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ABSTRACT

Time-varying stochastic optimization problems frequently arise in machine learn-
ing practice (e.g. gradual domain shift, object tracking, strategic classification).
Often, the underlying process that drives the distribution shift is continuous in na-
ture. We exploit this underlying continuity by developing predictor-corrector algo-
rithms for time-varying stochastic optimization that anticipates changes in the un-
derlying data generating process through a predictor-corrector term in the update
rule. The key challenge is the estimation of the predictor-corrector term; a naive
approach based on sample-average approximation may lead to non-convergence.
We develop a general moving-average based method to estimate the predictor-
corrector term and provide error bounds for the iterates, both in presence of pure
and noisy access to the queries from the relevant derivatives of the loss function.
Furthermore, we show (theoretically and empirically in several examples) that
our method outperforms non-predictor corrector methods that do not anticipate
changes in the data generating process. 1

1 INTRODUCTION

Stochastic optimization is a basic problem in modern machine learning (ML) theory and practice.
Although there is a voluminous literature on stochastic optimization (Agarwal et al., 2014; Moulines
& Bach, 2011; Bottou, 2003; 2012; Bottou & Bousquet, 2007), most prior works consider a time-
invariant stochastic optimization problem in which the data generating distribution is not changing
over time. However, there is an abundance of real examples in which the underlying optimization
problem is time-varying which can be broadly divided into two categories: the first kind arises due
to exogeneous variation in the data generating process. A concrete example is the object tracking
problem in which an observer observes (noisy) signals regarding the position of a moving object,
and the goal is inferring the trajectory of the object. The second kind of time-varying optimization
problem arises due to endogeneous variation in the data generating process. Examples here include
strategic classification (Dong et al., 2018; Hardt et al., 2016) and performative prediction (Perdomo
et al., 2020; Mendler-Dünner et al., 2020; Brown et al., 2022). Although there are a few recent papers
on time-varying stochastic optimization (e.g., Cutler et al. (2021); Nonhoff & Müller (2020); Dixit
et al. (2019; 2018)), they model the temporal drift as discrete, precluding them from exploiting the
smoothness in the drift. This leads to worse asymptotic tracking error, depending on the magnitude
of the temporal drift of the optimal solution, (e.g. see Popkov (2005). Zavlanos et al. (2012), Zhang
et al. (2009), Ling & Ribeiro (2013) and references therein).

1Codes: https://github.com/smaityumich/concept-drift.
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In this paper, we focus on time-varying stochastic optimization problems in which the temporal drift
is driven by a continuous-time process. We leverage the smoothness of the temporal drift to develop
predictor-corrector (PC) methods for stochastic optimization that anticipates future changes in the
data generating process to improve the asymptotic tracking error (ATE) (see Definition 2.1). The
main benefit of such methods is smaller tracking error (compared to other stochastic optimization al-
gorithms that does not leverage smoothness of the temporal drift). A primary challenge in stochastic
time-varying optimization is properly accounting for the temporal drift through a PC term in the up-
date rule. The noise in the stochastic setting makes naive estimates of the PC term unstable, and may
lead to non-convergence. One of our main contributions is developing a general way of estimating
the PC term.

We complement the methodological contributions with theoretical results that show PC stochas-
tic optimization algorithms inherit the benefits of their non-stochastic counterparts for time-varying
problems. In particular, we show that PC stochastic optimization algorithms have smaller asymptotic
tracking error (ATE) compared to their non-PC counterparts. We also demonstrate the superiority of
PC algorithms empirically in a time-varying linear regression and target tracking applications. The
rest of the paper is organized as follows: In Sections 2 and 3, we present the algorithm and high-
light the difference between predictor-corrector based algorithm and time non-adaptive algorithms
like simple gradient descent. We further present theories regarding the bound on ATE of the algo-
rithms of both kinds. In Section 4, we present three concrete instances of time-varying stochastic
optimization problems driven by underlying gradual distributions shifts and derive the details of PC
algorithms for these problems. Section 5 concludes.

2 FRAMEWORK AND ALGORITHM

In a typical learning problem, we have n samples X1, . . . , Xn ∼ P and based on the data, we
estimate some parametric (or non-parametric) functional of the underlying distribution θ⋆ = ν(P )
by minimizing some loss function ℓ(θ,X). A standard assumption for consistent estimation of θ⋆

is that R(θ) ≜ E[ℓ(X, θ)] is uniquely minimized at θ⋆. In a time varying framework, we assume
that the data generating distribution P ≡ Pt changes with time and so does the parameter of interest
θ⋆t = ν(Pt) along with the (time-varying) risk function R(θ, t) ≜ EPt

[ℓ(X, θ)].

