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ABSTRACT

How to balance between exploration and exploitation in an uncertain environment
is a central challenge in reinforcement learning. In contrast, humans and animals
have demonstrated superior exploration efficiency in novel conditions. To under-
stand how the brain’s neural network controls exploration under uncertainty, we
analyzed the dynamical systems model of a biological neural network that controls
explore-exploit decisions during foraging. Mathematically, this type of network
(named the Brain Bandit Net, or BBN) is a special type of stochastic continuous
Hopfield networks. We show through theory and simulation that BBN can per-
form posterior sampling of action values with a tunable bias towards or against
uncertain options. We then demonstrate that, in multi-armed bandit (MAB) tasks,
BBN can generate probabilistic choice behavior with a flexible uncertainty bias
resembling human and animal choice patterns. In addition to its high efficiency in
MAB tasks, BBN can also be embedded with reinforcement learning algorithms
to accelerate learning in MDP tasks. Our study is among the first to provide both
theoretical explanation and empirical demonstration of the effectiveness of biolog-
ical neural networks in driving exploration during learning. The code is available
at https://github.com/anonymousforICLR/BrainBandit

1 INTRODUCTION

The explore-exploit (E-E) dilemma, originally described in the context of animal foraging (Stephens
& Krebs, 1986; Charnov, 1976), has become an important problem across many fields including psy-
chology, neuroscience and reinforcement learning (RL)(Addicott et al., 2017). Despite the devel-
opment of numerous algorithms, sample-efficient exploration in RL remains difficult for complex,
sparse-reward tasks (Sutton & Barto, 2018). Meanwhile, studies in humans and animals have re-
vealed a diverse array of exploration strategies (Wilson et al., 2021; Schulz & Gershman, 2019).
In addition, excitingly recent research has begun to reveal the biological neural networks that give
rise to the rich and flexible exploration behaviors(Costa et al., 2019; Tomov et al., 2020; Hogeveen
et al., 2022; Costa & Averbeck, 2020). Based on recent findings in the biological neural network
that controls exploration, we built the Brain Bandit Network (BBN), a stochastic Hopfield network
for controlling exploratory action selection under input uncertainty. We show theoretically that the
BBN model can perform Bayesian posterior sampling while implementing a tunable bias that spans
optimistic, neutral, and conservative in the face of uncertainty.

Our main contributions are four-fold:

1. We propose a biologically grounded, scalable network model for solving the E-E dilemma.

2. We analytically show that BBN implements a hybrid between Bayesian posterior sampling
and uncertainty-directed exploration.

3. We show that BBN can closely approximate human and animal behavior in bandit tasks
under a variety of conditions.

4. We show that BBN can drive highly efficient exploration in bandit and MDP tasks, promis-
ing further application to more complex RL problems.
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2 BACKGROUND AND RELATED WORK

2.1 THE EXPLORATION PROBLEM IN REINFORCEMENT LEARNING

The domain of efficient exploration in reinforcement learning focuses on balancing immediate re-
wards (exploitation) and information gathering for future rewards (exploration). A classic illustra-
tion is the Multi-Armed Bandit (MAB) problem, introduced by (Robbins, 1952) in 1952 and widely
used to model this tradeoff (Lai & Robbins, 1985; Berry & Fristedt, 1985; Agrawal, 1995; Auer
et al., 1995; Sutton & Barto, 1999). Traditional methods inject noise into action selection (Sutton
& Barto, 1999), but these dithering algorithms can be inefficient. Alternative methods like Upper
Confidence Bound (UCB) leverage optimism in the face of uncertainty (OFU) by biasing uncer-
tain choices (Lai & Robbins, 1985; Agrawal, 1995; Auer et al., 1995). Thompson sampling, dating
back to (Thompson, 1933), makes decisions based on posterior samples rather than optimistic esti-
mates. Optimistic Thompson Sampling (O-TS), combining UCB and Thompson sampling, reshapes
the posterior distribution optimistically and exhibits strong empirical and theoretical performance
(Chapelle & Li, 2011; May et al., 2012).

