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Abstract

Cross-lingual Transfer learning (CLT) has suc-
cessfully been applied to the dependency pars-
ing task. This is the first work that evaluates a
CLT based approach to the Constituency pars-
ing task. Furthermore, we utilized the linguis-
tic typology knowledge in WALS database to
improve the cross-lingual transferring ability
of our proposed parser.

1 Introduction

Constituency parsing is a classic NLP task which
aims to construct a phrase-structure parse-tree to
represent the syntax of a given sentence. Numer-
ous approaches to the constituency-parsing task
have been proposed in the past (Charniak, 2000;
Collins, 2003; Petrov et al., 2006) including sophis-
ticated neural-network based approaches to it (Kun-
coro et al., 2016; Takase et al., 2018; Mrini et al.,
2019; Yang and Deng, 2020). The state-of-the-art
neural approaches to the constituency-parsing task
are mono-lingual supervised approaches which re-
quire large amount of labelled data to be trained
on, thus limiting their utility to only handful of
high-resource languages. To address this issue of
data-sparsity, researchers have proposed numerous
unsupervised approaches to constituency-parsing
(Kann et al., 2019; Zhao and Titov, 2021; Kim et al.,
2020a; Wu et al., 2020). However these approaches
significantly under-perform the monolingual super-
vised approaches.

In this work, we evaluate the performance of
the cross-lingual variant of the popular Discrimina-
tive Recurrent Neural Network Grammar (RNNG)
(Dyer et al., 2016) constituency parser. Cross-
lingual Transfer-learning (CLT) typically involves
training a model on the high-resource source-
languages and applying it on a low-resource target-
language. The CLT based approaches utilise vari-
ous multilingual word-embeddings such as MUSE

(Conneau et al., 2017), mBERT (Wu and Dredze,
2019) etc. for text-representation to ensure the
cross-lingual transferring from the source to the
target language. CLT has successfully been ap-
plied to numerous NLP-tasks including Depen-
dency Parsing (Daniel et al., 2017; Zeman et al.,
2018), Natural Language Inference (Conneau et al.,
2018; Singh et al., 2019; Huang et al., 2019; Doval
et al., 2019), Question Answering (Liu et al., 2019;
Lee and Lee, 2019; Lewis et al., 2019), Text-
classification (Bel et al., 2003; Shi et al., 2010;
Mihalcea et al., 2007; Prettenhofer and Stein, 2010;
Xu et al., 2016; Chen et al., 2018) etc. The key con-
tribution of this small and focused work is that, as
far as we are aware, it is the first paper which eval-
uates the performance of CLT on the Constituency
Parsing task.

The key reason behind CLT not been applied to
the Constituency-parsing task so far is the unavail-
ability of universally annotated datasets in multiple
languages. There are numerous constituency tree-
banks available in a diverse range of languages.
But unlike Dependency Parsing tree-banks which
are mostly annotated with the UD Annotations (Mc-
Donald et al., 2013), in case of Constituency Pars-
ing various existing tree-banks have their own inde-
pendent tag annotations, thus making the applica-
tion of multilingual approaches to it as impossible.
However, (Han et al., 2014) proposed a Universal
Phrase tag-set with 9 common Phrase-tags. Fur-
thermore, (Han et al., 2014) also provides a map-
ping table to map tags of popular constituency tree-
banks (including all treebanks used by us in our
experiments) to these Unversal Phrase Tags.

We used this mapping table to replace all tags
within all tree-banks utilized by us during experi-
ments, with the universal tags. Subsequently we
trained and evaluated all approaches (including
baseline and proposed CLT based approaches) on
these Universally Tagged tree-bank versions.
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Action Description
NT(X) Opens a non-terminal node ’X’ and puts it on top of Stack. eg: NT(VP)==>(VP
SHIFT Removes topmost token from the Buffer B and pushes onto Stack
REDUCE Repeatedly pops completed sub-trees or terminal symbols from the stack until an open

non-terminal is encountered, and then this open NT is popped and used as the label of
a new constituent that has the popped sub-trees as its children. This new completed
constituent is pushed onto the stack as a single composite item.

