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ABSTRACT

In this paper we explore the simple idea of teaching models by allowing them to
condition their answers on natural language feedback. Motivated by the idea that
natural language interactions provide a targeted, flexible, and level-appropriate
reward signal, we study the ability of small instruction-tuned models to leverage
feedback from a larger frontier model. We find while the frontier model provides
generally high quality feedback, especially smaller models can struggle to use this
due to noise in their generative output. After incorporating techniques like negative
sampling, we find that models trained on these feedback-conditioned responses
can perform similarly to those trained directly on teacher responses. We explore
training using supervised finetuning and preference learning algorithms over a
broad set of tasks including Big-Bench Hard. These findings are broadly applicable
and our methods rely only on the ability of models to give and receive linguistic
feedback. As such, they contribute to a growing body of work exploring how to
best utilise the linguistic capabilities of language models for human-like instructive
learning.

1 INTRODUCTION

One essential aspect of human learning is our ability to provide and leverage the feedback of others.
This plays a pivotal role in developmental tasks such as language acquisition (Tomasello, 1992), and
is a major paradigm in human instruction. Feedback similarly plays a key role in artificial intelligence
in self-supervised losses, hand-labelled classification tasks, and preference learning algorithms that
permeate the literature. In this work, we seek to investigate whether instruction-tuned language
models that can provide and learn from feedback, enable us to teach language models in the same
way that humans are able to: through natural language. Assuming that pretrained language models
have these capabilities, our motivation is threefold: firstly we want to use the specificity of language
to improve the informational content and sample efficiency of feedback; secondly we want to use
the fact that language feedback can be personalised to the current understanding of the learner
agent; finally natural language acts as a flexible interaction pattern, enabling learning directly from
humans, or from the most powerful foundation models. Indeed we see this work as an initial step
in establishing the viability of feedback conditioning as a learning mechanism for decision making
agents more generally, given that it is modality agnostic provided that teacher and student possess
sufficient linguistic capabilities.

Training Technique Requires . . . Personalised Precise
Learning from Rewards Dense Reward Function ✗ ?

Imitation Learning Expert Trajectories ✗ ✓
Feedback Conditioning Natural Language Feedback ✓ ✓

Table 1: Comparison of Training Techniques for Learning in Decision Making environments.

In general, there are two broad approaches to training models on sequential decision making tasks:
Predetermined reward functions and imitation of teachers (Zhang et al., 2021). We summarise
the differences between these techniques and feedback-conditioning in Table 1. Providing useful
reward functions however is made difficult by the credit assignment problem – the problem of
identifying the specific aspect of a decision or behaviour that is responsible for the ultimate outcome
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or reward (Minsky, 1961). Indeed, when such signals are binary or preference-based, informational
constraints can heavily limit their efficiency as learning signals; as is often the case in the alignment
of language models (Wu et al., 2024). Given the ability of language models to understand feedback,
by allowing a student model to retry a task conditioned on natural language feedback, we aim to
produce trajectories that differ exactly where it matters. For instance in Figure 1 we demonstrate a
7B model receiving feedback that allows it to refine its answer additively, resulting in two responses
that differ with regards to the level of detail, but not with regards to their content. During training
then, this can provide a clearer signal of which aspect of the response can be improved.

With regards to teacher imitation, directly learning from the products of a teacher model may also be
undesirable. In the first instance, the specific strategies and reasoning paths used by larger models
may not be feasible for smaller ones. For instance, a large model may have more domain knowledge
and be able to make reasoning leaps or inferences that are only available to a smaller model through
the use of explicit reasoning. Indeed, data from weaker teachers often performs better (Bansal et al.,
2024). Under a Vygotskian view of human development, children learn best in the so called Zone of
Proximal Development – the space in which children can act “through problem solving under adult
guidance or in collaboration with more capable peers” (Vygotsky, 1978). By analogy then, we aim to
test whether the same holds true for language models: do they learn best through problem solving
under teacher guidance. Consider for example learning to play tennis. If you tried to learn by directly
copying a professional player, or just through playing, you likely wouldn’t get very far. Instead you
could use instructors to give feedback on specific movements to practice, and through practising,
conditioned on this information, improve your performance over time.

