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Abstract
Designing effective reward functions in multi-
agent reinforcement learning (MARL) is a sig-
nificant challenge, often leading to suboptimal or
misaligned behaviors in complex, coordinated en-
vironments. We introduce Multi-agent Reinforce-
ment Learning from Multi-phase Human Feed-
back of Mixed Quality (M3HF), a novel frame-
work that integrates multi-phase human feedback
of mixed quality into the MARL training pro-
cess. By involving humans with diverse exper-
tise levels to provide iterative guidance, M3HF
leverages both expert and non-expert feedback
to continuously refine agents’ policies. During
training, we strategically pause agent learning
for human evaluation, parse feedback using large
language models to assign it appropriately and
update reward functions through predefined tem-
plates and adaptive weights by using weight de-
cay and performance-based adjustments. Our ap-
proach enables the integration of nuanced human
insights across various levels of quality, enhanc-
ing the interpretability and robustness of multi-
agent cooperation. Empirical results in challeng-
ing environments demonstrate that M3HF signif-
icantly outperforms state-of-the-art methods, ef-
fectively addressing the complexities of reward
design in MARL and enabling broader human
participation in the training process.

1. Introduction
Designing effective reward functions for reinforcement
learning (RL) agents is a well-known challenge, particu-
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larly in complex environments where the desired behaviors
are intricate or the rewards are sparse (Singh et al., 2009;
Ng et al., 2000). This difficulty is magnified in multi-agent
reinforcement learning (MARL) settings, where agents must
not only learn optimal individual behaviors but also coordi-
nate with others, leading to an exponential increase in task
complexity (Zhang et al., 2021; Oroojlooy & Hajinezhad,
2023; Du et al., 2023). Sparse or hard-to-learn rewards can
severely hinder the learning process, causing agents to con-
verge slowly or settle on suboptimal policies (Andrychowicz
et al., 2017; Pathak et al., 2017). In such scenarios, relying
solely on environmental rewards may be insufficient for
effective learning. Incorporating human feedback has thus
emerged as a promising approach (Christiano et al., 2017;
Knox & Stone, 2009; Ho & Ermon, 2016), since human
guidance can provide additional, informative signals that
help agents navigate complex tasks more efficiently when
intrinsic rewards are inadequate.

To leverage human expertise in accelerating the learning
process of MARL agents, we propose the Multi-phase Hu-
man Feedback Markov Game (MHF-MG), an extension of
the Markov Game that incorporates human feedback across
multiple generations of learning. At each generation, agents
gather experiences using their current policies but may still
struggle under the original reward function. Humans then
observe the agents’ behaviors, offering feedback that re-
flects the discrepancy between their own (potentially more
expert) policy and the agents’ policies. Building on the
MHF-MG, we develop Multi-agent Reinforcement Learn-
ing from Multi-phase Human Feedback of Mixed Quality
(M3HF), which operationalizes the MHF-MG by directly
integrating feedback into the agents’ reward functions. This
framework utilizes large language models (LLMs) to parse
human feedback of various quality levels, employs prede-
fined templates for structured reward shaping, and applies
adaptive weight adjustments to accommodate mixed-quality
signals.

In summary, we make the following contributions: (1) We
propose the MHF-MG to address reward sparsity and com-
plexity in MARL through iterative human guidance; (2) We
develop the M3HF framework, which leverages LLMs to
parse diverse human feedback and dynamically incorporates
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Figure 1. Workflow of the M3HF method. Each generation k ∈ (0, ..,K − 1) begins with Multi-agent RL training. Agents generate
rollout videos τk for human evaluation. Human feedback uk is parsed by a Large Language Model (LLM) into agent-specific instructions.
The LLM then selects appropriate reward function templates f ∈ F and parameterizes them based on the parsed feedback. New reward
functions Ri

k(s, a) are added to each agent’s reward function pool Pi, with weights wi,m adjusted using performance-based criteria. The
updated reward functions R̂i

k+1(s, a) guide the next generation of agents’ training, creating a loop of agents learning from feedback.

it into agents’ reward functions; (3) We provide a theoretical
analysis justifying the use of rollout-based performance esti-
mates and offering a weight decay mechanism that mitigates
the impact of low-quality feedback. Extensive experiments
in Overcooked demonstrate that M3HF consistently out-
performs strong baselines, ultimately providing a robust
and flexible method for enhancing multi-agent cooperation
under challenging reward structures.

2. Related Work
Multi-Agent Reinforcement Learning (MARL) has been
extensively studied to enable agents to learn coordinated
behaviors in shared environments (Du et al., 2023; Yu et al.,
2022). Traditional MARL approaches often rely on pre-
defined reward functions and suffer from scalability and
stability issues arising from the non-stationarity introduced
by multiple learning agents (Busoniu et al., 2008; Canese
et al., 2021). However, designing appropriate reward func-
tions in MARL remains a significant challenge due to the
complexity of agent interactions and the potential for con-
flicting objectives. To address this, researchers have ex-
plored various techniques for reward design. These include
credit assignment methods (Nguyen et al., 2018; Zhou et al.,
2020), reward shaping (Mannion et al., 2018), and the use
of intrinsic rewards (Du et al., 2019). Furthermore, reward
decomposition approaches have been proposed to balance
individual and team objectives, such as separating rewards
into contributions from self and nearby agents (Zhang et al.,
2020), or combining dense individual rewards with sparse
team rewards (Wang et al., 2022).

Reinforcement Learning from Human Feedback (RLHF)
has emerged as a promising avenue to address the limitations
of handcrafted reward functions. Christiano et al. (2017)
introduced methods for training agents using human pref-
erences to shape the reward function, demonstrating that
human feedback can significantly enhance policy learning.
Building on this, Lee et al. (2021) proposed PEBBLE, lever-
aging unsupervised pre-training and experience relabeling
to improve feedback efficiency in interactive RL settings.

While RLHF has been successfully applied to train Large
Language Models (LLMs) (Ouyang et al., 2022; Shani et al.,
2024; Wang et al., 2025; Hu et al., 2025; Liu et al., 2024),
these approaches primarily focus on aligning LLM outputs
with human preferences through single-turn interactions
and scalar reward signals. Recently, PbMARL (Zhang et al.,
2024) applied RLHF to MARL by utilizing offline pairwise
preference comparisons extracted from pre-collected simu-
lated policy data, but remained limited to an offline single-
phase feedback scenario without dynamic, iterative human
interactions. In contrast, our work incorporates multi-phase,
mixed-quality human feedback directly into the reinforce-
ment learning loop during online training in a multi-agent
environment, enabling more flexible and scalable reward
shaping.

Language Models in Reward Design and Policy Learn-
ing. Recent advancements in LLMs have created oppor-
tunities for incorporating natural language guidance into
reinforcement learning (RL) (Liu et al., 2022; Chen et al.,
2024). For instance, Ma et al. (2024) introduced EUREKA,
a method employing code-generating LLMs to craft sophis-
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ticated reward functions at a human-expert level. However,
extending methods such as EUREKA to multi-agent settings
remains non-trivial, as independently performing rollouts to
optimize rewards for each agent can become prohibitively
expensive and computationally intensive. Similarly, Liang
et al. (2023) proposed Code as Policies, where language
model programs are used for embodied control, allowing
agents to interpret and execute high-level instructions.

Other recent works have further leveraged LLMs to trans-
late linguistic instructions into reward functions and policies.
Yu et al. (2023) utilized language instructions to shape re-
wards for robotic skills, effectively aligning robot behaviors
with human guidance. Kwon et al. (2023) highlighted the
capacity of language models to capture nuanced human
preferences during reward design. In human-AI collabora-
tion (Zou et al., 2025), Hu & Sadigh (2023) demonstrated
how language-instructed RL could foster improved coordi-
nation between humans and agents, Wang et al. (2024) uses
LLMs to convert language constraints into cost signals for
agents. Additionally, Liang et al. (2024) proposed leverag-
ing language model predictive control to iteratively refine
RL policy learning from human feedback more quickly.

