisfies: E
[
∥w(cf)

s −wt∥2
]
< E

[
∥ws −wt∥2

]
.206

Proof Sketch: The key step in our proof relies on showing that the Fisher Information is given by207

I(wt;D) =
∑

i pt(y = 1|xi)(1− pt(y = 1|xi))xix
⊤
i . The scalar weight pt(y = 1|x)(1− pt(y =208

1|x)) is maximized when pt(y = 1|x) = 0.5, i.e., x lies on the decision boundary. Standard samples209

in few-shot settings typically lie far from the boundary and contribute little to the FIM, whereas210

CFEs are constructed to lie near it and thus contribute significantly more. As a result, the FIM of211

the CFE-infused dataset Dcf dominates that of the standard dataset D in Loewner order [62] (i.e.,212

I(wt;Dcf ) ≻ I(wt;D)). The CFE-infused dataset provides strictly more information for parameter213

estimation than the standard dataset, ultimately leading to the bound on expected estimation error.214
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The full proof is in Appendix B. Notably, while this result mathematically motivates the advantages215

of CFEs in few-shot distillation, it still assumes linear models and same student-teacher capacity216

(size). For more general non-linear settings, we provide a geometric perspective as discussed next.217

Geometric Insight for Using CFEs for Distillation: Here, we examine the geometric effect of CFEs218

on student-teacher alignment in non-linear settings. Specifically, we show that when data points219

and their CFE pairs are included during distillation, the student’s decision boundary comes much220

closer to the teacher’s boundary, as quantified by a formal measure called Hausdorff distance [63]221

between their respective decision surfaces. The Hausdorff distance (see Figure 3) captures the worst-222

Figure 3: Hausdorff
Distance.

case discrepancy between two sets (in our case, the decision boundaries of223

the teacher and student models) by quantifying how far any point on one224

boundary is from the closest point on the other.225

Let Mt={x ∈ Rn×d | ft(x) = 0.5} and Ms={x ∈ Rn×d | fs(x) = 0.5}226

denote the decision boundaries of the teacher and student. Our goal is to227

examine how close is the student’s decision boundary to the teacher’s. To228

quantify this alignment, we define the Hausdorff distance as follows:229

Definition 3 (Hausdorff Distance). Let Mt,Ms ⊆ Rn×d be two non-empty230

subsets of a metric space. The Hausdorff distance is defined as:231

H(Ms,Mt) = max
{

sup
x∈Mt

inf
u∈Ms

∥x− u∥F , sup
u∈Ms

inf
x∈Mt

∥u− x∥F
}
.

We observe that for each training sample xi and its CFE x′
i, the segment joining them cuts the232

teacher’s decision boundary because they have different predictions. Essentially, there exists an233

intersection point x⋆
i on this segment such that ft(x⋆

i ) = 0.5. Now, if the student is taught to match234

the teacher at the sample xi and its CFE x′
i, the student would also have another intersection point on235

this segment. These two intersection points lying on the teacher and student decision boundaries will236

act as clamps, pulling the two boundaries close to each other, since their own gap gets smaller as xi237

and its CFE x′
i comes closer.238

Lemma 1 (Existence of Boundary Crossing for Counterfactual Pairs). Let ft : Rn×d → [0, 1] be239

a continuous function. For a datapoint and its counterfactual pair (xi,x
′
i), there exists a point240

x⋆
i = αxi + (1− α)x′

i for an α ∈ (0, 1) (on the line joining xi and x′
i) such that: ft(x⋆

i ) = 0.5.241

Theorem 2 (Teacher–Student Boundary Proximity). Let ft, fs : Rn×d →; [0, 1] be the teacher and242

student model, with decision boundaries Mt = {x | ft(x) = 0.5} and Ms = {x | fs(x) = 0.5},243

respectively. Assume we observe a CFE-infused dataset Dcf =
{
(xi,x

′
i)
}k

i=1
satisfying, for every244

pair (xi,x
′
i): (A1) Minimal perturbation: ∥xi − x′

i∥F ≤ α with α > 0; (A2) Exact distillation:245

fs(xi) = ft(xi) and fs(x
′
i) = ft(x

′
i); and (A3) ε-spread along the teacher boundary: For each pair,246

let the teacher’s crossing point be x⋆
i = αxi + (1 − α)x′

i for α ∈ (0, 1) such that ft(x⋆
i ) = 0.5.247

Furthermore, suppose that for every a ∈ Mt, there exists an i with ∥a − x⋆
i ∥2 ≤ ε. Then the248

Hausdorff distance between the decision boundaries obeys: H(Ms,Mt) ≤ α + ε.249

Consequently, tight (small α) and well-spread (small ε) CFE pairs guarantee that the student boundary250

remains inside an (α+ ε)-tube around the teacher boundary.251

Interpretation of the assumptions and bound. Our theorem makes three intuitive assumptions.252

(A1) Minimal perturbation requires each input and its CFE pair (x,x′) to differ by at most α. CFEs253

are by definition the minimal changes that flips the teacher’s prediction, so α is typically much254

smaller than the distance between arbitrary training points (note that we do no need CFEs to sit255

exactly on the teacher’s boundary, i.e., ft=0.5). It suffices that the perturbation is small and flips the256

label—capturing the practical way CFEs are produced. (A2) Exact distillation agreement assumes257

the student matches the teacher’s outputs on the input and CFE pairs. This is reasonable, as these258

examples are directly used in training, and their logits are aligned through the distillation (KL) loss.259

(A3) ε-spread assumes the inputs are reasonably well spread. No region of the teacher’s boundary260

is more than ε away from a crossing point. Under these assumptions, the Hausdorff gap between261

student and teacher boundaries is tightly bounded by α + ε. This ensures the student’s decision262

boundary stays within an (α+ ε)-tube around the teacher’s, illustrating the geometric faithfulness we263

want in few-shot knowledge distillation. See proofs in Appendix C.264

Proposed Algorithm (COD). We propose COD, a Counterfactual Explanation-infused Distillation265

strategy for few-shot, task-aware distillation of LLMs. The first step is CFE generation. Existing meth-266
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ods primarily fall into optimization-based [23], search-based [64], and generative approaches [65].267

These methods can be computationally expensive for LLMs, and frequently yield out-of-distribution268

or semantically implausible examples. To address this, we adopt a hybrid approach that combines269

the teacher model predictions with an LLM as an oracle for CFE generation. Specifically, given an270

input and its original label, we prompt an LLM (e.g., GPT-4o [66]) to generate a semantically similar271

sentence intended to flip the label with minimal changes to the input. We then check whether this272

generated example indeed flips the teacher model’s prediction, ensuring its utility as a true CFE. Once273

validated, each CFE is paired with its original input (x,x′) and added to the training set. During274

distillation, we ensure that each input–CFE pair is included in the same mini-batch, enabling the275

student to jointly learn from both examples. The student is then trained using a combination of task276

loss, KL-based distillation loss, and optional layer-wise alignment. An overview of this process is277

described in Algorithm 1, with full implementation details and prompts provided in Appendix D.278