Studying how language models can learn from natural language feedback has broad relevance due to
its universality. Firstly, it is compatible with using teachers that are locked behind APIs, or unable to
actually act in the decision making environments in question (due to costs or missing capabilities like
the embodied physicality that would be required in our tennis example). More importantly, a better
understanding of how well models can give and receive feedback is important for enabling models to
learn from and teach humans, through a format that is widely accessible.

Through our experiments we find that even state of the art frontier models can struggle to iden-
tify errors (Section 5.1.1), and that especially smaller models introduce significant noise into the
feedback-refined responses (Section 5.1.2). We find that incorporating negative sampling (Section 5.2)
significantly boosts performance and finally that if we can reduce the noise in our responses, Learning
from Feedback Conditioning is able to perform on par with traditional imitative and preference
learning methods (Section 5.3).

2 LEARNING THROUGH FEEDBACK CONDITIONING

We begin with a high-level overview of how feedback conditioning can work for decision making
agents, before moving onto the specific case of natural language tasks that we are primarily concerned
with in this paper.

A decision making environment is typically characterised as a Markov Decision Process
⟨S,A, π,R, γ⟩ for state set S, action space A, policy π, discount factor γ and reward function
R; the goal of which is to maximise the expected cumulative discounted reward over trajectories.
Instead of learning an optimal policy π through the feedback of R itself (Reinforcement Learning) or
through copying a teacher policy (Imitation Learning), we suppose instead that there exists a teacher
that can provide natural language feedback over trajectories.

In particular we suppose that our student and teachers have linguistic capabilities in the following
ways: Firstly we suppose that the student model is a generalist agent that can be parameterised both
by its parameters θ and a natural language instruction l. Secondly we characterise the teacher as a
function ϕt that maps a given trajectory τ : {S ×A}∗ to a natural language description of what went
wrong, and how to improve upon it.

The process of feedback conditioning can be described in the following way:

• First generate the student trajectory τl ∼ πθ,i using the base student model with parameters
θ and instruction i.
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Question

You are playing the game Taboo. Given the word ’president’, generate a brief
description that will help your team guess the word. You cannot use the following
words: [president, vice, met, secretary, presidency, administration, asked, promised,
former, announced] When providing your answer please make sure it matches the
following regex: "Description: [a-zA-Z0-9, ]*". (You can ignore the quotes)

Initial Answer

"Description: A leader in government."

Feedback

Good job! Your description is clear and concise, but try to add a bit more detail to
help your team guess the word more easily. For example, you might mention their
role in making decisions or leading a country.

Revised Answer

Here’s an updated version of the description:
Description: Leading figure, makes big choices, runs a nation.

Figure 1: Example of the feedback given by GPT-4-o-mini to our Qwen2 7B student on the Taboo
environment from Big-Bench Strategic Reasoning. The resulting revised response improves on the
original one in a precise way alluded to in the feedback. A side effect, however, is the addition of the
statement “Here’s an updated version...” which may add noise to the training process.

• Then generate teacher feedback ft ∼ ϕt(τl) according to the teacher’s feedback policy ϕt

• Generate a feedback conditioned trajectory τf ∼ πθ,COMBINE(i,τl,f) where COMBINE
integrates the feedback over the previous trajectory into the instructions.

• Finally we update θ to increase the probability of generating the feedback conditioned
trajectory when unconditioned by the feedback i.e.

∏
(s,a)∈τf

πθ,i(s, a)

• This update step can either be through imitation or by means of comparison to the original
trajectory through preference learning.

For this technique to work, we rely on the following conditions:

• Firstly, the teacher must be able to identify flaws in the student’s reasoning or approach
• Secondly, the teacher must be able to provide useful feedback that enables the student to be

more successful
• Finally, this must provide a useful learning signal: over time the student should be able to

achieve the same quality of trajectory without conditioning on that feedback.