Table 1: Action Set for Discriminative RNNG (Dyer et al., 2016)

2 Cross-lingual Discriminative RNNG

Discriminative RNNGs is a transition based con-
stituency parser comprising of three key compo-
nents namely Stack S which stores the incomplete
parse-tree, Buffer B which stores the sentence to-
kens and the set of all possible actions A. At every
time-step t, the algorithm chooses the best action
at ∈ A, given the current state of stack St, buffer
Bt and history of actions a<t. Depending upon
the chosen action at, the Stack and Buffer are up-
dated accordingly. The process is continued until
the Buffer becomes empty and Stack consists of
completed parse-tree.

Table 1 describes the actions within action-set
A for the Discriminative RNNG (DiscRNNG). At
any time-step t, RNNGs use a stack-LSTM (Dyer
et al., 2015) to encode the current state of Stack
St and use simple RNN to encode the current state
of Buffer Bt and action-history a<t. Given St,
Bt and a<t, the probability vector Pt comprising
probabilities of all actions within A at time-step t
is computed by applying equation 1.

Pt = softmax(rTut + b) (1)

Vector ut is vector representing the entire model-
state at time t. ut is computed by applying equation
2.

ut = tanh(W [St;Bt; a<t] + c) (2)

The Cross-lingual variant of this Discriminative
RNNG parser evaluated by us, has same architec-
ture as original model with two distinctions. 1.)
Multilingual BERT based Word-embeddings (Wu
and Dredze, 2019) are used instead of monolingual
Word-embeddings during the Buffer and Stack en-
codings (St and Bt), to ensure cross-lingual trans-
fering. Such mBERT based embeddings are calcu-
lated in same way as in (Kondratyuk and Straka,
2019) (Appendix B describes the computation pro-
cess in details). These multilingual embeddings are

fixed during the training of the parser. 2.) We fed-
in the linguistic-typology features of the language
being parsed, along with Stack, Buffer and Action-
history encoding while predicting the best action at
time t. Hence, the cross-lingual RNNG model pre-
dicts the probability vector Pt by applying equation
3 (instead of equation 1).

Pt = softmax(rT [ut;Z] + b) (3)

Here Z ∈ R|Z| is a Linguistic-typology vector.
Each value within Z represents a single typology-
feature from WALS (Haspelmath, 2009) database
having specific value as integer for the language be-
ing parsed. Missing features for any language is as-
signed zero indicating no dominant value for it. We
refer to this model as Cross-lingual RNNG parser
with Linguistic Typology (CL-RNNG-w-Typo) in
this work.

Linguistic typology knowledge is successfully
utilised for the cross-lingual dependency-parsing
task by numerous researchers such as (Naseem
et al., 2012; Täckström et al., 2013; Barzilay and
Zhang, 2015; Wang and Eisner, 2016a; Rasooli and
Collins, 2017; Ammar, 2016; Wang and Eisner,
2016b) to facilitate cross-lingual transfer. This in-
spired us to include linguistic typology knowledge
for the cross-lingual Constituency-parsing task in-
deed.

3 Experiments

We conducted numerous experiments to evaluate
the CL-RNNG-w-Typo model in both Few-shot
(Wang et al., 2019) and Zero-shot (Socher et al.,
2013) settings1.

3.1 Baselines

We compared the performance of CL-RNNG-w-
Typo parser with following baselines.

1Source Code, Mappings and Model-weights at
www.github.com/XXXX
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Language Tree-bank Family
English Penn tree-bank (Marcus et al., 1993) Germanic

Swedish (sd) Talbanken05 (Nivre et al., 2006) Germanic
French (fr) FrenchTreebank (Abeillé et al., 2003) Romance

Spanish (es) Spanish UAM Treebank (Moreno et al., 1999) Romance
Japanese (jp) Tüba-J/S (Kawata and Bartels, 2000) Altic
Arabic (ab) Arabic PENN Treebank (Bies and Maamouri, 2003) Afro-asiatic

Hungarian (hg) Hungarian Szeged Treebank (Treebank) Uralic

Table 2: List of source languages and their corpra used during experimentation.

Language Tree-bank Family
German (de) Negra Treebank (Skut et al., 1997) Germanic
Danish (da) Arboretum Treebank (Bick, 2003) Germanic
Italian (it) ISST Treebank (Montemagni et al., 2003) Romance

Catalan (ct) Catalan AnCora Treebank (Taulé et al., 2008) Romance
Korean (kr) Korean Penn Treebank (Han et al., 2002) Altic

Heberew (hb) (Sima’an et al., 2001) Afro-asiatic
Estonian (est) Estonian Arborest Treebank (Bick et al.) Uralic

Hindi (hi)* Hindi-Urdu Treebank (Bhat et al., 2017) Indo-aryan
Vietnamese (vt)* Vietnamese Treebank (Nguyen et al., 2009) Austroasiatic

Table 3: List of target languages and their corpra used during experimentation.