4 Experiments279

Algorithm 1 COD: CFE-infused Distillation
Require: Teacher gt, student gs, data set
D={(xi, yi)}ki=1, CFGen, learning rate η,
loss weights α (KD), β (LWD)

1: Dcf ← ∅
2: for all (x, y) ∈ Dk do
3: x′ ← CFGen(x, gt)
4: Dcf ← Dcf ∪ {(x′, 1− y)}
5: end for
6: Dtrain ← Dk ∪ Dcf
7: for e = 1 to E do
8: for all (x, y) ∈ Dtrain do
9: Lhard ← CE(gs(x), y)

10: LKD ← KL(gt(x) ∥ gs(x))
11: LLWD ←

∑
l∈I ∥h

(l)
t − h

(l)
s ∥22

12: L ← Lhard + αLKD + β LLWD
13: Update θs ← θs − η∇θsL
14: end for
15: end for
16: return distilled student gs

Datasets. We evaluate COD across six text classifica-280

tion benchmarks that span a range of domains. SST2281

is a binary sentiment classification task derived from282

movie review snippets [26]. Sentiment140 consists283

of tweets labeled as positive or negative, reflecting284

user sentiment in short social media posts [27]. IMDB285

is a binary sentiment classification dataset contain-286

ing full-length movie reviews [28]. CoLA (Corpus of287

Linguistic Acceptability) is a grammaticality judg-288

ment task that requires the model to identify whether289

a sentence is linguistically acceptable [29]. Amazon290

Polarity contains customer reviews labeled as pos-291

itive or negative sentiment [30]. Yelp is another sen-292

timent classification dataset based on user-generated293

restaurant reviews [31].294

Model. We experiment with two prominent model295

families: DeBERTa-v3 [32] and Qwen2.5 [2]. For296

DeBERTa-v3, we use the “base” model (100M pa-297

rameters) as the teacher and distill into two smaller298

“small” (44M) and “xsmall” (22M) variants as stu-299

dents. For Qwen2.5, we use Qwen2.5-1.5B as the300

teacher and distill into the smaller Qwen2.5-0.5B.301

Full training details are in Appendix D.302

Baselines. We compare our method against three task-aware knowledge distillation baselines: (i)303

Standard knowledge distillation (KD) where the student learns from the teacher’s soft predictions304

using KL divergence [67]; (ii) Layer-wise distillation (LWD), which extends KD by additionally305

aligning the student’s intermediate hidden representations with those of the teacher using mean306

squared error [13]; and (iii) TED (Task-aware Layer-wise Distillation) which incorporates task-307

specific neural filters at each layer to selectively transfer task-relevant information from teacher to308

student [12]. All methods are evaluated under k-shot training settings, and student models are trained309

on identical few-shot splits to ensure a fair comparison (see details in Appendix D).310

Setup. As in prior works on task-aware distillation [12], we first train a teacher model on the full311

training dataset to serve as a strong source of supervision. A student model is then initialized and312

distilled using only k datapoints, where k ∈ {8, 16, 32, 64, 128, 512}. We apply our strategy COD313

to three standard distillation baselines: KD, LWD, and TED. For a fair comparison, COD uses k/2314

original samples and their k/2 corresponding CFE (a total of k shots) while the baseline methods are315

trained on k original samples. Performance is evaluated using accuracy on the test set for each dataset.316

All experimental results are averaged over five runs, with the mean and standard deviation reported.317

Results for the DeBERTa-v3-base teacher and DeBERTa-v3-small student are shown in Table 1,318

while results for the smaller DeBERTa-v3-xsmall student are in Appendix D. For experiments using319

the Qwen2.5-1.5B teacher and the Qwen2.5-0.5B student, see Table 3. We report the accuracy of320

teacher models trained on the full datasets in Table 4 in Appendix D.321
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Table 1: Classification accuracy (± std) across datasets with varying total training sizes k. For
COD, training data consists of k/2 standard and k/2 CFEs. Teacher model DeBERTa-v3-base and
student model DeBERTa-v3-small.

Total Samples (k)