As a concrete example, consider the object tracking problem studied in Patra et al. (2020): suppose
we have installed n sensors at positions x1, . . . , xn (which remain fixed over time) and let θ⋆t be the
location of the target object at time t. At each time, we get some noisy feedback from the sensors
regarding the position of the target, i.e.

yi,t = ∥xi − θ⋆t ∥2 + ϵit for 1 ≤ i ≤ n,

where ϵit’s are iid (over i and t) with mean zero and variance τ2. Denote by yt ∈ Rn to be the
vector of observations from n sensors at time t. A natural approach to estimate θ⋆t is to minimize
squared error loss ℓ(yt, θ) =

∑n
i=1(yi,t − ∥xi − θ∥2)2, which yields the risk function

R(θ, t) =
∑n

i=1 E[(yi,t − ∥xi − θ∥2)] = nτ2 +
∑n

i=1(∥xi − θ⋆t ∥2 − ∥xi − θ∥2)2.
From the risk function, it is immediate that under very mild assumptions on x1, . . . , xn (i.e. they
are in general position, as discussed in Appendix A.1) we have

θ⋆(t) = argminθR(θ, t), t ≥ 0 . (2.1)

We will use the notations θ⋆(t) and θ⋆t interchangeably to denote the same thing. From the above
formulation, it is immediate that we are merely observing one sample/incident at each time point.
Therefore if θ⋆t behaves erratically over time, there is no hope to learn the evolution pattern from the
data. Therefore, it is imperative to assume some smoothness on the target function θ⋆t . Our proposed
method exploits the smoothness of θ⋆t to improve its estimation over time.

We now formulate the problem: we assume that the underlying distribution function {Pt} changes
continuously with time t. As statisticians, we query the model at discrete time steps (i.e. say at time
{kh}k∈N where h is the time step which controls the frequency of query) and observe n samples
{Xit}1≤i≤n from the distribution at that time. As a consequence, we have a sequential batch of data
using which we aim to estimate θ⋆kh, i.e. the parameters at the time of query. Note that to estimate
the parameter at time t one may use all previous data points. We evaluate the quality of our estimator
using the asymptotic tracking error (ATE) defined below.
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Definition 2.1 (Asymptotic tracking error (ATE)). Let the true dynamic parameter {θ⋆t , t ≥ 0} be
sequentially estimated as {θ̂kh, k ∈ N} over the time grid {kh : k ∈ N}, where h > 0 is the time
step. Then the asymptotic tracking error is defined as

ATE(θ) = lim supk→∞ ∥θ̂kh − θ⋆kh∥2 .

As mentioned in the Introduction, we here compare performance of a time-adjusted (PC) gradi-
ent descent method to a time-unadjusted (GD) one. As will be evident, both the methods require
evaluation of certain derivatives of the risk function.

To motivate the predictor-corrector (PC) algorithm, we start by deriving the prediction correction
term when the optimizer has access to the exact gradients of the (time-varying) cost function. The
optimality of θ⋆t implies

g(t) = ∇θR(θ⋆t , t) = 0 for all t. (2.2)
Thus g′(t) = 0; i.e.

∇θθR(θ⋆t , t)θ̇
⋆
t +∇θtR(θ⋆t , t) = 0, (2.3)

where θ̇⋆t is the temporal drift of the optimal solution θ⋆t . We see that θ⋆t satisfies the ODE:

θ̇⋆t = −∇−1
θθ R(θ⋆t , t)∇θtR(θ⋆t , t). (2.4)

We interpret the right side of this ODE as a prediction of the change in θ⋆t . This suggests modifying
the update rule of stochastic optimization algorithms to account for the predicted change in θ⋆t . This
leads to the update rule

θ̂(k+1)h = θ̂kh − η∇̂θR(θ̂kh, kh)− h{∇̂θθR(θ̂kh, kh)}−1∇̂θtR(θ̂kh, kh),

where η > 0 is a learning rate, h is a (time) step, and ∇̂θR(θ, t), ∇̂θθR(θ, t), ∇̂θtR(θ, t) are
estimates of ∇θR(θ, t), ∇θθR(θ, t), ∇θtR(θ, t) respectively. We summarize the stochastic PC
algorithm in Algorithm 1.