Relatedly, Klissarov et al. (2023) presented MOTIF, adopt-
ing LLM-generated intrinsic rewards from textual task spec-
ifications to promote effective exploration in single-agent
environments. Although MOTIF effectively leverages lan-
guage grounding, it is inherently limited to single-agent
contexts and does not incorporate iterative human inter-
actions or complex multi-agent cooperation scenarios. In
contrast, our approach specifically employs LLMs to parse
multi-phase, mixed-quality human feedback dynamically to
iteratively refine reward functions in complex multi-agent
coordination problems.

Multi-phase Human Feedback. Prior works have consid-
ered the role of iterative and multi-phase human feedback
in reinforcement learning. Yuan et al. (2022) and Sumers
et al. (2022) explored multi-phase bidirectional interactions
between humans and agents through predefined communica-
tion protocols, which, while structured, limit the flexibility
of feedback. Zhi-Xuan et al. (2024) examined the use of
human demonstrations via trajectories to convey intentions,
requiring humans to perform the task themselves, which
can be resource-intensive. Early attempts by Chen et al.
(2021) and Zhang et al. (2023) delved into language for task
generalization and policy explanation but were constrained
to single-agent domains.

3. Preliminaries
We consider a Markov Game (Littman, 1994), defined by
the tuple ⟨N ,S,A, P,R, γ⟩, in multi-agent reinforcement
learning (MARL). Here, N = {1, 2, . . . , N} represents the

set of agents. The state space S encompasses all possible
configurations of the environment, while the action space
A denotes the set of actions available to each agent. At
each time step t, the environment is in a state st ∈ S . Each
agent i ∈ N selects an action ait ∈ A according to its
policy πi(ait|st). The joint action at = (a1t , a

2
t , . . . , a

N
t )

leads to a state transition to st+1 according to the transition
function P (st+1|st,at). The agents receive a shared reward
rt = R(st,at), where R : S × AN → R is the reward
function, and γ ∈ [0, 1) is the discount factor. The objective
for each agent is to learn a policy πi that maximizes the
expected cumulative discounted reward:

J i(πi) = E

[ ∞∑
t=0

γtrt

∣∣∣∣πi, π−i

]
, (1)

where π−i denotes the policies of all agents other than agent
i, and the expectation is over the trajectories induced by the
policies and the environment dynamics.

In our setting, although the reward function R is known
(denoted as original reward function Rori), it is challenging
for agents to learn optimal policies due to its sparsity or
complexity. This difficulty can lead to slow convergence
or suboptimal performance for traditional reinforcement
learning algorithms.

4. Method
To address the challenges posed by sparse or complex re-
ward functions in multi-agent environments, we introduce
the Multi-phase Human Feedback Markov Game (MHF-
MG) as a tuple, ⟨N ,S,A, P,R, γ,U , πh⟩. Compared to
a standard Markov Game, the added U denotes the set of
possible human utterances or feedback messages. πh rep-
resents the human’s policy. In this framework, the agents
interact with both the environment and a human over dis-
crete generations indexed by k = 0, 1, . . . ,K − 1. At each
generation k, agents collect experiences by interacting with
the environment using their current policies πi

k.

Each generation k consists of hundreds of iterations; each
iteration comprises tens of episodes, and each episode spans
on the order of hundreds of environment time steps t, de-
pending on the specific environment. This setup allows
agents to gain substantial experience within a generation
before receiving human feedback. The human possesses a
policy πh, which may be sub-optimal but is assumed to be
initially superior to the agents’ policies. This human policy
provides valuable guidance that can accelerate the agents’
learning. The human observes the agents’ behaviors and
generates utterances uk ∈ U at each generation k, offering
feedback based on the discrepancy between their own policy
and the agents’ current policies.

We model the human’s utterances as a mapping f from the
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(a) Overcooked-A (b) Overcooked-B (c) Overcooked-C (d) Lettuce-Tomato
salad recipe

(e) Lettuce-Onion-
Tomato salad recipe

Figure 2. The Overcooked Environment. (a)-(c) The three different kitchen layouts with increasing difficulty: (a) Overcooked-A offers
ample movable space; (b) Overcooked-B forces agents divided on both sides to cooperate due to the partitioned kitchen; (c) Overcooked-C
has less movable space compared to A. (d)-(e) The two salad recipes: In both recipes, the corresponding chopped foods must be combined
on a single plate and delivered. To facilitate training, we use macro-actions based on (Xiao et al., 2022), where the agents’ actions are
simplified. More details refer to Section 5.

human’s policy and the agents’ policies to the set of possible
utterances:

uk = f
(
πh, π1

k, π
2
k, . . . , π

N
k

)
, (2)

where f captures how the human generates feedback by
comparing their policy with those of the agents. The utter-
ances may include specific action recommendations, strate-
gic advice, or corrections aimed at guiding the agents toward
better performance. The agents parse the human’s utterance
uk to extract actionable information. This process may
involve natural language understanding techniques, poten-
tially leveraging large language models (LLMs) to interpret
the feedback accurately. Based on the parsed feedback,
each agent adjusts its reward function to incorporate the
human’s guidance. For agent i, the updated reward function
at generation k + 1 becomes:

Ri
k+1(s,a) = R(s,a) +Rhf

i
k(s,a, uk), (3)

where Rhf
i
k represents the reward adjustment derived from

the human’s feedback uk at generation k. This adjustment
modifies the reward signal to encourage behaviors aligned
with the human’s guidance, effectively reshaping the agents’
learning objectives.

The agents then update their policies for the next generation
by optimizing the expected cumulative reward under the
new reward function Ri,k+1. Formally, the policy update
for agent i is given by:

πi
k+1 = argmax

πi
E

[ ∞∑
t=0

γtRi
k+1(st,at)

∣∣∣∣πi, π−i
k

]
, (4)

where π−i
k denotes the policies of all other agents at genera-

tion k, and the expectation is taken over the distribution of
trajectories induced by the policies and the environment dy-
namics. This iterative process continues across generations,
with agents repeatedly interacting with the environment,

receiving human feedback, and updating their reward func-
tions and policies accordingly. The inclusion of human
feedback helps agents navigate the challenges of sparse or
complex reward functions by providing additional signals
that highlight desirable behaviors and strategies. In this pa-
per, to minimize human involvement, we limit agent-human
interactions to at most five times throughout the entire train-
ing process, enabling efficient learning with minimal guid-
ance.

4.1. Agent to Human Interaction

In the MHF-MG, agents periodically interact with the hu-
man to receive feedback that guides their learning process.
This interaction is initiated by the agents, who decide when
to seek human input based on specific criteria. The primary
mechanism for this interaction is through the generation of
rollout trajectories, which approximate the agents’ current
policy performance.

Rollouts Generation and Communication. During each
generation k, agents interact with the environment using
their current policies πi

k, collecting substantial experience
over multiple iterations. However, due to the complexity
or sparsity of the original reward function R, agents may
still face difficulties in identifying efficient strategies or
converging quickly to optimal policies.

To address these challenges, agents periodically seek human
feedback based on predefined criteria. Specifically, after
every fixed number of training episodes, agents temporarily
pause their training and generate evaluation rollouts. These
rollouts consist of X independent trajectories collected un-
der the fixed joint policy πk, defined formally as:

τ
(x)
k =

{(
s
(x)
t ,a

(x)
t , r

(x)
t

)}H−1

t=0
, x = 1, . . . , X, (5)

where H is the time horizon, s(x)t denotes the state at time
t, a(x)t is the joint action chosen by all agents in trajectory

4



Multi-agent Reinforcement Learning from Multi-phase Human Feedback of Mixed Quality

x, and r
(x)
t is the resulting environmental reward. These

rollouts allow human observers to assess current agent be-
haviors and provide structured, actionable feedback for sub-
sequent policy improvements.