Dataset Method 8 16 32 64 128 512

Amazon
Polarity

KD 0.671 ±0.046 0.712 ±0.033 0.758 ±0.032 0.789 ±0.022 0.823 ±0.016 0.846 ±0.007

+COD 0.758 ±0.027 0.795 ±0.033 0.819 ±0.035 0.812 ±0.004 0.837 ±0.014 0.860 ±0.015

LWD 0.676 ±0.090 0.738 ±0.033 0.777 ±0.009 0.809 ±0.015 0.827 ±0.025 0.842 ±0.019

+COD 0.724 ±0.052 0.779 ±0.056 0.811 ±0.015 0.828 ±0.015 0.816 ±0.020 0.841 ±0.013

CoLA

KD 0.693 ±0.062 0.707 ±0.029 0.721 ±0.012 0.747 ±0.005 0.758 ±0.009 0.771 ±0.003

+COD 0.739 ±0.026 0.755 ±0.017 0.769 ±0.011 0.769 ±0.016 0.772 ±0.006 0.791 ±0.004

LWD 0.713 ±0.031 0.698 ±0.037 0.731 ±0.021 0.744 ±0.007 0.750 ±0.018 0.761 ±0.011

+ COD 0.730 ±0.035 0.744 ±0.031 0.762 ±0.011 0.752 ±0.009 0.756 ±0.010 0.784 ±0.003

IMDB

KD 0.714 ±0.047 0.817 ±0.028 0.875 ±0.027 0.896 ±0.008 0.912 ±0.009 0.917 ±0.006

+ COD 0.835 ±0.078 0.888 ±0.005 0.890 ±0.011 0.899 ±0.007 0.907 ±0.006 0.913 ±0.005

LWD 0.760 ±0.046 0.836 ±0.045 0.875 ±0.024 0.889 ±0.013 0.905 ±0.008 0.914 ±0.006

+ COD 0.861 ±0.017 0.886 ±0.011 0.893 ±0.006 0.898 ±0.005 0.905 ±0.010 0.913 ±0.010

SST2

KD 0.617 ±0.042 0.712 ±0.052 0.757 ±0.063 0.820 ±0.019 0.848 ±0.013 0.899 ±0.007

+ COD 0.719 ±0.063 0.781 ±0.034 0.821 ±0.013 0.827 ±0.008 0.853 ±0.015 0.892 ±0.018

LWD 0.627 ±0.053 0.721 ±0.055 0.776 ±0.031 0.817 ±0.005 0.829 ±0.013 0.892 ±0.012

+ COD 0.694 ±0.079 0.785 ±0.028 0.832 ±0.011 0.830 ±0.007 0.835 ±0.012 0.880 ±0.020

Yelp

KD 0.714 ±0.058 0.817 ±0.031 0.855 ±0.021 0.878 ±0.006 0.885 ±0.018 0.916 ±0.007

+ COD 0.740 ±0.094 0.832 ±0.045 0.860 ±0.018 0.874 ±0.006 0.888 ±0.013 0.913 ±0.011

LWD 0.733 ±0.070 0.832 ±0.026 0.857 ±0.011 0.868 ±0.006 0.881 ±0.017 0.920 ±0.010

+ COD 0.738 ±0.093 0.865 ±0.010 0.870 ±0.017 0.871 ±0.019 0.885 ±0.007 0.913 ±0.013

Sent140

KD 0.580 ±0.039 0.597 ±0.042 0.645 ±0.023 0.690 ±0.035 0.752 ±0.011 0.802 ±0.006

+ COD 0.629 ±0.036 0.640 ±0.048 0.731 ±0.022 0.754 ±0.017 0.778 ±0.007 0.784 ±0.019

LWD 0.581 ±0.041 0.593 ±0.039 0.665 ±0.027 0.708 ±0.029 0.751 ±0.009 0.785 ±0.019

+ COD 0.628 ±0.034 0.652 ±0.038 0.706 ±0.016 0.741 ±0.014 0.729 ±0.063 0.760 ±0.023

Results and Analysis. Across all datasets, we observe that COD significantly improves performance322

in the low-data regime, particularly when k ≤ 64. For example, on Amazon Polarity with only 8323

labeled examples, KD + COD achieves 75.8% accuracy compared to 67.1% for standard KD (8.7324

points improvement). Similarly, for IMDB at k = 8, LWD + COD improves over standard LWD by325

more than 10 points (86.1% vs. 76.0%). As the number of labeled examples increases, the benefits of326

CFE augmentation diminish. At k = 512, the performance of standard and COD becomes nearly327

identical in many cases. However, even in these larger settings, it is important to note that our method328

achieves comparable results while using only k/2 real samples and k/2 CFE, effectively halving the329

amount of labeled data required to reach similar performance. The effectiveness of CFEs varies by330

dataset. On CoLA, we observe consistent improvements across all k values for both KD and LWD,331

indicating that CFEs are well-aligned with the task’s grammaticality decision boundary. In contrast,332

datasets like Sentiment140 show strong early gains. For datasets such as IMDB and SST2, CFE333

provides substantial improvements at low k, but underperforms slightly at k = 512, possibly due to334

redundancy. Among distillation methods, LWD generally performs on par with or slightly better than335

KD across most settings, with COD offering similar relative improvements for both.336

We also compare with TED which has been found to work well with larger distillation datasets [12].337

We note that TED introduces additional complexity by requiring the training of task-specific filters338

prior to distillation. Interestingly, we find that TED does not consistently outperform classical339

methods like KD or LWD in the few-shot settings (see Table 2). Nonetheless, TED + COD yields340
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Table 2: Classification accuracy (± std) with TED and TED + COD across datasets and varying to-
tal training sizes k. For COD, training data consists of k/2 standard and k/2 CFEs. Teacher model is
DeBERTa-v3-base and student model is DeBERTa-v3-small.

Total Samples (k)

Dataset Method 8 16 32 64 128 512

Amazon
Polarity

TED 0.646 ±0.075 0.697 ±0.033 0.758 ±0.012 0.816 ±0.023 0.814 ±0.020 0.846 ±0.025

+ COD 0.731 ±0.054 0.754 ±0.056 0.802 ±0.007 0.818 ±0.013 0.805 ±0.008 0.848 ±0.010

CoLA TED 0.750 ±0.022 0.737 ±0.028 0.731 ±0.020 0.746 ±0.011 0.760 ±0.011 0.772 ±0.010

+ COD 0.748 ±0.028 0.757 ±0.023 0.767 ±0.021 0.768 ±0.016 0.780 ±0.007 0.791 ±0.006

IMDB TED 0.695 ±0.018 0.800 ±0.042 0.854 ±0.023 0.876 ±0.012 0.908 ±0.009 0.917 ±0.006

+ COD 0.827 ±0.056 0.879 ±0.003 0.884 ±0.007 0.887 ±0.010 0.895 ±0.010 0.916 ±0.005

SST2 TED 0.597 ±0.052 0.701 ±0.055 0.732 ±0.026 0.812 ±0.026 0.829 ±0.002 0.904 ±0.006

+ COD 0.658 ±0.087 0.779 ±0.012 0.813 ±0.017 0.833 ±0.014 0.836 ±0.030 0.879 ±0.011

Yelp TED 0.699 ±0.048 0.815 ±0.014 0.846 ±0.020 0.869 ±0.012 0.894 ±0.009 0.914 ±0.012

+ COD 0.742 ±0.095 0.837 ±0.016 0.868 ±0.018 0.878 ±0.019 0.886 ±0.013 0.913 ±0.008

Table 3: Classification accuracy (± std) of Qwen2.5 on CoLA and Yelp datasets with varying training sizes
k. For COD training data consists of k/2 standard and k/2 CFEs. Teacher model is Qwen2.5-1.5B and student
model is Qwen2.5-0.5B. Refer to Appendix D for other datasets.

Total Samples (k)

Dataset Method 8 16 32 64 128 512

CoLA

KD 0.681 ±0.012 0.676 ±0.023 0.668 ±0.042 0.654 ±0.032 0.676 ±0.020 0.732 ±0.014

+ COD 0.683 ±0.016 0.686 ±0.018 0.697 ±0.015 0.711 ±0.020 0.736 ±0.017 0.757 ±0.011

LWD 0.681 ±0.012 0.657 ±0.031 0.678 ±0.018 0.650 ±0.039 0.636 ±0.029 0.712 ±0.014

+ COD 0.682 ±0.018 0.687 ±0.013 0.704 ±0.010 0.714 ±0.020 0.719 ±0.022 0.755 ±0.013

Yelp

KD 0.684 ±0.021 0.759 ±0.040 0.827 ±0.030 0.861 ±0.017 0.887 ±0.012 0.920 ±0.010

+ COD 0.745 ±0.029 0.779 ±0.048 0.828 ±0.072 0.886 ±0.007 0.883 ±0.010 0.916 ±0.008

LWD 0.685 ±0.019 0.777 ±0.036 0.837 ±0.027 0.876 ±0.020 0.898 ±0.008 0.920 ±0.005

+ COD 0.746 ±0.028 0.778 ±0.035 0.847 ±0.020 0.876 ±0.014 0.883 ±0.010 0.909 ±0.009

consistent gains over standard TED, demonstrating that our approach is broadly applicable. Our341

findings suggest that simpler distillation approaches like KD or LWD are preferable when data342

is scarce: they are easier to implement and, when combined with COD, deliver much stronger343

performance gains without the overhead of filter training.344

Conclusion. In this paper, we introduced COD, a novel approach for task-aware KD in few-shot345

settings that leverages CFEs to enhance the data efficiency of KD. Our results show that COD346

consistently outperforms existing distillation approaches in low-data regimes. Importantly, we347

demonstrate that COD can achieve improved performance over baselines while effectively using348

only half the number of original data, with the remainder consisting of generated CFEs. This finding349

has significant implications for reducing the cost of data collection in real-world scenarios where350

sourcing high-quality data is expensive or time-consuming [68]. Our approach offers an explanation-351

driven perspective on distillation. By including CFE’s, we implicitly highlight the key features most352

important to flipping a teacher’s decision. This may help the student model reduce its reliance on353

spurious correlations, especially in few-shot settings. In effect, CFE’s guide the student to attend354

to “why” a label changes, not just “what” the label is. This bridges explainability and compression,355

turning explanations into actionable data for KD. As research increasingly focuses on getting more356

from less data [69, 70], future work could extend our approach to generative models. See Appendix357