2.1 LEARNING THROUGH FEEDBACK CONDITIONING FOR LANGUAGE TASKS

Given these requirements, in this work we seek to establish whether and when these conditions hold
for tasks in the language domain. For such tasks, the instructions and trajectories correspond to the
prompts and responses (or series of responses) used in instruction tuning tasks (with the actions being
tokens and states corresponding to the concatenation of those tokens). In this work, we explore the
use of Supervised Finetuning (SFT) i.e. next-token prediction, and Direct Preference Optimization
(DPO) (Rafailov et al., 2024) as our imitation and preference learning algorithms respectively.
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3 RELATED WORK

3.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

We build on existing research looking to leverage feedback to improve models beyond the scope
of just imitating textual data. LLMs have been increasingly used as chat-agents, designed not to
model language, but instead to act as helpful assistants to humans. To achieve this, Ouyang et al.
(2022) popularised the idea of training models on human feedback, through the use of reinforcement
learning. In particular they proposed to train a reward model to match human ratings of completions,
and then use this to optimize the base language model using PPO. Later, in DPO, Rafailov et al.
(2024) introduced the idea of reparameterising the reward model in terms of the model’s policy,
enabling the model to be trained without requiring the use of an explicit, separately trained reward
model. These have been followed up in turn by a variety of methods and proposed improvements; we
encourage the interested reader to refer to a survey such as Wang et al. (2023).

Improving Credit Assignment. In particular a number of works have looked into trying to improve
the informational content of RLHF addressing the credit assignment issue. One such technique has
been to employ linguistic reward shaping, through the use of fine-grained reward models (Wu et al.,
2024) or optimising the likelihood of positive/negative continuations on following turns (Zhang et al.,
2024). Other works have addressed the credit assignment issue through process supervision (Lightman
et al., 2023) i.e. trying to provide rewards at the level of sentences or tokens rather than whole
completions. These have been found to provide significant benefit in tasks including mathematical
reasoning (Shao et al., 2024) and planning (Jiao et al., 2024).

Instructive Learning. The extreme costs associated with training large foundation models mean
that many researchers look to leverage the power of existing large models for improving the efficiency
of training smaller models. Such methods have generally consisted in data distillation, by generating
synthetic data with explanation traces (Mukherjee et al., 2023), rationales (Hsieh et al., 2023) or just
their answers for instruction tuning (Peng et al., 2023). Generally, training on such synthetic data has
been found to improve the sample efficiency of language models (Maini et al., 2024). We explore this
form of data distillation as our baseline finetuning technique.

3.2 LEARNING FROM NATURAL LANGUAGE FEEDBACK

Prior work has explored applying natural language feedback to improve decision making agents in
a number of ways. In particular a number of works have explored creating reward functions using
LLMs (Yu et al., 2023) and for editing the reward function’s code in response to the performance
of the agent (Ma et al., 2024). Other works have explored using language feedback as a test-time
refinement strategy of the output of models. For instance Madaan et al. (2024) find they can boost the
performance of models by allowing them to repetitively adapt responses until they meet a stopping
criterion. They find that this holds for models larger than 13 Billion parameters. In our work however
we are interested in actually teaching the models, and furthermore explore the case in which the
feedback is given by a stronger language model.

Most relevantly, Chen et al. (2024) propose a method of using imitation learning to learn from
natural language feedback. Rather than resampling while conditioning on this feedback, they use a
separate refinement policy to adapt the student model’s outputs according to this feedback, and then
perform imitation learning on the resultant outputs. Finally they employ rejection sampling while
generating these refinements. The focus of their paper is on the ability of models to leverage human
feedback, which they find to be significantly more informative than model feedback. Due to the costs
and difficulties associated with gathering human feedback we primarily focus on leveraging model
feedback, since it is more widely applicable, nevertheless we expect that our methods would perform
even better if given access to human feedback in the same manner.
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4 EXPERIMENTAL SETUP

4.1 DATASETS

To provide a more holistic understanding of learning from feedback conditioning, we run experiments
on a wide range of difficult tasks. In particular, we use the following benchmarks:

• Big-Bench Hard (BBH) (Suzgun et al., 2022) is a subset of Big-Bench (bench authors,
2023)1 picked out for being more challenging at the time. For each task, we use the first
100 samples as a train set. We identify regex for extracting the answer from each of these
benchmark-tasks and in some cases change the presentation of the answer or add instructions
around matching these regex to aid in the accuracy of our performance metrics. On average
this leaves around 150 samples to use as the test set for each subtask.

• Big-Bench Strategic Reasoning (BBSR) is a re-implemented subset of several Big-Bench
tasks that are either game-like or require strategic reasoning to solve. None of these tasks
are part of Big-Bench Hard. These tasks are summarised in Table 7.

• Mostly Basic Programming Problems (MBPP) (Austin et al., 2021) is a set of python
programming questions with accompanying tests. This was used by Chen et al. (2024), in
the most relevant prior work.