Algorithm 1 Stochastic predictor-corrector based method

Require: step size h > 0, learning rate η > 0, estimated gradients ∇̂θR(θ, kh), Hessians
∇̂θθR(θ, kh) and time derivative of the gradient ∇̂θtR(θ, kh) for k ∈ N

1: Initialize θ̂0 at some value.
2: for k ≥ 0 do
3: Update θ̂(k+1)h = θ̂kh − η∇̂θR(θ̂kh, kh)− h{∇̂θθR(θ̂kh, kh)}−1∇̂θtR(θ̂kh, kh)
4: end for

To motivate the benefit of accounting for the predicted change in θ⋆t , we present here a brief com-
parison of the tracking error of the PC algorithm with simple stochastic gradient descent without the
correction term. For simplicity of exposition, we study the tracking error of these two algorithms
in the non-stochastic setting. We begin by showing a lower bound on the tracking error of gradi-
ent descent. We suspect this result is known to experts, but it does not appear (to the best of our
knowledge) in the literature.
Theorem 2.2 (Lower bound). There exists a R(θ, t) that satisfies Assumption 3.1 such that the
gradient descent algorithm with time step size h > 0 and learning rate η > 0 satisfies the following:
there exists a c > 0 such that

lim inf
k→∞

∥∥θ̂kh − θ⋆kh
∥∥
2
≥ c

h

η
.

As we shall see in the subsequent section (see Theorem 3.3), the tracking error of the PC algorithm
in the non-stochastic setting is O(L

′′h2

Mη ). We restate this special case of Theorem 3.3 here for the
reader’s convenience.
Corollary 2.3. (Non-stochastic version of Theorem 3.3) Assume that 3.1 and 3.2 holds and that
R(θ, t) is twice differentiable in both co-ordinates. Then with access to the true gradients, the
sequence of estimates in Algorithm 1 with step size h > 0 and learning rate η satisfies:

lim supk→∞
∥∥θ̂kh − θ∗kh

∥∥ ≤ L′′h2

Mη+hM ′ ,

where M ′ = supθ,t ∥{∇θθR(θ, t)}−1∇θtR(θ, t)∥op, M = supt≥0 ∥∇θR(θ, t)∥ and L′′ =

maxt≥0
1
2∥θ̈(t)∥ are finite.
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To compare the rates for the PC algorithm and gradient descent, we set a learning rate such that
h/η → 0 as h → 0. We see from Theorem 2.2 that the ATE for gradient descent ATE cannot con-
verge faster than h/η. By comparison, the ATE for PC algorithm in the non-stochastic setting (see
Theorem 2.3) converges to zero at rate h2/η (since it holds L′′h2

Mη+hM ′ ≍ L′′h2

Mη as long as h/η → 0),
which a faster rate than h/η. Hence, we conclude that the ATE for predictor-corrector update con-
verges at a faster rate than the ATE for gradient descent update. A high-level reasoning for such a
distinction is the following: the gradient descent method does not consider or calibrate for the under-
lying smoothness in θ⋆(t) while performing the time updates, whereas predictor-corrector calibrates
for the smoothness in the time update by adjusting the term −h{∇θθR(θ̂t, t)}−1∇θtR(θ̂t, t).

One of the main challenge in implementing the stochastic PC algorithm is obtain estimates of
∇θR(θ, t), ∇θθR(θ, t), ∇θtR(θ, t):

1. Estimation of gradient: ∇θR(θ, t) also appears in the SGD update rule; it is typically estimated
with sample average approximation.

2. Estimation of PC term: ∇θθR(θ, t), ∇θtR(θ, t) are quantities that arise due to the presence of
the PC term in the stochastic PC update rule. Although it is possible to construct unbiased sample
average approximations of them individually, obtaining an unbiased estimate of the overall PC
term is generally not possible due to the presence of non-linearity: the PC term is a product
of the inverse of the hessian matrix and the cross derivative with respect to the parameter and
time. Fortunately, the stochastic PC algorithm is robust against biases in the estimate of the PC
term. That said, naively estimating the PC term with sample average approximation can lead to
non-convergence of the stochastic PC algorithm (see Remark 3.5 for details). In section 4, we
present two ways of estimating/evaluating ∇θθR(θ, t), ∇θtR(θ, t) that ensure the stochastic PC
algorithm converges.

In the next section, we elucidate how errors in the estimates of ∇θR(θ, t), ∇θθR(θ, t), ∇θtR(θ, t)
affect the asymptotic tracking error of the stochastic PC algorithm.