A for limitations.358
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Appendix527

A Limitations and Societal Impact528

Limitations. While the counterfactual-explanation-infused knowledge distillation (COD) method529

demonstrates strong empirical performance, several limitations remain. First, generating counter-530

factual explanations (CFEs) introduces additional computational overhead compared to standard531

distillation approaches. Moreover, our current CFE generation strategy, which relies on prompting532

LLMs, does not guarantee that we would get the closest counterfactual (as defined in Definition 1),533

potentially limiting the precision of our distilled knowledge. Future work could explore alternate534

methods for generating closer and semantically valid CFEs. Additionally, as with knowledge distilla-535

tion in general, COD is inherently dependent on the quality of the teacher model. Any inaccuracies536

or biases present in the teacher’s decision boundary may be inherited by the student. Addressing537

robustness to flawed teachers remains an important direction for future research.538
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Societal Impact. COD offers several potential societal impacts, particularly in reducing the cost and539

effort associated with data collection [68]. By enabling the distillation of high-performance models540

with fewer data samples, this approach can significantly lower data collection costs, making machine541

learning more accessible in low-resource environments. This is especially valuable in industries542

where data is often scarce and expensive to obtain [71, 68]. Moreover, by requiring fewer samples543

and targeting smaller student models, COD contributes to more efficient model training and scalable544

deployment. Our method leverages explanations as a tool for more effective model compression. In545

doing so, it bridges the gap between explainability and model compression.546

B Background on Fisher Information and Proof of Theorem 1547

This section provides background on Fisher information and a formal proof for Theorem 1, which548

quantifies the reduction in estimation error from using CFE-infused training data.549

B.1 Background on Fisher Information Matrix550

Definition 4 (Positive Semi-definite Matrices). A matrix A ∈ Rd×d is said to be positive semi-definite551

if it is symmetric and for all non-zero vectors x ∈ Rd, the following condition holds:552

xTAx ≥ 0 for all x ∈ Rd.

The eigenvalues of a positive semi-definite are non-negative, i.e., λi(A) ≥ 0 for all eigenvalues λi of553

A.554

Definition 5 (Löwner Order). Let A,B ∈ Rd×d be symmetric matrices. We say that A is greater555

than or equal to B in the Löwner order, denoted A ⪰ B, if and only if the matrix A−B is positive556

semi-definite. That is,557

A ⪰ B if and only if xT (A−B)x ≥ 0 for all x ∈ Rd.

If A ≻ B, then A−B is positive definite, meaning A is strictly greater than B in the Löwner order.558

Lemma 2 (Trace Inequality for Positive Semi-definite Matrices). For positive semi-definite matrices559

A,B ∈ Rd×d where A ≻ B, then:560

Tr(A−1) < Tr(B−1)

Proof. Since A ≻ B, we have B−1 ≻ A−1 by the Löwner order inversion property. The trace561

operator preserves this inequality because for any X ≻ Y ≻ 0:562

Tr(X) =

d∑
i=1

λi(X) >

d∑
i=1

λi(Y ) = Tr(Y )

where λi(·) denotes eigenvalues in descending order.563

Definition 2 (Fisher Information Matrix [61]). Let L(θ) be the log-likelihood of a parametric564

distribution p(y, x; θ), where θ is the parameter vector to be estimated. The Fisher Information565

Matrix (FIM) at parameter θ is defined as:566

I(θ) = Ex,y

[
∇θ log p(y,x; θ)∇θ log p(y,x; θ)

⊤] .
Fisher information captures the amount of information that an observable random variable x carries567

about an unknown parameter θ of a distribution that models x. We use the notation I(θ; y,x) to568

denote the Fisher information about θ carried by single observation y,x.569

B.2 Proof of Theorem 1570

Theorem 1 (CFEs Improve Model Parameter Estimation). Let ws and w
(cf)
s be the student parame-571

ters obtained via MLE on D (standard) and Dcf (CFE-infused). Assuming the teacher’s parameters572

wt capture the true data-generating distribution, and that CFEs lie near the decision boundary, the573

estimation error satisfies: E
[
∥w(cf)

s −wt∥2
]
< E

[
∥ws −wt∥2

]
.574
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Proof. For a single observation (x, y), the log-likelihood is:575

log p(y|x;w) = y log σ(w⊤x) + (1− y) log(1− σ(w⊤x)) (3)

Taking the gradient with respect to w:576

∇w log p(y|x;w) = (y − σ(w⊤x))x (4)

To prove Theorem 1, we first (1) Characterize the Fisher information for individual observations,577

(2) Establish asymptotic normality of MLE, (3) Compare information matrices of standard vs. CFE-578

infused datasets, and (4) Apply trace inequality to connect information to estimation error.579

(1) Fisher Information for Logistic Regression: For a logistic regression model with parameters w,580

Lets denote Fisher Information Matrix (FIM) for observations y,x as:581

I(w; y,x) = Ey,x

[
∇w log p(y,x;w)∇w log p(y,x;w)⊤

]
(5)

∇w log p(y,x;w) = ∇w log p(y|x;w) +∇w log p(x)︸ ︷︷ ︸
=0

. (6)

The gradient of log p(x) is zero because p(x) is independent of the model parameters w.582

Using the law of total expectation:583

I(w; y,x) = Ex[Ey|x
[
∇w log p(y|x;w)∇w log p(y|x;w)⊤

]
(7)

Substituting Equation 4:584

I(w; y,x) = Ex

[
Ey|x[(y − σ(w⊤x))2xx⊤]

]
(8)

= Ex

[
xx⊤Ey|x[(y − σ(w⊤x))2]

]
(9)

The term Ey|x

[(
y − σ(w⊤x)

)2]
is the variance of y|x. Where y|x ∼ Bernoulli(σ(w⊤x)), we585

compute:586

Ey|x[(y − σ(w⊤x))2] = Var(y|x) = σ(w⊤x)(1− σ(w⊤x)) (10)
Thus:587

I(w; y,x) = Ex[σ(w
⊤x)(1− σ(w⊤x))xx⊤] (11)

The variance term is maximized when w⊤x = 0 (i.e., at the decision boundary), where it equals 0.25.588

(2) Asymptotic Distribution of MLE: Under regularity conditions [71], the MLE estimator satisfies:589