We initially benchmark various student and teacher models on these environments, with our results
displayed in Table 8. We use custom evaluation scripts, which can be found in our code base2.

4.2 MODELS

For our teacher model we select GPT-4-o-mini, since it has a very high performance to cost ratio (see
Appendix D.1 for our experiment on the performance of different teacher models). For our student
model we use the Qwen 2 model series (Yang et al., 2024). This was motivated by the fact that it
consisted in a series of strong instruction tuned model at a range of model scales.

4.3 EVALUATION AND EXPERIMENTAL CONFIGURATION

We use custom code for evaluating the performance of our models on each benchmark. In general,
for the majority of tasks in BBH and BBSR we largely use regex-based methods for extracting model
responses. For MBPP, we run the generated python code against the tests defined in the dataset,
and treat the score as the percentage of tests passed.3 For our finetuning experiments, we limit our
datasets to 100 samples per iteration as we are interested in sample efficiency, and our benchmarks
are small. We use off-the-shelf finetuners from the HuggingFace TRL package 4 and provide our
training configurations in Appendix B. Additionally for all Feedback Conditioning Experiments our
prompts are available in Appendix A.

5 EXPERIMENTS

We first experiment on the ability of models to give and receive feedback in Section 5.1. Then, based
on these findings, we design modifications to our base method and experiment on how these affect
feedback conditioning in Section 5.2. Finally, in Section 5.3 we explore the performance of learning
from feedback conditioning as a finetuning method.

1Downloaded from https://huggingface.co/datasets/tasksource/bigbench
2To be released
3For the sake of comparison we note that this rate is typically ∼ 10% higher than the metric of passing all

tests used in Chen et al. (2024).
4https://huggingface.co/docs/trl/en/index

5

https://huggingface.co/datasets/tasksource/bigbench
https://huggingface.co/docs/trl/en/index


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5.1 FEEDBACK CONDITIONING

Before investigating how to finetune models with feedback we first perform analysis on the linguistic
understanding of our teacher (GPT-4-o-mini) and student models (Qwen2 {0.5,1.5,7}B). We initially
aim to answer two key questions:

• Can our teacher model identify errors in student answers? (See Section 5.1.1)

• Can our teacher model provide useful feedback on those answers in the sense that the student
performance is boosted by conditioning on that feedback (See Section 5.1.2)

5.1.1 ERROR IDENTIFICATION

As depicted in Table 2 we explore both explicit and implicit error detection. Explicit error detection
consists in asking the teacher model to judge whether or not the student’s answer is correct (without
access to the ground truth data). We find that the ability of the teacher to detect errors is inversely
proportional to the ability of the student. In particular we find a marked drop in the recall of the
error detection for our largest model size, which we believe corresponds to the fact that its incorrect
reasoning paths are more likely to be misleading, while also producing more of them.

For the implicit error detection we give our teachers the option of not providing feedback if they think
the student’s answer is substantially correct, and instead reply with ‘no feedback needed’, which
we can then automatically detect. We find however that the teacher rarely uses this capability, and
will instead tend to praise the student model when it doesn’t find anything wrong; as such in our
experiments this technique has perfect recall but low precision.

As such we do not find strong confirmatory evidence for this identification ability being present in
the teacher model. Nevertheless given the prevailing wisdom of using LLMs-as-judges (Zheng et al.,
2023) we rely on downstream performance to establish the existence of this capacity.

Error Identification Student Model Size Recall Precision F1 Accuracy

Explicit
7B 0.65 0.83 0.66 0.73

1.5B 0.82 0.89 0.85 0.76
0.5B 0.85 0.93 0.89 0.81

Implicit
7B 1.0 0.71 0.83 0.71

1.5B 1.0 0.84 0.91 0.84
0.5B 1.0 0.92 0.96 0.92

Table 2: Explicit and implicit error identification ability of the teacher model. All metrics are based
on macro-averages (i.e. across all samples rather than averaged across task-subsets). The accuracy is
computed with respect to the environment’s ground truth evaluation which uses Regex to extract an
answer and match it against a target label.

5.1.2 FEEDBACK USE

We next investigate the degree to which models can actually use this feedback. Our feedback
conditioning technique in this section consists in providing the prompt, original answer, and feedback
as the chat history with the feedback given to the model as in the Student Retry Prompt in Appendix A.
We try out the following feedback conditions to elucidate information about the models’ ability to
leverage feedback.

