
anipulate- nything: Automating Real-World
Robots using Vision-Language Models

Jiafei Duan 1∗ Wentao Yuan 1∗ Wilbert Pumacay 2 Yi Ru Wang 1

Kiana Ehsani 3 Dieter Fox 1,4 Ranjay Krishna 1,3

1University of Washington 2Universidad Católica San Pablo
3Allen Institute for Artificial Intelligence 4NVIDIA

Abstract: Large-scale endeavors like RT-1[1] and widespread community efforts
such as Open-X-Embodiment [2] have contributed to growing the scale of robot
demonstration data. However, there is still an opportunity to improve the quality,
quantity, and diversity of robot demonstration data. Although vision-language
models have been shown to automatically generate demonstration data, their utility
has been limited to environments with privileged state information, they require
hand-designed skills, and are limited to interactions with few object instances. We
propose MANIPULATE-ANYTHING2, a scalable automated generation method for
real-world robotic manipulation. Unlike prior work, our method can operate in real-
world environments without any privileged state information, hand-designed skills,
and can manipulate any static object. We evaluate our method using two setups.
First, MANIPULATE-ANYTHING successfully generates trajectories for all 7 real-
world tasks and 14 simulation tasks, significantly outperforming state-of-the-art
methods such as VoxPoser. Second, MANIPULATE-ANYTHING’s demonstrations
can train more robust behavior cloning policies than training with human demonstra-
tions, or from data generated by VoxPoser [3], Scaling-up [4] and Code-As-Policies
[5]. We believe MANIPULATE-ANYTHING can be the scalable method for both
generating data for robotics and solving novel tasks in a zero-shot setting. Project
page: robot-ma.github.io.
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1 Introduction
The success of modern machine learning systems fundamentally relies on the quantity [6, 7, 8, 9,
10, 11], quality [12, 13, 14, 15, 16], and diversity [17, 18, 19, 20, 21] of the data they are trained
on. The availability of large-scale internet data made possible significant advances in vision and
language [22, 23, 24]. However, the dearth of data has prevented similar advancements in robotics.
Human demonstration collection methods do not scale to sufficient quantity or diversity. Projects like
RT-1 [1] demonstrated the utility of high-quality human data collected over 17 months. Others have
developed low-cost hardware for data collection [25, 26, 27]. However, all these procedures require
expensive human data collection.

Automated data collection methods do not scale to sufficient diversity. With the advent of vision-
language models (VLMS), the robotics community has been abuzz with new systems that leverage
VLMS to guide robotic behavior [28, 5, 29, 30, 3, 4, 31]. In these systems, VLMS decompose tasks
into language plans [28, 5] or generate code to execute predefined skills [32, 3]. Though successful
in simulation, these methods underperform in the real world [32, 3]. Some methods rely on privileged
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Figure 1: MANIPULATE-ANYTHING is an automated method for robot manipulation in real world
environments. Unlike prior methods, it does not require privileged state information, hand-designed
skills, or limited to manipulating a fixed number of object instances. It can guide a robot to accomplish
a diverse set of unseen tasks, manipulating diverse objects. Furthermore, the generated data enables
training behavior cloning policies that outperform training with human demonstrations.

state information only available in simulation [29, 4], require hand-designed skills [30], or are also
limited to manipulating a fixed set of object instances with known geometric shape [3, 32].
As VLMs improve in performance, and with the vast common-sense knowledge they have shown to
possess, could we harvest their capabilities for diverse task completion and scalable data generation?
The answer is yes – with careful system design and the right set of input and output formulations, we
can not only use VLMs as a means to successfully perform diverse tasks in a zero-shot manner, but
also generate quality data at a high quantity to train behaviour cloning policies.

We propose MANIPULATE-ANYTHING a scalable automated demonstration generation method
for real-world robotic manipulation. MANIPULATE-ANYTHING produces high quality data, at
large-quantities (if needed), and can manipulate a diverse set of objects to perform a diverse set of
tasks. When placed in a real world environment and given a task (e.g., “open the top drawer” in
Figure 2), MANIPULATE-ANYTHING effectively leverages VLMS to guide a robotic arm to complete
the task. Unlike prior methods, it doesn’t need privileged state information, hand-designed skills,
or limited to specific object instances. Not relying on privileged information makes MANIPULATE-
ANYTHING environment-agnostic. MANIPULATE-ANYTHING plans a sequence of sub-goals and
generates actions to execute the sub-goals. It can verify whether the robot succeeded in the sub-goal
using a verifier and re-plan from the current state if needed. This error recovery enables mistake
identification, re-planning, and recovering from failure. It also injects recovery behavior into the
collected demonstrations. We further enhanced the VLMs’ capabilities by incorporating reasoning
from multi-viewpoints, significantly improving performance.