√
k(ws −wt)

d−→ N (0, I−1(wt;D)) (12)

where I(wt;D) =
∑k

i=1 I(wt; yi,xi) is the total Fisher information of k independent observations590

of yi,xi (Additivity property of fisher information [72]).591

The mean squared error (MSE) [73] decomposes as:592

E∥ws −wt∥2 = Tr(Cov(ws))︸ ︷︷ ︸
Variance

+ ∥Bias(ws)∥2︸ ︷︷ ︸
Bias

(13)

For MLE, Bias(ws) → 0 as k → ∞, so: E∥ws −wt∥2 ≈ Tr(I−1(wt;D))593

The next step of the proof we compare the fisher information between a standard dataset and CFE-594

infused dataset.595

Let D = {xi}ki=1 be a dataset of k standard samples, and let Dcf = {xi}k/2i=1 ∪ {xcj}
k/2
j=1 be an596

CFE-infused dataset containing k/2 standard samples and k/2 CFEs.597

Standard Samples: Far from decision boundary ⇒ w⊤
t xi ≫ 0 or ≪ 0. Thus:598

σ(w⊤
t xi)(1− σ(w⊤

t xi)) = ϵi < 0.25 (14)
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Their FIM contribution is: I(wt;xi) = Ex[ϵixix
⊤
i ].599

CFE Samples: Near boundary ⇒ w⊤
t xc = 0 ⇒ σ(0) = 0.5. Thus:600

σ(w⊤
t xc)(1− σ(w⊤

t xc)) = 0.25 (15)

Their FIM contribution is maximal: I(wt;xc) = Ex[0.25xcx
⊤
c ].601

Since 0.25 ≫ ϵi, we have I(wt;Dcf ) ≻ I(wt;D) in the Löwner order (see Definition 5).602

Remark 2 (Feature Spanning). Note that for logistic regression the feature vector is augmented with603

the parameter bias term, i.e., x = [1, x̃⊤]⊤, hence,the outer product xx⊤ has a non-zero norm. The604

first element of x is always 1, ensuring ∥x∥2 ≥ 1. Thus, xx⊤ cannot be the zero matrix, even if605

x̃ = 0. This guarantees that each CFE example xc contributes a non-degenerate rank-1 term to the606

FIM.607

The final step of the proof leverages the trace inequality for covariance matrices (see Lemma 2). If608

I(wt;Dcf ) ≻ I(wt;D) then Tr(I−1(wt;Dcf )) < Tr(I−1(wt;D)). Thus, CFE infusion reduces609

parameter estimation error:610

E
[
∥w(cf)

s −wt∥2
]
< E

[
∥ws −wt∥2

]
(16)

Remark 3 (Datapoint Diversity). For the total FIM I(wt;Dcf) to be invertible, the set of feature611

vectors {xi} must span Rd which will hold if we have enough samples.612

613

C Background on Hausdorff Distance and Proofs of Lemma 1 and Theorem 2614

This section provides definitions and geometric preliminaries, along with proofs for Lemma 1 and615

Theorem 2.616

C.1 Background on Hausdorff Distance617

Definition 6 (Line Segment). Let xi,x
′
i ∈ Rn×d be two points in the n× d space. The line segment618

[xi,x
′
i] connecting xi and x′

i is defined as the set of points γ(λ) for λ ∈ [0, 1], where619

γ(λ) = (1− λ)xi + λx′
i, λ ∈ [0, 1].

This defines all the points on a space between xi and x′
i in Rn×d.620

Lemma 3 (Intermediate Value Theorem). Let f : [a, b] → R be a continuous function, and let621

f(a) ̸= f(b). If y is any value between f(a) and f(b), then there exists c ∈ (a, b) such that f(c) = y.622

Definition 3 (Hausdorff Distance). Let Mt,Ms ⊆ Rn×d be two non-empty subsets of a metric623

space. The Hausdorff distance is defined as:624

H(Ms,Mt) = max
{

sup
x∈Mt

inf
u∈Ms

∥x− u∥F , sup
u∈Ms

inf
x∈Mt

∥u− x∥F
}
.

C.2 Proofs of Lemma 1 and Theorem 2625

Lemma 1 (Existence of Boundary Crossing for Counterfactual Pairs). Let ft : Rn×d → [0, 1] be626

a continuous function. For a datapoint and its counterfactual pair (xi,x
′
i), there exists a point627

x⋆
i = αxi + (1− α)x′

i for an α ∈ (0, 1) (on the line joining xi and x′
i) such that: ft(x⋆

i ) = 0.5.628

Proof. Define the line segment from xi to x′
i using a parameterization: γ(λ) = (1 − λ)xi +629

λx′
i, for λ ∈ [0, 1].630

This defines a continuous path from xi to x′
i in Rd. Now define the real-valued function g : [0, 1] → R631

by: g(λ) = ft(γ(λ)) = ft((1− λ)xi + λx′
i).632

Since ft is continuous on Rd, and γ(λ) is continuous in λ, the composition g(λ) is continuous on the633

closed interval [0, 1].634
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Figure 4: Intuition for Theorem 2

Now, evaluate the endpoints of this function: g(0) = ft(xi) < 0.5, g(1) = ft(x
′
i) > 0.5.635

Thus, we have g(0) < 0.5 < g(1), and by the Intermediate Value Theorem (see Lemma 3), since g is636

continuous on [0, 1], there exists λ⋆ ∈ (0, 1) such that: g(λ⋆) = 0.5.637

Define x⋆
i = γ(λ⋆) = (1− λ⋆)xi + λ⋆x′

i ∈ [xi, x
′
i]. Then: ft(x⋆

i ) = g(λ⋆) = 0.5.638

Hence, the point x⋆
i ∈ [xi, x

′
i] lies on the segment and satisfies ft(x⋆

i ) = 0.5, as required.639

Theorem 2 (Teacher–Student Boundary Proximity). Let ft, fs : Rn×d →; [0, 1] be the teacher and640

student model, with decision boundaries Mt = {x | ft(x) = 0.5} and Ms = {x | fs(x) = 0.5},641

respectively. Assume we observe a CFE-infused dataset Dcf =
{
(xi,x

′
i)
}k

i=1
satisfying, for every642

pair (xi,x
′
i): (A1) Minimal perturbation: ∥xi − x′

i∥F ≤ α with α > 0; (A2) Exact distillation:643

fs(xi) = ft(xi) and fs(x
′
i) = ft(x

′
i); and (A3) ε-spread along the teacher boundary: For each pair,644

let the teacher’s crossing point be x⋆
i = αxi + (1 − α)x′

i for α ∈ (0, 1) such that ft(x⋆
i ) = 0.5.645

Furthermore, suppose that for every a ∈ Mt, there exists an i with ∥a − x⋆
i ∥2 ≤ ε. Then the646

