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Abstract

We study collaborative learning systems in which the participants are competitors1

who will defect from the system if they lose revenue by collaborating. As such, we2

frame the system as a duopoly of competitive firms who are each training machine3

learning models and selling their predictions to a market of consumers. We first4

examine a fully collaborative scheme in which both firms share their models with5

each other and show that this leads to a market collapse with the revenues of both6

firms going to zero. We next show that one-sided collaboration in which only7

the firm with the lower-quality model shares improves the revenue of both firms.8

Finally, we propose a more equitable, defection-free scheme in which both firms9

share with each other while losing no revenue. We show that for a large range of10

starting conditions, our algorithm converges to the Nash bargaining solution, and11

we empirically verify our theory on computer vision datasets.12

1 Introduction13

When the guarantees of a collaborative learning system are misaligned with the objectives of the14

learners, it can disincentivize participation and cause the participants to defect. Recent work [4, 2, 21]15

examines the incentives that clients have to participate in or defect from a collaborative learning16

system. Such misalignment of incentives can arise in a number of ways. For example, [8] show17

that some clients might free-ride, burdening other participants in the network with all the training18

work while contributing nothing. [12, 10, 20, 5, 11, 16] show that if there is heterogeneity across19

clients’ data distributions the global model returned by standard collaborative learning protocols20

might perform poorly for individual clients. To address the misalignment problem, [6] propose an21

algorithm whose model updates guarantee that client losses degrade sufficiently from step to step22

to ensure that no client defects (albeit at some cost to the accuracy of the final global model). In23

this paper, we take an economics-based view of the problem, framing client utility/revenue as the24

determining factor in defection. We frame clients as competitive firms who are selling their models’25

predictions to consumers and competing for market share. As in the standard collaborative learning26

protocol, the firms collaboratively train a global model, but if at any point in the process their revenue27

decreases, they defect from participation.28

Motivating Example. Consider two autonomous vehicle companies training self-driving models,29

each with initial access only to their own training data. Further, suppose their individual training30

data does not fully reflect the distribution on which the models must perform well at test time. For31

example, one company might have a lot of urban data and very little rural data and the other company32

the opposite. Clearly, if these companies combined their models, they could offer safer and better33

cars to consumers. However, by collaborating they might also lose their competitive advantage in the34

market, disincentivizing them from participating. Our objective is to design a collaboration scheme35

such that neither firm loses revenue, thus incentivizing participation.36
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Our Contributions. We frame the collaborative learning system as a duopoly of competitive firms37

whose conditions for joining the system are to improve (or at least not lose) revenue, and we show38

that collaboration is possible under such conditions.39

1. We first show surprising outcomes of two possible collaboration schemes. When both firms40

contribute fully to the collaboration scheme, their model qualities improve maximally but41

their revenues go to zero. When only the low-quality firm contributes to the collaboration42

scheme, both firms’ model qualities and revenues improve.43

2. We next design a defection-free algorithm which allows both firms to contribute to the44

collaborative system without losing revenue at any step.45

3. We show that, except in trivial cases, our algorithm converges to the Nash bargaining solution.46

This is a significant result because we show that even when both firms myopically focus on47

improving their own revenues, a solution is reached that maximizes the joint surplus of the48

firms.49

1.1 Related Work50

Collaborative learning allows multiple clients to collaboratively train a global model without trans-51

mitting raw data [13]. In this paper, we characterize the participants in a collaborative learning52

system as market competitors who will defect from collaboration if they lose revenue by participating.53

Competitive behavior of firms in markets is a well-established field of study in economics (see [18]54

for an overview). Particularly relevant to our work is competition in oligopolies [3]. As in [7], we55

structure our problem as a duopoly of competitive firms. One difference is that they incentivize56

collaboration with revenue sharing between the firms rather than a guarantee of no-revenue-loss as we57

do in this paper. Also relevant, [19] parameterize the data sharing problem in terms of competition-58

type (Bertrand [1] or Cournot [3]) between firms, the number of data points each firm has, and the59

difficulty of the learning task, and give conditions on these parameters under which collaboration is60

profitable. As we do, they analyze various data sharing schemes, such as full vs partial collaboration,61

and propose Nash bargaining [14] as a strategy for partial collaboration. However, we additionally62

propose a federated optimization algorithm for reaching the Nash bargaining solution, guaranteeing63

no defections.64

2 Collaborative Learning in an Oligopoly65

For the rest of the paper, we frame the collaborative learning system as a duopoly (i.e. two firms), but66

all results can be extended to an oligopoly of more than two firms.67

Our setup is the following. Each firm possesses a model whose qualities are initially differentiated68

by classification accuracy on a target dataset. That is, one firm’s model has low accuracy and the69

other firm’s model has high accuracy on the target dataset. The consumers care about performance on70

the target distribution, which is different from the firms’ training distributions. For example, in the71

autonomous vehicle example above, the target distribution would represent a variety of geographical72

locations, traffic instances, times of day/night, etc. while the training distributions would not.73

Additionally we assume that the firms’ training distributions are complementary, so the union of their74

training data is distributed as the target distribution, motivating the benefit of collaboration. Finally,75

we assume that, prior to collaboration, one firm has better initial model quality than the other (e.g.76

they have more training resources).77

A consumer has one of three options: 1) pay a higher price for the high-quality firm’s model, 2) pay a78

lower price for the low-quality firm’s model, or 3) buy neither model. We assume that all consumers79

would prefer the higher-quality model if the prices of both models were the same – that is, the firms’80

models are vertically differentiated. Consumers would be happiest if both firms collaborated fully81

since this would give them two maximally good models to choose from, but the initially high-quality82

firm would have sacrificed revenue in this scenario (we show this formally in Section 3), causing it to83

defect. Based on this, our motivating question is: can we incentivize firms to join the collaboration84

scheme, thus benefiting consumers, while giving them no reason to defect due to revenue loss at any85

stage of the training process? We answer this question affirmatively.86

In the following section, we formally describe the duopoly model.87
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2.1 Duopoly Model88

2.1.1 Notation and Assumptions89

1. A consumer’s type corresponds to how much they value quality of prediction. We assume90

that consumer-types are uniformly distributed on Θ = [0, 1], where consumer-type θ = 091

places no value on quality and consumer-type θ = 1 places maximal value on quality.92

2. We denote the low-quality firm’s loss on its training dataset with model parameters x ∈ X93

as f(x; l) ∈ [0, 1] and the high-quality firm’s loss on its training dataset as f(x;h) ∈ [0, 1].94

In the collaborative learning process, both firms want to solve the optimization problem95

x∗ = argmin
x∈X

f(x), where f(x)
def
=

f(x; l) + f(x;h)

2
. (1)

That is, each firm wants to find the model which has minimal average loss across both firms’96

training datasets. When the objective (1) is evaluated at the firms’ models xl and xh, we use97

the shorthand notation98

fl
def
=

f(xl; l) + f(xl;h)

2
, fh

def
=

f(xh; l) + f(xh;h)

2
.

Finally, we define model qualities q(x) def
= 1− f(x), ql

def
= 1− fl and qh

def
= 1− fh.99

3. Consumers pay prices pl/h ∈ [0,∞) for the low/high-quality firm’s model xl/h, where100

pl ≤ ph.101

2.1.2 Equilibrium Quantities102

The following definition gives the consumer’s utility.103

Definition 1. [Consumer Utility] A type-θ consumer has utility104

Uc(θ) =


θqh − ph if buys high-quality firm’s model
θql − pl if buys low-quality firm’s model
0 if buys neither model.