Approximation of Policy Performance via Rollouts. Con-
sider a stochastic game in which all agents follow stationary
joint policies. At generation k, the joint policy πk com-
bined with the environment dynamics induces a distribution
over state-action-reward trajectories. Our goal is to formally
justify that empirical estimates obtained from multiple col-
lected rollouts reliably approximate the true performance
J(πk). Given the empirical trajectories τ (m)

k defined previ-
ously, we define each rollout’s discounted return as:

G
(x)
H = (1− γ)

H−1∑
t=0

γtr
(x)
t , x = 1, . . . , X, (6)

and consider the empirical performance estimator:

ĴX,H(πk) =
1

X

X∑
x=1

G
(x)
H . (7)

Under the Strong Law of Large Numbers (Kolmogorov,
1933; Durrett, 2010), as M → ∞, this estimator converges
almost surely to the finite-horizon expected discounted re-
turn:

ĴX,H(πk)
a.s.−−−−→

X→∞
JH(πk),

where JH(πk) = (1− γ)

H−1∑
t=0

γt E[rt].
(8)

Furthermore, when horizon length H grows towards infinity,
the finite-horizon discounted return JH(πk) converges to
the true discounted return J(πk). Thus, we have:

Proposition 4.1 (Performance Estimation). Under Assump-
tion A.1 and Assumption A.4, assuming bounded rewards
and given X independent rollouts of length H collected
under policy πk, the empirical estimator converges almost
surely to the true discounted expected return:

ĴX,H(πk) −−−−→
X→∞
H→∞

J(πk) (a.s.) (9)

Leveraging Proposition 4.1, the multiple rollout trajectories
serve as reliable empirical estimates of the policy perfor-
mance J(πk). Human evaluators use these rollouts to effec-
tively assess agent behavior and provide targeted feedback
uk = f(τk;π

h). This assumption that empirical rollout data
accurately reflects policy-induced distributions is analogous
to common practices in offline reinforcement learning and
policy evaluation contexts (Levine et al., 2020; Kumar et al.,
2019).

4.2. Human to Agents

Feedback Parsing. Our method employs a Large Language
Model (LLM), denoted as M, to parse the human feedback
uk received at generation k and assign it either to specific
agents or to all agents collectively. This parsing process is
mathematically represented as ui

k, u
all
k = M(uk, N), where

N is the number of agents, ui
k is the feedback assigned to

agent i, and uall
k is the feedback applicable to all agents.

This approach ensures that each agent receives relevant
instructions or corrections based on the human input. The
detailed prompts used for guiding the LLM in this parsing
process are provided in the Appendix D.4.

Generating New Reward Function The new reward func-
tion Ri

k for the current generation involves selecting and
parameterizing predefined function templates based on hu-
man feedback. For each agent i, the new reward function
for the current generation k is generated as follows:

Ri
k(s, a) = M(F, ui

k, u
all
k , e), (10)

where F is a set of predefined function templates, ui
k is the

parsed feedback for agent i at generation k, and e are the
entities based on the environment states.

Predefined Function Templates. In our framework, we
define a set of predefined reward function templates F that
can be parameterized based on human feedback and the
specific entities within the environment, as shown in Fig-
ure 1. These templates enable the system to systematically
generate reward functions aligned with human intentions,
facilitating efficient policy updates in response to feedback.
The templates capture common interaction patterns such as
distance-based rewards that encourage agents to minimize
their distance to target entities, action-based rewards that
incentivize specific actions, and status-based rewards that
reward agents for achieving certain states of the environ-
ment. For instance, given the human feedback “I think the
red chef needs to be responsible for getting the onion” and
the LLM will select the distance-based reward template and
parameterize it as:

Ri
k(s, a) = −∥s[Agent1.pos]− s[Onion.pos]∥2. (11)

Here, the s[Agent1.pos] and s[Onion.pos] are the relevant
entities of the observation vector, which encourages Agent
1 (The red chef in the rollout video) to minimize its distance
to the onion, thus aligning its behavior with the desired ob-
jective. This structured approach allows agents to interpret
and act upon multi-fidelity human feedback effectively. De-
tailed formulations of these reward templates and additional
examples are provided in the Appendix D.2.

Reward Function for the next generation. At the end
of the processing of the human feedback in generation k,
we conclude the final reward function for each agent to a
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(f) Overcooked-C : Lettuce-Onion-Tomato

Figure 3. Performance comparison of M3HF against baseline methods across different Overcooked environments and recipes. The plots
show the mean episode return over 1000 training iterations (approximately 25k episodes) for (a-c) Lettuce-Tomato salad recipe and
(d-f) Lettuce-Onion-Tomato salad recipe in Overcooked layouts A, B, and C, respectively. M3HF consistently outperforms the baseline
methods (Mac-based Baseline, IPPO, MAPPO) across all scenarios, with performance improvements becoming more pronounced in
more complex environments and recipes. Vertical lines indicate the start of each generation where human feedback is incorporated. All
experiments are run with three random seeds, and the shaded areas represent the standard deviation.

weighted combination of the base reward and the consis-
tency weight:

R̂i
k+1(s, a) =

∑
j
wi,j ·Ri

j(s, a) ,∀Ri
j ∈ Pi (12)

Here, R̂i
k+1(s, a) denotes the final reward function for agent

i after processing the k-th generation of human feedback,
and it will be used for the next generation k + 1 for the
policy training and await the subsequent rollout generation
and human interaction, as outlined in Algorithm 1.

One main challenge is how to set the weights wi,j which can
effectively balance different reward components and adapt
to changing human feedback. To address this challenge, we
employ weight decay and performance-based adjustment to
optimize the weights wi,j .

4.3. Weight Decay and Performance-based Adjustment

The straightforward way to adjust weights is based on a
simple weight decay mechanism and performance feedback.
When generating a new reward function, we add it to the
pool Pi, then set an initial weight, wi,m = 1

|Pi|+1 . Then,
we apply a decay to existing weights of the former reward

functions:

wi,m = wi,m · αM−m,∀m ∈ 1, . . . ,M − 1, (13)

where α ∈ (0, 1) is a constant decay factor. We then nor-
malize all weights by using

wi,m =
wi,m∑
wi,m

,∀m ∈ 1, . . . ,M. (14)

Additionally, we introduce a performance-based adjustment
rule that compares the agent’s performance under the origi-
nal reward function Ri

ori across consecutive generations. We
calculate rori

i
k+1−rori

i
k, where rori

i
k+1 is the performance of

the policy trained using the new reward function R̂i
k+1(s, a)

(after processing human feedback in generation k) when
evaluated on Ri

ori, and rori
i
k is the performance of the policy

trained using the previous reward function Ri
k(s, a) (before

processing human feedback in generation k) when evaluated
on Ri

ori. If this difference is positive, it indicates that the
new reward function leads to improved performance on the
original task. Otherwise, it suggests that the new reward
function may be detrimental to the agent’s performance on
the original task. We then adjust the weight of the newest
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reward function component wi,m as follows:

wi,m =

{
wi,m + β, if rori

i
k+1 − rori

i
k > 0,

max(0, wi,m − β), otherwise,
(15)

where β is a small adjustment factor. This approach allows
for the dynamic adjustment of the reward function pool,
emphasizing recent human feedback while maintaining a di-
verse set of reward components and adapting to performance
changes.

4.4. Analysis of the Low-Quality Feedback

We now examine the robustness of our proposed M3HF
framework under the scenario where human feedback of
mixed quality—including noisy, irrelevant, or erroneous
instructions—is provided to the agents. Such situations
naturally arise due to confusion, limited human domain
expertise, misinterpretation of agent behaviors, or misun-
derstanding of the task objectives. Under these conditions,
it is crucial for a robust algorithm to clearly mitigate the
negative impact from low-quality feedback signals, while
consistently leveraging high-quality feedback to enhance
learning. Formally, at each generation k, we integrate re-
wards by forming a weighted combination of the original
task-based reward and the accumulated human-derived feed-
back rewards:

R̂k =

k∑
m=0

wk
mRm, (16)

where we define R0 = Rori as the original reward func-
tion and Rm>0 = Rhuman as human-generated feedback
rewards. Correspondingly, the weights wk

m are dynamically
adjusted as described in Equation 15, explicitly accounting
for observable agent performance improvements or degra-
dations.