• Unconstrained: in which the teacher directly gives feedback on the student answer with no
additional information

• Ground Truth: in which the teacher gives feedback with access to the ground truth answers

• Teacher Answer: in which the teacher first answers the prompt, and then uses this answer
to inform their feedback on the student’s answer allowing them to directly compare different
reasoning chains for the problem.

6
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Student Size Additional
Feedback Data

Regex Match
Rate

Downstream
Performance

Correct if
Matched

7B

Baseline 0.60 0.29 0.48
Unconstrained 0.53 0.31 0.58
Teacher Answer 0.51 0.32 0.63
Ground Truth 0.56 0.38 0.68
Lazy 0.89 0.65 0.73
Regex Focused 0.61 0.31 0.51

1.5B

Baseline 0.53 0.17 0.32
Unconstrained 0.45 0.21 0.46
Teacher Answer 0.42 0.20 0.48
Ground Truth 0.42 0.21 0.5
Lazy 0.54 0.24 0.44
Regex Focused 0.55 0.16 0.29

0.5B

Baseline 0.26 0.06 0.23
Unconstrained 0.32 0.10 0.31
Teacher Answer 0.32 0.09 0.28
Ground Truth 0.31 0.10 0.32
Lazy 0.40 0.12 0.3
Regex Focused 0.36 0.10 0.28

Table 3: Results on Big-Bench Hard for different test-time feedback conditioning methods. For each
trajectory, our implementation of Big-Bench Hard provides a binary score. The set of answers for
which the model is correct is a strict subset of the set of answers for which the model provides an
answer that can be extracted using regex (i.e. the Regex Match Rate). As such we can see that across
model scales, following feedback tends to degrade the match rate. Nevertheless across conditions it
improves the performance of the models, especially when we normalise for the model providing a
valid answer at all (per the Correct if Matched column)

.

• Lazy: in which the feedback just consists in directly being told the correct answer. This
should provide a ceiling on the models ability to integrate information from teachers since it
can just be copied verbatim.

• Regex Focused: in which the teacher is instructed to focus feedback on matching the regex
used for answer extraction

Our results are shown in Table 3. We find that all the models are able to leverage the feedback to
some degree, with the registered performance increasing across the board. That said the increase is
relatively minor, on the order of 2/3 (absolute) percentage points for the low-requirement techniques
(i.e. excluding Ground Truth and Lazy conditions). In addition to this quantitative analysis we
manually checking 150 samples of responses, feedbacks and refinements and combining these we
hypothesise the following:

• Failing to Match: Generally we note that match rate falls across the board for methods
incorporating feedback, and adjusting for this we see even more significant gains for test-
time feedback conditioning. After manually checking we find that the teacher rarely picks
up on the fact that the student has failed to match the Regex, and even when the student has
initially matched it, the addition of the feedback condition reduces the ability of the student
to follow this additional constraint.

• Mismatch between Refinement and Response Oftentimes if the models original reasoning
is substantially correct, the model simply directly responds with the answer (correct or
otherwise). More generally we note that there are often artefacts in the response due to the
fact that the model is responding to the feedback, as demonstrated in Figure 1. While this
isn’t well reflected in the performance measured here, this would result in poor performance
if such responses were used as targets for learning.

7
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Method Submethod Regex Match Rate Score Correct if Matched

Negative Sampling
– 0.53 0.31 0.58

Error Identification 0.57 0.34 0.60
Ground Truth 0.63 0.45 0.71

Best-of-k (No Feedback)

– 0.60 0.29 0.48
Student Logits 0.65 0.29 0.45
Student Choice 0.61 0.30 0.49
Teacher Choice 0.61 0.36 0.59

Best-of-k (/w Feedback)

– 0.54 0.30 0.56
Student Logits 0.54 0.31 0.57
Student Choice 0.55 0.32 0.58
Teacher Choice 0.55 0.34 0.62

Feedback Following Finetuning

SFT 0.47 0.23 0.55
SFT + Feedback 0.53 0.31 0.58

DPO 0.62 0.26 0.55
DPO + Feedback 0.52 0.31 0.60

Table 4: Results on Big-Bench Hard for our modifications to the basic Feedback Conditioning
Algorithms. For Negative/Best-of-k sampling we compare using these to the baseline result (-) not
using them. We use the ‘unconstrained’ feedback condition throughout.