(2)

The consumer utilities in Definition 1 induce the following demands for the firms.105

Lemma 1 (Consumer Demands). Given the utilities in Definition 1,106

1. consumer demand for the low-quality firm is Dl =
ph−pl

qh−ql
− pl

ql
, and107

2. consumer demand for the high-quality firm is Dh = 1− ph−pl

qh−ql
.108

Proof. See Appendix A.1.109

Using the consumer demands in Lemma 1, we can define the utilities of the firms.110

Definition 2. [Firm Utility/Revenue] The low/high firm’s utility/revenue from selling its model is111

Ul/h(ql, qh, pl, ph) = pl/hDl/h. (3)

At equilibrium, the firms will set prices pl and ph that maximize (3), yielding price-optimal utilities.112

Lemma 2 (Equilibrium Prices and Utilities). The optimal prices for the low and high firms are113

p∗l =
ql(qh − ql)

4qh − ql
, p∗h =

2qh(qh − ql)

4qh − ql
,

yielding price-optimal utilities114

Ul(ql, qh, p
∗
l , p

∗
h) =

qlqh(qh − ql)

(4qh − ql)2
, Uh(ql, qh, p

∗
l , p

∗
h) =

4q2h(qh − ql)

(4qh − ql)2
. (4)

Proof. See Appendix A.1.115
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Going forward, we will use the shorthand Ul/h
def
= Ul/h(ql, qh, p

∗
l , p

∗
h).116

Remark 1. Since the firms make their pricing decisions simultaneously and compete based on prices,117

this is the Bertrand model of competition [1]. This is distinct from other forms of oligopolistic118

competition, such as Cournot competition [3] in which firms compete based on quantity (i.e. the119

firms independently and simultaneously decide quantities to produce which then determine market120

price), or Stackelberg competition [17] in which the firms non-independently and sequentially decide121

quantities to produce.122

The following proposition states how the firms’ utilities vary with quality and is key in our analysis123

going forward.124

Proposition 1 (Relationship between utilities and qualities). For ql ≤ qh,125

1. Uh is increasing in qh,126

2. Uh is decreasing in qh,127

3. Ul is increasing in qh, and128

4. Ul is increasing in ql for ql ≤ 4
7qh and decreasing in ql otherwise.129

Proof. See Appendix A.1130

In the next section, we examine various collaboration schemes between the firms and observe the131

impact on their revenues and model qualities.132

3 Collaboration Schemes133

To motivate our method, we describe two potential collaboration schemes between competitors that134

have sub-optimal and non-intuitive outcomes.135

Sharing Protocol. As in standard federated learning protocols, we do not assume that the firms136

transmit their raw data to each other. Instead, firm A shares with firm B by evaluating the loss of firm137

B’s model on firm A’s training data. Then firm A shares with firm B the loss, or the gradient of the138

loss, which allows firm B to optimize the objective (1). These exchanges can happen either directly139

between the firms are through a trusted central coordinator.140

3.1 Notation and Assumptions141

1. f(x; l/h) is convex and L-smooth in x.142

2. We use ql/h,t and fl/h,t to refer to the firms’ objectives when the model parameters are xl/h,t,143

i.e. the model parameters at round t of optimization.144

3. We define ρt =
ql,t
qh,t

, the ratio of the firms’ model qualities at round t of optimization.145

4. We assume model qualities can only improve or stay the same, not degrade.146

3.2 Complete Collaboration147

In this arrangement, both firms fully collaborate, sharing their models with each other and therefore148

obtaining identical-quality models. (Note that this algorithm is just FedAvg [13].) While this149

collaboration scheme is optimal for the consumer, giving them the choice of two maximally high-150

quality models, it drives both firms’ utilities to zero. With identical-quality models, each firm will151

continually undercut the other’s price by small amounts to capture the entire market share, eventually152

reaching equilibrium prices pl = ph = 0.153

Lemma 3 (Firm Revenues under Complete Collaboration). Under Complete Collaboration, the154

firms’ equilibrium utilities are Ul = Uh = 0.155

Figure 1 shows that when both firms’ qualities increase freely in a Complete Collaboration scheme,156

their qualities both improve maximally, benefiting the consumer, but their utilities are driven to zero.157

Therefore, both firms have cause to defect from this collaboration scheme.158
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Figure 1: Performance of Complete Collaboration scheme on MNIST. When both firms share with
each other, their models converge to the same qualities, driving their revenues to zero.

3.3 One-sided Collaboration159

In One-sided Collaboration, one firm shares its model while the other doesn’t. There are two160

possibilities.161

Only high-quality firm shares. From Proposition 1, the high-quality firm’s revenue increases in162

qh but decreases in ql. Therefore, if the quality of xh does not increase sufficiently to compensate163

for the increase in quality of xl, the high-quality firm will lose revenue, causing it to defect. (In164

the proof of Proposition 3, we give this increase-threshold precisely.) In our problem setup, the165

individual firms’ training distributions are different than target distribution on which the qualities of166

their models are evaluated. Therefore, if the low-quality firm benefits from the high-quality firm’s167

model, its performance on the target distribution will outpace the high-quality firm, which is limited168

to training on its own data. Figure 2a gives an example of this outcome. Due to collaboration, the169

low-quality firm’s model out-performs the high-quality firm’s model, causing the high-quality firm’s170

revenue to decrease.171

Only low-quality firm shares. From Proposition 1, both firms’ utilities increase in qh. Therefore,172

both firms will increase their revenue if the low-quality firm shares its model with the high-quality173

firm. Figure 2b depicts the outcome of this collaboration scheme. Over time, both firms’ revenues174

increase. While this arrangement is defection-free, the low-quality firm is stuck with its own training175

data, causing it to potentially have lower revenue that it would under a more equitable scheme. To176

address this, we next propose a defection-free scheme in which both firms participate in collaboration177

without losing revenue.178

4 Defection-Free Collaborative Learning179

In this section, we introduce our method, Defection-Free Collaborative Learning. Our objectives in180

designing this algorithm are that181

1. for all starting values (ql,0, qh,0), neither firm’s revenue decreases at any round, and182

2. the algorithm converges to the Nash bargaining solution, which we denote (q∗l , q
∗
h). (See183

Section 4.1.)184

The first objective ensures that the algorithm is defection-free. The second seeks a point of conver-185

gence that maximizes the joint surplus of the firms. In Section 4.2, we show that Algorithm 1 achieves186

1) entirely and achieves 2) for a large range of starting conditions. Before describing our algorithm,187

we first motivate the Nash bargaining solution as a suitable convergence goal for our problem setting.188

4.1 Nash Bargaining189

In cooperative bargaining, agents determine how to share a surplus amongst themselves. If negotia-190

tions fail, each agent is guaranteed some fixed surplus, known as the disagreement point. A typical191

application of bargaining involves deciding how to split a firm’s profits amongst its employees. The192

bargaining framework is suitable for our purposes because the firms must agree how to share a193
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(a) Only high-quality firm shares.
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(b) Only low-quality firm shares.

Figure 2: Performance of One-sided Collaboration schemes on MNIST. When only the high-quality
firm shares, the high-quality firm’s revenue becomes negative. When only the low-quality firm
shares, both firms have positive, but less, revenue than with our collaboration scheme (Figure 3).

“surplus of quality” (i.e. set model qualities relative to each other) so that neither firm’s revenue194

decreases at any one round.195

An important framework in cooperative bargaining is Nash bargaining [14], a two-person bargaining196

scheme, which solves for197

(q∗l , q
∗
h) = argmax

(ql,qh)

N(ql, qh, ql,0, qh,0)

s.t. Ul(ql, qh) ≥ Ul(ql,0, qh,0)

Uh(ql, qh) ≥ Uh(ql,0, qh,0),

where198

N(ql, qh, ql,0, qh,0)
def
= (Ul(ql, qh)− Ul(ql,0, qh,0))(Uh(ql, qh)− Uh(ql,0, qh,0)),

and (ql,0, qh,0) are the initial model qualities of the firms. The Nash bargaining solution, (q∗l , q
∗
h),199

maximizes the product of the improvement in the firms’ utilities. Therefore, unlike one-sided200

collaboration, the Nash objective rewards improvement in the low-quality firm’s utility as well as201

the high-quality firm’s utility. In Nash bargaining, the disagreement point (ql,0, qh,0) determines the202

surplus for the parties if negotiations fall apart. In our setting, if either firm defects from collaboration,203

both firms retain their current model qualities. Going forward, we use N(ql, qh) as shorthand for204

N(ql, qh, ql,0, qh,0). The Nash bargaining solution (q∗l , q
∗
h) has four important properties: 1) it is205

invariant to affine transformation of the utility functions, 2) it is pareto efficient, 3) it is symmetric,206

and 4) it is independent of irrelevant alternatives. In fact, the point (ql, qh) with these four properties207

is uniquely the Nash bargaining solution.208

The next proposition shows that q∗h is equivalent to the high-quality firm’s maximal quality.209

Proposition 2 (Equivalence between maximal quality and the Nash bargaining solution).
q∗h = max

x∈X
q(x).