3 THEORETICAL PROPERTIES OF THE STOCHASTIC PC ALGORITHM

We begin by stating our assumptions on the problem. We assume that the risk function is strongly
convex with respect to θ. This assumption implies that θ⋆(t) is uniquely identified at time t and is
crucial in studying the convergence of ATE.
Assumption 3.1. R(θ, t) is µ-strongly convex with respect to θ, i.e. for any θ1, θ2 and t ≥ 0 it
holds:

R(θ2, t) ≥ R(θ1, t) + (θ2 − θ1)
⊤∇θR(θ1, t) +

µ
2 ∥θ2 − θ1∥22 .

We now assume that as a function of t, θ⋆(t) is smooth, which is naturally satisfied in numerous
examples including dynamic least squares recovery, object tracking, etc..
Assumption 3.2. The function θ⋆ ∈ C2

Rd ([0,∞)), i.e. θ⋆ is twice continuously differentiable with
respect to time and its double derivative is uniformly bounded over time.

As will be seen in the subsequent theorems, the bounds on the ATE of these stochastic algorithms
depend on the error in the estimation of the pertinent gradients, which are defined as follows:

ξt = ∇̂θR(θ, t)−∇θR(θ, t)

denotes the estimation error of the gradient and

ζt = ∇̂θθR(θ̂tk , tk)
−1∇̂θtR(θ̂tk , tk)−∇θθR(θ∗tk , tk)

−1∇θtR(θ∗tk , tk)

represents the error in the adjustment term for the temporal drift. We use σξ (resp. σζ) to denote
an upper bound on supt E[∥ξt∥] (resp. supt E[∥ζt∥]). These bounds may or may not be a function
of h, depending on the application. Note that we do not assume the estimates of the gradients are
unbiased. Below we present our main theorems regarding the bounds on the ATE of stochastic
gradient descent and 1 in terms of σξ, σζ , learning rate η and stepsize h:
Theorem 3.3 (Stochastic predictor-corrector method). The update sequence of stochastic predictor-
corrector method presented in Algorithm 1 yields the follows bound on ATE:

lim supk→∞ E[∥θ̂kh − θ⋆kh∥] ≤ L′′h2

ηM+hM ′ + ησξ + hσζ .
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for any small η > 0. When σξ and σζ are independent of h then choice of η = h implies that ATE
of stochastic predictor-corrector method is at-most of the order of h.

Note that we don not require zero mean for the noise; we merely require them to have finite second
moment. This is slightly more general that the usual stochastic optimization setting in which the
noise is assumed to have mean zero. That said, in most of the applications that we have in mind, the
noise comes from approximation of expectations by sample means, so the noise will be mean zero.

To see the benefits of the PC algorithm in the stochastic setting, we compare the ATE of the PC
algorithm with that of stochastic approximation. Recall the stochastic gradient descent update rule:

θ̂(k+1)h = θ̂kh − η∇̂θR(θ̂kh, kh). (3.1)

for some estimate of gradient. Its ATE is known (Cutler et al., 2021), but we restate it here to
facilitate comparison:

Theorem 3.4 (Stochastic gradient descent, Cutler et al. (2021)). The update sequence of stochastic
gradient method satisfies:

lim supk→∞ E
[
∥θ̂tk − θ∗tk∥

]
≤ Lh

µη + ησξ

for any small η > 0. Minimizing the right hand side with respect to η yields:

lim supk→∞ E
[
∥θ̂tk − θ∗tk∥

]
≤

√
Lhσξ

µ .

Therefore, when σξ does not depend on h, the rate is O(
√
h).

If we assume the error variances are independent of h, then simple stochastic gradient descent yields
a bound of the order

√
h on the ATE, whereas, the time-adjusted predictor-corrector based method

yields a bound of the order of h, implying the superiority of the later for small stepsize. The superi-
ority continues to hold even when the variances depend on h, as will be evident in the applications
in the subsequent section.

Remark 3.5 (Naive estimation of PC term fails). In practice, it is straightforward to obtain esti-
mates of ∇θR(θ, t) (e.g. sample average approximation), but it is less straightforward to estimate
the cross-derivative term ∇θtR(θ, t). A naive application of first-order finite differences to esti-
mating the cross-derivative term leads to poor tracking performance because this estimate of the
cross-derivative term leads to a σζ term that is O(h−1). Indeed, we have

∇̂θtR(θ, kh) =
∇̂θR(θ, kh)− ∇̂θR(θ, (k − 1)h)

h

=
∇θR(θ, kh)−∇θR(θ, (k − 1)h)

h
+

ξkh − ξ(k−1)h

h
.