Model de da it ct kr hb est hi vt
CL-RNNG-Mono 70.09 72.64 64.48 59.35 61.47 60.79 55.35 51.17 50.06
CL-RNNG-Poly 66.9 66.11 66.98 69.35 65.37 66.91 66.05 58.83 58.76

CL-RNNG-w-LangID 66.9 67.42 68.01 69.25 66.35 68.16 66.1 58.3 58.84
CL-RNNG-w-Typo 67.97 67.66 67.92 71.15 66.7 69.35 67.43 60.37 60.35

Table 4: F1 Score in Few-shot learning settings.

Model de da it ct kr hb est hi vt
CPE-PLM 41.36 43.89 45.72 46.12 50.15 45.4 44.03 39.86 43.72

CL-RNNG-Mono 68.13 70.14 61.99 56.85 58.91 57.82 52.61 48.66 47.92
CL-RNNG-Poly 64.43 64.13 64.5 66.37 63.32 64.99 63.5 56.2 56.21

CL-RNNG-w-LangID 64.85 64.72 65.15 67.05 63.87 66.07 64.28 56.29 56.71
CL-RNNG-w-Typo 65.83 65.75 66.08 68.19 64.26 66.87 65.07 57.5 58.48

Table 5: F1 Score in Zero-shot learning settings.

1.) Chart-based CPE-PLM (Kim et al.,
2020b): Its a state of the art neural unsupervised
constituency parser which only utilises the syntac-
tic knowledge encoded within a transformer based
language-model such as BERT (Devlin et al., 2018),
XLM-R (Conneau et al., 2019) etc. to construct a
parse-tree. We re-implemented the model and used
it as our baseline within Zero-shot settings.

2.) Cross-lingual RNNG Parser trained on
single source language (CL-RNNG-Mono): Its
the same model as CL-RNNG-w-Typo except that

it does not use the linguistic-typology knowledge
and is trained on a single source language English.

3.) Cross-lingual RNNG Parser trained of
multiple source languages (CL-RNNG-Poly): It
is the same model as CL-RNNG-Mono, but trained
on a mixed polyglot corpus of high-resource source
languages rather than a single source language En-
glish.

4.) Cross-lingual RNNG Parser with
Language-id (CL-RNNG-w-LangID): It has
same architecture as CL-RNNG-w-Typo model,
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with typology vector been replaced by the one-hot
language-id vector representing the language being
parsed.

3.2 Dataset

Tables 2 and 3 list all the Source and Target
languages as well as their tree-bank corpra, the
universally-tagged versions of which were used
for the experimentation. Appendix A outlines the
mapping-table used to replace the original annota-
tions in these tree-banks to the universal-tag anno-
tations (mapping provided by (Han et al., 2014)).
We evaluated the CL-RNNG models on each of
the target languages listed in Table 3 independently.
For each experiment, the source-language training
corpus size is always fixed to 700,000 tokens to
ensure controlled experiment-settings.

We created the source-language training-corpus
for CL-RNNG-Mono parsers by randomly sampling
sentences from the English-PTB corpus (one at a
time), until the token-size becomes approximately
equal to 700,000. On the other hand, to create the
source-language training-corpus for all CL-RNNG-
Poly models, we randomly sampled sentences from
each of the seven source-language corpra listed
in table 2 until the token-size becomes approxi-
mately equal 100,000, concatenated all these sam-
pled datasets and randomly shuffled the order, thus
ensuring that all seven source-languages listed in ta-
ble 2 are equally represented in the training-corpus.

Few-shot learning settings require a handful of
training examples in the target language. We ex-
tracted this small target-language training-set by
randomly sampling sentences from the train-set of
copra listed in table 3 until the token-size becomes
approximately equal to 3000. This is inspired by
(Ammar et al., 2016) who used the same yardstick
to evaluate their dependency parser.