Proof. From Proposition 1, ∂Uh

∂qh
and ∂Ul

∂qh
are both non-negative for all ql ≤ qh, and consequently210

∂N(ql,qh)
∂qh

≥ 0 for all ql ≤ qh. This means that for any ql, the N(ql, qh) can always be improved by211

increasing qh. Therefore, q∗h is necessarily maxx∈X q(x).212
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Algorithm 1 Defection-Free Collaborative Learning
Input: Low-quality model: xl,0. High-quality model: xh,0.
Note: We assume both firms are trusted parties and will honestly exchange information. For example,
to perform the necessary computations, the high-quality firm requires xl and ∇f(xh; l) from the
low-quality firm, and the low-quality firm requires xh, ∇f(xl;h), f(xh;h), and f(xl;h) from the
high-quality firm.

1: for t ∈ [T ] do
2: High-quality Model Update
3: Set αh,t ≤ 1

L .
4: Update: xh,t = xh,t−1 − αh,t∇xh,t−1

fh,t−1.
5: Low-quality Model Update
6: xl,t = xl,t−1.
7: if ql,t < q∗l and ql,t

qh,t
≤ ρ∗ =

q∗l
q∗h

then

8: Compute: q̂l,t = B

(
ρt−1,

qh,t

qh,t−1

)
qh,t, where

B(a, b)
def
= 4− (4− a)2

2(1− a)

(
b−

√
b2 − 12(1− a)

(4− a)2
b

)
.

9: while ql,t ≤ q̂l,t do
10: Set: αl,t.
11: Update: xl,t ← xl,t − αl,t∇xl,t

fl,t

12: Output: xl,T , xh,T

Section 3.3 shows there’s a defection-free scheme in which the low-quality firm shares but the213

high-quality firm doesn’t. In Algorithm 1, we give a way for both firms to contribute to collaboration214

with neither firm losing revenue at any step. Due to the more equitable design of this collaboration215

scheme, its dynamics mirror those of Nash bargaining which maximizes the joint surplus of the216

participants.217

The difficulty of designing Algorithm 1 is that, in order to reach (q∗l , q
∗
h) without decreasing revenues218

at any step, neither firm can improve its quality too much in a given step. Given an increase in the219

high-quality firm’s quality qh,t−1 → qh,t, the low-quality firm can only improve by some limited220

amount without decreasing the high-firm’s revenue (since Uh is decreasing in ql by Prop. 1). Because221

of this capped permissible improvement for the low-quality firm, if the high-quality firm converges to222

q∗h too quickly, the low-quality firm will never reach q∗l .223

We describe the key steps of Algorithm 1. We also assume that, prior to the algorithm, both firms224

have saturated training on their own datasets and will only update their models collaboratively going225

forward. Since Ul and Uh both increase in qh, the low-quality firm should always share with the226

high-quality firm. Step 4 ensures this, where the high-quality firm has access to the low-quality firm’s227

loss on its model xh,t−1 when updating. As we show in Section 4.2, in order to converge to the228

Nash bargaining solution, the low-quality firm should not update if ql,t ≥ q∗l or ρt−1 > ρ∗. Step229

7 ensures this. Since Uh decreases in ql, the low-quality firm cannot improve its model beyond a230

certain threshold before the high-quality firm loses revenue. This threshold q̂l,t is computed in Step231

8, and in Steps 9-11, the high-quality firm will only collaborate if the collaborative updates to the232

low-quality firm’s model do not improve its quality beyond q̂l,t.233

In the next section we prove the two key properties of Defection-Free Collaborative Learning: 1) it234

guarantees the firms non-decreasing revenue at every step, and 2) it converges to the Nash bargaining235

solution for all but trivial starting conditions.236

4.2 Theory and Analysis237

The following proposition shows that Algorithm 1 is defection-free.238

Proposition 3 (Non-decreasing revenues). There exist learning rate schedules {αl,t}t and {αh,t}t239

such that at no step of Algorithm 1 does either firm’s revenue decrease.240
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Proof. See Appendix A.2.241

We next examine starting conditions for which Algorithm 1 converges to the Nash bargaining solution.242

Proposition 4 gives a trivial starting condition for which it does not converge.243

Proposition 4 (Impossibility of convergence to the Nash bargaining solution). If ql,0 > q∗l , then244

Algorithm 1 cannot converge to (q∗l , q
∗
h).245

Proof. Since firms do not degrade their model quality, the low-quality firm cannot converge to q∗l .246

In the next proposition, we show that for all other starting conditions, Algorithm 1 converges to247

(q∗l , q
∗
h). Our key insight in the proof of this proposition is that if the high-quality firm converges too248

quickly to q∗h, the low-quality firm will not be able to make sufficient progress towards q∗l without249

violating the no-revenue-loss condition. Therefore, we must design a learning rate schedule for the250

high-quality firm {αh,t}t such that convergence to q∗h is properly paced.251

Proposition 5 (Convergence to the Nash bargaining solution). If ql,0 ≤ q∗l , then there exist learning252

rate schedules {αl,t}Tt=1 and {αh,t}Tt=1 such that after T rounds Algorithm 1 converges to (q∗l , q
∗
h).253

Proof. See Appendix A.2.254

Proposition 5 shows that even when both firms myopically attend to improving their own revenues,255

Algorithm 1 converges to the Nash bargaining solution which maximizes joint surplus. The following256

theorem gives the rate of convergence to the Nash bargaining solution for convex and L-smooth257

losses.258

Theorem 1 (Convergence Rate of Defection-Free Collaborative Learning). Suppose ql,0 ≤ q∗l . Then259

running Algorithm 1 for T rounds ensures260

N(q∗l , q
∗
h)−N(ql,T , qh,T ) ≲

∥xh,0 − x∗
h∥2∑T

t=1 αh,t

+ |ρ∗ − ρT |. (5)

Proof. See Appendix A.2.261

The first term in the bound (5) shows that the convergence rate to the Nash bargaining solution is262

determined by the rate at which qh converges to q∗h.263

The following corollary shows the rate at which the |ρ∗ − ρT | term in Theorem 1 vanishes with T .264

Corollary 1. Suppose ql,0 ≤ q∗l . Running Algorithm 1 for T ≳ L∥xh,0−x∗
h∥

2

ϵ rounds ensures that265

N(q∗l , q
∗
h)−N(ql,T , qh,T ) ≲

∥xh,0 − x∗
h∥2∑T

t=1 αh,t

+ (4− 5ρ∗) log

(
q∗h

q∗h − ϵ

)
.

Proof. See Appendix A.2.266

5 Experiments267

All algorithms in our experiments are implemented with PyTorch [15]. Our general experimental268

setup is the following. We construct three datasets: the low-quality firm’s training set Dl,train, the269

high-quality firm’s training set Dh,train, and a common test set for both firms Dtarget. The datasets270

are constructed such that Dl,train ̸∼ Dtarget and Dh,train ̸∼ Dtarget, but Dl,train ∪ Dh,train ∼ Dtarget, i.e.271

neither firm’s training distribution alone matches the target distribution, but their combined training272

datasets are distributed as the target distribution, incentivizing them to share. We use cross-entropy273

loss, PyTorch’s built-in SGD optimizer, and local compute for all experiments.274

MNIST We use a LeNet-5 model [9], set |Dl,train| = |Dh,train| = 1000, and use the MNIST test set275

as Dtarget. We construct Dl,train so that F̂ (5) = 0.8 and Dh,train so that F̂ (5) = 0.2, where F̂ is the276

empirical CDF over the label space. We train the high-quality firm’s model for 10 initial epochs, and277

for all models and experiments set the learning rate to 0.01.278
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Figure 3: Performance of Defection-Free FL on MNIST. Both firms’ qualities increase (figure 1),
their revenues increase and approach a higher level than under One-sided Collaboration (figure 2),
and the firms’ qualities approach the Nash bargaining solution (figure 4).

