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Abstract

Scaling model sizes to scale performance has worked remarkably well for the
current large language models paradigm. The research and empirical findings of
various scaling studies led to novel scaling results and laws that guides subsequent
research. However, prohibitively high training costs at contemporary scales of data
and models result in a lack of thorough understanding of how to tune and arrive at
such training setups efficiently. One direction to ameliorate the cost of pretraining
large models is to warmstart the large-scale training from smaller models that are
cheaper to tune. In this work, we attempt to understand if the behavior of optimal
hyperparameters can be retained under warmstarting for scaling. We explore
simple operations that allow the application of theoretically motivated methods of
zero-shot transfer of optimal hyperparameters using µTransfer. We investigate the
aspects that contribute to the speedup in convergence and the preservation of stable
training dynamics under warmstarting with µTransfer. We find that shrinking
smaller model weights, zero-padding, and perturbing the resulting larger model
with scaled initialization from µP enables effective warmstarting of µTransfer.

1 Introduction

Scaling of model size, dataset size and training compute together, lead to performance scaling in
the large language model (LLMs) paradigm, as shown by the recent scaling law literature [Kaplan
et al., 2020, Hoffmann et al., 2022, Caballero et al., 2023, Hägele et al., 2024, Porian et al., 2024].
Under different training setups, empirical data often fit predictable trends captured by an exponent
of an assumed parametric relationship. Recent research trends point to an attempt at understanding
and finetuning the nature of scaling law studies across various problem formulations [Sorscher et al.,
2022, Alabdulmohsin et al., 2023, Wang et al., 2023a].

One commonality across such studies is the often non-overlapping choice of hyperparameters and
sparse documentation of their selection process. This stems from the prohibitive costs of principled
hyperparameter tuning at large scales. Reusing weights from tuned smaller models can offer a
way to accelerate training of larger models. This is commonly known as warmstarting a model’s
training and has been approached previously through knowledge distillation [Chen et al., 2016, 2021],
morphisms [Wei et al., 2016a, Elsken et al., 2019], learned transformations [Wang et al., 2023b,a],
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shrink-and-perturb [Ash et al., 2020, Chebykin et al., 2023, Shin et al., 2024, Samragh et al., 2024],
heuristics [Rae et al., 2021]. However, the change in optimality of hyperparameters when scaling up
a model is not usually discussed alongside such sophisticated warmstarting techniques.

The growing literature on scaled parameterizations looks at the hyperparameters that directly affect a
model’s ability to learn features as a function of its growing model scale [Yang et al., 2021, Everett
et al., 2024, Blake et al., 2024, Thérien et al., 2024, Yang et al., 2024]. µTransfer [Yang et al., 2021]
offers analytical scaling relations that scale the parameters for a small model: learning rate and
initialization standard deviation, so that it remains optimal even for the larger model. Our primary
inquiry is to understand whether warmstarting µP for a large model using a tuned smaller model
would offer any improvements over vanilla-µP. Our contributions through this work are as followed:

• We identify a simple method that warmstarts µP runs of larger models, improving conver-
gence speed and in certain cases final performance (RQ1 and RQ2 in Section 3);

• Demonstrate that warmstarting retains the µP training stability guarantees in practice, with
respect to model scaling along specific dimensions, such as width2 (RQ3 in Section 3).

The importance of a working warmstarting method lies in its application to continually scale models
with data, speeding up convergence. We believe that enabling warmstarted-µP can also substantially
accelerate the tuning of non-µ-parameterizable hyperparameters for large models.

In the next section, we briefly highlight the method (Section 2) we find to be the most simple and yet
in line with scaled parameterizations, allowing us to leverage algorithms such as µP. We then show
our empirical findings that validate our approach (Section 3). Appendix A onwards contain various
supporting information and details.

2 Method: Warmed-µP

In this section, we formalize and formulate warmstarting in the context of scaled parameterizations.
We refer the readers to Appendix A for more on background concepts and related work.