3.3 Typology and Hyper-parameters

Appendix C will outline all the hyper-parameters
used during the training. Typology vector Z in-
cludes feature-values of all word-order and con-
stituency features in WALS (Haspelmath, 2009)
database excluding trivially redundant features as
excluded by (Takamura et al., 2016).

4 Results and Inference

Tables 4 and 5 outlined overall F1 scores obtained
on all target-languages, within the Few-shot Learn-
ing and Zero-shot learning settings. Results in ta-

ble 5 show that for Zero-shot settings, all CLT ap-
proaches significantly outperformed the CPE-PLM.
It is inline with trends observed for other NLP tasks,
where even a simple CLT based approach to the
respective task always significantly outperforms
the most complex unsupervised approaches.

In general, it is evident in Tables 4 and 5 that
all models perform marginally better in Few-shot
rather that in Zero-shot settings. In both the set-
tings, for languages Danish (da) and German (de),
the Cl-RNNG-Mono outperformed other polyglot
models. The reason being that these languages
belong to the same language-family as English
namely Germanic and are indeed typologically
very close to the source-languages of Cl-RNNG-
Mono namely en. Whereas, it under-performed CL-
RNNG-Poly on the other target languages namely
it, ct, est, hb and kr. It is also evident that all
model achieved a lower score on target-languages
hi and vt, as compared to other target-languages.
The reason being that these languages belong to
families Indo-aryan and Austro-asiatic respectively
and are typologically very distinct from all source
languages listed in Table 2.

Based on these trends it can be inferred that
the CLT based parsers perform better when the
source and target languages are typologically closer.
Furthermore, it can infer that the polyglot train-
ing training increases the Cross-lingual transfer-
ring ability of the CL-RNNG models to the un-
seen target-language (typologically distinct from
its source languages) as it allows the model to bet-
ter generalize over a diverse set of languages. Both
of these trends are also observed for CLT based
approaches to other NLP tasks as well.

Results also show that, the CL-RNNG-w-
Typo outperformed CL-RNNG-w-LangID and CL-
RNNG-Poly models for all the target-languages in
both settings. Hence, it can be inferred that feeding
the linguistic-typology knowledge does indeed im-
prove cross-lingual tranferring ability of the parser.

5 Conclusion

This is the first work which evaluated a
cross-lingual transfer learning approach to the
Constituency-parsing task. We proved that CLT sig-
nificantly outperforms Unsupervised approaches.
Future work would involve extrinsic evaluation of
CL constituency parsing on numerous downstream
NLP tasks.
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A Mappings

Tables 7 and 8 outlines the Universal Phrase-tag
set (in the first column), as well as the mappings
from the distinct tag-annotations of all the training
and test copra tree-banks used by us during experi-
mentation, to these Universal Phrase-tags. These
mappings are provided by (Han et al., 2014).

Before each experiment, we used these mapping
tables to replace all tags within the train/test tree-
banks with the universal tags. Subsequently we
trained and evaluated all the baseline and proposed
CLT based approaches on these Universally Tagged
tree-bank versions.

B Word-embeddings

We used the Multilingual BERT based Word-
embeddings instead of monolingual Word-
embeddings during the Buffer and Stack encodings,
to ensure the cross-lingual transferring between
source and target languages. For any sentence S
being parsed, we computed the embeddings for all
the words in S simultaneous.

We inputted the entire sentence S to the BERT’s
WordPiece Tokenizer to obtain the corresponding
token-sequence. Subsequently we fed-in this ob-
tained token-sequence into a pre-trained mBERT
model. For any word w ∈ S we used the outputs of
the pre-trained mBERT corresponding to the first
wordpiece token of it to compute of its embedding
ew, ignoring the rest of the token. The embedding
vector ew is computed by simply summing-up the
outputs of all the layers of the pre-trained BERT
model (equation 4).

ew =
∑
j

BERTj (4)

These embeddings are then utilised to encode the
Stack and Buffer during the parsing. Hence the
word-embeddings are distinct for each input sen-
tence, but are not fine-tuned with the parser train-
ing.

C Hyper-parameters

Table 6 outlines hyper-permeters used during exper-
iments. These values are obtained by minimizing
the training loss on Development dataset (Dev set)
for Penn Treebank Corpus (Marcus et al., 1993).

Typology vector Z includes feature-values of
all word-order and constituency features in WALS
(Haspelmath, 2009) database excluding trivially

redundant features as excluded by (Takamura et al.,
2016).