Defection-Free Collaborative Learning (Fig. 3). Since the low-quality firm shares with the279

high-quality firm, the high-quality firm improves maximally. The high-quality firm only shares with280

the low-quality firm to the extent that neither firm’s revenue decreases. Under this sharing scheme,281

we see in the first figure that both firms’ qualities increase, and the ratio of their qualities converges282

to the optimal ratio. The second figure shows that revenues increase (do not decrease), and notably283

their revenues reach a higher level than under One-sided Collaboration (Section 3.3). Finally, the last284

figure shows that the Nash bargaining objective approaches its maximal value, showing convergence285

to the Nash bargaining solution.286

6 Conclusion287

Contributions. We introduce a defection-free collaborative learning scheme in which participants288

iteratively optimize their models by sharing training resources, without losing utility at any round and289

having cause to defect from participation. Framing the collaborative learning system as a duopoly290

of competitive firms, we show that both firms can improve their model qualities by sharing data291

with each other without losing revenue at any round. We describe other collaboration schemes for292

which this is not possible. Notably, even when both firms myopically focus on improving their own293

revenues, we show that our algorithm converges to the Nash bargaining solution, thus optimizing for294

joint surplus.295

Limitations/Future Work. Future work involves more precise convergence rate analysis (e.g. for296

a broader class of loss functions besides convex, and a more detailed rate in Theorem 1). We only297

study a duopoly model, but examining an oligopoly of multiple firms may present different dynamics.298

Finally, a broader conversation about societal impact on consumers is open for future work.299
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A Proofs346

A.1 Proofs for Section 2.1347

Proof of Lemma 1. Let θ̂l be the type of the consumer who is indifferent between buying from the348

low-quality firm and not buying at all. Then, based on the consumer’s utility function (19),349

θ̂lql − pl = 0. (6)

Let θ̂h be the type of the consumer who is indifferent between buying from the high-quality firm and350

low-quality firm. Then, from (19),351

θ̂hql − pl = θ̂hqh − ph. (7)

Therefore any consumer with type θ ∈ [θ̂l, θ̂h) will buy from the low-quality firm and any consumer352

with type θ ∈ [θ̂h, 1] will buy from the high-quality firm, giving demands Dl = θ̂h − θ̂l and353

Dh = 1− θ̂h. Solving (6) and (7) for θ̂l and θ̂h completes the proof.354
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Proof of Lemma 7. From Lemma 1, the demand for the low-quality firm is Dl =
ph−pl

qh−ql
− pl

ql
, yielding355

low-quality firm utility356

Ul = pl

(
ph − pl
qh − ql

− pl
ql

)
. (8)

To maximize its utility, the low-quality firm sets price357

p∗l = argmax
pl

∂Ul

∂pl

= argmax
pl

(
ph − 2pl
qh − ql

− 2pl
ql

)
=

qlph
2qh

. (9)

Similarly, demand for the high-quality firm is Dh = 1− ph−pl

qh−ql
, yielding high-quality firm utility358

Uh = ph

(
1− ph − pl

qh − ql

)
. (10)

To maximize its utility, the high-quality firm sets price359

p∗h = argmax
ph

∂Uh

∂ph

= argmax
ph

(
1− 2ph − pl

qh − ql

)
=

pl + (qh − ql)

2
. (11)

Resolving (9) and (11) yields360

p∗l =
ql(qh − ql)

4qh − ql
(12)

and361

p∗h =
2qh(qh − ql)

4qh − ql
. (13)

Finally, evaluating (8) and (10) at the optimal prices (12) and (13) yields the price-optimal utilities362

(20).363

Proof of Proposition 1. The proposition follows from observing the partial derivatives of the firms’364

utility functions. For ql ≤ qh,365

∂Uh

∂qh
=

4qh(4q
2
h − 3qhql + 2q2l )

(4qh − ql)3
≥ 0,

366

∂Ul

∂qh
=

q2l (2qh + ql)

(4qh − ql)3
≥ 0,

367

∂Ul

∂ql
=

q2h(4qh − 7ql)

(4qh − ql)3

{
≥ 0 if ql ≤ 4

7qh
< 0 if ql > 4

7qh

and368

∂Uh

∂ql
= −4q2h(2qh + ql)

(4qh − ql)3
≤ 0.

Figure 4 provides a graphical representation of this proposition.369
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Figure 4: This figure shows how the firms’ utilities vary with model quality. Ul and Uh are both
increasing in qh, Uh is decreasing in ql, and Ul is increasing in ql for ql ≤ 4qh

7 and decreasing in ql
otherwise.

A.2 Proofs for Section 4.2370

Proof of Proposition 3. Suppose that at round t, given current qualities ql,t−1 and qh,t−1, the high-371

quality firm improves to qh,t. Then, in order for neither firm to lose revenue, ql,t must be such372

that373

4q2h,t(qh,t − ql,t)

(4qh,t − ql,t)2
≥

4q2h,t−1(qh,t−1 − ql,t−1)

(4qh,t−1 − ql,t−1)2
(14)

and374

ql,tqh,t(qh,t − ql,t)

(4qh,t − ql,t)2
≥ ql,t−1qh,t−1(qh,t−1 − ql,t−1)

(4qh,t−1 − ql,t−1)2
. (15)

Rearranging terms, (14) can be written as an inequality involving a convex quadratic of ql,t:375

[4q2h,t−1(qh,t−1 − ql,t−1)]q
2
l,t

+ [4(4qh,t−1 − ql,t−1)
2q2h,t − 32q2h,t−1(qh,t−1 − ql,t−1)qh,t]ql,t

+ [64q2h,t−1(qh,t−1 − ql,t−1)q
2
h,t − 4(4qh,t−1 − ql,t−1)

2q3h,t] < 0.

The right-most root of this quadratic is376

qhl,t = 4qh,t −
(4− ρt−1)

2

2(1− ρt−1)

(
q2h,t

qh,t−1
−

√
q4h,t

q2h,t−1

− 12(1− ρt−1)

(4− ρt−1)2
q3h,t

qh,t−1

)
.

Similarly, (15) can be written as an inequality involving a convex quadratic of ql,t:377

[ql,t−1qh,t−1(qh,t−1 − ql,t−1) + (4qh,t−1 − ql,t−1)
2qh,t]q

2
l,t

+ [−8ql,t−1qh,t−1(qh,t−1 − ql,t−1)qh,t − (4qh,t−1 − ql,t−1)
2q2h,t]ql,t

+ [16ql,t−1qh,t−1(qh,t−1 − ql,t−1)q
2
h,t] < 0.

The right-most root of this quadratic is378

qll,t =
8(1− ρt−1)ρt−1qh,t−1 + (4− ρt−1)

2qh,t + (4− ρt−1)
√

(4− ρt−1)2q2h,t − 48ρt−1(1− ρt−1)qh,t−1qh,t

2((1− ρt−1)ρt−1qh,t−1 + (4− ρt−1)2qh,t)
.
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Figure 5: B(a, b) ≥ a for all b ≥ 1.