Given a trained base model Mbase with tuned hyperparameters (e.g. learning rate) and a target
modelMtarget for transferring the hyperparameters, we define the warmstarting operation as the
layer-wise initialization ofMtarget usingMbase. In this work, we initialize each layer ofMtarget using
a combination of a shrunk version ofMbase weights with the standard µP initialization. For a layer
l inMtarget, let θltarget ∈ Rp×q be its weight and θlbase ∈ Rm×n be the corresponding weight from
Mbase (where m ≤ p and n ≤ q). Formally, the warmstarting operation is given by:

θltarget = λshrink · Pad0(θlbase, p, q) +N (0, σl
µP

2), (1)

where σl
µP is the recommended per-layer standard deviation by Yang et al. [2021] for initialization, and

Pad0 is a function that expands the base model weight to the target shape (p× q) with zero padding.
Intuitively, the initialization term of Equation 1 can be replaced with any scaling parameterization
technique, while the first term can represent any transformation of the base weight matrices onto the
target shape. Additionally, setting λshrink = 0 in Equation 1 recovers vanilla-µP.

We choose zero-padding as the simplest method to study for scaling the model size with µP and
avoid more sophisticated heuristics [Rae et al., 2021], learned transformations [Wang et al., 2023b] or
distillations [Chen et al., 2016]. In order to retain µP’s guarantees of training stability, λshrink ∈ [0, 1]
is multiplied to all the transformed weights. The µP initialization acts as a perturbation matrix
for the base model weights, transformed and casted to the target shape. We choose a fixed value
of λshrink = 0.4 in our experiments (Section 3) as per shrink-and-perturb-based warmstarting
literature [Ash et al., 2020, Zaidi et al., 2022, Chebykin et al., 2023] from the continual learning
setting without model size growth. We find empirically that this recommendation interestingly holds
and is crucial for warmstarted-µP (see, Section 3, Appendix B.2).

From a different perspective, one can also see the warmstarting operation as equivalent to abc-
parameterization, which defines the family of scaled parameterization methods [Yang and Hu, 2021,
Blake et al., 2024, Everett et al., 2024] that derive fixed scaling rules for hyperparameter transfer

2in this work, we look at model-width as the only scaling dimension, see Table 1
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[Yang et al., 2021]. Scaled parameterization refers to modifying the initialization (Bw), weight
parameter scaling (Aw) and learning rate (Cw) as a function of model scales (see, Appendix A).
Designing Equation 1 in a lean manner opens up the direction of phrasing λshrink as Aw, while the
overall scaled initialization can now be, ∼ N (w′

0,B2w), where w′
0 = λshrink · Pad0(θlbase, p, q). The

next section shows empirically the gains provided by such simple adjustments and why studying and
understanding warmstarted-µP more is relevant.

3 Empirical evaluation

In this section, we report our empirical findings, with the intention of emphasizing the underline
intuition behind the proposed approach (Section 2), in both convergence speed and training stability.

Experimental Setup : We train a decoder-only GPT2 model [Radford et al., 2019] as per the
GPT-NeoX implementation [Andonian et al., 2023] provided by LitGPT [AI, 2023] on the SlimPa-
jama [Soboleva et al., 2023]’s 6B version3 dataset. We set the weight decay to 0 for Adam [Kingma
and Ba, 2015] to avoid interaction effects and confounding factors [Lingle, 2024, Wang and Aitchison,
2024]. Fixed learning rate (LR) schedules were used following Hägele et al. [2024], simplifying
checkpoint studies with no LR management overheads. We disable learning rate warmup to aid com-
parative analysis of if warmstarting provides gains. All models are trained for 20 tokens/parameter,
similar to Hoffmann et al. [2022], keeping sub-epoch training, that is, no micro batch of the dataset
is ever repeated. Our FLOPs calculation is also based on Hoffmann et al. [2022]. Validation loss is
measured on a fixed held-out split of the dataset, consistent across all runs, with 3 different seeds per
run, and Gaussian smoothing is used for loss comparison across runs. For warmstarting runs, we do
not repeat tokens seen by the base model. A warmstarting training starts with a fresh optimizer state,
and follows standard µP training procedures. All trainings used a single NVIDIA RTX 2080 GPU.