For each experiment, every model is trained and
evaluated five times and the averaged value of re-
sults are reported in Tables 4 and 5. The mod-
els are implemented in Tensorflow. We used the
BERT model bert multi cased L-12 H-768 A-12
provided by huggingface.com

Hyper-parameter Value
WE dims 768
St,Bt,a<t dims 450
uβt, uαt dims 450
Dropout prob. 0.01
Bach-size 32
Epochs 150
BERT Model bert multi cased L-

12 H-768 A-12
Learning rate 0.05
Exponential decay True

Table 6: Hyper-parameters

huggingface.com
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Universal
Phrase
Tag

UPenn Talbanken
05

French-
Treebank

Spanish
UAM

Tuba-J/S Arabic
PENN

Hungarian
Szeged

NP NP,
WHNP

CNP, NP NP HOUR,
NP, QP,
SCORE,
TITLE

NPper,
NPloc,
NPtmp,
NP,
NP.foc

NP,
NX, QP,
WHNP

NP, QP

VP VP CVP, VP VN, VP,
VPpart,
VPinf

VP VP.foc,
VP,
VPcnd,
VPfin

VP VP, INF,
INF0

AJP ADJP AP, CAP AP ADJP AP.foc,
AP,
APcnd

ADJP,
WHADJP

ADJP

AVP ADVP,
WHADVP

AVP, CAVP AdP ADVP,
PRED-
COMPL

ADVP.foc,
ADVP

ADVP,
WHADVP

ADVP, PA,
PA0

PP PP,
WHPP

CPP, PP PP PP PP, PP.foc,
PPnom,
PPgen,
PPacc

PP, WHPP PP

S S,
SBAR,
SBARQ,
SINV,
SQ

CS, S SENT,
Ssub, Sint,
Srel, S

CL, S S, SS S, SBAR,
SBARQ,
SQ

S

CONJP CONJP,
NAC

C0

COP CONJP,
CXP

COORD CP

X X NAC, XP ITJ, GR,
err

PRN, PRT,
FRAG,
INTJ, X,
UCP

FP, XP

Table 7: Mappings of Source Treebank copra annotations to Universal Phrase tags
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Universal
Phrase
Tag

Negra
Tree-
bank

Arboretum
Tree-
bank

ISST
Tree-
bank

Catalan
AnCora
Tree-
bank

Korean
Penn

Heberew
Tree-
bank

Estonian
Arborest

Hindi-
Urdu
Tree-
bank

Viet-
namese
Tree-
bank

NP NP,
CNP,
MPN,
NM

Np SN sn NP NP-gn-
(H)

AN,
NN

NP,
NP-P,
NPNST,
SC-A,
SC-P,
NP-P-
Pred

NP,
WHNP,
QP

VP VP,
CVP,
VZ,
CVZ

vp, acl IBAR gv VP PREDP,
VP, VP-
MD,
VPINF

VN,
INF-N

VP, VP-
Pred, V

VP

AJP AP,
AA,
CAP,
MTA

Ajp SA sa ADJP,
DANP

ADJP-
gn-(H)

AP, AP-
Pred

AP,
WHAP

AVP AVP,
CAVP

Dvp SAVV sadv,
neg

ADVP,
ADCP

ADVP AD DegP RP,
WHRP

PP PP,
CAC,
CPP,
CCP

pp SP,
SPD,
SPDA

sp PP PP,
WHPP

S S, CS,
CH,
DL,
PSEUDO

fcl, icl F, SV2,
SV3,
SV5,
FAC,
FS,
FINT,
F2

S, S*,
S.NF.C,
S.NF.A,
S.NF.P,
S.F.C,
S.F.AComp,
S.F.AConc,
S.F.Acons,
S.F.Acond,
S.F.R,

S FRAG,
FRAGQ,
S,
SBAR,
SQ

S, SQ,
SBAR

CONJP cp CP,
COMPC

conj.subord,
coord

COP CO FC,
CO-
ORD

PN CCP,
XP-CC

X ISU,
QL

par FP,
COMPT,
COMPIN

interjeccio,
mor-
fema.verbal,
morf.pron

INTJ,
PRN,
X, LST,
XP

INTJ,
PRN

P, Q CP XP, YP,
MDP

Table 8: Mappings of Target Treebank copra annotations to Universal Phrase tags