Hausdorff distance between the decision boundaries obeys: H(Ms,Mt) ≤ α + ε.647

Proof. To prove Theorem 2, we bound the Hausdorff distance between the student’s and teacher’s648

decision boundaries using the given assumptions. We bound each term separately of the Hausdorff649

distance (see Defintion 3).650

We first bound supx∈Mt
infu∈Ms

∥x− u∥F :651

For any a ∈ Mt, by assumption (A3), there exists a CFE pair (xi,x
′
i) with teacher crossing point652

x⋆
i ∈ Mt such that:653

∥a− x⋆
i ∥F ≤ ε. (17)

The segment [xi,x
′
i] has length ∥xi − x′

i∥F ≤ α (A1). By Lemma 1 and (A2) Exact distillation, the654

student’s boundary Ms intersects [xi,x
′
i] at some u⋆

i ∈ Ms. Since x⋆
i and u⋆

i lie on [xi,x
′
i], their655

distance satisfies:656

∥x⋆
i − u⋆

i ∥F ≤ ∥xi − x′
i∥F ≤ α. (18)

Combining Equation 18 and 17:657

∥a− u⋆
i ∥F ≤ ∥a− x⋆

i ∥F + ∥x⋆
i − u⋆

i ∥F ≤ ε+ α. (19)

Thus, infu∈Ms ∥a− u∥F ≤ ε+ α. Taking the supremum over a ∈ Mt:658

sup
x∈Mt

inf
u∈Ms

∥x− u∥F ≤ ε+ α. (20)

Next we bound supu∈Ms
infx∈Mt

∥u− x∥F :659

From A1, the distance between the student’s cutpoint u∗
i and the teacher’s cutpoint x⋆

i satisfies:660

∥u∗
i − x⋆

i ∥F ≤ ∥xi − x′
i∥F ≤ α (21)

For any other u ∈ Ms:661

∥u− x⋆
i ∥F ≤ ∥u− u∗

i ∥F + ∥u∗
i − x∗

i ∥F ≤ ε+ α, (22)
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Assuming the CFE pairs (xi,x
′
i) intersection points are ε−spread (well spread) along the student662

decision boundary.663

Since x⋆
i ∈ Mt, we have:664

inf
x∈Mt

∥u− x∥F ≤ ∥u− x⋆
i ∥F ≤ ε+ α. (23)

Taking the supremum over u ∈ Ms:665

sup
u∈Ms

inf
x∈Mt

∥u− x∥F ≤ ε+ α. (24)

Combining both bounds, the Hausdorff distance is the maximum of the two suprema:666

H(Ms,Mt) ≤ max {ε+ α, ε+ α} = ε+ α (25)

667

D Additional Experiments and Details668

This appendix provides additional experimental details and results to supplement the main paper.669

In Appendix D.1, we describe the datasets used in our few-shot experiments and preprocessing670

choices. In Appendix D.2, we include the prompt templates used to generate counterfactual explana-671

tions. Baseline methods are summarized in Appendix D.3, and complete hyperparameter settings672

are detailed in Appendix D.4. Finally, Appendix D.5 presents extended results using the smaller673

DeBERTa-v3-xsmall student and the Qwen2.5 model family.674

D.1 Datasets Details.675

We evaluate COD across six text classification benchmarks that span a range of domains. For each676

k-shot setup, we sample a balanced subset from the processed training data, selecting k/2 examples677

per class. All experiments are repeated across 5 random seeds, each with a different sampled subset.678

• Yelp [31]: We use the Yelp Review Full dataset, filtering for reviews with at most 250 tokens and679

discarding neutral labels. Labels are binarized: 1–2 as negative and 4–5 as positive. The processed680

dataset contains 106,624 training examples, 1,000 for validation, and 7,074 for testing, with a681

slightly imbalanced class distribution (64% negative).682

• IMDB [28]: We retain only reviews with shorter lengths. The original test and unsupervised splits683

are repurposed as validation and test sets, respectively. The resulting data includes 782 training,684

858 validation, and 1,578 test samples, with the test set unlabeled.685

• SST2 2 [26]: We use the full GLUE-provided training, validation, and test splits without modifi-686

cation. The train/val sets contain 67,349 and 872 examples, respectively. The test set has 1,821687

unlabeled examples.688

• CoLA [29]: We adopt the standard GLUE splits of the CoLA dataset, yielding 8,551 training,689

1,043 validation, and 1,063 unlabeled test samples. The task is binary classification of linguistic690

acceptability.691

• Sentiment140 [27]: We filter the dataset to exclude neutral tweets. The final dataset includes692

1,598,400 training, 1,600 validation, and 359 test examples, with balanced label distributions.693

• Amazon Polarity [30]: We select examples with shortest length. The processed data includes694

1,111 training and 113 validation samples, with roughly balanced sentiment labels.695

D.2 Counterfactual Explanation Generation Prompt Templates.696

Here we provide prompt templates used for counterfactual explanation generation across datasets.697

Each prompt instructs the model to minimally modify a given input to flip the class label (e.g., senti-698

ment or grammaticality) while preserving meaning and structure. We used gpt-4o-2024-11-20 [66]699

for our CFE generation.700
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SST-2 / IMDB / Sentiment140 / Amazon

You are an AI assistant tasked with generating counterfactual explanations for sentiment analysis.
Given a sentence and its true sentiment label, your goal is to make the minimal necessary change to flip
the sentiment while preserving the structure and meaning as much as possible.
For example, if the input is:
Sentence: "I love this movie."
True sentiment: Positive
A suitable counterfactual explanation would be: "I dislike this movie."
Now, generate a counterfactual explanation for the following sentence:
Sentence: {sentence}
True sentiment: {sentiment}
Return only the counterfactual sentence, without any additional information.

701

Yelp

You are an AI assistant tasked with generating counterfactual explanations for sentiment analysis of
Yelp reviews.
Given a sentence (a Yelp review) and its true sentiment label (positive or negative), your goal is to make
the minimal necessary change to flip the sentiment while preserving the structure and meaning as much
as possible.
For example, if the input is:
Sentence: "This restaurant is fantastic, the food was amazing!"
True sentiment: Positive
A suitable counterfactual explanation would be: "This restaurant is terrible, the food was awful!"
Now, generate a counterfactual explanation for the following sentence:
Sentence: {sentence}
True sentiment: {sentiment}
Return only the counterfactual sentence, without any additional information.

702

CoLA

You are an AI assistant tasked with generating counterfactual explanations for grammaticality judgment.
Given a sentence and its true grammaticality label (Acceptable or Unacceptable), your goal is to make
the minimal necessary change to flip the grammaticality while preserving the structure and meaning as
much as possible.
For example, if the input is:
Sentence: "She is going to the store."
True grammaticality: Acceptable
A suitable counterfactual explanation would be: "She is go to the store."
Now, generate a counterfactual explanation for the following sentence:
Sentence: {sentence}
True grammaticality: {sentiment}
Return only the counterfactual sentence, without any additional information.