It can be verified with graphing software that for all feasible parameters, qhl,t ≤ qll,t. Therefore, the379

low-quality firm can improve its quality to at most380

q̂l,t = 4qh,t −
(4− ρt−1)

2

2(1− ρt−1)

(
q2h,t

qh,t−1
−

√
q4h,t

q2h,t−1

− 12(1− ρt−1)

(4− ρt−1)2
q3h,t

qh,t−1

)
,

before at least one of the firms loses revenue. Algorithm 1 ensures that ql,t does not exceed q̂l,t.381

It remains to prove that there exist learning rate sequences {αl,t}t and {αh,t}t that respect the382

constraint ql,t ≤ q̂l,t. Since improvement in qh increases the revenues of both firms (Prop. 1), the383

high-quality firm can set any learning rate schedule {αh,t}t without violating the no-revenue-loss384

constraints (14) and 15. For the low-quality firm’s learning rate schedule, note that fl(x), as the385

average of convex functions f(x; l) and f(x;h), is also convex. Therefore,386

fl,t ≥ fl,t−1 +∇xl,t−1
fT
l,t−1(xl,t − xl,t−1)

= fl,t−1 − αl,t∥∇xl,t−1
fl,t−1∥2.

Rearranging terms,387

αl,t ≥
fl,t−1 − fl,t
∥∇xl,t−1

fl,t−1∥2

=
ql,t − ql,t−1

∥∇xl,t−1
fl,t−1∥2

.

Therefore, setting αl,t = min

{
q̂l,t−ql,t−1

∥∇xl,t−1
fl,t−1∥2 , 1

}
ensures that the low-quality firm’s updated388

quality ql,t does not exceed q̂l,t.389

Proof of Proposition 5. We handle the proof in cases.390

Case 1: ql,0 ≤ q∗l and ρ0 ≥ ρ∗.391

When ql,t−1

qh,t
≥ ρ∗, the low-quality firm does not update (line 7 of Alg. 1). Once the high-quality firm392

improves sufficiently so that ql,t
qh,t

= ρ∗ (note that such a t exists if ql,0 ≤ q∗l ), then convergence is393

guaranteed. To see this, we use the following lemma.394

Lemma 4. B(a, b) ≥ a for all b ≥ 1. (See Figure 5 for pictorial proof.)395

Consider step t + 1 at which ρt =
ql,t
qh,t

= ρ∗. Given the high-quality firm’s improvement qh,t →396

qh,t+1, if the low-quality firm improves to ql,t+1 = q̂l,t+1, by Lemma 4, ρt+1 ≥ ρt. Therefore the397
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Figure 6: The green dots indicate, for a given ql,t−1/qh,t−1 (symbolized by a), the upper bound on
qh,t/qh,t−1 that ensures convergence to the Nash bargaining solution.

low-quality firm can always improve to some level ql,t+1 ∈ [ql,t, q̂l,t+1] and ensure that ρt+1 = ρ∗398

with neither firm losing revenue. Maintaining this improvement schedule, once the high-quality firm399

improves to q∗h (using any sequence of learning rates {αh,t}t), the low-quality firm will be able to400

reach q∗l by observing the constraint in lines 9-11 of Alg. 1.401

Case 2: ql,0 ≤ q∗l and ρ0 < ρ∗.402

Our strategy for this case will be to show there exist sequences of learning rates {αh,t}t and {αl,t}t403

such that
∑T

t=1(ρt−ρt−1) = ρT −ρ0 ≥ ρ∗−ρ0. We will do this by lower-bounding the quality-ratio404

gaps ρt − ρt−1 = B(ρt−1, qh,t/qh,t−1)− ρt−1.405

For each ρ ≤ 1, there is a point (possibly infinite)406

bρ
def
= max{b ≥ 1 : (4− 5ρ) log10 b ≤ B(ρ, b)− ρ}}.

That is, for a given ρ, bρ is the point at which (4 − 5ρ) log b goes from being a lower to an upper407

bound on B(ρ, b)− ρ. Define b̃ as the smallest such point over all ρ ≤ 1, so408

b̃
def
= min

ρ≤1
bρ.

Figure 6 plots bρ for various values of ρ and shows that b̃ ≈ 1.03 = bρ≈0.33.409

By definition of b̃, (4− 5ρ) log10 b ≤ B(ρ, b)− ρ for any ρ ≤ 1 and b ≤ b̃. Suppose the high-quality410

firm maintains a learning rate schedule {αh,t}t such that qh,t/qh,t−1 ≤ b̃ for all t and T is such that411

q∗h − qh,T ≤ ϵ. Then412

T∑
t=1

(ρt − ρt−1) =

T∑
t=1

(B(ρt−1, qh,t/qh,t−1)− ρt−1)

(i)

≥
T∑

t=1

(4− 5ρt−1) log10(qh,t/qh,t−1)

(ii)

≥ (4− 5ρ∗) log10(qh,T/qh,0)

≥ (4− 5ρ∗) log10((q
∗
h−ϵ)/qh,0),

where (i) is due to qh,t/qh,t−1 ≤ b̃, and (ii) is due to the fact that ρ0 ≤ ρ∗ and Lemma 4.413
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Figure 7: Empirical verification of the inequality: (4− 5ρ∗) log10(q
∗
h/qh,0) ≥ ρ∗ − ρ0

Figure 7 shows that (4− 5ρ∗) log10(q
∗
h/qh,0) ≥ ρ∗ − ρ0, so414

(4− 5ρ∗) log10

(
q∗h − ϵ

qh,0

)
= (4− 5ρ∗)

(
log10

(
q∗h
qh,0

)
− log10

(
q∗h

q∗h − ϵ

))
≥ (ρ∗ − ρ0)− (4− 5ρ∗) log10

(
q∗h

q∗h − ϵ

)
.

Therefore ρ∗ − ρT ≤ (4− 5ρ∗) log10

(
q∗h

q∗h−ϵ

)
.415

It remains to show that there exists a sequence of learning rates {αh,t}t such that qh,t/qh,t−1 ≤ b̃, and416

T such that q∗h − qh,T ≤ ϵ. Let αh,t = min

{
(b̃−1)qh,t−1

∥∇xh,t−1
fh,t−1∥2 ,

1
L

}
. We analyze what happens when417

αh,t is each of the values in the min expression.418

First, suppose αh,t =
(b̃−1)qh,t−1

∥∇xh,t−1
fh,t−1∥2 for all t. fh, as the average of L-smooth and convex functions,419

is also L-smooth and convex, so that420

qh,t−1 +
αh,t

2 ∥∇xh,t−1
fh,t−1∥2

qh,t−1
≤ qh,t

qh,t−1
≤

qh,t−1 + αh,t∥∇xh,t−1
fh,t−1∥2

qh,t−1
.

Therefore, the choice of αh,t guarantees that b̃+1
2 ≤

qh,t

qh,t−1
≤ b̃, giving qh,T

qh,0
≥

(
b̃+1
2

)T

. From this421

we see that setting T ≥ log(q∗h/qh,0)

log((b̃+1)/2)
guarantees convergence to q∗h in T ′ steps.422

Now suppose αh,t =
1
L for all t. Under this condition, standard convergence analysis for gradient423

descent on convex and L-smooth functions gives424

fh,T − f∗
h ≤

L∥xh,0 − x∗
h∥2

2T
.