As long as R(θ, t) is smooth with respect to t, the first term is ∇θtR(θ, t) + O(h). But the second
term is generally O(h−1), e.g., if we assume that the errors over time are independent. Plugging this
into the bound on the tracking error in Theorem 3.3, we see that the term that includes σζ no longer
depends on h, leading to a vacuous O(1) bound. In Section 4, we use moving average schemes to
obtain more accurate estimates of ∇θtR(θ, t) to avoid this pitfall (e.g., for least square recovery
problem in §4.1 see Equation (4.4) and Lemma 4.3 for it’s estimation and error analysis).

4 APPLICATIONS

In this section, we present three concrete time-varying optimization problems; all are characterized a
gradual underlying distribution shift. This allows us to leverage the predictor-corrector (PC) method
to improve tracking of the optimal trajectory. In some applications (e.g. the strategic classification
example), there is a model for the distribution shift, so it is possible to evaluate the PC term exactly.
In other applications, there is no such model, so it is necessary to approximate the PC term. We use
a generic finite-difference approach in §4.1 and §4.3 to approximate the PC term. This approach is
generally applicable, but it may not be optimal in applications in which the underlying distribution
shift exhibits higher orders of smoothness.
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4.1 LEAST SQUARES RECOVERY WITH FIXED DESIGN MATRIX

We first demonstrate the performance of the predictor-corrector method and compare it with gradient
descent method in a linear regression model. We observe ykh ≜ {Ykh,j}nj=1 at time kh for k ∈ N
and some fixed stepsize h, where the observations are modeled as: yt = Xθ⋆t +ϵt . Here X ∈ Rn×d

is a fixed time-invariant design matrix and the co-ordinates of ϵt are i.i.d with mean 0 and variance
τ2. The parameter of interest here is the function θ⋆ : [0,∞) → Rd. We consider a low dimensional
scenario (i.e. d < n) and assume that the columns of X are in general position, i.e. X⊤X is
invertible. This immediately implies the following:

Lemma 4.1. For any t ∈ [0,∞), θ⋆t is the unique solution of the least square problem:

θ⋆t = argminθ∈RdR(θ, t) = argminθ∈Rd
1
2nE

[
∥yt −Xθ∥2

]
where R is the risk function and the expectation is taken with respect to the distribution of ϵ.

The proof of Lemma can be found in Appendix A. We now compare the performance of stochastic
gradient descent method (3.1) and PC method (Algorithm 1). The gradient of the risk function (with
respect to) θ is: ∇θR(θ, t) = 1

nX
⊤ (Xθ −Xθ⋆t ) . We propose a moving average based technique

to estimate the gradient of the risk function, i.e. for any time t we define:

∇̂θR(θ, t) = 1
nX

⊤
(
Xθ −∑m−1

i=0 αiyt−ih

)
, ξt = ∇̂θR(θ, t)−∇θR(θ, t) . (4.1)

The optimal choice of the moving window length m and {αi}m−1
i=0 depends on a careful analysis

of bias-variance trade-off of the estimation error ξt. First, note that ξt can be decomposed into two
terms as follows:

ξt =
1
nX

⊤X
{
θ⋆t −

∑m−1
i=0 αiθ

⋆
t−ih

}
− 1

n

∑m−1
i=0 αiX

⊤ϵt−ih ≜ A+B .

We can expand the bias term A via a two step Taylor expansion:

θ⋆t −
∑m−1

i=0 αiθ
⋆
t−ih = θ⋆t

{
1−∑m−1

i=0 αi

}
− hθ̇⋆(t)

∑m−1
i=0 iαi +

h2

2

∑m−1
i=0 i2αiθ̈

⋆(t̃i)

for some t̃i ∈ [t− ih, t]. The following lemma presents an optimal scheme for choosing {m;αi, i =
0, . . . ,m− 1}:

Lemma 4.2 (Gradient estimate). For any fixed m, choosing the weights {αi} as:

(α0, . . . , αm−1) ∈ argmin
{∑m−1

i=0 a2i :
∑m−1

i=0 ai = 1, and
∑m−1

i=0 iai = 0, ai ∈ R
}

(4.2)

we obtain the following:

1. ∥A∥22 = a20 ×O(m4h4), where a20 = maxt≥0

∥∥∥(X⊤X
n

)
θ̈⋆(t)

∥∥∥2
2
,

2. E[∥B∥22] = b20 ×O(m−1), where b20 = τ2
{

TR
(

X⊤X
n2

)}
.