703

D.3 Baselines Details.704

We compare COD against three task-aware knowledge distillation methods widely used for distillation.705

COD uses k/2 original samples and their k/2 corresponding CFE (a total of k shots) while the baseline706

methods are trained on k original samples.707

• Knowledge Distillation (KD) [67]: A classical distillation approach where the student model708

learns to mimic the teacher’s soft target probabilities using Kullback-Leibler (KL) divergence. This709

method transfers predictive behavior but does not supervise intermediate representations.710

• Layer-wise Distillation (LWD) [13]: An extension of KD that additionally aligns the student’s711

intermediate hidden representations with those of the teacher. This is typically done via a mean712

squared error loss over corresponding layers, encouraging the student to internalize not only the713

final outputs but also the hierarchical feature representations of the teacher.714

19



Table 4: Teacher accuracy (%) across datasets. Reporting Qwen2.5-1.5B and DeBERTa-v3-base
when fine-tuned on full training dataset for each benchmark. These teachers are used as sources of
supervision for student models during knowledge distillation.

Model Amazon Polarity CoLA IMDB SST2 Yelp Sentiment140

Qwen2.5-1.5B 88.5 83.0 94.3 93.7 95.4 86.1
DeBERTa-v3-base 86.7 87.5 93.8 95.8 95.6 86.8

• Task-aware Layer-wise Distillation (TED) [12]: TED augments LWD with learned neural filters715

at each layer of both teacher and student models. These filters are trained to select task-relevant716

information from intermediate representations before computing the distillation loss. This selective717

transfer enables more effective compression by focusing on information critical to task performance.718

D.4 Models and Hyperparameters.719

• DeBERTa-V3 [32]. We fine-tune the teacher model using DeBERTaV3-base, initialized with a720

classification head for each target task. For the teacher, we use a dropout rate of 0.1, linear learning721

rate decay, and train for 8 epochs with a fixed learning rate of 2 × 10−5 and batch sizes of {32,722

64}. Optimization is performed using Adam with ϵ = 1× 10−6, β1 = 0.9, and β2 = 0.98, without723

weight decay. Mixed-precision training with FP16 is used throughout.724

For distillation, the student is initialized from a pre-trained DeBERTa-v3-small or725

DeBERTa-v3-xsmall model. We search learning rates in the range [1× 10−5, 5× 10−5], and use726

a fixed batch size of 8 in our few-shot experiments. All student models are trained for 10 epochs727

using Adam with the same optimizer settings as the teacher. For KD and LWD baselines, we set728

the distillation loss weight to 20. For the TED baseline, we use the same hyperparameters for both729

the filter training and distillation phases, consistent with [12].730

• Qwen2.5 [2]. We use Qwen/Qwen2.5-1.5B as the teacher and Qwen/Qwen2.5-0.5B as the731

student, both loaded from Hugging Face with sequence classification heads. We fine-tune using732

a batch size of 16 and train for 10 epochs. For KD and LWD baselines, we set the distillation733

loss weights to 20 and 5, respectively. All other settings closely follow the DeBERTaV3 setup,734

including the optimizer, learning rate schedule, and use of mixed-precision training.735

All experiments are conducted on a server equipped with four NVIDIA RTX A6000 GPUs.736

D.5 Additional Results and Discussion.737

We provide results using the smaller DeBERTa-v3-xsmall (22M parameters) student as well as the738

full evaluation table for the Qwen2.5 family. Results for the smaller DeBERTa-v3-xsmall student739

are shown in Table 5. While experiments using the Qwen2.5-1.5B teacher and the Qwen2.5-0.5B740

student are shown in Table 6. We also include the full fine-tuned teacher model accuracies across741

all datasets in Table 4, which are used as supervision targets during knowledge distillation. All742

experimental results are averaged over five runs, with the mean and standard deviation reported.743

Overall, our findings corroborate the central insight that infusing CFEs into knowledge distillation744

significantly boosts model performance in few-shot settings. For the smaller DeBERTa-v3-xsmall745

student, we observe that the benefits of CFE infusion remain substantial across tasks, especially when746

k ≤ 64. For example, on IMDB at k = 8, KD + COD improves from 74.3% to 89.3%, and LWD +747

COD improves from 77.3% to 87.7%, showing that even with a much smaller student, CFEs offer748

a powerful training signal. Similar patterns are seen on SST2 and Amazon Polarity. While the749

performance gap narrows at higher k values, our method still matches or slightly outperforms standard750

distillation, despite using only half as many real samples. These results highlight the scalability of751

COD across student model sizes.752

We also evaluate COD on Qwen2.5 models, using Qwen2.5-1.5B as the teacher and Qwen2.5-0.5B753

as the student. Results on CoLA, Yelp, Amazon Polarity, and IMDB show that our method consis-754

tently outperforms standard KD and LWD, particularly in few-shot regimes. On IMDB with k=8,755

KD + COD reaches 80.0% vs. 67.8% for standard KD - a remarkable 12.2 percentage point gain.756

Similarly, LWD + COD improves CoLA accuracy by 8.3 points at k=128 (71.9% vs. 63.6%). With757
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Table 5: Classification accuracy (± std) across datasets with varying total training sizes k. For
COD, training data consists of k/2 standard and k/2 CFEs. Teacher model DeBERTa-v3-base and
student model DeBERTa-v3-xsmall.

Total Samples (k)