We showcase the utility of MANIPULATE-ANYTHING through two evaluation setups. First, we
show that it can be prompted with a novel, never-before-seen task and complete it in a zero-shot
manner. We quantitatively evaluate across 7 real-world and 14 RLBench [33] simulation tasks and
demonstrate capabilities across many real-world everyday tasks (refer to appendix). Our method
significantly outperforms VoxPoser [3] in 10/14 simulation tasks for zero-shot evaluation. It also
generalizes to tasks where VoxPoser completely fails because of its limitation to specific object
instances. Furthermore, we demonstrated that our approach can solve real-world manipulation tasks
in a zero-shot manner, achieving a task-averaged success rate of 38.57%. Second, we show that
MANIPULATE-ANYTHING can generate useful training data for a behavior cloning policy. We com-
pare MANIPULATE-ANYTHING generated data against ground truth hand-scripted demonstrations
as well as against data from VoxPoser [3], Scaling-up [4] and Code-As-Policies [5]. Surprisingly,
policies trained on our data outperforms even human hand-scripted data on 4 out of 12 tasks and
performs on par for 3 more when trained with PerAct [34]. Meanwhile, the baselines are unable
to generate the training data for some of tasks. MANIPULATE-ANYTHING demonstrates the broad
possibility of large-scale deployment of robots across unstructured real-world environments. It
also highlights its utility as a training data generator, aiding in the crucial goal of scaling up robot
demonstration data.
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Figure 2: Manipulate Anything Framework. The process begins by inputting a scene representation
and a natural language task instruction into a VLM, which identifies objects and determines sub-tasks.
For each sub-task, we provide multi-view images, verification conditions, and task goals to the action
generation module, producing a task-specific grasp pose or action code. This leads to a temporary
goal state, assessed by the sub-task verification module for error recovery. Once all sub-tasks are
achieved, we filter the trajectories to obtain successful demonstrations for downstream policy training.

2 Related work

MANIPULATE-ANYTHING enables scaling of robotic manipulation data using VLMS. As such, we
review recent efforts in 1) scaling manipulation data, and 2) applications of VLMS in robotics.
Scaling manipulation data. When deploying vision and language-based control policies for real-
world applications, a significant challenge revolves around acquiring data. Traditionally, a convenient
avenue to collect such trajectories is through human annotations for action (i.e. through teleoper-
ation) and language labeling [34, 35, 36], however, this approach is limited in scale. To address
this limitation and achieve autonomous scalability, prior works employ vision-language models or
procedurally generate language annotations in simulated environments [4, 37, 38]. For action labels,
strategies range from random exploration to learned policies [39]. While human egocentric videos
are relevant, they lack action labels and require cross-embodiment transfer [40]. Another strategy
involves model-based policies, such as task and motion planning (TAMP) [41]. Our approach
extends these methods by incorporating common-sense knowledge from LLMs and VLMs, providing
a framework that combines the strengths of VLMs, object pose prediction, and dynamic retry to
synthesize demonstrations in simulated and real environments.

Language models for robotics. In the field of robotics, large language models have found diverse
applications, including policy learning [42, 43, 44], task and motion planning [45, 46], log summa-
rization [47], policy program synthesis [5], and optimization program generation [28]. Previous
research has also explored the physical grounding capabilities of these models [3, 32, 48, 49],
while ongoing work [4] investigates their integration with task and motion planners to create expert
demonstrations. [36] attempted to collect extensive real-world interaction data, with short-horizon
trajectories. [50] proposed a key-point based visual prompting method for real-world manipulation,
through predicting affordances and corresponding motions. Our work complements the existing line
of works by leveraging the high-level planning capabilities of language models, scene understanding
capabilities of vision language models, and action sampling to enable synthesis of robot trajectories,
which include language, vision, and robot state, given arbitrary tasks and environments.
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3 MANIPULATE-ANYTHING
We propose MANIPULATE-ANYTHING, a framework that solves everyday manipulation tasks con-
ditioned on language. Under the hood, MANIPULATE-ANYTHING leverages VLMS to decompose
tasks into sub-tasks, generates code for new skills or task-specific grasp pose, and verifies the
success of each sub-task (Figure 3). Note that due to the modularity aspect of our framework,
MANIPULATE-ANYTHING will continue to improve as the underlying VLMs continue to improve.

3.1 Task plan generation
MANIPULATE-ANYTHING takes as input any task described by a free-form language instruction, T
(e.g., ‘open the top drawer’). Creating robot trajectories that adheres to T is challenging due to its
potential complexity and ambiguity, requiring a nuanced understanding of the current environment
state. Given T, and an image of the scene, we apply a VLM to first identify task-relevant objects
in the scene, appending them to a list. Subsequently, we use a LLM along with those information
to decompose the main task T into a series of discrete, smaller sub-tasks, represented as Ti, along
with the corresponding verification conditions vi, where i ranges from 1 to n. For instance, the above
task could be decompose into sub-tasks include ‘grasp the drawer handle’ or ‘pull open the drawer’,
and verification conditions are ‘did the robot grasp the handle?’ or ‘is the drawer opened?’. This
transforms the instruction T into a sequence of specific sub-tasks {(T1, v1), (T2, v2), . . . , (Tn, vn)}.
For each sub-task, MANIPULATE-ANYTHING generates desired actions (§ 3.3) and verifies them
against the corresponding conditions to ensure successful completion of that sub-task(§ 3.4). This
verification step also allows MANIPULATE-ANYTHING to recover from mistakes and attempt again
in the case of failure.

3.2 Multi-viewpoint VLM selection
Many prior works that investigated VLM’s reasoning capability found that they do not work well
given a single viewpoint [51, 52, 53]. In robotic manipulation, we leverage multiple viewpoints
from either more than one camera or re-rendering to minimize object occlusion [54, 55]. Leveraging
these insights, we proposed a multi-viewpoint selection phase via VLM before using the selected
viewpoints for either action generation or sub-task verification for MANIPULATE-ANYTHINGẆe
concatenate all available viewpoints from the current observations, either from multiple cameras or
re-rendered viewpoints from a single RGB-D, into a single frame. Numbers are annotated on the
top left of each concatenated frame to correspond to a specific viewpoint. Using the concatenated
multi-viewpoints, we then query VLMS to choose an ideal viewpoint conditioned on the sub-task.
Therefore, for both agent-centric and object-centric action generation, we render multiple viewpoints
of the scene and query VLMS to choose an ideal viewpoint for either generating actions given the
sub-task or verifying if the sub-task verification condition has been met as shown in Figure 3.1