Therefore, taking m = O(h−4/5{a0/b0}2/5) we have:

E[∥ξt∥2] ≤ ∥A∥2 + {E[∥B∥22]}1/2 = O(a0m
2h2) +O(b0m

−1/2) = O(a
1/5
0 b

4/5
0 h2/5) . (4.3)

The proof of this Lemma is deferred to the Appendix A. It is established in the proof that the optimal
weights are: αi = 2(2m− 1− 3i)/{m(m+ 1)}. Using the error bound of Lemma 4.2 in Theorem
3.4 yields for small η, ATE is bounded by O(h/η) + O(ηh2/5). The right hand is minimized by
taking η = h3/10, which yields the order for asymptotic tracking error O(h7/10).

For prediction-corrector based method (Algorithm 1) we additionally need to estimate the Hessian
and the time derivative of the gradient. The Hessian is constant (X⊤X/n) and known (as we assume
to know X). To estimate ∇θtR(θ, t) = −{X⊤X/n}θ̇⋆t , we again resort to a moving average based
method, i.e. we set:

∇̂θtR(θ, t) = − 1
nX

⊤{∑p−1
i=0 βiyt−ih

}
(4.4)
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Figure 1: The two left-most figures show the performance of gradient descent and the PC method
for time-varying linear regression. The left-most figure presents tracking error of GD and the PC
methods for various choices of h on the time interval t ∈ [0, 3]. The second figure from the left
one compares the performance for a fixed t = 3 and different h to illustrate how the performance of
the methods vary with h. The two right-most figures show the performance of gradient descent and
the PC method for object tracking. The second figure from the right shows the tracking error of the
object tracking model for GD and the PC method for different choices of h. The Y -axis represents
the tracking error and X-axis represents the time interval t ∈ (0, 3).

for some choice of p and the weights {βj}p−1
j=0 , where the weights and the size of the window is

obtained from a bias-variance trade-off:

ζt =
(
X⊤X

n

)−1[∇̂θtR(θ, t)−∇θtR(θ, t)
]

= −∑p−1
i=0 βiθ

⋆
t−ih + θ̇⋆t −

(
X⊤X

n

)−1X⊤

n

(∑p−1
i=0 βiϵt−ih

)
≜ C +D .

The following lemma presents the optimal choice of the weights, window length and consequently
an error bound:

Lemma 4.3. (Estimate of time derivative) For any p, if we choose the weights βi’s as:

(β0, . . . , βp−1) ∈ argmin
{∑p−1

i=0 b2i :
∑p−1

i=0 bi = 0, and
∑p−1

i=0 ibi = − 1
h , bi ∈ R

}
(4.5)

we have the following bounds on the error:

1. ∥C∥22 = maxt≥0 ∥θ̈⋆(t)∥22 ×O(h2p2) ≜ c20 ×O(h2p2) ,
2. E[∥D∥22] = τ2{TR[(X⊤X/n)−1]/n} × O(h−2p−3) ≜ d20 ×O(h−2p−3) .

Setting p = (d0/c0)
1/4h−3/4, we have:

E[∥ζt∥2] ≤ ∥C∥2 + {E[∥D∥22]}1/2 = O(c0hp) +O(d0h
−2p−3) = O(c

3/4
0 d

1/4
0 h1/4) . (4.6)

The βj in the above lemma takes the value 6(p−1−2j)
p(p2−1)h as elaborated in the proof of the Lemma (see

Appendix A). From the above lemma we have σζ = maxk E[∥ζkh∥2] = O(h1/4). Furthermore,
we have established in the analysis of gradient descent method that the order of the error of the
gradient estimation is σξ = O(h2/5) (Lemma 4.2). Using these rates in Theorem 3.3 we conclude
that predictor-corrector method with step size η ATE is of the order O(h2/{η + h}) +O(ηh2/5) +
O(h5/4) . The bound is minimized at η = h4/5 and consequently, the order of the tracking error
is O(h6/5). Therefore, predictor-corrector method yields faster rate (in terms of the step-size h) in
comparison to the gradient based method.

Simulation studies: We compare the tracking performance of the gradient descent based and the
predictor-corrector based method for the regression model via simulation. For simulation purpose,
we set d = 2, n = 40. The values of {Xi}ni=1 are generated independently from N (0, I2) and
remain fixed over time. The true parameter is taken to be θ∗t = (sin(2πt), cos(2πt)) and at time t,
the observation yt ∈ Rn is generated as yt = Xθ∗t + ϵt where ϵt ∼ N (0, 0.5In). Runtime analysis
for the gradient descent based and the predictor-corrector based methods can be found in Figure 2
in Appendix C.