• Task Reinterpretation: Instruction tuned models have a tendency to reinterpret certain
tasks as coding tasks, which often misleads the teacher into instead providing feedback on
the quality of t

• Insufficient Ability: Especially with the smaller models, oftentimes while the feedback
does give enough information to arrive at the correct answer, the model still has to reason
through and proves unable to integrate this. We see this most starkly with their inability to
substantially benefit from being directly given the answer in the feedback condition

Collectively we refer to these effects as noise introduced by the student model. We design further
experiments to help mitigate some of these issues in Experiment 5.2. Moreover in proceeding
experiments we only use the 7B model, due to the ceiling on its benefit in the Lazy and Ground Truth
conditions is higher than the other models.

5.2 MODIFICATIONS

We introduce the following modifications to our language-based feedback conditioning algorithm
(Described in Section 2):

• Negative sampling: given the noise introduced in the process, the risk of an already correct
response being degraded by feedback conditioning means that it makes sense to utilise
negative sampling: asking the teacher directly to identify correct answers and then removing
these from the feedback conditioned training sets. We additionally explore using ground
truth data instead to perform this task.

• Feedback Tuning: We explore finetuning the model on following the feedback instead. To
do this we train a single model on 5 samples from each of our environments. As training
data we use our refinement prompts (see Appendix A) as input, using the teacher and student
models to provide targets for SFT/DPO.

• Best-of-k Sampling: Similarly to the effect of negative sampling, we can increase the
chance that a feedback conditioned response improves upon the original one according
to the feedback, by generating k trajectories and then selecting the best. In particular we
explore methods in which the student/teacher models select the best response with respect
to the feedback, as well as an additional techniques using the logits of the student model to
determine which response it would most likely generate.

8
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In Table 4 we demonstrate the results of these modifications on test-time feedback conditioning.
We find that concordant with our expectations, allowing the teacher to explicitly identify samples
in which a mistake is made, results in a significant performance increase, although not as high as
allowing the teacher access to the ground truth. Using the ground truth data to negatively sample
on the other hand results in a very large increase in performance of 50% above the original. We
note however that this is not some special feature of feedback conditioned responses: negatively
(re)sampling ordinary responses in this way leads to a proportional increase in the performance of the
base model. The same can be seen in the case of the Best-of-k sampling technique, which boosts the
performance of ordinary trajectories similarly to those of their negative counterparts.

Given the substantial additional cost from Best-of-k sampling and poor performance of finetuning,
we use negative sampling in our finetuning experiments.

5.3 FINETUNING EXPERIMENTS

Finally we employ our modified algorithm to the task of levaraging feedback. These results are shown
in Table 5 and Table 6. We note that DPO does not perform well on Big-Bench Hard across the
board for us, and the slight improvement from using the feedback conditioned variety is negligible.
Furthermore we find that our basic feedback conditioned version of supervised finetuning drastically
underperforms traditional teacher imitation, resulting in a drop in performance over the baseline.

As discussed in Section 5.1.2 the response to feedback often contains reference to the fact that that
response is feedback conditioned. For instance in Figure 1 the model reply starts with “Here’s an
updated version of the description”. Our hypothesis is that since we use the generation of the feedback
conditioned response as a generation target, these relics of the feedback add excessive noise to the
learning process. As such we employ an additional post processing step using the teacher to remove
these noise aspects from the student’s feedback-conditioned generative output as used in this learning
process. These modified versions of our learning algorithm are denoted with an asterisk*. We observe
that this leads to a significant performance increase for the model across Big-Bench Hard resulting in
a 8% absolute increase in performance against the baseline, demonstrating the potential of feedback
conditioning as a learning technique. This is significantly higher than that of the baseline Feedback
Conditioning technique, but is nevertheless less performant than learning directly from the teacher.