Therefore, fh,T − f∗
h ≤ ϵ after T =

L∥xh,0−x∗
h∥

2

2ϵ rounds.425

From the above analysis, we see that after at most T =
log(q∗h/qh,0)

log((b̃+1)/2)
+

L∥xh,0−x∗
h∥

2

2ϵ rounds, fh,T−f∗
h =426

q∗h − qh,T ≤ ϵ, completing the proof.427
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Proof of Theorem 1. By Taylor’s theorem,428

N(q∗l , q
∗
h) ≤ N(ql,T , qh,T ) +

∂N(ql, qh)

∂ql
(q∗l − ql,T ) +

∂N(ql, qh)

∂qh
(q∗h − qh,T )

+

(
max
ql,qh

∂2N(ql, qh)

∂q2l

)
(q∗l − ql,T )

2

2
+

(
max
ql,qh

∂2N(ql, qh)

∂q2h

)
(q∗h − qh,T )

2

2

+

(
max
ql,qh

∂2N(ql, qh)

∂qh∂ql

)
(q∗l − ql,T )(q

∗
h − qh,T )

(i)

≤ c1(q
∗
h − qh,T ) + c2(ρ

∗(q∗h − qh,T ) + qh,T |ρ∗ − ρT |)
≲ (q∗h − qh,T ) + |ρ∗ − ρT |,

where (i) follows from the fact that the gradients of N are bounded by small constants (can be429

verified with graphing software), qualities q ∈ [0, 1], and q∗l − ql,T = ρ∗q∗h − ρT qh,T ≤ ρ∗(q∗h −430

qh,T ) + qh,T |ρ∗ − ρT |.431

We now bound q∗h − qh,T . Note that fh, as the average of L-smooth and convex functions, is also432

L-smooth and convex. Therefore,433

fh,t
(i)

≤ fh,t−1 +

(
− αh,t +

Lα2
h,t

2

)
∥∇xh,t−1

fh,t−1∥2

(ii)

≤ fh,t−1 −
αh,t

2
∥∇xh,t−1

fh,t−1∥2

(iii)

≤ f∗
h +∇xh,t−1

fT
h,t−1(xh,t−1 − x∗

h)−
αh,t

2
∥∇xh,t−1

fh,t−1∥2

= f∗
h +

2

αh,t
(∥xh,t−1 − x∗

h∥2 − ∥xh,t − x∗
h∥2),

where (i) is due to L-smoothness of fh, (ii) is due to αh,t ≤ 1
L , and (iii) is due to convexity of fh.434

Rearranging terms and summing over t,435

T∑
t=1

αh,t

2
(fh,t − f∗

h) ≤
T∑

t=1

∥xh,t−1 − x∗
h∥2 − ∥xh,t − x∗

h∥2

≤ ∥xh,0 − x∗
h∥2. (16)

Since {fh,t}t are decreasing, (16) implies that436

fh,T − f∗
h ≤

2∥xh,0 − x∗
h∥2∑T

t=1 αh,t

.

Noting that fh,T − f∗
h = q∗h − qh,T completes the proof.437

Proof of Corollary 1. Due to Theorem 1, showing that |ρ∗ − ρT | ≤ (4− 5ρ∗) log

(
q∗h

q∗h−ϵ

)
if T ≳438

L∥xh,0−x∗
h∥

2

ϵ completes the proof. We handle it in the same cases as in the proof of Proposition 5.439

Case 1: ρ0 ≥ ρ∗. From lines 9-11 of Algorithm 1, the low-quality firm will not update its model440

until after round T , where ρT = ρ∗. With only the high-quality firm updating before this point,441

the firms’ qualities will have reached a ratio ρ∗ by T steps if ql,0
qh,T

= ρ∗. Dividing both sides of442

this equation by qh,0 and rearranging terms, qh,T

qh,0
= ρ0

ρ∗ . As we showed for this case in the proof of443

Proposition 5, qh,t

qh,t−1
≤ b̃. Therefore,444

qh,T
qh,0

=
ρ0
ρ∗
≤ b̃T ,

which gives T ≥ log(ρ0/ρ∗)

log(b̃)
. That is, after log(ρ0/ρ∗)

log(b̃)
steps, ρT = ρ∗. As discussed in the proof of445

Proposition 5, the firms can maintain a quality ration of ρ∗ for all future rounds, making |ρ∗−ρT | = 0.446
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Figure 8: For a range of initial qualities and qh = q∗h = 1, the green dots mark the Nash bargaining
solution. The x-values of these points are smaller than 0.43.

Case 2: ρ0 < ρ∗. As the proof of this case in Proposition 5 directly shows,447

ρ∗ − ρT ≤ (4− 5ρ∗) log

(
q∗h

q∗h−ϵ

)
if T ≥ log(q∗h/qh,0)

log((b̃+1)/2)
+

L∥xh,0−x∗
h∥

2

2ϵ .448

449

Combining Cases 1 and 2, if T ≥ max

{
log(ρ0/ρ∗)

log(b̃)
,
log(q∗h/qh,0)

log((b̃+1)/2)
+

L∥xh,0−x∗
h∥

2

2ϵ

}
, then450

|ρ∗ − ρT | ≤ (4− 5ρ∗) log

(
q∗h

q∗h−ϵ

)
, which completes the proof.451

The following lemma gives.452

Lemma 5. For all ρ0 s.t. ρ0 ≤ ρ∗, ρ∗ ≤ 0.43.453

Proof of Lemma 5. The Nash bargaining objective evaluated at q∗h = 1 is454

N(ql, q
∗
h) =

(
ql(1− ql)

(4− ql)2
− Ul,0

)(
4(1− ql)

(4− ql)2
− Uh,0

)
, (17)

where Uh,0
def
= Uh(ql,0, qh,0) and Ul,0

def
= Ul(ql,0, qh,0). Differentiating (17) with respect to ql,455

∂N(ql, q
∗
h)

∂ql
(18)

=
(7Uh,0 + Uh,0ρ0 + 4)q3l + (−60Uh,0 − 6Uh,0ρ0 + 32)q2l + (144Uh,0 − 52)ql + (−64Uh,0 + 32Uh,0ρ0 + 16)

(4− ql)5
.

The roots of (18) correspond to the roots of the cubic numerator. It can be verified with graphing456

software that over all starting points (ql,0, qh,0) such that ρ0 ≤ ρ∗, the roots q∗l of this cubic are at457

most 0.43. (See Figure 8 for empirical evidence.)458

B Extension of Results and Proofs to n-firm Setting459

We assume the N firms have an initial ranking of model qualities: q1 > ... > qN .460

Definition 3 (Consumer Utility). A type-θ consumer has utility461

Uc(θ) =

{
θqn − pn if it buys n’th-quality firm’s model for n ∈ [N ],
0 if it buys no model.

(19)

Lemma 6 (Consumer Demands). Given the utilities in Definition 1,462
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1. consumer demand for the highest-quality firm is D1 = 1− p1−p2

q1−q2
463

2. consumer demand for firms n ∈ {2, ..., N} is Dn = pn−1−pn

qn−1−qn
− pn

qn
.464

Lemma 7 (Equilibrium Prices and Utilities). The optimal prices for the firms are465

p∗1 =
2q1(q1 − q2)

4q1 − q2

for the highest-quality firm, and466

p∗n =
qn(qn−1 − qn)

4qn−1 − qn

for firms n ∈ {2, ..., N}. These prices yield price-optimal utilities467

U1(q2, q1, p
∗
2, p

∗
1) =

q1q2(q2 − q1)

(4q2 − q1)2
(20)

and468

Un(qn, qn−1, p
∗
n, p

∗
n−1) =

4q2n(qn − qn−1)

(4qn − qn−1)2

for n ∈ {2, ..., N}.469

Proposition B.1. 1. Un is increasing in qn∀n < N ,470

2. Un is decreasing in qn−1∀n < N ,471

3. UN is increasing in qN − 1, and472

4. UN is increasing in qN for qN ≤ 4
7qN−1 and decreasing in qN otherwise.473

Definition 4. (N -agent Nash bargaining objective)474

(q∗1 , ..., q
∗
N ) = argmax

q∈[0,1]N
Ñ(q2, q1, q2,0, q1,0)(Πn∈{2,...,N}Ñ(qn, qn−1, qn,0, qn−1,0))

s.t. U1(q2, q1) ≥ U1(q2,0, q1,0)

Un(qn, qn−1) ≥ Un(qn,0, qn−,0), n ∈ {2, ..., N}
where475

Ñ(qn, qn−1, qn,0, qn−1,0)
def
= Un(qn, qn−1)− Un(qn,0, qn−1,0).

Proposition B.2 (Equivalence between maximal quality and the Nash bargaining solution).
q∗1 = max

x∈X
q(x).