The tracking performance of the methods over a finite time interval (t ∈ (0, 3)) and the effect of h
on the limiting error (i.e. tracking error for some large t) are presented in Figure 1. In the left plot
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of Figure 1, we observe that the predictor-corrector based method (denoted by PC) outperforms the
gradient-descent based method (denoted by GD) in terms of the tracking error for all moderately
large t (here, t ≥ 1) for all choices of h ∈ {10−2, 10−3, 10−4, 10−5}. As illustrated in our theory,
the rate of convergence of limiting error of predictor-corrector based method decreases faster in h
compared to the gradient descent based method. The right side of Figure 1 establishes this phenom-
ena through comparing the performances at t = 3 for several choices of h. As ∥θ̂t−θ⋆t ∥ is a random
quantity, error bars (over 10 Monte-Carlo iterations) are provided to quantify the variability of the
tracking error, which turns out to be relatively small compared to the mean difference of the tracking
error of the methods.

4.2 STRATEGIC CLASSIFICATION

In strategic classification, samples correspond to agents who change their features strategically to
affect the output of the ML model (e.g. scammers modifying their scam to skirt a scam detector).
To keep things simple, we assume the ML model is a binary classifier, and the positive output is
advantageous for the agents. Following Hardt et al. (2016), we assume the agents are maximizing
utility, and they have full information regarding the classifier. Thus an agent with features x changes
their features by solving the (expected) utility maximization problem

x+(x) ≜ argmaxx′∈Xu+f(x
′)− c(x, x′), (4.7)

where u+ > 0 is the utility from a positive output, f(x) is the predicted probability of having
positive output for x from an ML model, u+f(x) is the expected utility at x, and c(x, x′) > 0
encodes the cost of changing features from x to x′.

Let p1 be the probability density function (pdf) of the positive class conditional at time t and ft be
the ML model deployed at time t. The agents respond strategically to ft; i.e. an agent with feature x
changes their features to x+(x) (their label remains unchanged). The resulting change in the class
conditional satisfies the continuity equation:

∂tp1 +∇ · (vp1) = 0,

where ∇ ≜ [∂x1
. . . ∂xd ] is the spatial gradient operator and v is the vector field v(x) ≜ x+(x)−

x. Similarly, the pdf of the negative class conditional also satisfies the continuity equation.

This change in the distribution of agent features leads to a time-varying optimization problem:

θ(t) ∈ argminθf(θ, t) ≜ π
∫
X ℓ(fθ(x), 1)dP1(x) + (1− π)

∫
X ℓ(fθ(x), 0)dP0(x),

where π ≜ P{Y = 1} is the faction of the positive class and ℓ is a loss function for the classification
task. Interchanging limits freely, we see that it is possible to estimate ∇θf(θ, t) and ∇θθf(θ, t)
empirically:

∇θf(θ, t) = π
∫
X ∇θℓ(fθ(x), 1)dP1(x) + (1− π)

∫
X ∇θℓ(fθ(x), 0)dP0(x),

∇θθf(θ, t) = π
∫
X ∇2

θℓ(fθ(x), 1)dP1(x) + (1− π)
∫
X ∇2

θℓ(fθ(x), 0)dP0(x)

Similarly, it is possible to estimate ∇θtf(θ, t) empirically:

∇θtf(θ, t) = π
∫
X ℓ(fθ(x), 1)∂tp1(x, t)dx+ (1− π)

∫
X ℓ(fθ(x), 0)∂tp0(x, t)dx

= −π
∫
X ℓ(fθ(x), 1)∇ · (v(x)p1(x, t))dx− (1− π)

∫
X ℓ(fθ(x), 0)∇ · (v(x)p0(x, t))dx

= π
∫
X ∇xℓ(fθ(x), 1)

⊤v(x)p1(x, t)dx+ (1− π)
∫
X ∇xℓ(fθ(x), 0)

⊤v(x)p0(x, t)dx.

where we appealed to the continuity equation in the second step and Green’s identities in the third
step. Unlike the other two applications in this section, it is possible to compute the PC term exactly
(without resorting to finite-difference approximation) here.