Due to the design of our weighting mechanism, negative or
unhelpful feedback rapidly loses influence, as their corre-
sponding weights decrease after any observed dip or stag-
nation of performance improvements. Conversely, helpful
feedback continuously guides performance upwards, main-
taining substantial influence through increased weighting in
the combined reward function. We formalize this intuition
into the following robustness result:

Proposition 4.2 (Robustness to Low-Quality Human Feed-
back). Under Assumption A.3 (Performance Estimation Ac-
curacy) and Assumption A.2 (Learning Algorithm Conver-
gence), for any given integer K ≥ 1 and any arbitrary
sequence of human feedback rewards (Rk)k=1,2,...,K , the
performance improvement satisfies:

Jori(πK)− Jori(π0) ≥
n(K)∑
j=1

∆rij − (δ − ϵ), (17)

where δ is a bounded, positive constant independent of K,
and each ij denotes a generation index at which the received
human feedback reward is beneficial (i.e., yields a positive
increment ∆rij > 0).

Intuitively, Proposition 4.2 formalizes the notion that our
algorithm accumulates the positive contributions of helpful
feedback over multiple rounds of interaction. In contrast,
its performance can suffer at most a single bounded degra-
dation, reflecting the limited and transient influence of the
most recent faulty feedback. Importantly, this robustness
property ensures stable long-term learning dynamics even
when human inputs are imperfect or mixed quality. We
provide a detailed proof of this proposition in Appendix B.

5. Experiment
In our experiment, we aim to address three key questions:
Q1. What is the overall performance of M3HF compared
to current state-of-the-art methods? Q2. To what extent
does multi-quality human feedback impact the performance
of M3HF within the same environment? Q3. Can Vision-
Language Models (VLMs) serve as a scalable and effective
alternative to human feedback in M3HF? In all experiments
involving language-driven feedback parsing, we use the
LLM gpt-4o-2024-11-20 (OpenAI, 2024).

Environment - Macro-Action-Based Overcooked, as
shown in Figure 2. In our experiments, we utilize a chal-
lenging multi-agent environment based on the Overcooked
game (Wu et al., 2021; Xiao et al., 2022), where three agents
must learn to cooperatively prepare a correct salad and de-
liver it to a designated delivery cell. We followed the work
of Xiao et al. (2022), where agents operate using macro-
actions derived from primitive actions. These macro-actions
facilitate effective navigation and interaction within the envi-
ronment but also introduce complexities in learning optimal
policies due to the increased action space. Each agent ob-
serves only the positions and statuses of entities within a
5× 5 square centered on itself, introducing partial observ-
ability and heightening the coordination challenge. The
agents will only receive a significant reward for delivering
the correct salad (+200) and punishment if they deliver the
wrong salad or food (-50). During training, each generation
consists of 200 iterations; each iteration runs 25 episodes of
up to 200 timesteps. For more details about the environment
setting, please refer to the Appendix C.

Baselines. We evaluate against three strong multi-agent
reinforcement learning approaches: The MAPPO (Yu et al.,
2022), IPPO (De Witt et al., 2020), and a Macro-Action-
Based Baseline from Xiao et al. (2022). Our own frame-
work adopts IPPO as the backbone algorithm, while the
macro-action baseline is the average performance of the two
best-performing methods in Xiao et al. (2022), namely Mac-
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1. Game Start: The red agent  
needs to pass the vegetables 

from right to left.

2. Mid-game: The red agent 
successfully passes on the 

onion and tomato.

4. Endgame: The blue agent 
delivered the wrong salad, the 

lettuce was not sliced ??and 
blended into the salad.

3. Important: Blue Agent mixes 
onion and tomato salad, but 

also needs to mix sliced ??lettuce.

(a) Example rollout in Generation 3

" The agent s successf ul l y compl et e t he t ask of  
cr eat i ng t wo l et t uce,  oni on,  and t omat o 

sal ads.  Not hi ng t o i mpr ove"

Low Qual i t y Feedback

" Rose agent ,  you coul d consi der  br i ngi ng t he 
kni f e t o t he i ngr edi ent s and choppi ng t hem 
near  t hei r  sour ce t o save t i me.  Bot h gr een 

agent s,  you can i mpr ove coor di nat i on.  Whi l e 
one agent  chops,  t he ot her  coul d al r eady be 

r et r i evi ng a pl at e or  pr epar i ng t he next  
i ngr edi ent . "

VLM Feedback

" The bl ue and gr een chef s shoul d not  ser ve t he 
t omat o and oni on sal ad,  whi ch i s t he wr ong 
var i et y.  Af t er  r ecei v i ng t he l et t uce,  t hey 

shoul d cut  i t  and mi x i t  bef or e ser vi ng i t .  
The r ed agent  shoul d not  t ouch t he veget abl es 

af t er  pl aci ng t hem on t he mi ddl e t abl e.  "

Human Feedback

(b) Feedback example from different source
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M3HF (w/ Ideal Human Feedback)

(c) Overcooked-B : Lettuce-Onion-Tomato Salad

Figure 4. Impact of Mixed-Quality Feedback on Agent Performance. (a) An example is the rollout in Generation 3, where agents exhibit
suboptimal behavior due to poor coordination and inefficient task execution. (b) Low-quality feedback provided to the agents, inaccurately
stating that they successfully completed the task and offering no constructive guidance for improvement. (c) Performance comparison on
Overcooked-B with the Lettuce-Onion-Tomato salad recipe under mixed quality feedback conditions.

IAICC and Mac-CAC, over 25,000 training episodes. Fur-
ther details on these baselines can be found in Appendix D.

Experiment Results for Question 1: Overall Perfor-
mance of M3HF Figure 3 demonstrates the superior per-
formance of M3HF compared to SOTA baselines across
various Overcooked environments and recipes. Our method
consistently outperforms Mac-based Baseline, IPPO, and
MAPPO in all scenarios, maintaining a substantial perfor-
mance advantage across different levels of task complexity.
The method exhibits accelerated learning, particularly in
early training stages, and achieves higher asymptotic per-
formance levels. Notably, in the simpler recipe setting,
Figure 3a, 3b and 3c, M3HF converges to the optimal per-
formance less than five rounds of interaction, showcasing
the method’s exceptional efficiency in more straightforward
settings. The method’s robustness is evident as we move
to more complex environments. In the challenging Layout
C (Figure 3c and 3f), M3HF maintains its effective perfor-
mance advantage, particularly outperforming its backbone
algorithm IPPO. This consistent superiority across varying
complexity levels underscores M3HF’s effectiveness and
adaptability in diverse multi-agent scenarios.

In addition, it is important to note that the baseline MAPPO
employs a shared policy among agents alongside a cen-
tralized value function, while IPPO utilizes independent
policies. We have observed that IPPO often achieves better
results in highly coordination-intensive scenarios such as
Overcooked, potentially due to reduced interference among
agents during policy training. Prior studies (De Witt et al.,
2020; Yu et al., 2022) similarly report that IPPO can match
or outperform MAPPO even without centralized critics.

Experiment Results for Question 2: Impact of Mixed-
Quality Human Feedback We evaluated our method when
facing low-quality feedback by simulating such feedback
at each generation. For example, in the rollout shown in
Figure 4a, agents exhibited suboptimal behavior due to poor
coordination. Despite this, the low-quality feedback inaccu-
rately stated, “The agents successfully complete the task of
creating two lettuce, onion, and tomato salads. Nothing to
improve,” as depicted in Figure 4b. When training with this
irrelevant or erroneous feedback, the agents’ performance,
illustrated in Figure 4c, remained only slightly below that
of the baseline IPPO algorithm and did not degrade signifi-
cantly. This outcome supports Proposition 4.2, demonstrat-
ing that M3HF effectively mitigates the impact of unhelpful
feedback through its weight adjustment mechanisms. Even
with mixed-quality human input, the framework maintains
performance close to the backbone algorithm, showcasing
its resilience to low-quality guidance.