Dataset Method 8 16 32 64 128 512

Amazon
Polarity

KD 0.628 ±0.055 0.690 ±0.034 0.766 ±0.032 0.827 ±0.021 0.835 ±0.037 0.846 ±0.009

+ COD 0.697 ±0.117 0.782 ±0.033 0.823 ±0.018 0.844 ±0.009 0.814 ±0.013 0.855 ±0.018

LWD 0.660 ±0.061 0.699 ±0.044 0.777 ±0.042 0.825 ±0.015 0.839 ±0.015 0.839 ±0.013

+ COD 0.712 ±0.039 0.743 ±0.051 0.811 ±0.016 0.832 ±0.015 0.830 ±0.010 0.850 ±0.013

CoLA

KD 0.724 ±0.045 0.735 ±0.052 0.776 ±0.026 0.773 ±0.040 0.799 ±0.011 0.806 ±0.004

+ COD 0.752 ±0.042 0.766 ±0.018 0.790 ±0.012 0.799 ±0.004 0.803 ±0.008 0.817 ±0.007

LWD 0.699 ±0.042 0.744 ±0.039 0.755 ±0.043 0.787 ±0.008 0.803 ±0.009 0.808 ±0.008

+ COD 0.685 ±0.190 0.780 ±0.018 0.790 ±0.004 0.798 ±0.007 0.802 ±0.005 0.813 ±0.003

IMDB

KD 0.743 ±0.070 0.849 ±0.037 0.882 ±0.032 0.904 ±0.004 0.912 ±0.005 0.920 ±0.004

+ COD 0.893 ±0.007 0.896 ±0.007 0.900 ±0.005 0.904 ±0.005 0.910 ±0.008 0.918 ±0.003

LWD 0.773 ±0.034 0.823 ±0.041 0.876 ±0.027 0.903 ±0.008 0.915 ±0.007 0.914 ±0.014

+ COD 0.877 ±0.022 0.888 ±0.006 0.900 ±0.005 0.902 ±0.009 0.911 ±0.008 0.921 ±0.001

SST2

KD 0.591 ±0.040 0.666 ±0.030 0.754 ±0.047 0.816 ±0.024 0.861 ±0.015 0.887 ±0.033

+ COD 0.685 ±0.112 0.763 ±0.084 0.829 ±0.028 0.850 ±0.015 0.862 ±0.016 0.905 ±0.011

LWD 0.580 ±0.064 0.664 ±0.024 0.726 ±0.036 0.818 ±0.019 0.847 ±0.029 0.912 ±0.005

+ COD 0.658 ±0.107 0.675 ±0.074 0.839 ±0.017 0.841 ±0.019 0.859 ±0.016 0.877 ±0.044

Yelp

KD 0.704 ±0.062 0.793 ±0.042 0.861 ±0.011 0.887 ±0.004 0.907 ±0.007 0.922 ±0.008

+ COD 0.759 ±0.086 0.758 ±0.084 0.870 ±0.008 0.889 ±0.009 0.897 ±0.009 0.920 ±0.006

LWD 0.714 ±0.049 0.815 ±0.028 0.870 ±0.013 0.875 ±0.012 0.907 ±0.006 0.925 ±0.006

+ COD 0.758 ±0.069 0.757 ±0.082 0.873 ±0.012 0.884 ±0.007 0.894 ±0.009 0.919 ±0.006

Sent140

KD 0.580 ±0.032 0.594 ±0.026 0.634 ±0.047 0.681 ±0.046 0.740 ±0.012 0.796 ±0.013

+ COD 0.573 ±0.078 0.612 ±0.064 0.721 ±0.019 0.737 ±0.030 0.767 ±0.014 0.795 ±0.006

LWD 0.576 ±0.038 0.585 ±0.025 0.624 ±0.029 0.684 ±0.044 0.728 ±0.035 0.799 ±0.007

+ COD 0.561 ±0.064 0.592 ±0.050 0.681 ±0.043 0.723 ±0.025 0.763 ±0.019 0.773 ±0.026

(k=8), COD boosts Yelp performance by 6.1 points for both KD (74.5% vs. 68.4%) and LWD (74.6%758

vs. 68.5%). These gains demonstrate the generality of our approach: it is effective even for decoder759

transformer families like Qwen2.5.760

Taken together, our findings affirm the broad applicability of CFE-infused distillation. The consistent761

improvements across datasets, model families, and student capacities support our central claim: CFEs762

are a powerful, data-efficient tool for improving teacher-student alignment in low-resource scenarios.763
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Table 6: Classification accuracy (± std) of Qwen2.5 across datasets with varying training sizes
k. For COD, training data consists of k/2 standard and k/2 CFEs. Teacher model is Qwen2.5-1.5B
and student model is Qwen2.5-0.5B.

Total Samples (k)

Dataset Method 8 16 32 64 128 512

CoLA

KD 0.681 ±0.012 0.676 ±0.023 0.668 ±0.042 0.654 ±0.032 0.676 ±0.020 0.732 ±0.014

+ COD 0.683 ±0.016 0.686 ±0.018 0.697 ±0.015 0.711 ±0.020 0.736 ±0.017 0.757 ±0.011

LWD 0.681 ±0.012 0.657 ±0.031 0.678 ±0.018 0.650 ±0.039 0.636 ±0.029 0.712 ±0.014

+ COD 0.682 ±0.018 0.687 ±0.013 0.704 ±0.010 0.714 ±0.020 0.719 ±0.022 0.755 ±0.013

Yelp

KD 0.684 ±0.021 0.759 ±0.040 0.827 ±0.030 0.861 ±0.017 0.887 ±0.012 0.920 ±0.010

+ COD 0.745 ±0.029 0.779 ±0.048 0.828 ±0.072 0.886 ±0.007 0.883 ±0.010 0.916 ±0.008

LWD 0.685 ±0.019 0.777 ±0.036 0.837 ±0.027 0.876 ±0.020 0.898 ±0.008 0.920 ±0.005

+ COD 0.746 ±0.028 0.778 ±0.035 0.847 ±0.020 0.876 ±0.014 0.883 ±0.010 0.909 ±0.009

Amazon
Polarity

KD 0.589 ±0.057 0.635 ±0.044 0.706 ±0.083 0.781 ±0.033 0.807 ±0.031 0.862 ±0.013

+ COD 0.605 ±0.051 0.660 ±0.042 0.712 ±0.077 0.793 ±0.030 0.805 ±0.041 0.835 ±0.021

LWD 0.589 ±0.057 0.628 ±0.096 0.680 ±0.052 0.779 ±0.026 0.823 ±0.027 0.858 ±0.015

+ COD 0.607 ±0.051 0.662 ±0.060 0.692 ±0.080 0.795 ±0.041 0.823 ±0.023 0.853 ±0.020

IMDB

KD 0.678 ±0.054 0.758 ±0.079 0.817 ±0.057 0.890 ±0.017 0.903 ±0.012 0.926 ±0.003

+ COD 0.800 ±0.054 0.845 ±0.061 0.877 ±0.038 0.889 ±0.014 0.912 ±0.010 0.921 ±0.003

LWD 0.678 ±0.054 0.740 ±0.076 0.832 ±0.035 0.883 ±0.014 0.906 ±0.014 0.925 ±0.003

+ COD 0.800 ±0.055 0.835 ±0.048 0.869 ±0.012 0.893 ±0.013 0.909 ±0.008 0.920 ±0.007

SST2

KD 0.568 ±0.061 0.621 ±0.084 0.719 ±0.102 0.827 ±0.038 0.878 ±0.020 0.904 ±0.010

+ COD 0.578 ±0.064 0.663 ±0.081 0.767 ±0.085 0.779 ±0.137 0.870 ±0.019 0.886 ±0.005

LWD 0.568 ±0.062 0.642 ±0.107 0.704 ±0.065 0.825 ±0.034 0.869 ±0.026 0.890 ±0.010

+ COD 0.577 ±0.063 0.677 ±0.076 0.782 ±0.133 0.779 ±0.085 0.792 ±0.118 0.878 ±0.011

Sent140

KD 0.586 ±0.047 0.599 ±0.047 0.641 ±0.030 0.708 ±0.027 0.756 ±0.020 0.813 ±0.010

+ COD 0.556 ±0.038 0.591 ±0.046 0.616 ±0.055 0.711 ±0.061 0.757 ±0.023 0.805 ±0.010

LWD 0.587 ±0.051 0.596 ±0.038 0.639 ±0.063 0.718 ±0.038 0.765 ±0.024 0.805 ±0.011

+ COD 0.556 ±0.038 0.588 ±0.059 0.621 ±0.051 0.715 ±0.059 0.765 ±0.012 0.805 ±0.008
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