Proposition B.3 (Non-decreasing revenues). There exist learning rate schedules {αn,t}t for n ∈ [N ]476

such that at no step of Algorithm 1 does any firm’s revenue decrease.477

Proof. At round t, the highest quality firm can improve by any amount q1,t−1 → q1,t without478

decreasing any other firm’s utility. By the proof of the 2-firm case, firm 2 can then improve479

q2,t−1 → q̂2,t without decreasing any firm’s utility. Following this logic then, firm n can improve480

qn,t−1 → q̂n,t without decreasing any firm’s utility. As in the 2-firm proof, q̂n,t is based on 3481

quantities: qn−1,t, qn−1,t−1, and ρn,t−1 =
qn,t−1

qn−1,t−1
. Given the sequential ordering of improvements482

(firm 1 improves, determining q̂2, then firm 2 improves based on determining q̂2, ..., then firm n,...) in483

Algorithm 2, q̂n,t can be computed for each firm to determine their improvement threshold.484

As in the 2-firm proof, firm 1 can set any learning rate α1,t ≤ 1
L . Then in order to not exceed485

their respective thresholds q̂n,t firms n ∈ {2, ..., N} must not exceed learning rates of αn,t =486

min

{
q̂n,t−qn,t−1

∥∇xn,t−1
fn,t−1∥2 , 1

}
.487

Proposition B.4 (Convergence to the Nash bargaining solution). If qn,0 ≤ q∗n for all n ∈ {2, ..., N},488

then there exist learning rate schedules {αn,t}Tt=1 for all n ∈ [N ] such that after T rounds Algorithm489

2 converges to (q∗1 , ..., q
∗
N ).490
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Proof. From the 2-firm proof, the highest-quality firm must adhere to a learning rate schedule αh,t =491

min

{
(b̃−1)q1,t−1

∥∇x1,t−1
f1,t−1∥2 ,

1
L

}
, and doing so, will converge to q∗1 in T =

log(q∗h/qh,0)

log((b̃+1)/2)
+

L∥xh,0−x∗
h∥

2

2ϵ492

steps (within ϵ error). In order to not exceed q̂2,t and violate the no-revenue-loss requirement, the493

second-highest-quality firm must adhere to α2,t = min

{
q̂2,t−q2,t−1

∥∇x2,t−1
f(x2,t−1)∥2 , 1

}
.494

Proposition B.5 (Convergence to the Nash bargaining solution). If qn,0 ≤ q∗n for all n ∈ {2, ..., N},495

then there exist learning rate schedules {αn,t}Tt=1 for all n such that after T rounds Algorithm 1496

converges to (q∗1 , ..., q
∗
N ).497

Proof. We look at an arbitrary firm n and handle it cases as in the 2-firm proof.498

Case 1: qn,0 ≤ q∗n and qn,0

qn−1,0
≥ q∗n

q∗n−1
.499

The proof is identical to the 2-firm proof. Firm n should not update until qn,t−1

qn−1,t
=

q∗n
q∗n−1

. At this500

point, for any learn rate schedule that firm n − 1 maintains going forward, firm n can maintain a501

learning rate schedule such that qn,T

qn−1,T
=

q∗n
q∗n−1

.502

Case 2: qn,0 ≤ q∗n and qn,0

qn−1,0
<

q∗n
q∗n−1

503

We showed in 2-firm proof that there is a learning rate schedule {α1,t}t such that firms 1 and 2504

converge to (q∗1 , q
∗
2) in T rounds. Now we just have to ensure that the rate at which firm 2 converges505

to q∗2 makes it possible for firm 3 to converge to q∗3 without violating the no-revenue-loss constraint.506

Then extending this logic to the remaining firms completes the proof.507

In the 2-firm proof, we showed that as long as, at every step t ∈ [T ], b̃+1
2 ≤ q1,t

q1,t−1
≤ b̃ (where508

b̃ ≈ 1.03), then firm 2 will converge to q∗2 when firm 1 converges to q∗1 after T steps, simply by never509

exceeding q̂2,t. Therefore, we have to ensure that, at step t given firm 1’s current quality q1,t, firm 2510

can improve q2,t−1 → q2,t such that b̃+1
2 ≤

q2,t
q2,t−1

≤ b̃. This in turn will ensure that firm 3 converges511

to q∗3 in T steps.512

Note from earlier results in the paper that513

q̂2,t = B

(
q2,t−1

q1,t−1
,

q1,t
q1,t−1

)
q1,t ≥ q2,t−1

(
q1,t

q1,t−1

)
≥ q2,t−1

(
b̃+ 1

2

)
.

Therefore firm 2 should improve to q2,t = min(b̃q2,t−1, q̂2,t). This ensures that b̃+1
2 ≤

q2,t
q2,t−1

≤ b̃,514

which, by the same logic for firms 1 and 2, ensures that firm 3 converges to q∗3 in T steps by simply515

never exceeding q̂3,t at every round.516

Different Consumer Distributions. For θ ∼ U [0, θmax], p∗l → θmaxp
∗
l , p∗h → θmaxp

∗
h, U∗

l →517

θmaxU
∗
l , and U∗

h → θmaxU
∗
h . With these changes, all other results in the paper carry through. For other518

distributions, it depends on the form of the pdf of θ. Let p(θ) be the pdf of θ. Then Dl(pl, ph, ql, qh) =519 ∫ θmax

θ̂h
p(θ)dθ, where θmax is the largest value that θ can take on, and Dh(pl, ph, ql, qh) =

∫ θ̂h
θ̂l

p(θ)dθ.520

These demands affect the optimal price and utilities, but we cannot calculate them unless we know521

p(θ).522
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C NeurIPS Main conference Reviews523

C.1 Decision: Reject524

The paper takes a theoretical modeling approach to study competition in a collaborative learning525

system. The paper establishes several theoretical insights; for example, full collaboration might lead526

to market collapse while one-sided collaboration coming from the lower-quality firm can improve527

revenue overall. The paper also proposes a more equitable, defection-free scheme in which both firms528

share but lose no revenue.529

Overall, the paper studies an interesting theoretical problem, proposes an economic model of two530

firms, and provides a solid theoretical analysis. The review team found the above insights to be novel531

and interesting, although their validity might be limited by (i) the weak experimental evaluation, (ii)532

the stylized model and knowledge of model parameters, and (iii) the assumption of trust between533

firms. There is also some related literature on algorithmic monoculture (e.g., Kleinberg & Raghavan,534

PNAS 2021); it would be important for the paper to add a discussion on how these works compare535

to the present model and insights. Finally, reviewers had also raised concerns about the focus on a536

two-firm model; however, the authors have successfully addressed this by extending their results to N537

firms.538

C.2 Review by Reviewer L4cP539

Summary: This paper suggests a novel defection-free collaboration workflow. The suggested scheme540

considers two firms, with one (Firm h) having a better performing (ML) model than the other Firm541

(Firm l). Here, Firm h performs better, thereby "higher quality," because its dataset is more similarly542

distributed to the target dataset than Firm l, with data_h ∪ data_l ∼ data_target.543

The considered setup is akin to the federated learning scheme, with zero training data transmission544

between the two firms (models), but only the evaluated outcomes, i.e., training loss or its gradient,545

can be shared. The caveat here is that in order to examine Model A’s loss on Firm B’s dataset, Firm B546

should be able to have full access to Firm A’s model parameters. The paper gets away from this red547

flag by potentially introducing a "trusted central coordinator."548

One of the key findings is Proposition 1, which suggests that the utilities of both Firms h and l549

increase as the quality of Model h increases, but the utility of Firm l only conditionally increases with550

respect to the quality of Model l. This leads to Algorithm 1, defection-free collaboration learning,551

which guarantees the increase of both firms at all times. The key functionality is to delicately tune552

the quality improvements of Firm l with respect to that of Firm h.553

The work is tested on the MNIST dataset with LeNet-5 model structures, with each firm having 1,000554

training samples but with different distributions.555

Scores:556

• Soundness: 3: good557

• Presentation: 2: fair558

• Contribution: 3: good559

Strengths:560

• The proposed work sets up a very interesting connection between operations management561

in economics and federated learning in machine learning. Simply put, the work tells us562

that naively allowing the competing firm (agent) to evaluate its model performance on my563

dataset can be detrimental, especially when the competing firm is already on higher ground.564