3.3 Action generation module
Given a sub-task, the desired output from the action generation module is a sequence of low-level
actions represented as a 6 DoF end-effector pose. The actions can be categorized into two sets:
agent-centric or object-centric. Based on the generated sub-task, the LLM planner will classify it as
either agent-centric or object-centric actions. For agent-centric actions, it will modify the agent’s
state; e.g., it can move the robot’s end-effector from the current state (e.g., “rotate 90◦”). We first
employed our multi-viewpoint selection to sample out the most optimal viewpoints to provide the
VLM with along with the in-context learning technique to generate the code for synthesizing the
desired motion. Unlike prior methods that use language models solely for code generation [5], we
leverage VLMS to reason about object locations and the scene, grounding generation in the current
state. This advantage is demonstrated in the ablation studies in the Appendix.

For object-centric actions, it is often used to generate a task-specific grasp pose for grasping a certain
object (e.g., "grasp a knife for cutting") or to synthesize a pre-action pose for non-prehensile tasks
by allowing the VLM to assign translation offsets to task-specific grasp poses. To obtain an object-
centric action for a given sub-task, we first use an object-agnostic grasp prediction model [56]
to generate all possible 6-DOF grasping poses in the scene. These poses are not conditioned on
task specifications and may include invalid grasp poses for the given task. Next, we use the VLM
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Figure 3: MANIPULATE-ANYTHING is an open-vocabulary robot demonstration generation system.
We show zero-shot demonstrations for 14 tasks in simulation and 7 tasks in the real world.

to obtain the bounding box of the target object parts conditioned on the task specification from all
available or re-rendered viewpoints (e.g., if the task is "grasp a knife," the VLM will detect the handle
of the knife and generate a bounding box for the handle). The VLM then performs multi-viewpoint
selection to identify the most optimal viewpoint free from occlusion. Finally, using the bounding
box detection of the task-specific part of the object from the optimal viewpoint selected by the VLM,
we filter out a list of proposed candidate grasp poses and select the highest confidence grasp pose.
This approach allows us to obtain the most optimal task-specific grasp pose, placement pose, and
pre-action pose for non-prehensile tasks, all leveraging the capabilities of the VLM. After the action
is generated, a motion planner can be used to move the robot to the desired pose as detailed in Fig. 2.
3.4 Sub-task verification
To ensure that each sub-task Ti is executed correctly, we introduce a VLM-based verifier. After every
action for each sub-task is executed, we use the VLM to check if the end state matches the verifier
condition vi. Similar to the action generation module, we use multi-viewpoint VLM selection to
find the optimal view, avoiding errors due to occlusion or ambiguity from a single viewpoint. If the
verifier identifies failure, we re-attempt the action generation step for the previous sub-task from the
current state. Otherwise, the next sub-task Ti+1 is attempted. More details are in the appendix 6.1.

4 Experiments
Our experiments are designed to address two questions: 1) Can MANIPULATE-ANYTHING accurately
solve a diverse set of tasks in a zero-shot manner? 2) Can data generated from MANIPULATE-
ANYTHING be used to train a robust policy?

Implementation details. We use both GPT-4V and Qwen-VL [57] as our VLM. We use GPT-4V
for task decomposition, action generation, and verification. We use Qwen-VL to detect and extract
object information. To ensure zero-shot execution within a reasonable budget, we limit the number
of action steps in each trajectory to 50 and the verification module allows a maximum of 30 tries to
accomplish a sub-goal. For the task plan generation, we follow the prompting structure adapted from
ProgPrompt [28]. All prompts input into the VLM are accompanied by few-shot demonstrations
[58]. Additionally, we provide three manually curated primitive action code snippets as examples
to prompt the VLM for new action code generation. Full prompts are included in the Appendix.
We use four viewpoints M4 = [front, wrist, left_shoulder, right_shoulder] for the simulation
experiments, and re-render three viewpoints for the real-world experiments [54]. For better reasoning
by the VLM, we use a resolution of 256× 256.
4.1 Zero-shot Performance in Simulation
We empirically study the zero-shot capability of MANIPULATE-ANYTHING in solving 14 diverse tasks
in simulation, covering a wide range of task configurations and action primitives for both prehensile
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Table 1: Task-averaged success rate % for zero-shot evaluation. MANIPULATE-ANYTHING
outperformed other baselines in 10 out of 14 simulation tasks from RLBench [33]. Each task was
evaluated over 3 seeds to obtain the task-averaged success rate and standard deviations.

Method Put_block Play_jenga Open_jar Close_box Open_box Pickup_cup Push_block

VoxPoser [3] 70.70±2.31 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 26.70±14.00 25.33±8.33

CAP [5] 84.00±16.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 14.67±4.62 8.00±4.00

Scaling-up [4] 77.33±6.11 0.00±0.00 78.67±11.55 0.00±0.00 0.00±0.00 9.33±2.26 5.33±6.11

MA (Ours) 96.00±4.00 77.33±6.11 80.00±4.00 33.33±12.86 29.00±10.07 82.67±14.04 20.00±4.00

Method Take_umbrella Sort_mustard Open_wine Lamp_on Put_knife Pick_&_lift Insert_block

VoxPoser[3] 33.33±8.33 96.00±6.93 8.00±4.00 57.30±12.22 92.00±4.00 96.00±0.00 0.00±0.00

CAP[5] 4.00±4.00 0.00±0.00 0.00±0.00 64.00±6.93 14.67±8.33 100.00±0.00 0.00±0.00

Scaling-up [4] 6.67±2.31 41.33±12.86 33.33±20.13 60.00±8.00 24.00±0.00 100.00±0.00 0.00±0.00

MA (Ours) 61.33±20.13 64.00±6.93 42.00±4.00 69.33±6.11 52.00±10.58 84.00±6.93 33.33±4.62

and non-prehensile tasks. Our simulation experiments are reported to ensure reproducibility and
provide a benchmark for future methods.