Experiment Results for Question 3: VLM-based Feed-
back Generation We explore the potential of VLMs as an
alternative to human feedback. The VLM is given the same
video rollouts that humans would observe, sampled at a rate
of 1 frame per second. Using all sampled frames and a
prompt asking for feedback (detailed in Appendix D.4), the
VLM generates feedback to the training agents. In our imple-
mentation, we leverage Gemini-1.5-Pro-002 (Reid
et al., 2024), which is chosen for its multimodal under-
standing capability across a long context. We showcase
an example of VLM feedback in Figure 4b alongside the
human feedback. Here, the feedback provided by the VLM
resembles human-like style but lacks specificity on critical
issues, which, in this case, are “wrong variety”, “cut it and
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Table 1. Ablation results comparing feedback parsing and weight
adjustments. Overcooked-B: Lettuce-Onion- Tomato Salad sce-
nario.

Method Average Return (Mean ± Std)

Raw Feedback (w/o parsing) 45.3 ± 5.2
LLM Parsing Only (no weight adj.) 68.7 ± 4.1
Full M3HF (LLM parsing + weight adj.) 102.7 ± 10.8

Table 2. Performance comparison between single-phase and multi-
phase feedback methods. Overcooked-B: Lettuce-Onion- Tomato
Salad scenario.

Method Average Return (Mean ± Std)

Single-phase feedback (initial only) 43.1 ± 10.3
Multi-phase feedback (M3HF) 102.7 ± 10.8

mix it before serving it”. Instead it offers vague suggestions
like “improve coordination”, which is hard to translate into
reward design. This limitation is indicative of the VLM’s
current inability to perform complex reasoning across im-
ages. As a result, when plugged into our M3HF framework,
the VLM feedback method does not yield much benefit,
as shown in Figure 4c. Nonetheless, we expect improved
performance with future advancements in VLM.

Ablation 1: Impact of Feedback Parsing and Weight
Adjustment. We compare our complete proposed feedback
integration pipeline (“Full M3HF”) against two variants:
Raw Feedback, which directly translates human instructions
into rewards without parsing or structured adjustment, and
LLM Parsing Only, which parses human feedback into struc-
tured reward functions without performance-based weight
adjustment. The results are summarized in Table 1. The
results indicate that structured parsing of feedback impacts
considerably performance, increasing average returns sig-
nificantly compared to raw human feedback. Furthermore,
adding weight adjustment mechanisms based on agent per-
formance improvements further amplifies policy learning
efficiency, underscoring the importance of combining struc-
tured parsing and dynamic reward weighting.

Ablation 2: Single-phase vs. Multi-phase Feedback. We
compared our proposed multi-phase feedback collection
methodology against a single-phase scenario (feedback pro-
vided only once at the start of training). Results are summa-
rized in Table 2. Table 2 demonstrates superior performance
for our multi-phase framework over single-phase feedback,
highlighting the effectiveness of iterative, incremental feed-
back in enabling agents’ policy refinement across multiple
training stages.

Ablation 3: Comparison to Intrinsic Reward Methods.
We further evaluated the effectiveness of M3HF relative
to intrinsic reward-based methods, specifically comparing
against the IRAT method (Wang et al., 2022). As Over-
cooked lacks built-in intrinsic rewards, we manually con-
structed three variants of intrinsic reward functions (denoted

Table 3. Comparison of intrinsic reward-based methods with our
M3HF on Overcooked-B: Lettuce-Onion- Tomato Salad task. Eval-
uation at training iterations 400, 600, 800, and 1000 (corresponding
to Generations 1–4 in M3HF). Mean and standard deviation re-
ported over three seeds.

Algorithm Iter. 400 Iter. 600 Iter. 800 Iter. 1000

IPPO (base) 19.2 ± 4.5 23.1 ± 2.7 23.2 ± 3.3 27.4 ± 4.9
IRAT-rw 1 68.9 ± 10.1 52.5 ± 11.3 78.2 ± 14.5 94.9 ± 10.7
IRAT-rw 2 1.1 ± 2.1 9.3 ± 11.4 16.0 ± 8.1 34.5 ± 14.0
IRAT-rw 3 10.8 ± 9.1 17.3 ± 10.6 21.3 ± 8.7 33.8 ± 9.9

M3HF (Ours) 164.8 ± 1.2 — — —

as rw 1, rw 2, rw 3) reflecting progressively stronger co-
ordination requirements:

• rw 1: Rewards an agent whenever it picks up or chops
any ingredient.

• rw 2: Rewards the agent upon successfully reaching
the knife after picking up an ingredient.

• rw 3: Rewards the agent only upon successfully chop-
ping an ingredient after reaching the knife, approximat-
ing an optimal coordination strategy.

The results summarized in Table 3 show that while intrinsic
reward methods (IRAT variants) typically enhance perfor-
mance over vanilla IPPO, they still remain significantly
inferior to M3HF, especially in the early stages of train-
ing. This is largely due to IRAT’s reliance on predefined
reward structures generated prior to observing actual pol-
icy behaviors, resulting in suboptimal coordination patterns
(e.g., multiple agents crowding the same object). In con-
trast, M3HF utilizes human feedback derived from observed
rollouts, precisely identifying and targeting coordination
failures, enabling agents to quickly improve policy behav-
iors and achieve superior cooperative results.

6. Conclusion
In this paper, we introduced M3HF, a novel framework for
MARL that incorporates multi-phase human feedback of
mixed quality to address the challenges of sparse or complex
reward signals. By extending the Markov Game to include
human input and leveraging LLMs to parse and integrate
human feedback, our approach enables agents to learn more
effectively. Empirically, M3HF outperforms strong base-
lines, particularly in scenarios with increasing complexity.
Our findings highlight the potential of integrating diverse
human insights to enhance multi-agent policy learning in a
more accessible way.
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Impact Statement
This research introduces M3HF, a framework that enables
multi-agent reinforcement learning systems to learn effec-
tively from human feedback of varying quality. By allowing
non-expert humans to provide meaningful feedback to AI
systems, M3HF democratizes the development of multi-
agent systems while making them more robust to real-world
situations where perfect expert guidance may not be avail-
able. This could accelerate the deployment of collaborative
AI systems in areas such as healthcare, manufacturing, and
emergency response, where multiple agents need to coordi-
nate while incorporating human domain knowledge. While
this increased accessibility could lead to broader adoption,
we acknowledge the importance of appropriate oversight
and encourage future work to explore necessary safeguards
for such systems.
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A. Assumptions
We make the following assumptions to facilitate the analy-
sis:

Assumption A.1 (Bounded Rewards). All reward functions,
including the original reward Ri

ori, the true human feedback
reward Rtrue

i
k, and the noisy human feedback reward Rhf

i
k,

are uniformly bounded:

|R(s, a)| ≤ Rmax, ∀s, a. (18)

This assumption is standard in reinforcement learning to
ensure stability and convergence (Sutton, 2018).

Assumption A.2 (Learning Algorithm Convergence).
Given a fixed reward function, the learning algorithm con-
verges to a policy that is ϵ-optimal with respect to the ex-
pected cumulative reward under that reward function:

lim
t→∞

E[J i
R(π

i
t)] ≥ JR

i (πi
∗)− ϵ, (19)

where J i
R(π) is the expected cumulative reward for agent i

under policy π and reward function R, and πi
∗ is the optimal

policy for agent i under R.

Assumption A.3 (Performance Estimation Accuracy). The
estimate of the performance difference ∆rik = J i

ori(π
i
k+1)−

J i
ori(π

i
k) accurately reflects the true change in expected cu-

mulative reward under the original reward function Ri
ori

between generations k and k + 1.

This assumption relies on having sufficient samples to esti-
mate the performance difference accurately, which can be
ensured through appropriate exploration and sample size.

Assumption A.4 (Independent Roll-outs). The X rollout
trajectories {τ (x)k }Xx=1 collected under the fixed joint policy
πk are independent and identically distributed (i.i.d.).