RQ 1: Does warmstarting improve a vanilla-µP run? The µP recipe recommends the following
broadly for µTransfer: i) Perform a grid search over hyperparameters at a small model scale;
ii) Transfer the optimal hyperparameters at this scale, to a larger model scale using µP rules. The
exact choice of base and target scales, choice of hyperparameters for grid search, if the base scale itself
should be a hyperparameter, etc. are all actively pursued investigations in the community [Everett
et al., 2024, Blake et al., 2024, Qiu et al., 2024, Lingle, 2024]. Given our experimental setup of fixed
model scales across width scaling (refer, Table 1), we choose 3 possible base scales: 5M, 10M and
22M. Figure 1 shows µTransfer from the smallest base scale with and without warm-starting. Figure 4
shows the same result as Figure 1 but under longer compute or more tokens than recommended
by Hoffmann et al. [2022]. Figure 5 for warmstarting from other base scales and Figure 6 for the
learning curves that include the base model training.
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Figure 1: Transferring the best found learning rate at the base scale of 5M using µP. For warmstarting
(WS) run, the model weights of the optimal 5M model is used to initialize the target model’s training.
Warmstarting appears to always improve µP convergence rates.

3https://huggingface.co/datasets/DKYoon/SlimPajama-6B
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Warmstarting (WS), even across much larger model sizes yield a gain in initial performance, while
either matching or improving the vanilla-µP performance under equivalent compute (as per Hoffmann
et al. [2022]). Here, we compare the runs over the training compute as required by the target model.
Both µP and warmstarting runs require a grid search from the base scale (5M) and hence are expected
to share similar compute, and thus can be omitted from this analysis (Figure 1).
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Figure 2: Comparing losses across model scales. (Left to right): given a larger base model, transfer to
higher model scales; (Top): Shows the initial validation loss of the warmstarted model vs. vanilla-µP,
where warmstarting always leads to improved initial loss; (Bottom): Shows the final validation loss
of the warmstarted model vs. vanilla-µP run, which achieves better or equivalent loss.

RQ 2: How does the scale difference affect the quality of warmstarting? Given that the
warmstarting operation (Section 2) chosen for our experiments pads the new connections to the base
model with zeros to scale to the target model, it can be expected that the quality of warmstarting will
be more pronounced when a large enough model is grown not too large. In Figure 2 we chart the
initial and final validation loss comparison with µTransfer and warmstarting under width-scaling. We
observe that warmstarting offers a much-improved initialization that accelerates loss convergence.
It is also evident that the loss obtained by the base model is not transferred. This gap manifests as
spikes if learning curves are concatenated over the base and warmstarted-target runs (see Figure 6).
Figure 2 also highlights that the amount of data already seen by the base model, and the loss it can
achieve given its scale, skews such an analysis as the resulting warmstarted model is likely to have a
larger spike in loss. Given that we do not repeat the tokens seen by the base model when training the
warmstarted target model, a larger spike would require more updates and thereby tokens to recover.
We believe that though the warmstarting method shown here is adequate in providing speed ups, it
is suboptimal in not providing consistent improvement in final loss, despite seeing more tokens in
principle. Despite the obvious gains warmstarting can bring with µP, there are clearly much more
design choices to study and consider for consistent, efficient warmstarting.

RQ 3: Does warmstarting with µP retain training stability guarantees? We empirically investi-
gate the impact of the proposed warmstarting technique on µP training behavior [Yang et al., 2021].
We conduct coordinate checks as per the µP library4 to verify the consistency of the L1-norm of layer
activations across width-scaling. Within the same experimental setting, we also ablate the effect of
the shrinking value, the main hyperparameter of our approach.

Figure 3 shows L1-norm of activations for warmstarted µP with λshrink ≤ 0.6 trend similar to
vanilla µP across the considered width-scaling. However, we observe instability for λshrink > 0.6
(Figure 7, 10). This result also backs the λshrink = 0.4 value reported for shrink-and-perturb in the
literature [Ash et al., 2020, Zaidi et al., 2022, Chebykin et al., 2023]. Additionally, we monitor
the L1 norm of layer activations during the entire training in Figure 8. Warmstarted µP maintains
activation values within a comparable range and trends consistent with vanilla-µP, suggesting that
our demonstrated warmstarting method does not introduce instability to µP.

4https://github.com/microsoft/mup?tab=readme-ov-file%23coord-check
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Figure 3: L1 norm of the layers activation across scales. Any warmstarted µP, having λshrink ≤ 0.6,
behaves well in scale as in µP (detailed results in Figure 7 of Appendix B).