Environment and tasks. The simulation setup involves a Franka Panda robot with a parallel gripper,
using CoppeliaSim and PyRep for interfacing. Four RGB-D cameras capture input observations
around a tabletop environment. RLBench [33] is used as the task benchmark, with 14 sampled tasks
that cover various action primitives, task horizons, and object position variations. The robot’s actions
are represented as waypoints, with trajectories computed and executed via a motion planner [59].

Figure 4: Scaling experiment. Scal-
ing effect of model performance with
increasing training demonstrations.

Baselines. We compare against three state-of-the-art
zero-shot data generation approaches: Code-as-Policies
(CAP) [5], Scaling-up-Distilling-Down (Scaling-up) [4]
and VoxPoser [3]. CAP uses language models to gen-
erate programs that call hand-crafted primitive actions,
while VoxPoser predicts waypoints via a 3D voxel map of
value functions. Scaling-up leverages an LLM with 6 DoF
exploration primitives to generate robotic data for policy
distillation. We provided CAP and Scaling-up with ground
truth simulation states and object models, and VoxPoser
with segmented object point clouds, which inherently dis-
advantages MANIPULATE-ANYTHING in comparison.
Results: MANIPULATE-ANYTHING can generate suc-
cessful trajectories for all 14 tasks while Scaling-up,
VoxPoser and CAP cover only 10, 9 and 7 tasks, respec-
tively (Table 1). MANIPULATE-ANYTHING outperforms
the baselines in 10 out of the 14 tasks. The three lowest-performing tasks by MANIPULATE-
ANYTHING are non-prehensile or complex fine-grained manipulation tasks that require generating
new primitive actions with precise parameters. VoxPoser fails in the tasks that require moving the
arm beyond 4-DoF. MANIPULATE-ANYTHING outperforms the strongest baseline, VoxPoser, by an
average task-averaged margin of up to 22%.

4.2 Behavior cloning with demonstrations from MANIPULATE-ANYTHING

Next, we analyze the quality of the generated data by comparing the success rates of behavior cloning
models trained with the data. Zero-shot methods like MANIPULATE-ANYTHING are computationally
expensive but hold the potential to generate useful training data. To evaluate the quality and effective-
ness of the generated training data, we use the methods described in the previous section to generate
data for each task. We also compare performance against a model trained on human-generated
demonstrations across the 12 tasks. We use the data to train behavior cloning policies.
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Table 2: Behavior Cloning with different generated data. The behavior cloning policy trained
on the data generated by MANIPULATE-ANYTHING provides the best performance on 10 out of 12
tasks compared to the other autonomous data generation baselines (excluding RLBench). We report
the Success Rate % for behaviour cloning policies trained with data generated from VoxPoser [3]
and Code as Policies [5] in comparison. Note that the RLBench[33] baseline uses human expert
demonstrations and is considered an upper bound for behavior cloning.

Data Models Put_block Play_jenga Open_jar Close_box Open_box Pickup_cup

VoxPoser[3] PerAct[34] 2.67±2.31 - - - - 4.00±4.00

CAP[5] PerAct[34] 6.67±2.31 - - - - 14.67±12.86

Scaling-up [4] PerAct[34] 22.67±15.14 - 5.33±6.11 - - 14.67±2.31

MA (Ours) PerAct[34] 85.33±10.07 81.33±2.31 21.33±10.07 42.67±8.33 30.67±11.55 54.00±12.49

RLBench[33] PerAct[34] 20.00±18.33 81.33±9.24 58.67±45.49 68.00±24.98 14.67±6.11 54.67±23.09

Data Models Take_umbrella Sort_mustard Open_wine Lamp_on Put_knife Pick_&_lift

VoxPoser[3] PerAct[34] 4.00±4.00 0.00±0.00 1.33±2.31 5.33±4.62 1.33±2.31 5.67±1.64

CAP[5] PerAct[34] 13.33±10.06 - - 8.00±16.00 9.33±6.11 46.67±2.31

Scaling-up [4] PerAct[34] 4.00±4.00 0.00±0.00 81.33±12.86 76.00±4.00 5.33±2.31 53.33±10.06

MA (Ours) PerAct[34] 84.00±6.93 53.33±6.11 86.67±6.11 89.33±6.11 8.00±4.00 33.33±2.31

RLBench[33] PerAct[34] 58.67±50.80 53.33±34.02 86.67±12.86 84.00±13.86 30.67±10.07 62.67±9.24

Data generation details. We generate 10 successful demonstrations per task. We use the system’s
success condition to filter for successful demonstrations. Each of the demonstrations consist of a lan-
guage instruction, RGB-D frames for the trajectory, and waypoints represented as 6 DoF gripper poses
and states. For the tasks that the baselines were unable to generate any successful demonstrations, we
patched the missing training data with RLBench system-generated demonstrations.