2.2 BIOLOGICAL SOLUTIONS TO THE EXPLORE-EXPLOIT DILEMMA

Early work on the explore-exploit tradeoff, rooted in Optimal Foraging Theory and the Marginal
Value Theorem (Stephens & Krebs, 1986; Charnov, 1976), suggests that animals achieve near-
optimal balance between exploiting known resources and exploring uncertain options. Cognitive
scientists have used bandit tasks to study this tradeoff in humans and animals (Addicott et al., 2017;
Cohen et al., 2007; Wang et al., 2023; Beron et al., 2022). Two main strategies emerge: random
exploration, involving stochastic action choices, and directed exploration, leveraging uncertainty to
guide actions (Wilson et al., 2021; Schulz & Gershman, 2019). Humans and animals often combine
these strategies flexibly, adjusting based on task horizon, option novelty, developmental stage, and
mental state (Gershman, 2018; Bartumeus et al., 2016; Wilson et al., 2014; Cockburn et al., 2022;
Mizell et al., 2024; Schulz et al., 2019; Addicott et al., 2017; Fan et al., 2023; Waltz et al., 2020). Ad-
ditionally, they exhibit persistent exploration, repeating previous choices regardless of value (Beron
et al., 2022; Laurie et al., 2024). These strategies resemble algorithms like Thompson sampling and
Optimism in the Face of Uncertainty (OFU), but with key differences (Wilson et al., 2021).

To understand the brain’s solution to the E-E problem, neuroscientists have identified neural net-
works controlling exploration decisions (Daw et al., 2006; Costa et al., 2019; Hogeveen et al., 2022).
Recent studies in C. elegans (Flavell et al., 2013; Ji et al., 2021) have revealed a compact recurrent
network governing transitions between ”roaming” and ”dwelling,” analogous to exploration and ex-
ploitation (Fig. 1). This minimal network provides a unique opportunity to explore the algorithmic
principles the brain uses to solve the E-E problem.

3 MODEL

3.1 THE BRAIN-INSPIRED BANDIT NETWORK (BBN) IS A STOCHASTIC CONTINUOUS
HOPFIELD NETWORK

To model the biological neural network that controls E-E decisions during foraging (Fig. 8 (Ji et al.,
2021)), we define a set of N neurons whose temporal dynamics are described by the following
stochastic differential equations (or Langevin equations):

τi
dxi

dt
= −γixi +

N∑
j ̸=i

wijf(xj) + bi + Īi + σidW (t) (1)

Where f(x) = 1
1+e−n(x−k) , wi,j < 0, and dW (t) is the Wiener process. Here, wijf(xj) represents

the inhibitory interaction between neurons; bi is the baseline activity of neuron i; Ii and σidW (t) are
the deterministic and the stochastic components of the external input, respectively. σi is the standard
deviation of the Wiener noise. We term this type of stochastic continuous Hopfield network with all
negative weights the Brain-inspired Bandit Network (BBN), for reasons that will become clear later.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: The Brain-inspired Bandit Network (BBN) (a) Architecture of the 2-D BBN model. (b)
Hopfield energy (or Lyapunov function) and state space of BBN. The heatmap indicates the Hopfield
energy. The red and green curves are the nullclines. The white dots represent simulated network
states. (c) Neural activity states and their distribution (right) over time

Assuming approximately symmetric weights i.e., wij = wji
1, the deterministic part of the model

is essentially a continuous Hopfield network (Hopfield, 1982; 1984) with exclusively inhibitory
connections. It is hence associated with a Hopfield energy or Lyapunov function of the form:

E =

−1

2

N∑
i,j,i ̸=j

wijf (xi) f (xj) +

N∑
i

[
xif (xi)−

∫ xi

0

f(x)dx

]
−

N∑
i

b̄if (xi)


−

{
N∑
i

Īif (xi)

}
= Eint − Eext (2)

Here, we have decomposed the Hopfield energy E into Eint, dependent only on internal network pa-
rameters, and Eext, which embodies influence from the external input Ii. With suitable parameters
(see Appendix B.1), the model can have up to N local energy minima or attractor states exhibiting
winner-take-all dynamics (Fig. 1 and Fig. 12). Stochastic noise induces transitions between these
attractor states, consistent with experimental findings in foraging networks (Ji et al., 2021).