4 Conclusion

In this work, we explore the feasibility of enabling continued pretraining of language models as more
data is provided and model size is scaled up. We demonstrate that a simple technique, even when
warmstarting from a much smaller model, is adequate in improving convergence speed and potentially
final performance (Figures 1, 5). Our focus was to identify a warmstarting method that is simple
enough to be implemented alongside µP (Section 2) while not being in conflict with µTransfer’s
expectations of stable training in practice (Figures 3, 7, 8, 10).

Limitations. We note that the empirical study shown here has an outcome of interest in that simple
shrinking and perturbation with µP works already. However, our setting (Section 3) is carefully
chosen to minimize effects induced by various choices of training setups, in order to understand the
effects of warmstarting with µP. For more general practicality, more ablations and experiments must
be performed over different learning rate schedules, weight decay, activations, and for much larger
model sizes and context windows. More recent works on scaled parameterizations [Everett et al.,
2024, Blake et al., 2024] which study and improve over µP recommendations should also be tested
with our modular approach to further assert the potential of warmstarting under abc-parameterization.

Future directions. More diverse experiments aside, exploring what makes warmstarting work, as
we demonstrate here, is important for a lean, general, efficient method that truly speeds up pretraining
runs. Figures 7 and 10 show the effect of different shrinking factors in maintaining training stability of
optimal hyperparameters, while Figure 2 shows that choice of scales directly affect gains provided by
warmstarting. Exploiting the definition of Equation 1, we would like to explore the role of layer-wise
shrinking of base model weights and investigate theoretical relations with abc-parameterization.
Exploiting structures, ranks, and representations learned by the base model can also lead to better
warmstarting and improvement over simple zero padding [Rae et al., 2021, Wang et al., 2023a, Qiu
et al., 2024, Wei et al., 2024]. Moreover, warmstarting using our setup here leads to the consumption
of more tokens, when comparing against the vanilla-µP training of the target model. Exploring
if models can be warmstarted and scaled up progressively will be a clear direction to pursue (see,
Appendix B.3). Such a paradigm of training can massively lower hyperparameter tuning costs overall
and also potentially change the practice of scaling models up, with tuned hyperparameters.
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A Background and Related Work

Scaled parameterizations refers to a set of rules that determine how certain parameters can be
scaled with respect to one or more scaling dimensions [Everett et al., 2024]. Such prescriptions
attempt to ensure stable feature learning under stable optimal hyperparameters to ensure maximal
feature learning in the infinte-width limit [Yang and Hu, 2021]. abc-parameterizations [Yang and Hu,
2021] is a formulation that subsumes such parameterizations and broadly follows the assumption
where model weights are so defined,

w0 ∼ N (0,B2
w), (2)

Wt = Aw · wt, (3)

wt+1 = wt + Cw · Φt(∇L0, . . . ,∇Lt), (4)

where t defines the training step and Φt(∇L0, . . . ,∇Lt) is the gradient-based weight update
step [Blake et al., 2024]. Aw, B, Cw are scalars that change with model width and determine
the required scaling of parameterized entities. The specific prescription of these scalars is governed
by the method and its assumptions which lead to the analytical rules of scaling. We refer the reader
to Tables 1, 2, 3 from Yang et al. [2021] for a succinct summary of the scaling rules for the scalars
Aw, B, Cw, which realizes µParameterization or µP. This class of methods is seeing growing interest
in the community as model sizes increase and prior knowledge of good hyperparameters are not
available on such scales [Yang et al., 2024, Everett et al., 2024, Blake et al., 2024, Thérien et al.,
2024, Qiu et al., 2024, Lingle, 2024]. Recent studies find improvements in the µP recommendation
and scenarios or setups where µP can be bettered. Our work is along these lines where we aim to
show that warmstarting a larger model training from a smaller model is one more such scenario
where vanilla-µP can be improved upon.