B. Proof of Proposition 4.2
In this section, we provide a complete and structured proof
for Proposition 4.2.

Let ij denote the generation index at which the incorpora-
tion of human feedback explicitly yields a positive policy
improvement for the j-th time, and let n(K) represent the
number of times positive improvements (helpful human
feedback) occur until timestep K. Formally, each ij sat-
isfies ∆rij > 0, and indices between ij−1 and ij denote
interactions with low-quality or unhelpful feedback where
∆rk < 0.

The proposition explicitly states that for any generation k in
the interval ij−1 ≤ k < ij , the performance satisfies:

J(πk)− J(π0) =

j−1∑
l=1

∆ril , for k = ij−1,

and

J(πk)− J(π0) ≥
j−1∑
l=1

∆ril − δ, for all ij−1 < k < ij ,

where δ is a small bounded positive constant defined explic-
itly later.

The proof proceeds in three steps:

Step 1: Performance at positive improvement milestones
(k = ij−1). By definition of ij , we clearly have:

J(πij−1
)− J(π0) =

j−1∑
l=1

(
J(πil)− J(πil−1

)
)
=

j−1∑
l=1

∆ril .

Step 2: Performance between positive milestones (ij−1 <
k < ij). For indices between ij−1 and ij , human feed-
back results in negative or zero performance improvement
(∆rk ≤ 0). According to our algorithm and Eq. (15), the
weight assigned to any unhelpful feedback reward func-
tion is adjusted (reduced), and eventually clipped to zero.
Specifically, whenever this negative improvement occurs,
the adaptive weighting mechanism significantly reduces or
eliminates the influence of this poor-quality feedback. Thus,
the previously established optimal policy at timestep ij−1

remains largely unchanged. The largest possible degrada-
tion from the previous high-performance point is therefore
bounded by a constant δ > 0, independent of the total
interaction length K:

J(πk)− J(πij−1
) ≥ −δ, ∀ij−1 < k < ij .

Step 3: Combining two results. Combining the two pre-
ceding steps directly, we establish the performance lower
bound at any time step k within the interval:

J(πk)− J(π0)

= (J(πk)− J(πij−1
)) + (J(πij−1

)− J(π0))

≥ −δ +

j−1∑
l=1

∆ril .

Since this holds for all intervals of indices, applying it specif-
ically to the final interval (after the last helpful feedback
index n(K)), we obtain the desired inequality:

J(πK)− J(π0) ≥
n(K)∑
j=1

∆rij − δ.

Thus, Proposition 4.2 follows directly.
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Explicit bound on the constant δ. We next explicitly
quantify the bounded constant δ appearing due to one step
of degraded performance. Consider the following general
lemma:
Lemma B.1. Refer to Puterman (1990) and Lemma 6.2
in Bertsekas & Tsitsiklis (1996), Let r1, r2, r3 be three
bounded reward functions. Define combined rewards:{

R = (1− p) r1 + p r2,

R′ = (1− p′ − q) r1 + p′ r2 + q r3.

Let π and π′ be the optimal policies corresponding respec-
tively to R and R′. Then the following performance bound
holds, for a discount factor γ ∈ (0, 1):

V π
r1 − V π′

r1 ≤ 2

1− γ
∥R−R′∥∞

≤ 2

1− γ

[
|p′ + q − p| ∥ r1 − r3∥∞ + |p− p′| ∥ r2 − r3∥∞

]
.

We now explicitly apply this lemma in our scenario. Con-
sider the timestep k immediately after the last beneficial
feedback index ij , with:

• r1 = Rori, the original environment reward.

• r2 = weighted combination of previously beneficial
feedback.

• r3 = Rk, the current negative feedback reward.

Then, we have:

V πk

Rori
− V

πij

Rori
≤ 2

1− γ
[|p′ + q − p|∥Rori −Rk∥∞ + |p− p′|∥r2 −Rk∥∞]

(20)

By the current weight updating scheme (Eqs. 15), we ex-
plicitly have:

• q = 1/(2+j)
1+1/(2+j) =

1
3+j , and

• 0 ≤ p− p′ ≤ p− αjp = p(1− αj).

Noting that the feedback probability p is bounded (e.g. 0 ≤
p ≤ 1) and that all reward functions satisfy ∥r∥∞ ≤ Rmax,
we obtain a uniform upper bound for δ. In particular,

δ ≤ 2

1− γ

[∣∣ 1
3+j − (1− αj)p

∣∣ ∥Rori −Rk∥∞ + p (1− αj) ∥r2 −Rk∥∞
]
.

(21)
Since p ≤ 1 and ∥Rori − Rk∥∞, ∥r2 − Rk∥∞ ≤ Rmax,
the right-hand side is a finite constant independent of the
total iteration count K. This uniform bound on δ highlights
the robustness of our feedback-integration mechanism even
when occasional poor-quality feedback occurs.

This completes the full proof.

C. Environment Details
In this section, we will introduce the details of the environ-
ments we are using. We follow the setting from

Goal. Three agents need to learn cooperating with each
other to prepare a Tomato-Lettuce-Onion salad and deliver it
to the ‘star’ counter cell as soon as possible. The challenge
is that the recipe of making a tomato-lettuce-onion salad
is unknown to agents. Agents have to learn the correct
procedure in terms of picking up raw vegetables, chopping,
and merging in a plate before delivering.

State Space. The environment is a 7×7 grid world involving
three agents, one tomato, one lettuce, one onion, two plates,
two cutting boards and one delivery cell. The global state
information consists of the positions of each agent and
above items, and the status of each vegetable: chopped,
unchopped, or the progress under chopping.

Primitive-Action Space. Each agent has five primitive-
actions: up, down, left, right and stay. Agents can
move around and achieve picking, placing, chopping and
delivering by standing next to the corresponding cell and
moving against it (e.g., in Figure 2a, the pink agent can
move right and then move up to pick up the tomato).

Macro-Action Space. Here, we first describe the main func-
tion of each macro-action and then list the corresponding
termination conditions.

• Five one-step macro-actions that are the same as the
primitive ones;

• Chop, cuts a raw vegetable into pieces (taking three
time steps) when the agent stands next to a cutting
board and an unchopped vegetable is on the board,
otherwise it does nothing; and it terminates when:

– The vegetable on the cutting board has been
chopped into pieces;

– The agent is not next to a cutting board;
– There is no unchopped vegetable on the cutting

board;
– The agent holds something in hand.

• Get-Lettuce, Get-Tomato, and Get-Onion, navigate the
agent to the latest observed position of the vegetable,
and pick the vegetable up if it is there; otherwise, the
agent moves to check the initial position of the veg-
etable. The corresponding termination conditions are
listed below:

– The agent successfully picks up a chopped or un-
chopped vegetable;

14



Multi-agent Reinforcement Learning from Multi-phase Human Feedback of Mixed Quality

– The agent observes the target vegetable is held by
another agent or itself;

– The agent is holding something else in hand;
– The agent’s path to the vegetable is blocked by

another agent;
– The agent does not find the vegetable either at the

latest observed location or the initial location;
– The agent attempts to enter the same cell with an-

other agent, but has a lower priority than another
agent.

• Get-Plate-1/2, navigates the agent to the latest ob-
served position of the plate, and picks the vegetable
up if it is there; otherwise, the agent moves to check
the initial position of the vegetable. The corresponding
termination conditions are listed below:

– The agent successfully picks up a plate;
– The agent observes the target plate is held by an-

other agent or itself;
– The agent is holding something else in hand;
– The agent’s path to the plate is blocked by another

agent;
– The agent does not find the plate either at the latest

observed location or at the initial location;
– The agent attempts to enter the same cell with

another agent but has a lower priority than another
agent.

• Go-Cut-Board-1/2, navigates the agent to the corre-
sponding cutting board with the following termination
conditions:

– The agent stops in front of the corresponding cut-
ting board, and places an in-hand item on it if the
cutting board is not occupied;

– If any other agent is using the target cutting board,
the agent stops next to the teammate;

– The agent attempts to enter the same cell with
another agent but has a lower priority than another
agent.