Weaknesses: The paper is difficult to follow, especially for the common audiences in the ML565

community. It’s not about all the theories from the economics, e.g., Nash bargaining and so on, but566

more about the notations. Section 2.1 (especially 2.1.1) needs to have more explanations. Also, the567

experimental setup significantly lacks details.568

Rating: 6 (Weak Accept: Technically solid, moderate-to-high impact paper, with no major concerns569

with respect to evaluation, resources, reproducibility, ethical considerations.)570
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Confidence: 2 (You are willing to defend your assessment, but it is quite likely that you did not571

understand the central parts of the submission or that you are unfamiliar with some pieces of related572

work. Math/other details were not carefully checked.)573

Author Rebuttal: We thank the reviewer for their detailed feedback and positive evaluation. We574

address each of the concerns raised:575

Section 2.1 (especially 2.1.1) needs to have more explanations.576

Thank you for bringing this to our notice. We have modified the notation in Section 2.1.1 (particularly577

bullet point 2) in our paper to hopefully make it more readable, and have expanded the explanation.578

Why the same number of data points for Firms h and l?579

This is for simplicity of setup - our conclusions are robust to the number of data points each firm580

holds. The main concerns/requirements of our experiments are that 1) firm h have a higher initial581

quality than firm l, and 2) the firms share data with each other in a way that decreases neither firm’s582

utility over the course of the algorithm.583

C.3 Review by Reviewer ucZC584

Summary: The paper studies the dynamics of collaborative learning where participant incentives585

can lead to defection if not aligned with revenue goals. It uses a duopoly model where (two)586

firms collaborate to train a global model while maintaining or improving their revenue. Various587

collaboration schemes are evaluated, leading to the proposal of a defection-free algorithm that ensures588

both firms benefit without revenue loss, aiming for a Nash bargaining solution.589

Scores:590

• Soundness: 2: fair591

• Presentation: 3: good592

• Contribution: 2: fair593

Strengths:594

• The paper studies collaborative learning as a competitive market scenario, aligning with595

economic theory to ensure participation incentives. It shows that their model qualities596

improve maximally when both firms contribute fully to the collaboration.597

• The paper introduces a defection-free algorithm that prevents revenue loss for participants,598

promoting sustained collaboration.599

• The paper shows convergence to a solution that maximizes joint surplus, and their proposed600

algorithm converges to the Nash equilibrium, except in some trivial cases.601

Weaknesses:602

• The paper relies on simplified assumptions such as convex and smooth loss functions,603

which may not generalize to all real-world scenarios. There might be some data-privacy604

considerations as well.605

• While extending results to an oligopoly is mentioned, the primary focus remains on a606

two-firm scenario.607

• The paper emphasizes revenue preservation over model quality improvement, which might608

have a potential impact on accuracy for economy stability.609

Rating: 3 (Reject: For instance, a paper with technical flaws, weak evaluation, inadequate repro-610

ducibility and/or incompletely addressed ethical considerations.)611

Confidence: 2 (You are willing to defend your assessment, but it is quite likely that you did not fully612

understand central parts of the submission.)613

Author Rebuttal: We thank the reviewer for their comments and feedback. We address the concerns614

raised below:615

The paper relies on simplified assumptions such as convex and smooth loss functions, which may not616

generalize to all real-world scenarios.617
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Our analysis assumes smooth convex functions because this helps precisely control model-quality618

improvement during training, which is necessary to guarantee the no-revenue-decrease property of619

our algorithm. Current optimization theory reflects the practical performance on deep learning very620

poorly. Incorporating formal privacy guarantees (such as differential privacy) would also be excellent621

future directions.622

The primary focus remains on a two-firm scenario.623

All of our results and proofs carry through to the N-firm setting. We have added an appendix to the624

paper which states the algorithm for N firms, and restates and proves each result for this setting.625

C.4 Review by Reviewer CKmX626

Summary: This paper studies collaboration between owners of high- and low-quality model owners627

in a competitive setup using game theoretic tools. First, they showed complete collaboration leads to628

zero revenue. They then designed a defection-free algorithm that can provably converge to a Nash629

bargain solution in a multi-round regime. The analyses offer new insights to the field of economics630

and collaborative learning.631

Scores:632

• Soundness: 3: good633

• Presentation: 3: good634

• Contribution: 3: good635

Strengths:636

• The paper is well-written and the demonstration is clear.637

• The problem setup is novel, and the authors modeled the relationship between utility and638

model quality through an economic lens. The analyses are neat and nice.639

Weaknesses: I am not convinced by Line 229-230. I do not think q∗l and ρ∗ are reasonable to be640

assumed known in practice. There is a typo in Proposition 1. The 2nd item should be Uh is decreasing641

in ql. Typo in Line 176, “have lower revenue that” should be “have lower revenue than”.642

Regarding the experimental setup, the distinction between low- and high-quality firms is based solely643

on the number of training epochs. With this approach, both firms could conduct local training and644

achieve models of the same quality (I would be curious to see what the revenues would be with local645

learning). I believe a more reasonable way to differentiate between low- and high-quality firms would646

be to base it on their target performance when they conduct local training until convergence.647

Rating: 6 (Weak Accept: Technically solid, moderate-to-high impact paper, with no major concerns648

with respect to evaluation, resources, reproducibility, ethical considerations.)649

Confidence: 4 (You are confident in your assessment, but not absolutely certain. It is unlikely, but650

not impossible, that you did not understand some parts of the submission or that you are unfamiliar651

with some pieces of related work.)652

Author Rebuttal: We thank the reviewer for their close reading of our work, the detailed feedback,653

and the positive evaluation. We address each of the concerns raised:654

Regarding the experimental setup, the distinction between low- and high-quality firms is based solely655

on the number of training epochs.656

This is an excellent point. We can achieve a differentiation between the quality of two firms setup in657

a variety of ways in practice: e.g. a) make firm h’s data distribution closer to that of the target test658

distribution, b) make firm h’s dataset larger than firm l’s, or c) ensure firm h has a better initialization659

point or runs for longer training epochs than firm l, etc.660

C.5 Review by Reviewer Bkmn661

Summary: The paper investigates collaborative learning systems involving competitive participants662

who may defect if collaboration leads to revenue loss. The authors model the system as a duopoly663

where two firms train machine learning models and sell predictions to a market of consumers. The664

22



study explores various collaboration schemes, demonstrating that full collaboration leads to market665

collapse, while one-sided collaboration can improve both firms’ revenues. The authors propose a666

defection-free algorithm where both firms share information without losing revenue, showing that it667

converges to the Nash bargaining solution.668

Scores:669

• Soundness: 3: good670

• Presentation: 3: good671

• Contribution: 3: good672

Strengths:673

• Relevance and Novelty: The paper addresses a significant and timely issue in collaborative674

learning, particularly in competitive environments. The proposed defection-free scheme is675

novel and provides valuable insights into ensuring sustained collaboration.676

• Theoretical Foundation: The framework is grounded in economic theory, particularly the677

Nash bargaining solution, providing a robust theoretical basis for the proposed scheme.678

Weaknesses: The primary issue with the paper is the potential lack of generalizability of the proposed679

model. The study focuses on a duopoly, and it remains unclear how the conclusions might change680

with more than two competitors.681

Rating: 5 (Borderline Accept)682

Confidence: 5 (Absolutely certain of the assessment)683

Author Rebuttal: We thank the reviewer for their feedback and for the positive evaluation of our684

work. We address the questions and main concerns below:685

How does the proposed defection-free algorithm scale with an increasing number of competitors?686

All of our results and proofs carry through to the N-firm setting. We have added an appendix to the687

paper which states the algorithm for N firms, and restates and proves each result for this setting.688
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