Shrink-and-perturb is a technique that showed that models of the same size can be warmstarted
from a previous training run successfully such that it converges faster without hurting generaliza-
tion [Ash et al., 2020]. Under shrink-and-perturb, every learnable parameter wi

t is initialized as,
wi

t ← λθit−1 + pt, where pt ∼ N (0, σ2) and 0 < λ < 1. Ash et al. [2020] posits that the shrinking
of the weights act as a regularization but not similar to weight decay. In effect, shrinking weights
can act as increasing the entropy of the output distribution and preserving the relative activation at
each layer. While perturbation seems to have an effect on balancing gradient contribution from each
learned parameter. Crucially, this version of shrink-and-perturb was specifically shown for continual
learning under stationary data distributions [Chebykin et al., 2023, Shin et al., 2024]. However, to
our knowledge, no such shrink-and-perturb warmstarting method directly talks about warmstarting
across model scales.

Model growth literature, or warmstarting literature across model sizes is rich and encompasses
multiple methodological paradigms, including initialization techniques [Zaidi et al., 2021], network
morphisms [Wei et al., 2016b], knowledge transfer and distillation approaches [Chen et al., 2016,
2021, Wang et al., 2023a], learned transformations [Deng et al., 2023, Wang et al., 2023b], and
empirical heuristics [Rae et al., 2021]. More recent works show that increasing transformer model
size can improve pretraining efficiency and potentially the compute-loss scaling coefficient [Yao et al.,
2024, Du et al., 2024]. Each such method represents a well-designed and sophisticated approach
that, in principle, achieves the required warmstarting effect. These approaches conflict with our
requirement for a simple and practical implementation, require changes to training routines, loss
functions, and usually keep the hyperparameters fixed across scales. Samragh et al. [2024], a
concurrent work, echoes our requirements for a warmstarting method and proposes a shrink-and-
perturb-like method for growing a language model, and is the closest work to us, altering only the
initialization method given a smaller base model checkpoint. Our method and approach differ from
all approaches mentioned above since we study and demonstrate that it is possible to warmstart while
suitably scaling hyperparameters.

Our work aims to develop a theoretically motivated modular framework that can, given any model
checkpoint with its tuned hyperparameters, systematically scale this model along arbitrary dimensions,
initialize through principled warmstarting from smaller model weights, and train using theoretically
derived hyperparameter scaling rules.
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B Experiments

This section covers additional details on the experimental setup and more supporting results.

Model scales. Table 1 covers the model scales reported in the experiments in this work.

n_layers d_model n_head head_size # params [M]
6 48 2 24 5
6 96 6 16 10
6 192 8 24 22
6 288 12 24 35
6 512 16 32 70

Table 1: Overview of model scaling parameters with the number of layers fixed at 6 across all
configurations. The d_model parameter is defined as the product of the embedding size and the
number of attention heads. The block size is set to 1024. The effective batch size is as determined by
the grid search on a base scale used for µTransfer.

Grid search results for optimal hyperparameters. For the chosen 3 base scales, we perform a
grid search over the learning rate (LR) and batch size. The grid search results are summarized below:

• 5M: learning rate = 0.03; batch size = 64

• 10M: learning rate = 0.01; batch size = 64

• 22M: learning rate = 0.003; batch size = 256

When performing µTransfer, the batch size found for the base scale is kept constant while LR is
scaled as per µP.

B.1 Additional results

Figure 4 shows Figure 1 when run for longer, i.e., trained with more tokens (here, 30 tokens/parameter).
We observe that the feature learning under µTransfer is retained under our proposed warmstarting
method. A similar converging loss compared to vanilla-µP may be the limit imposed on the loss
by the model scale. Figure 5 adds more base scale transfer to our primary result, complementing
Figure 1. The general trend of our warmstarting approach improving µP continues across all pairs of
model scales we tried. However, as expected, the extent of gains provided by warmstarting varies
depending on the model scales. For all of these results, we append the base model learning curves
to the target model learning curves of our warmstarting approach in Figures 6. Although this shifts
the learning curves, the impact is minimal, particularly when there is a significant difference in size
between the base and target models.
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Figure 4: Models in Figure 1 trained for more tokens and thus compute. Here, we train each model
for 30 tokens/parameter instead of the 20 recommended by Hoffmann et al. [2022].
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Figure 5: Transferring the best found learning rate at the base scale of 10M (top set of 2 × 3) and
22M (bottom set of 2× 2) using µP. For warmstarting (WS) run, the model weights of the optimal
base model is used to initialize the target model’s training. Warmstarting improves µP convergence,
though the quality speedup and gains depend heavily on the choice of base and target scales.