• Go-Counter (only available in Overcook-B, Figure 2
b), navigates the agent to the center cell in the middle
of the map when the cell is not occupied, otherwise it
moves to an adjacent cell. If the agent is holding an
object the object will be placed. If an object is in the
cell, the object will be picked up.

• Deliver, navigates the agent to the ‘star’ cell for deliv-
ering with several possible termination conditions:

– The agent places the in-hand item on the cell if it
is holding any item;

– If any other agent is standing in front of the ‘star’
cell, the agent stops next to the teammate;

– The agent attempts to enter the same cell with an-
other agent, but has a lower priority than another
agent.

Observation Space: The macro-observation space for each
agent is the same as the primitive observation space. Agents
are only allowed to observe the positions and status of the
entities within a 5 × 5 view centered on the agent. The
initial position of all the items are known to agents.

Dynamics: The transition in this task is deterministic. If an
agent delivers any wrong item, the item will be reset to its
initial position. From the low-level perspective, to chop a
vegetable into pieces on a cutting board, the agent needs to
stand next to the cutting board and executes left three times.
Only the chopped vegetable can be put on a plate.

Original Reward Function: +10 for chopping a vegetable,
+200 terminal reward for delivering a correct salad
(like tomato-lettuce-onion or tomato-lettuce salad), −5
for delivering any wrong entity, and −0.1 for every timestep.

Episode Termination: Each episode terminates either when
agents successfully deliver a tomato-lettuce-onion salad or
reaching the maximal time steps, 200.

D. Implementation Details
D.1. Algorithm

In here, we list the complete algorithm, as shown in Algo-
rithm.1.

D.2. Predefined Reward Function Templates

To effectively incorporate human feedback into the learning
process, we define a set of predefined reward function tem-
plates F that can be parameterized based on the feedback
and entities present in the environment. These templates
capture common interaction patterns between agents and
their environment, facilitating automatic reward function
generation aligned with human intentions.

Firstly, the distance-based reward function penalizes the
agent proportionally to the Euclidean distance between two
entities e1 and e2 within the environment:

fdist(s, a, e1, e2) = −∥s[e1.pos]− s[e2.pos]∥2, (22)

where s[ei.pos] denotes the position vector of entity ei in
state s, and ∥ · ∥2 represents the Euclidean norm.

Secondly, the action-based reward function provides a
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Algorithm 1 M3HF: Multi-agent Reinforcement Learning
from Multi-phase Human Feedback of Mixed Quality

Require: Number of agents N , Original Reward Functions
{Rori

i }Ni=1, Predefined Reward Templates F , Environ-
ment E, Initial Policies {πi,0}Ni=1, Total Generations
K

Ensure: Trained Policies {πi,K}Ni=1

1: Initialize Reward Function Pools Pi = {Rori
i } for each

agent i
2: for generation k = 0 to K − 1 do
3: Multi-agent Training Phase ▷ Eq. 4
4: for each agent i do
5: Train policy πi,k using current reward function

R̂k
i (s, a) (Eq. 12)

6: end for
7: Rollout Generation ▷ Sec. 4.1
8: if Periodic evaluation or performance stagnation

detected then
9: Generate rollout trajectories τk =

{(st,at, rt)}H−1
t=0

10: end if
11: Human Feedback Phase ▷ Sec. 4.2
12: Human observes τk and provides feedback uk

13: Feedback Parsing:
14: Use LLM M to parse uk and assign feedback to

agents:
ui
k, u

all
k = M(uk, N)

15: Reward Function Update ▷ Sec. 4.3
16: for each agent i do
17: Generate new reward function from feedback

(Eq. 10):
Ri,new = M(F, ui

k, u
all
k , e)

18: Add Ri,new to reward function pool Pi

19: end for
20: Weight Update:
21: for each agent i do
22: Initialize weight for new reward function:

wi,M = 1
|Pi|

23: Apply weight decay to existing weights
(Eq. 15):

wi,m = wi,m · αM−m,∀m ∈ {1, . . . ,M − 1}
24: Normalize weights:

wi,m =
wi,m∑M
j=1 wi,j

,∀m ∈ {1, . . . ,M}
25: Compute performance difference:

∆ri = rori
i,k+1 − rori

i,k

26: Adjust weight of newest reward function:

wi,M =

{
wi,M + β, if ∆ri > 0

max(0, wi,M − β), otherwise
27: Update final reward function (Eq. 12):

R̂k+1
i (s, a) =

∑M
m=1 wi,m ·Ri,m(s, a)

28: end for
29: end for

reward when the agent performs a specific desired action
adesired:

faction(s, a, adesired) = I(a = adesired), (23)

where a is the action taken by the agent, and I(·) is the
indicator function, returning 1 if the condition is true and 0
otherwise.

Thirdly, the status-based reward function rewards the
agent when an entity e attains a particular desired status
statusdesired:

fstatus(s, a, e, statusdesired) = I(s[e.status] = statusdesired),
(24)

where s[e.status] represents the current status of entity e in
state s.

Additionally, we define a composite reward function that
allows for more nuanced feedback by combining multiple
reward components:

fcomp(s, a) =
∑
i

λifi(s, a), (25)

where fi(s, a) are individual reward components (e.g.,
fdist, fstatus), and λi are weighting coefficients that deter-
mine the relative importance of each component.

For instance, given the human feedback “Agent 1 needs to
get the onion,” we might select the distance-based reward
template and parameterize it as:

Ri(s, a) = −∥s[Agent1.pos]− s[Onion.pos]∥2. (26)

This reward function encourages Agent 1 to minimize its
distance to the onion, thus aligning its behavior with the
desired objective.

Furthermore, other templates can be incorporated depending
on the environmental context and task requirements. For
example, a proximity-based reward function provides a
reward when an agent is within a certain distance d of a
target entity:

fprox(s, a, e1, e2, d) =

{
rprox, if ∥s[e1.pos]− s[e2.pos]∥2 ≤ d,

0, otherwise,
(27)

where rprox is the reward assigned for being within distance
d.
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A time-based penalty can be introduced to encourage effi-
cient task completion:

ftime(s, a, t) = −β · t, (28)

where t is the current time step, and β is a penalty coefficient
reflecting the cost of time.

A success-based reward provides a reward upon achieving
a specific goal condition:

fsuccess(s, a) = I(goal condition met) · rsuccess, (29)

where rsuccess is the reward value assigned when the goal
condition is met.

An energy-based penalty discourages unnecessary expen-
diture of resources:

fenergy(s, a) = −γ · energy(a), (30)

where energy(a) represents the energy cost associated with
action a, and γ is a scaling factor.

By leveraging these templates, the system can systematically
generate reward functions that align with human feedback,
enabling agents to adapt their behavior effectively in re-
sponse to diverse instructions. This approach allows for
the incorporation of mixed-quality human feedback into the
learning process, enhancing the agents’ ability to perform
complex tasks in multi-agent environments.

D.3. Training Details

Our experiments were conducted on a heterogeneous com-
puting cluster running Ubuntu Linux. The hardware configu-
ration included a variety of CPU models, such as Dual Intel
Xeon E5-2650, Dual Intel Xeon E5-2680 v2, and Dual Intel
Xeon E5-2690 v3. For accelerated computing, we utilized
3 NVIDIA A30 GPUs. The total computational resources
comprised 180 CPU cores and 500GB of system memory.

We performed hyperparameter tuning for all baselines to
ensure fair comparison. Specifically, for IPPO and MAPPO,
we tuned learning rates, batch sizes, and gradient clip-
ping values. For example, we systematically searched
over learning rates in {3e-4, 1e-4}, #sgd iters in {5, 10},
sgd batch size in {1024, 5120}, and entropy coefficient in
{0.01, 0.05}, ultimately selecting the configurations with
the best validation performance. For the macro-action based
baseline, we directly adopted the best-performing hyper-
parameters reported in Mac-based method (Xiao et al.,
2022). We will explicitly include these details in our re-
vised manuscript.