4.3 OBJECT TRACKING

Our third application is object tracking problem proposed and analyzed by Patra et al. (2020). As-
sume we have n sensors placed the position {Xi}ni=1 in Rd and θ⋆(t) denotes position of the object
(that we aim to track) at t. At any given point, we observe a noisy version of some monotone
function of distance of the object from the sensors, i.e. we observe:

Yi,t = f(∥Xi − θ⋆t ∥2) + ϵi,t ∀ 1 ≤ i ≤ n .,

8
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In this example, we assume we know f . The case of unknown f is more complicated and beyond
the scope of the paper. The risk function for estimating θ⋆t under quadratic loss function is:

R(θ, t) = E
[ 1

2n

n∑
i=1

(
Yi,t − f(∥Xi − θ∥2)

)2 ]
=

σ2

2
+

1

2n

n∑
i=1

(
f(∥Xi − θ∥2)− f(∥Xi − θ⋆t ∥2)

)2
Note that the risk function here is not strongly convex (so it does not satisfy the assumptions of
Theorem 3.3), but as we shall see, the PC algorithm nevertheless outperforms standard first-order
methods. The gradient and the Hessian, that are required for GD and PC methods, can be easily
estimated as using sample averages (exact expressions are presented in the Appendix B). The time
derivative of the gradient is:

∇θ,tR(θ, t) = − 2
n

∑n
i=1 f

′(∥Xi − θ∥2)(θ −Xi)
d
dtf(∥Xi − θ⋆t ∥2)

To estimate d
dtf(∥Xi − θ⋆t ∥2) we again resort to the moving average procedure:

∂̂tf(∥Xi − θ⋆t ∥2) =
∑p−1

j=0 βjYi,t−jh ,

where p, {βj}pj=1 are chosen carefully to balance the bias variance trade-off. For notational simplic-
ity we drop the index i and define g(t) = f(∥Xi − θ⋆t ∥2). From the relation Yi,t = g(t) + ϵi,t and
Assumption 3.2, we have:∑p−1

j=0 βjYi,t−jh =
∑p−1

j=0 βj{g(t)− jhg′(t) + j2h2

2 g′′(t̃j)}+
∑p−1

j=0 βjϵi,t−jh

Now if the sequence {βj}p−1
0 satisfies

∑
j βj = 0 and

∑
j jβj = −(1/h) then we have:∑p−1

j=0 βjYi,t−jh − g′(t) = (
∑

j j
2βj)O(h2) +

∑p−1
j=0 βjϵi,t−jh .

The variance of the error term is σ2
ϵ

∑
j β

2
j . Therefore we will choose {βj} and p by minimizing∑

j β
2
j subject to the above constraints. Similar calculation as of Example 1 (Lemma 4.3) yields

p = O(h−3/4) and {βj}p−1
j=0 is βj =

6(p−1−2j)
p(p2−1)h .

Simulation study We consider n = 112 sensors placed at {−1,−0.8, . . . , 0.8, 1}2 ⊂ [−1, 1]2

grid. The moving object takes the path θ⋆t = (sin(2πt), cos(2πt)) and we let f(x) = x. We
generate noisy observations of the object as yit = ∥Xi − θ⋆t ∥2 + ϵit where ϵit ∼ N (0, 1/4). Run-
time analysis for the two methods can be found in Figure 2 in Appendix C. Figure 1 (third and
forth plots from left) presents the tracking error of both the methods (gradient descent based method
(resp. predictor-corrector based method) is represented as GD (resp. PC)) for four choices of h ∈
{10−2, 10−3, 10−4, 10−5}. The superiority of the performance of the PC method for all t ≥ 1 and
for various choices of h is evident from the third picture from the left-side of Figure 1. In the last
picture, we compare the limiting performance of both the methods (here we take the error at t = 3 to
be the limiting error) for several choices of h. The superiority of the performance of PC corroborates
our theoretical finding that the tracking error for PC converges faster in terms of h compared to the
GD. We also show error bars (over 10 Monte-Carlo iterations) of the random tracking error ∥θ̂t−θ⋆t ∥
at t = 3 on the right picture, which indicates that the variability is relatively small compared to the
difference of the mean tracking error of the methods.

5 CONCLUSION

We developed predictor corrector algorithms for stochastic time-varying optimization. These algo-
rithms leverage smoothness in the temporal drift to anticipate changes to the optimal solution. We
showed that these algorithms have smaller asymptotic tracking errors than their non-predictor cor-
rector counterparts and demonstrated their efficacy in three applications. Although we focused on
first-order algorithms in this paper, the predictor corrector term in the update rules of our PC algo-
rithms can be incorporated into the update rules of other algorithms (e.g. Newton-type methods).
We hope that the benefits of first-order PC algorithms motivates others to study PC versions of other
algorithms.
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