Student Model Training Method Regex Match Rate Score Post-Match Score

Qwen2 7B

Imitative DPO 0.43 0.23 0.52
Feedback DPO 0.54 0.27 0.47
Imitative SFT 0.63 0.44 0.69
Feedback SFT 0.51 0.24 0.49

Feedback SFT* 0.70 0.37 0.54

Table 5: Results finetuning on Big-Bench Hard for each Qwen2 model size using the Imitative/Feed-
back variants of SFT/DPO. Imitative refers to using the teacher’s trajectories as a target, whereas
Feedback variants rely on the student’s feedback conditioned trajectories. We give the teacher access
to the ground truth, and use ground truth based negative sampling in constructing the feedback based
preference learning dataset. Feedback SFT* additionally uses our ‘response cleaning’ technique.

For our experiments on Big-Bench Strategic Reasoning and MBPP, we do not assume access to ground
truth data for the teacher model, and instead use the teacher answer-feedback conditioning strategy
and Error-Identification-negative sampling strategy. We note that these have lower performances in
our preliminary experiments vis-a-vis feedback conditioning, but are also more reflective of a more
scalable application scenario for using learning from feedback. There are no clear best models, and
each approach works better on some environments and worse than others. Additionally all of the
finetuning techniques perform worse than the baseline on a majority of the tasks. These results are
summarised in Table 6.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model Method SPB TAB OPT HILO NEG LFN RFN MBPP
Teacher (GPT-4-o-mini) 0.029 1.7 0.75 0.55 0.74 0.63 0.87 0.63

Qwen2 7B

Baseline 0.022 1.20 0.25 0.33 0.08 0.15 0.65 0.39
Imitative DPO 0.055 1.44 0.19 0.25 0.10 0.32 0.39 0.03
Feedback DPO 0.021 1.34 0.22 0.25 0.14 0.11 0.46 0.34
Imitative SFT 0.016 0.86 0.27 0.18 0.10 0.21 0.79 0.30
Feedback SFT 0.013 1.22 0.15 0.2 0.24 0.12 0.68 0.39

Feedback SFT* 0.006 1.46 0.31 0.2 0.15 0.11 0.75 0.30

Table 6: Results of Models on BBSR and MBPP. Our Feedback Conditioned techniques use the
Unconstrained condition with Error-Identification based negative sampling, due to the lack of ground
truth data.

6 CONCLUSION

Experimental Findings Overall we find that models can learn from conditioning on feedback in
the language domain, although it requires accounting for the inability of teacher models to identify
errors (through negative sampling) and removing the noise introduced by the refinement process.
Nevertheless it is not as strong on most tasks as simply leveraging the trajectories of our strongest
foundation models. On our strategic reasoning and coding tasks, none of our finetuning techniques
perform well, indicating the challenge of finetuning in this few sample paradigm.

Extending Feedback Conditioning to Non-Linguistic Domains The promise of Feedback Con-
ditioning lies mostly in its broad applicability to multimodal domains in which we can use the
instructability of generalist, linguistically capable agents to perform a wide variety of tasks. Providing
criticism and feedback in these domains does not necessarily require an agent to be able to act
in them, and being able to leverage the reasoning of strong foundation models in these roles for
training decision making agents has huge potential. However this will require addressing some of the
drawbacks we discussed above, and the process of e.g. cleaning trajectories to enable their use as
targets will be highly domain dependent.

Furthermore the language tasks we have used do not have the long horizon nature or stochasticity of
many such real world tasks, which may impact the relevance of feedback conditioned trajectories
used in the way we have here. We leave these extensions to future works but believe that our work
establishes the conditions for leveraging this form of flexible, personalised, and precise feedback
across a wide range of settings.
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A PROMPTS

Error Identification

I asked my student to follow the instruction below: {prompt}

They answered: {answer}

Was their answer correct in terms of both answering the question and matching the
regex? Please finish your responce with Correctness: correct/incorrect according to
whether it was correct"""

Unconstrained Feedback

Help give feedback on my student’s answers They were given the instruction:
{prompt}

They answered: {answer}

Directly give the feedback to them as I will pass it on. Format your feedback as either
"Feedback: ..." or "No feedback needed" if you think their answer is correct already.

Ground Truth Feedback

Help give feedback on my student’s answers They were given the instruction:
{prompt}

They answered: {answer}

The correct answer is: {correct_answer}

Directly give the feedback to them as I will pass it on. Format your feedback as either
"Feedback: ..." or "No feedback needed" if you think their answer is correct already.

Teacher Answer Feedback

Help give feedback on my student’s answers I gave my student the same instruction
as you.
They answered: {answer}

Directly give the feedback to them as I will pass it on. Format your feedback as either
"Feedback: ..." or "No feedback needed" if you think their answer is correct already.