Table 4. Hyperparameters used in Overcooked-A, B, and C.
Hyperparameter M3HF-IPPO Baseline-IPPO Baseline-MAPPO

Training Generation 5 - -
Training Iterations 1000 1000 1000
Training Episodes 25k 25k 25k
Learning Rate 0.0003 0.0003 0.0003
Training Batch Size 5120 5120 5120
Minibatch Size 1024 1024 1024
Epochs 10 10 10
Discount Factor (γ) 0.99 0.99 0.99
GAE Lambda (λ) 0.95 0.95 0.95
Clip Parameter 0.2 0.2 0.2
Value Function Clip Parameter 10.0 10.0 -
Entropy Coefficient 0.01 0.01 0.01
KL Coefficient 0.2 0.2 -
Gradient Clipping 0.5 0.5 0.5

D.4. Prompts

Prompt 1: FEEDBACK PARSING PROMPT

Given the following feedback for a multi-agent
system in an Overcooked environment, as-
sign the feedback to appropriate agents or to
all agents. The system has {num agents}
agents.

Feedback: {Human Feedback}

The agent 1 is the chef in Green, agent 2 is the
chef in Rose, agent 3 is the chef in Blue.

Return your response in the following JSON
format:

{{

”agent 0”: ”feedback for agent 0”,
”agent 1”: ”feedback for agent 1”,
...
”all”: ”feedback for all agents”

}}

Only include keys for agents that receive spe-
cific feedback and ’all’ if there’s general feed-
back.

Prompt 2: REWARD FUNCTION BUILD
PROMPT

Given the parsed feedback for an agent in an
Overcooked environment, select and parame-
terize a reward function template.
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The observation space is a 32-length vector as
described in the task description.

Parsed Feedback: {feedback for this agent}

Observation Space (32-length vector for each
agent):
- Tomato: position (2), status (1) (obs[0:2])
- Lettuce: position (2), status (1) (obs[3:5])
- Onion: position (2), status (1) (obs[6:8])
- Plate 1: position (2) (obs[9:10])
- Plate 2: position (2) (obs[11:12])
- Knife 1: position (2) (obs[13:14])
- Knife 2: position (2) (obs[15:16])
- Delivery: position (2) (obs[17:18])
- Agent 1: position (2) (obs[19:20])
- Agent 2: position (2) (obs[21:22])
- Agent 3: position (2) (obs[23:24])
- Order: one-hot encoded (7) (obs[25:32])

Available function templates:
1. Distance-based: -sqrt((agent x - target x)**2
+ (agent y - target y)**2)
2. Action-based: reward for specific actions
(e.g., chopping, picking up)
3. State-based: reward for achieving specific
states (e.g., holding an item)
4. Time-based: penalty for time taken
5. Combination of the above

Select a template and parameterize it based
on the feedback. Return your response as a
Python lambda function that takes the observa-
tion vector (obs) and action (act) as input.

For example, Distance between agent 1 and
tomato :

lambda obs, act: -sqrt((obs[19] - obs[0])**2 +
(obs[20] - obs[1])**2) # Distance between agent
1 and tomato

Ensure that your function uses the correct in-
dices from the observation vector as described
in the task description.

Prompt 3: VLM FEEDBACK PROMPT

You are an AI assistant helping to manage an
Overcooked environment with multiple agents.
The task is to prepare and deliver a

{task name}.
The environment is a 7x7 grid with various
objects and {num agents} agents.

Observation Space (32-length vector for
each agent):
- Tomato: position (2), status (1)
- Lettuce: position (2), status (1)
- Onion: position (2), status (1)
- Plate 1: position (2)
- Plate 2: position (2)
- Knife 1: position (2)
- Knife 2: position (2)
- Delivery: position (2)
- Agent 1: position (2)
- Agent 2: position (2)
- Agent 3: position (2)
- Order: one-hot encoded (7)

MA-V1 Actions (index indicates macro
action):
0: No operation
1: Move Up
2: Move Right
3: Move Down
4: Move Left
5: Interact (pick up, put down, chop)

You will be provided with a video of the
agents’ gameplay, which may be lengthy. Your
task is to:
1. Identify and summarize the key actions and
strategies employed by the agents throughout
the gameplay.
2. Provide constructive feedback based on
your observations in a single paragraph. Mark
this paragraph with [SUGGESTION].

When generating feedback:
- Address specific agents by their color (e.g.,
Green agent, Rose agent) or position (e.g.,
agent on the left, agent near the cutting board).
- Focus on aspects of gameplay that could be
significantly improved for any or all agents.
- Offer specific, actionable suggestions that can
be immediately applied.
- Relate your feedback to the Overcooked
environment, tasks, and overall efficiency.
- Prioritize improvements in teamwork, task
allocation, or resource management.
- Consider how the suggestions could impact
the agents’ performance metrics.
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Avoid: - Using overly technical jargon or
complex explanations.
- Giving vague or general advice not specific to
their gameplay.
- Mentioning anything outside the scope of the
Overcooked game.
- Using excessive praise or encouragement.

Provide a brief summary of the agents’
actions, followed by a single paragraph of feed-
back marked with [SUGGESTION], addressing
the agents directly about their gameplay in the
Overcooked environment. Focus on concrete
improvements for any or all agents rather than
motivational language.

E. Regarding the Scalability of Our Method
We extended our evaluation to Google Football 5v5 (Ku-
rach et al., 2020; Song et al., 2024), a complex multi-agent
benchmark. M3HF continues to outperform standard MARL
baselines with the multi-phased human feedback. Full en-
vironment details are provided in the Figure 5,6 and their
captions.
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(a) Rollout Screenshot (b) Start Point

Total Player Number 10
Training Iteration 100
Training Episodes 8000
Episode Length 3000
Training Timesteps 2.4e7
Deterministic False
Offsides True
End Episode on Score False
end episode on out of play False
end episode on possession change False
Bot Level 1.0

(c) 5-vs-5 full-game (5v5) configuration

Figure 5. Google Research Football Environment (5-vs-5 Full Game): We evaluate M3HF in the GRF 5-vs-5 HARD Built-in AI
scenario, a complex multi-agent benchmark widely used in prior work (Kurach et al., 2020; Song et al., 2024). Each team controls 5
players (10 agents total); we always control the yellow-shirt (left) team, which initiates the kickoff. Each episode lasts 3000 steps, with
the second half beginning at step 1501. The simulation is accelerated: 1 in-game minute equals 3 real-world seconds, so a full 90-minute
match takes 4.5 minutes. For human feedback collection, we typically present the first attacking phase (60s rollout), corresponding to
20 in-game minutes. (a) shows a rollout snapshot during the opening phase. (b) depicts the initial player formation around the center
circle. (c) presents the full environment configuration. Observations follow a dictionary structure with keys "obs" (state features) and
"controlled player index" (agent IDs: 0–4 for yellow team, 5–9 for blue). The action space is [Discrete(19)], where
each agent selects one of 19 discrete actions (e.g., pass, sprint, tackle) represented as a one-hot 19D vector.
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Figure 6. Performance Comparison of M3HF vs. Baselines in GRF 5-vs-5 Full Game. We evaluate M³HF in the GRF 5v5-HARD
setting, a challenging multi-agent benchmark; Baselines include IPPO, MAPPO, and macro-action-based MACCS; Metrics include
Win Rate, Goal Difference, Total Move (indicating spatial coordination), Good Shot (quality shot attempts), and Interception (defensive
awareness); M³HF outperforms all baselines in most metrics, particularly in Win Rate and coordination-related metrics like Total Move
and Good Shot; this is due to multi-phase human feedback that encourages off-ball movement, proactive attacking, and cooperative
behavior (e.g., “agents should run into space”); these behaviors result in better scoring opportunities and team coordination; Conclusion:
M³HF scales effectively to GRF and enables efficient, high-quality policy learning with minimal human input.
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