Training and evaluation protocol. We train two models using the generated demonstrations: the
Perceiver-Actor (PerAct) model [34], a transformer-based robotic manipulation behavior cloning
model that expects tokenized voxel grids and language instructions as inputs and predicts discretized
voxel grid 6 DoF poses and gripper states, and RVT-2 model [60], a multi-view transformer-based
BC model. The RVT-2 model uses tokenized image patches and CLIP-encoded language instructions
as input to predict keypoint actions as translation heatmaps, discretized rotation in Euler angles,
and the gripper’s binary state. Notably, RVT-2 is currently the highest-performing model on the
RLBench benchmark. For all the generated training datasets, we train a multi-task PerAct policy with
a batch size of 4 for 30k iterations on a single RTX A100, and RVT-2 with a batch size of 24 for 3.3k
iterations on 4 A100s. To ensure consistent evaluation, we generate one set of testing environments
with RLBench. We evaluate the last checkpoint from each of the trained policies. Each policy is
evaluated for 25 episodes across each task using 3 different seeds. We measure the success rate based
on the simulation-defined success condition. Details on RVT-2 results can be found in the Appendix.

Results: Policies trained using MANIPULATE-ANYTHING data perform similarly to policies
trained using hand-scripted demonstrations (p = 0.973) for PerAct (Table 2). Training on either
MANIPULATE-ANYTHING or hand-scripted demonstrations results in a performance difference of
just 0.27% average across all tasks. Furthermore, models trained on data from the baselines exhibit a
statistically lower performance (p ≤ 0.01 for VoxPoser, Scaling-up and CAP). One of the main factors
potentially contributing to the performance differences could be that MANIPULATE-ANYTHING
generates diverse expert trajectories preferable to humans. This is shown in Fig. 11, which illustrates
the action distribution of generated data by different methods for the same given tasks. We also
observed that the policy trained on MA data achieves a lower standard deviation of 7.19 average
across all tasks, compared to the zero-shot performance standard deviation of 8.81. This suggests the
benefits of training over generated data instead of relying solely on zero-shot deployment.

4.3 Real-world experiments

Environment and tasks. We employ a Franka Panda manipulator equipped with a parallel grip-
per. We use a front-facing Kinect 2 RGB-D camera. To generate multi-view inputs for the

7



Table 3: Real-world Results. The model trained on the data generated by our model in the real
world (no expert in the loop) demonstrates on par results with the model trained on human expert
collected data. We present a comparison of success rates for task completion in a zero-shot manner
(Code as Policies [5] and MANIPULATE-ANYTHING), and using trained policies from MANIPULATE-
ANYTHING data and human expert data.

Open_drawer Sort_object On_lamp Open_jar Correct_dice Press_switch Close_laptop

CAP (0-shot) 0.00 ± 0.00 13.33 ± 5.77 0.00 ± 0.00 6.67 ± 5.77 6.67 ± 5.77 0.00 ± 0.00 0.00 ± 0.00
MA (0-shot) 36.67±5.77 60.00±10.00 26.67±11.55 40.00±10.00 53.33±5.77 20.00±10.00 33.33±5.77

PerAct (MA data) 50.00 ± 0.00 33.33 ± 5.77 50.00 ± 0.00 56.67 ± 5.77 60.00 ± 0.00 56.67 ± 5.77 33.33 ± 5.77
PerAct (Human data) 53.33±11.55 36.67±5.77 60.00±0.00 76.67±5.77 80.00±10.00 33.33±5.77 53.33±5.77

MANIPULATE-ANYTHING framework, we re-render virtual viewpoints from the generated point
cloud, similar to prior work [54]. We selected 7 representative real-world tasks, both prehen-
sile and non-prehensile: open_jar, sort_objects, correct_dices, open_drawer, on_lamp,
press_switch, and close_laptop, all conditioned on language instructions. Each task was evalu-
ated over 10 episodes with varying object poses across 3 trials.

Data generation details. We used MANIPULATE-ANYTHING to generate 6 demonstrations for each
task and manually perform scene resets when failures occur. We train a similar multi-task PerAct for
120k iterations and evaluate the trained policies in a manner similar to the zero-shot experiments.

Results: MANIPULATE-ANYTHING is able to generate successful demonstrations for each of
the 7 real world tasks. Even for the worst-performing task, MANIPULATE-ANYTHING achieves
a success rate of more than 25%. Our approach outperforms CAP by 38%. Consistent with the
simulation results, training with the data generated by MANIPULATE-ANYTHING produces a
more robust policy compared to performing zero-shot. Additionally, in 4 out of 5 tasks, the trained
policies perform better than the zero-shot approach. The policy under-performs on the sort_object
task, because it requires longer-horizon memory —a known limitation pointed out in PerAct [34].

4.4 Ablations

For effective real-world deployment of MANIPULATE-ANYTHING, it’s crucial that the collected
data supports scaling of robotics transformers and offers diverse skills and interacted objects. We
conducted an ablation study to evaluate the quality of MANIPULATE-ANYTHING-generated data for
scaling and its generalization to language instruction changes. For scaling, we generated behavior
cloning data, ranging from 1 to 100 training demonstrations from RLBench and MANIPULATE-
ANYTHING for a single task (put_block), and trained a PerAct policy. For generalization, we varied
the sort_mustard task with different language instructions and target objects. We compared our
approach to VoxPoser to assess robustness to object and language instruction changes. Further imple-
mentation details are in the supplementary materials. Result: Our scaling experiments demonstrate
that generating more training data via MANIPULATE-ANYTHING improves PerAct policy perfor-
mance (Fig. 4). The data from our approach shows a better rate of change with a slope of 0.503 for a
linear fit, compared to 0.197 for RLBench-generated data. Additionally, MANIPULATE-ANYTHING
data is more generalizable and robust to language instruction changes, outperforming VoxPoser in
task success across language and object variations. Detailed results in the appendix.