Student Retry Prompt

Here is some feedback on your previous answer: {feedback}

Please follow this instruction again, incorporating the feedback: {prompt}

Figure 2: Various Prompts Used in This Work
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B HYPERPARAMETERS

SFTConfig

1 gradient_checkpointing:True,
2 gradient_accumulation_steps:4,
3 remove_unused_columns:True,
4 learning_rate:5e-4,
5 lr_scheduler_type:"cosine",
6 max_steps:num_steps,
7 save_strategy:"no",
8 optim:"paged_adamw_32bit",
9 bf16:use_bfloat16,

10 fp16:use_float16,
11 warmup_ratio:0.1,

DPOConfig
1 beta=0.1,
2 max_prompt_length=1024,
3 gradient_checkpointing=True,
4 remove_unused_columns=False,
5 learning_rate=5e-5,
6 lr_scheduler_type="cosine",
7 max_steps=num_steps,
8 save_strategy="no",
9 optim="paged_adamw_32bit",

10 bf16=use_bfloat16,
11 fp16=use_float16,
12 warmup_ratio=0.1,
13 gradient_accumulation_steps=4,

Figure 3: Comparison of SFT and DPO configurations
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C BIG-BENCH STRATEGIC REASONING TASKS

Task Task Description Modification from Original
Spelling Bee
(SPB)

Tests ability to manipulate letters to
spell out as many valid words as pos-
sible.

Taboo (TAB) A two-turn game that requires fol-
lowing taboo rules while coming up
with a description of a concept, and
then subsequently guessing what the
concept is

We give 1 point for a valid descrip-
tion (i.e. not including a taboo word)
and an additional point if the model
can guess the word.

Optimization
(OPT)

A mathematical reasoning task in
which the model must reason about
finding parameters that minimize a
given simple function.

This is actually one of set of games
around root findinga

Hi-Lo (HILO) A game consisting of trying to guess
a hidden number in the range of
1-100 in seven tries with feedback
(with an obvious optimal strategy of
performing a binary search)

The original versionb was a two
player guessing game that required
answers to exactly match a guess for-
mat. We pose the game as a single
player task, with the high/low feed-
back coming from the environment
instead.

Nash Equilibria
(NEG)

Consists in performing calculations
to determine whether a given game
has a pure-strategy nash equilibrium,
and identifying one of them

The original task came from the
same set as OPT and consisted in
finding the optimal action. We adapt
the task to consist in finding a Nash
Equilibria (if one exists) for simple
2x2 games.

List Functions
(LFN)

(Modified from the original variant)
Consists in taking a description of a
function over integer lists and a sin-
gle input-output pair example before
applying that function to unseen in-
puts and outputs.

The original consisted in trying to
guess what the function was given
a set of inputs and outputs and then
apply it to unseen inputs.

Root-Finding
(RFN)

Tests numerical methods and root-
finding algorithms.

This also comes from the same set
of games as OPT and is closely
adapted.

Table 7: Summary of ‘Game’ Tasks we choose for our Big-Bench Strategic Reasoning subset

ahttps://github.com/google/BIG-bench/tree/main/bigbench/benchmark_
tasks/roots_optimization_and_games. In particular this is about finding a minimizer for a
sum of absolute values.

bhttps://github.com/google/BIG-bench/blob/main/bigbench/benchmark_
tasks/high_low_game/task.py
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D ADDITIONAL EXPERIMENTS

D.1 TEACHER MODEL BENCHMARKING

Model BBH BBSR MBPP Cost per Million Tokens ($)a BBH Feedback

Teachers:
GPT-4-o-mini 0.65 0.90 0.63 0.15 0.31
Claude-3-Haiku 0.64 0.75 0.65 0.25 0.28
Gemini-Flash 0.36 0.85 0.62 0.15 0.26

Table 8: Baseline Results on our Benchmarks for Different API-based models. Note that the
evaluation scores here do not use the exact same evaluation as elsewhere in the paper, due to bugs
we found in it later; nevertheless it formed the basis of our teacher selection. The final metric of
BBH Feedback corresponds to using the models for test-time feedback in the unconstrained feedback
condition described in Section 5.1

aAs available on OpenRouter: https://openrouter.ai/models/google/gemini-flash-1.
5
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