3.2 THE BBN IMPLEMENTS BAYESIAN POSTERIOR SAMPLING

Hinton and Sejnowski (Hinton & Sejnowski, 1983) have demonstrated that a discrete Hopfield net-
work with stochastically activating units (i.e. an Ising network) can implement Bayesian inference
by sampling from the posterior distribution. Here we extend this conclusion to continuous Hopfield
networks. Briefly, using Kramers escape theory (Kramers, 1940; Langer, 1968; Hänggi et al., 1990),
we can approximately compute the mean first passage time (MFPT), defined here as the expected
time to leave an attractor state A and crossing the nearby saddle point S as:

⟨τA⟩ =
2πγ

ωb

∏′
i ω

S
i∏

i ω
A
i

∗ exp
(
∆EA

DA

)
(3)

Where γ is the friction coefficient (equivalent to τ in Eq. 1, ωA
i are the angular frequencies (i.e.

eigenvalues of the Hessian matrix) at the center (i.e. energy minimum) of the attractor. ωb and ωS
i

are the angular frequencies of the saddle point, with ωb associated specifically with the unstable
mode. ∆EA is the energy difference between the saddle point and the center of the attractor and
∆EA→S = ES − EA. DA is the diffusion constant, which in thermodynamics scales with the
magnitude of the stochastic noise.

1While the original Hopfield network study (Hopfield, 1984) required weight symmetry to prove absolute
stability of the energy (or Lyapunov) function. Later work (Matsuoka, 1992; Chen & Amari, 2001) have shown
that the global convergence of the Hopfield energy function still holds for networks with asymmetric weights.
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The equilibrium probability of the network being in a given attractor state A1 can be approximated
by its stability, measured via the MFPT, relative to the other attractors. This translates to:

PA1
∼=

⟨τA1⟩∑N
1 ⟨τAj⟩

=
1

1 +
∑N

2

{
αj

α1
exp

(
∆EAj

DAj
− ∆EA1

DA1

)} , where αi∈{1,...,N} =

∏′
j ω

Si
j

ωb

∏
j ω

Ai
j

(4)

Assuming identical biophysical parameters and inputs for all neurons, the angular frequencies ωAi
j

of the N attractors are permutations of each other and there is a single saddle point defined by x =
1
γNwf(x)+ b+ Ī . This leads to α1 = αj ,∀i. Further, by substituting ∆EA = (ES−Eint

A )+Eext
A

into Eq. 4, we have:

PA1
∼=

1

1 +
∑N

2

{
exp

([
ES−Eint

Aj

DAj
− ES−Eint

A1

DA1

]
+

[
Eext

A1

DAj
− Eext

A1

DA1

])} (5)

Now if we define the probability of an attractor state in the absence of external input as its prior
probability Ai as: P prior

Ai = exp
(
∆Eint

Ai/DAi

)
, and the probability of the state given input data (e.g.

sensory evidence) as:
(
Ī | P prior

A2

)
= exp (Eext

A2/DA2), we have:

(PA1 | I) ∼=
1

1 +
∑N

2

{(
P prior
Aj /P prior

A1

)
∗
[(

I | P prior
Aj

)
/
(
I | P prior

A1

)]} (6)

Eq. 6 reveals a close connection between the Hopfield energy-based formulation of attractor state
probability and Bayesian inference. Specifically, if we consider PAi as the probability of a hypothe-
sis i being true or a decision i being optimal, then Eq. 6 essentially computes the Bayesian posterior
of i given external evidence.

3.3 THE BBN CAN EXHIBIT OPTIMISTIC, NEUTRAL, OR CONSERVATIVE BIASES ON
INPUT UNCERTAINTY

In Kramers’ theory, the diffusion constant D from thermal fluctuations is typically isotropic (Σ =
σ2I , D = σ2). However, in our model, input to each neuron can have different levels of uncertainty,
making the overall noise anisotropic. Recent studies (Zhu et al., 2018; Yang et al., 2023) show that
anisotropic noise affects escape efficiency, or the rate at which model leaves one of its attractor states
(i.e. 1/MFPT), by interacting with local attractor curvature. Starting from a local energy minimum
at x0, the model evolves as:

⟨E (xt)⟩ ∼= E (x0)−
∫ t

0

〈
∇ET∇E

〉
+

t

2
⟨Tr (H0Σ)⟩ (7)

Here, H0 is the Hessian matrix at the attractor’s center, and Σ is the noise covariance matrix. Since
both matrices are diagonal in our model, the escape efficiency is highest when the largest input noise
dimensions align with the largest curvature dimensions. To capture this effect, we define an isotropic
noise Σ = σ2I that yields the same efficiency as Σ:

Tr(HiΣ) = 2σi
2 Tr(Hi) = Tr(HiΣ), where σi

2 =
Tr(HiΣ)

Tr(Hi)
= Deff

i (8)

Here, Deff
i represents the effective diffusion constant and Hi = PHj = HA,∀i where P is a

permutation matrix. Substituting Eq. 8 into Eq. 4 , we have:

PA1 =
1

1 + exp
{
2Tr(HA)∆EA

(
1

Tr(HT
AΣ)
− 1

Tr(HAΣ)

)} (9)
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Figure 2: BBN implements Bayesian posterior sampling with a tunable bias towards/against
uncertainty. (a) Sigmoidal dependence of attractor state probability on the difference in mean input
values. (b) Slope of the state probability curve in (a) as a function of total input uncertainty (defined
as

√
σ2
1 + σ2

2) for the three types of networks. (c) Intercept of the state probability curve as a
function of relative input uncertainty (defined as σ1 − σ2).

While all N attractors have equal energy and share a common set of angular frequencies, their
Hessian matrices are non-identical and can interact differently with non-isotropic noise (Σ ̸= cI).
If PA1 corresponds to the attractor state with the highest input noise, the following scenarios can
occur (assuming j ̸= 1):

1. Tr(H1Σ) < Tr(HjΣ) and PA1 > PAj (Optimistic). 2. Tr(H1Σ) = Tr(HjΣ) and PA1 =
PAj (Neutral). 3. Tr(H1Σ) > Tr(HjΣ) and PA1 < PAj (Conservative).

These regimes are termed as Optimistic, Neutral, and Conservative, respectively. Fig. 2 illustrates
the input dependence of attractor state probabilities under the three regimes.

Parameter sensitivity analyses (Fig. 3(a-b) and Fig. 11 in Appendix A) reveal that the three parame-
ter regimes span a wide range of combinations, obviating the need for fine-tuning. By adjusting the
baseline activity b, synaptic threshold k, or inhibitory synaptic weight w — either individually or in
pairs — one can flexibly modulate the uncertainty bias from highly optimistic (PA1 → 1) to neutral
(PA1 = 1

N ) to highly conservative (PA1 → 0).

ƒ

Figure 3: Parameter dependence and multi-dimensional model. (a) Theoretically derived and
(b) numerically simulated attractor state probability as a function of network parameters b and k.
The color scale corresponds to the probability that the network samples the attractor state driven by
the highest input uncertainty, which is an indicator of the network’s uncertainty bias. (c) Equilib-
rium attractor state probabilities in high dimensional BBN models. Three colored lines correspond
to attractor states driven by the highest (orange), median (green), or lowest (blue) levels of input
uncertainty. The network parameters remain unchanged as the dimensionality N increases.
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3.4 (OPTIMISTIC) UNCERTAINTY BIAS IS PRESERVED AND FAVORED IN HIGHER
DIMENSIONS

The theoretical analysis above predicts that the uncertainty bias of BBN should scale well to high
dimensions. To verify this empirically, we progressively increased network dimension (i.e. add
more neurons) while keeping all network parameters in Eq. 1 unchanged. Strikingly, for a BBN that
is optimistic at N = 2, scaling up to N = 10 did not alter its optimistic bias (Fig. 3(c)). In contrast,
a BBN that is neutral in 2D became mildly optimistic as N increased; while a conservative BBN
become mildly optimistic at N > 5. Thus, with increasing network dimension, the model develops
a tendency to bias towards attractor states with higher input uncertainty.

To understand this empirical phenomenon, we examined state-transition dynamics near the saddle
point for a perfectly neutral 3D BBN (i.e., Hi = cI,∀i) (Fig. 13. With isotropic noise, the network
exhibited equal probability of entering any attractor state. However, with highly anisotropic noise,
it preferentially entered the attractor state along the dimension of highest noise, creating a bias
towards high-uncertainty states. This makes conservative bias harder to maintain and optimistic bias
more prominent in high-dimensional models (Fig. 14. To incorporate this effect into our theoretical
framework, we need to combine escape rates analysis (Kramers, 1940; Zhu et al., 2018) with theory
of dynamics around saddle points (Daneshmand et al., 2018)—a challenge we aim to address in
future work.