5 Discussion
Limitations. Despite promising results, MANIPULATE-ANYTHING has limitations: reliance on
large language models (VLMS), which may lessen with the development of open-source VLMS;
inability to generate alternative grasp poses for dynamic manipulation and non-prehensile tasks;
potential compounding errors from integrating multiple VLMs, possibly mitigated by emerging
specialized VLMs; and the need for manual prompt engineering for in-context learning, with ad-
vancements in alignment and prompting techniques potentially reducing this effort. Conclusion.
MANIPULATE-ANYTHING is a scalable, environment-agnostic approach that leverages VLMS for
high-level planning, scene understanding, and error recovery to generate zero-shot demonstrations
for robotic tasks without privileged environment information. This results in high-quality data for
behavior cloning, outperforming human data.
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6 Appendix

6.1 MANIPULATE-ANYTHING implementations

Action Generation Module. We generate each action using either an agent-centric or object-centric
approach. For object-centric action generation, we utilize M2T2 [56], NVIDIA’s foundational grasp
prediction model, for pick and place actions. For 6-DoF grasping, we input a single 3D point cloud
from either a single RGB-D camera (in the real world) or multiple cameras (in simulation). The
model outputs a set of grasp proposals on any graspable objects, providing 6-DoF grasp candidates
(3-DoF rotation and 3-DoF translation) and default gripper close states. For placement actions, M2T2
outputs a set of 6-DoF placement poses, indicating where the end-effector should be before executing
a drop primitive action based on a VLM plan. The network ensures the object is stably positioned
without collisions. We also set default values for mask_threshold and object_threshold to
control the number of proposed grasp candidates. After proposing a list of template grasp poses, we
use QWen-VL [57] to detect the target object by prompting the current image frame with the target
object’s name, translated into Chinese using a machine translation model [61]. This detection is
applied to all re-rendered viewpoints or viewpoints from different cameras. We then concatenate
these frames into a single image, annotating each sub-image with a number at the top right corner.
Next, we call the GPT-4V API with few-shot demonstrations and the task goal to prompt GPT-4V to
output the selected number of viewpoints that provide the most unobstructed views for sampling the
grasp pose to achieve the sub-goal. Using the selected viewpoint, we execute the grasp by moving
the end-effector to the sampled grasp pose via a motion planner.

For agent-centric action generation, we first perform the same steps of viewpoint selection. Using the
selected viewpoint, a few demonstration examples, and the sub-goal, we prompt GPT-4V to generate
an action function with code snippets that include the necessary code to perform a delta-action
on the current robot pose. We then execute this by moving the end-effector based on these delta
changes. This process is iterated until we obtain the most desirable code snippet function for the
given sub-goals, which is then appended to a skill library for future use.

Sub-goal Verification Module The sub-goal verification module helps with error recovery by
ensuring all potential attempts at resolving the current step action have been tried. With the temporary
goal state obtained by the action generation module, we use multi-viewpoints to sample the optimal
viewpoint for answering the verification condition generated for the given sub-goal during the task
plan generation phase. Using the same viewpoint selection method as in the Action Generation
Module, we obtain the optimal view and then perform a two-step sequence rollout of frames: one
from the current frame at this viewpoint and another from the previous action step. We concatenate
these two frames, annotate them with numbers to indicate their temporal relation, and use this image
to prompt GPT-4V to check if the verification condition is fulfilled as shown in Fig. 5. If the answer
is Yes, we proceed to the next sub-goal. If the answer is No, we resample new viewpoints, generate
new actions, and reattempt the entire sub-goal with a different seed.

6.2 Simulation experiments

Simulation Setup. All the simulated experiments use a four-camera setup as illustrated in Fig. 7.
The cameras are positioned at the front, left shoulder, wrist, and right shoulder. All cameras are static,
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Figure 5: Sub-goal Verification Module. We used viewpoint selection similar to action generation,
to find the optimal viewpoints, and roll out the two step sequences of the previous and current frames
for prompting the verification condition.

except for the wrist camera, which is mounted on the end effector. We did not modify the default
camera poses from the original RLBench [33]. These poses maximize coverage of the entire table,
and we use a 256 x 256 resolution for better input to the VLMs.

Task Details. We describe in detail each of the 12 tasks for simulation evaluation, both for trained
policies and zero-shot methods, along with their RLBench variations and success conditions. We
have made some modifications to the original tasks to enhance the detection rate by Code-As-Policies
and VoxPoser.

Additional Simulation Results. In addition to evaluating the generated data using PerAct [34], we
also assessed it with RVT-2 [60], the current state-of-the-art model on the RLBench benchmark.
While the results of models trained with RVT-2 were significantly higher than those trained with
PerAct, the overall trends and performance patterns remained consistent across the same training data
as depicted in Table 4.

6.2.1 put block

Filename: put_block.py

Task: Pick up the green block and place it on the red mat.

Success Metric: The success condition on the red mat detects the target green block.

6.2.2 close box

Filename: close_box.py

Task: Close the box.

Success Metric: The revolute joint of the specified handle is at least 60◦ off from the starting position.

6.2.3 open box

Filename: open_box.py

Task: Open the box.

Success Metric: The revolute joint of the specified handle is at least 60◦ off from the starting position.

6.2.4 play jenga

Filename: play_jenga.py

Task: Pull out the green jenga block.