B.2 Analyzing training dynamics

When applying warmstarting with µP, it is important to also guarantee the optimality of the base scale
hyperparameters when scaled and transferred to the larger target model. This beahviour manifests
in metrics that evolve over training steps, such as the L1 norm of activations, L1/L2 norms of the
weights, etc. Figures 7, 8, 9, 10 together highlight that the loss perspective alone is inadequate in
knowing what will work best across scales. However, it appears that there is a sweet-spot for λshrink
such that it is not too low (= 0 is equivalent to µP) or too high (= 1 is equivalent to not shrinking the
base model). The value of 0.4 suggested in the literature appears to work the best in our setup.

B.3 Successive warmstarting

The entire goal of warmstarting a model from a smaller model is to speed up convergence of the
larger model training. For pretraining LLMs, typically done in a sub-epoch manner by not repeating a
data, we have a unique setup where if we want to train a model at a particular target scale, say 100M,
for compute-optimality [Hoffmann et al., 2022], a warmstarted training run at 100M will consume
more tokens than a standard run from scratch at 100M. This is illustrated in Figure 11 (left) where we
see that for the same amount of compute (in FLOPs) allocated to a vanilla-µP and warmstarted-µP,
the latter consumes more tokens.
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Figure 6: Warmstarting runs with the base model learning curve included. This can be seen with
the position of spikes somewhat delayed the lower the difference between the target and base model
scale is. For correct application of µP, in principle, the trained base model is also available given the
tuning performed to find optimal hyperparameters at the base scale.
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The relative ranking of these methods vary significantly over the relative scale differences. See
Figure 10 for the corresponding plot showing the role of the magnitude of shrink.

Taking this further such that for the same amount of total compute spent, we start from the base
model and progressively scale a model in stages. Figure 11 (left) shows in blue how a 5M model was
warmstarted to 22M and continued training, which was then again warmstarted to 70M, leading to a
much higher consumption in tokens. As expected and observed (see, Figure 9) there is a spike when
warmstarting and continuing a learning curve (see, Figure 11 (right)). However, the increase of model
scale and our approach enables a quick drop in loss, enough for it to match µP’s final performance.

Given that smaller models will tend to have higher loss gains per unit compute (FLOPs), this shows up
in the blue curve generally being better5 than the warmstarted-70M until its size is grown. Therefore,
there is potential in staging warmstarting and continually growing models for improved loss-compute
or tokens-compute efficiency. One flaw that Figure 11 also highlights is that despite having spent
more tokens for the staged, successive warmstarting run, the extra tokens seen do not show up as
improved loss. Either, the compute spent in recovering from the loss spike prevents from improving

5Note that until the blue spike, loss of a warmstarted-22M model is better than a warmstarted-70M model
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Figure 10: Compares the state of weights at different training times: (i) Base indicates the weights
after completion of the full training budget (here, on scale 22M); (ii) Init at Warmstart indicates the
weights post-warmstarting, before beginning training (here, for scale 35M); (iii) Trained indicates
the state of the warmstarted weights after expending the corresponding training budget. Any higher
shrinking factor (> 0.4) interestingly leads to divergence of the final trained L1/L2 norms of the
weights, especially compared to µP. Note, shrink= 1.0 corresponds to no-shrinking of weights before
applying warmed-µP.
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increase; (Left): Under same compute allocation for training a 70M model, using µP, we see that
warmstarting leads to the consumption of more tokens as we do not repeat data when warmstarting,
and naturally successively warmstarting further leads to more token usage; (Right): The learning
curves for the same runs, under the same compute budget as expected for a 70M model. Despite a
spike in loss (blue) for successive warmstarting, it is able to achieve similar loss as the vanilla-µP
run and the warmstarted-70M. Even though the 70M model in the successive warmstarting run sees
much lesser compute.

the loss under total available equivalent compute. Or, the warmstarting method is suboptimal and is
under-utilizing the tokens seen overall across base scale training and warmstarting.

We believe this is a promising direction and together with an improved warmstarting technique
will lead to much more practical speed ups and offer avenues for improved hyperparameter tuning
strategies. Moreover, studying such setups through the lens of compositional generalization [Schug
et al., 2024] and abc-parameterization [Everett et al., 2024] will offer novel and practical insights and
is a certain future direction to pursue.
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