Success Metric: The green jenga block is out of its pre-defined location.
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Table 4: Behavior Cloning with different generated data. The behavior cloning policy trained
on the data generated by MANIPULATE-ANYTHING provides the best performance on 10 out of 12
tasks compared to the other autonomous data generation baselines. We report the Success Rate %
for behaviour cloning policies trained with data generated from VoxPoser [3] and Code as Policies
[5] in comparison. Note that the RLBench [33] baseline uses human expert demonstrations and is
considered an upper bound for behavior cloning.

Data Models Put_block Play_jenga Open_jar Close_box Open_box Pickup_cup

VoxPoser [3] PerAct [34] 2.67±2.31 - - - - 4.00±4.00

CAP [5] PerAct [34] 6.67±2.31 - - - - 14.67±12.86

Scaling-up [4] PerAct [34] 22.67±15.14 - 5.33±6.11 - - 14.67±2.31

MA (Ours) PerAct [34] 85.33±10.07 81.33±2.31 21.33±10.07 42.67±8.33 30.67±11.55 54.00±12.49

RLBench [33] PerAct [34] 20.00±18.33 81.33±9.24 58.67±45.49 68.00±24.98 14.67±6.11 54.67±23.09

VoxPoser [3] RVT-2 [60] 73.33±2.31 - - - - 2.67±2.31

CAP [5] RVT-2 [60] 78.66±8.32 - - - - 77.33±19.73

Scaling-up [4] RVT-2 [60] 38.67±2.31 - 33.33±2.31 - - 92.00±4.00

MA (Ours) RVT-2 [60] 85.33±2.31 82.67±2.31 78.67±10.06 82.67±2.31 24.00±4.00 97.33±2.31

RLBench [33] RVT-2 [60] 86.67±2.31 85.33±2.31 81.33±6.11 76.00±4.00 4.00±4.00 97.33±2.31

Data Models Take_umbrella Sort_mustard Open_wine Lamp_on Put_knife Pick_&_lift

VoxPoser [3] PerAct [34] 4.00±4.00 0.00±0.00 1.33±2.31 5.33±4.62 1.33±2.31 5.67±1.64

CAP [5] PerAct [34] 13.33±10.06 - - 8.00±16.00 9.33±6.11 46.67±2.31

Scaling-up [4] PerAct [34] 4.00±4.00 0.00±0.00 81.33±12.86 76.00±4.00 5.33±2.31 53.33±10.06

MA (Ours) PerAct [34] 84.00±6.93 53.33±6.11 86.67±6.11 89.33±6.11 8.00±4.00 33.33±2.31

RLBench [33] PerAct [34] 58.67±50.80 53.33±34.02 86.67±12.86 84.00±13.86 30.67±10.07 62.67±9.24

VoxPoser [3] RVT-2 [60] 5.33±6.11 1.33±2.31 1.33±2.31 2.67±2.31 1.33±2.31 17.33±2.31

CAP [5] RVT-2 [60] 89.33±6.11 - - 85.33±8.32 52.00±10.58 82.66±20.53

Scaling-up [4] RVT-2 [60] 94.67±4.62 24.00±4.00 62.67±2.31 21.33±2.31 53.33±2.31 80.00±6.93

MA (Ours) RVT-2 [60] 94.67±2.31 73.33±2.31 93.33±6.11 84.00±10.58 69.33±12.85 82.67±12.22

RLBench [33] RVT-2 [60] 97.33±2.31 69.33±8.33 88.00±8.00 93.33±4.62 72.00±10.58 64.00±10.58

6.2.5 open jar

Filename: open_jar.py

Task: Uncap the green jar.

Success Metric: The green jar is out of its pre-defined capped location.

6.2.6 pickup cup

Filename: Filename: pickup_cup.py

Task: Pick up the red cup.

Success Metric: Lift up the red cup above the pre-defined location.

6.2.7 take umbrella

Filename: take_umbrella_out_of_stand.py

Task: Pick up the umbrella out of the umbrella stand.

Success Metric: Lift up the umbrella out of the umbrella stand.

6.2.8 sort mustard

Filename: sort_mustard.py

Task: Pick up the yellow mustard bottle, and place it into the red container.
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Figure 6: Evaluation of visual prompting. We systematic evaluate 5 different visual prompting
techniques, and found that selected viewpoint sequence yields the highest performance.

Success Metric: The yellow mustard bottle inside red container.

6.2.9 open wine

Filename: open_wine.py

Task: Uncap the wine bottle.

Success Metric: The wine bottle cap is out of its original position.

6.2.10 lamp on

Filename: lamp_on.py

Task: Turn on the lamp.

Success Metric: The lamp light up.

6.2.11 put knife

Filename: put_knife_on_chopping_board.py

Task: Pick up the knife and place it onto the chopping board.

Success Metric: Knife on chopping board.

6.2.12 push block

Filename: push_block_to_target.py

Task: Push the red block down towards the green target.

Success Metric: The red block fails within the green target.

6.2.13 insert block

Filename: insert_block.py

Task: Push the green block into the jenga tower.

Success Metric: The green block inserted in.

6.2.14 pick & lift

Filename: pick_and_lift.py

Task: Pick up the red cube.

Success Metric: The red cube is lifted up.
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Figure 7: Results for visual prompting techniques (Left).We reported the various results for
different visual prompting technique decision, and reported that selected viewpoint sequence yield
the best performance.Simulation scene setup (Right). We leverage 4 different camera for evaluation.

Figure 8: Real-world experiment setup (Left). We set up the real-world using this configuration.
Robustness and generalization evaluation. We evaluated MANIPULATE-ANYTHING against
VoxPoser for capability in generalizing to different language instructions and also object-specific
manipulation.

6.3 Real-world experiments

6.3.1 Robot hardware setup

The real-robot experiments use a Franka Panda manipulator with a parallel gripper. For perception,
we use a Kinect-2 RGB-D camera mounted on a tripod, at an angle, pointing towards the tabletop.
Kinect-2 provides RGB-D images of resolution 512 × 424 at 30Hz. The extrinsic between the camera
and robot base-frame are calibrated with the easy hand-eye package. We use an ARUCO AR marker
mounted on the gripper to aid the calibration process, as shown in Figure 8.

6.3.2 Additional real-world everyday manipulation tasks

Beyond the five real-world experiments used for systematically evaluating MANIPULATE-ANYTHING,
we also have additional real-world demonstrations generated in a zero-shot manner via MANIPULATE-
ANYTHING. These demonstrations cover a range of tasks, from reasoning tasks to more precise
everyday tasks. All of the tasks can be seen in Fig. 10. We also demonstrates that MANIPULATE-
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Figure 9: More real-world experiments.

Figure 10: In-depth Examination of VLMs for Manipulate-Anything. The system consists of five
components that utilize VLM API calls. We have provided a detailed breakdown of the inputs and
outputs for each of these VLMs for reference.

ANYTHING can generate trajectories compares to hand-crafted trajectories by humans as depicted in
Fig 11.

6.3.3 Baseline implementation details

For most of the baselines we followed the original implementation with minor modifications. For
the Code as Policies baseline we re-implemented most of the environment code using PyRep
instead of PyBullet. This includes the implementation of various motion primitives that form the
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Figure 11: Action Distribution for Generated Data: We compare the action distribution of data
generated by various methods against human-generated demonstrations via RLBench on the same
set of tasks. We observed a high similarity between the distribution of our generated data and the
human-generated data. This is further supported by the computed CD between our methods and the
RLBench data, which yields the lowest (CD=0.056).

exposed API to the language model program. For example, one of such primitives is shown in the
following Figure 12.

6.4 Error Breakdown

We examine the potential errors introduced by each respective VLM and explore ways to further
improve the overall system. We conducted simulation experiments where tasks could be easily reset,
focusing on two major components where VLMs make decisions: "Perception error" and "Reasoning
error." "Perception error" refers to mistakes made by the VLM in detecting target objects and selecting
optimal viewpoints for generating task-specific grasp pose, primarily related to the selection of the
Multi-viewpoint VLM. "Reasoning error" involves the Sub-task Verification Module, where the
VLM is responsible for deciding if sub-tasks have been successfully completed. Due to resource
constraints, we conducted experiments on the play_jenga task. We systematically replaced the
VLMs in each component with a human, allowing the human to make decisions. By comparing the
system’s performance with human decision-making to that with VLMs, we were able to quantify the
errors caused by the VLMs.

6.5 Additional Ablation Studies

Figure 13: Error breakdown. Error
breakdown for three tasks from simula-
tion.

We conducted two main set of ablation studies, we first
look at how different visual prompting works for sub-goal
verification, and then we further evaluated MANIPULATE-
ANYTHINGś robustness and generalization to language
instructions in another set of experiments.

For evaluating different visual prompts for sub-goal verifi-
cation on the put_block task, we employed the following
methods: 1) Set-of-Mark [62] on a single view, 2) Set-of-
Mark with bounding box annotation, 3) Concatenated all
viewpoints, 4) Front view only, and 5) Selected viewpoint
sequence as shown in Fig. 6. We observed that the selected
viewpoint sequences were the most effective in achieving
correct sub-goal verification, obtaining the highest success
rate as shown in Fig. 7.

We further evaluated the generalization capabilities of our
model in terms of object-specific manipulation and robustness to changes in language instructions.
For language instruction variations, we altered the instructions for the same scene and found that
MANIPULATE-ANYTHING outperforms VoxPoser by 60% over 25 episodes. For object-specific vari-
ations, where instructions targeted specific parts of objects, MANIPULATE-ANYTHING outperformed
VoxPoser by 16%, as shown in Fig. 8.
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6.6 Prompts

Prompts used for multi-viewpoint VLM selection, task plan generation, action generation and
sub-task verification can be found below.

• Multi-viewpoint VLM (Verification): Takes in 4 images concatenated into a single frame
with number annotated on top and returns a selection number of the most optimal viewpoint
for verfying the sub-task.
Simulation: multi-viewpoint-VLM-selection.txt

• Multi-viewpoint VLM (Object centric action): Takes in 4 images concatenated into a
single frame with number annotated on top and returns a selection number of the most
optimal viewpoint for filter the grasp candidate poses. Simulation: Multi-viewpoint VLM-
verification-object-centric.txt

• Task plan generation: Takes in a natural language instruction, and outputs a task plan in
json file with the correct format.
Simulation: task-plan-generation-prompt.txt

• Sub-task verification: Takes in the selected viewpoint rollout along with the verification
condition, and outputs binary ’yes’ or ’no’.
Simulation: sub-task-verification-prompt.txt

• Action-Generation: Takes the action primitive and generates codes for executing the action
in simulation.
Simulation: action-generation.txt

6.7 Best Task Plans and Action Primitives

We ran MANIPULATE-ANYTHING with multi-processing during simulation to obtain the best set of
task plans and action primitives for any given task. This set of information is then used to generate
more data at scale for distilling a policy. We have compiled all the task plan JSON files and action
primitive code that achieved the highest success rates in these tasks.
Best Task Plans: best-task-plans.txt
Skills Library: skills-library.txt
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Figure 12: Example of one of the primitives implemented for Code as Policies
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