4 EXPERIMENTAL EVALUATION

4.1 UNCERTAINTY-AWARE EXPLORATION IN MULTI-ARMED BANDIT TASK

Given BBN’s ability to infer and sample from a posterior distribution with a tunable uncertainty bias,
a natural application of BBN is to control action choice given external, uncertain evidence. We thus
adapted the BBN model to play multi-armed bandit (MAB) games and compared its performance
with classic bandit algorithms.

4.1.1 RUNNING BBN IN BANDIT GAMES

To make the BBN model play bandit games, we (1) define a BBN model with N neurons, each
corresponding to one of the N bandit arms; (2) pick network parameters that yield “optimistic”
exploration for a 2-D BBN, and simply apply the parameters to all neurons in the N-D model; (3)
at each trial, sample input I from the reward memory buffer and numerically simulation of the
network for T steps using the Runge-Kutta method; (4) at the end of the simulation, select the arm a
whose corresponding neuron has the highest activation value; (5) collect the reward ra and add it to
memory buffer for arm a; (6) repeat (3)-(5) for the next trial till game ends. The pseudocode along
with detailed task parameters are presented in Appendix B.1.

4.1.2 BBN IMPLEMENTS UNCERTAINTY-AWARE POSTERIOR SAMPLING

To reveal BBN’s exploration strategies, we examined the dependence of choice probability on to-
tal and relative reward uncertainty for BBN agents with optimistic, neutral, or conservative biases,
as well as classic algorithms Thompson Sampling (TS) and Upper Confidence Bound (UCB). As
shown in Fig. 4 (a-b), TS exhibits a constant intercept regardless of relative uncertainty (RU) and
a decreasing slope with increasing total uncertainty (TU), indicating sensitivity only to total uncer-
tainty; UCB exhibits a constant slope with varying TU and an increasing intercept with increasing
RU, indicating sensitivity only to relative uncertainty. In contrast, BBN with optimistic parameters
showed variation in both slope and intercept with changes in TU and RU. These results suggest
that BBN implements a hybrid algorithm combining posterior sampling (like TS) with tunable bias
towards high uncertainty (similar to UCB).

4.1.3 EFFICIENT EXPLORATION IN BANDIT TASKS

We compared the empirical performance of BBN-driven exploration in comparison against UCB,
Thompson sampling, and Optimistic Thompson Sampling (OTS, (Hu et al., 2023)) in both 2-armed
bandit and 3-armed bandit games. Each agent played 10,000 game blocks of 20 trials each in 2-
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Figure 4: Exploratory behavior of BBN, Thompson sampling and UCB in 2-armed bandit
games (a) Slope of the choice probability curve as a function of total uncertainty. (b) Intercept of
the choice probability curve as a function of relative uncertainty.

armed bandit games and 30 trials each in 3-armed bandit games. Fig. 5 (a-b) presents the probability
of choosing the optimal arm as trial number increases. BBN (with optimistic parameters) consis-
tently outperformed other algorithms in 2-armed bandits and topped the performance in 3-armed
bandit games. The other ‘hybrid’ algorithm, OTS, performed close to BBN in 3-armed bandits, but
did poorly in 2-armed bandits.

Figure 5: BBN achieves efficient exploration in both bandit tasks. (a) The probability of choosing
optimal action over trials in 2-armed bandit games. (b) The probability of choosing optimal action
over trials in 3-armed bandit games. (c) Cumulative regret in the SixArms (MDP task, see Fig. 16)

4.2 BBN CLOSELY APPROXIMATES BANDIT CHOICE BEHAVIOR IN HUMANS AND ANIMALS

The results above indicate that BBN exhibits similar hybrid strategies as observed in humans (Wilson
et al., 2014; Gershman, 2018). We thus asked whether BBN can accurately model human and animal
choice patterns in bandit tasks. We first compiled several publicly available datasets of humans
playing bandit games (detailed list in Appendix C). We performed optimization on two network
parameters b and k to minimize the difference between the choice probability curves output by BBN
and in the human datasets. As shown in Fig. 6 (a-b), BBN can closely fit to both the intercept and the
slope of human choice probability curves. In contrast, Thompson sampling fails to fit to the diverse
intercepts across human groups and UCB consistently yields slopes that are much higher than the
human.

We next extended the above analyses to a dataset in which mice played switching blocks of 2-
armed bandit games (Beron et al., 2022). In this dataset, the reward for each arm is sampled from
a Bernoulli distribution. In addition, the mean reward for each arm is not static, which has a small
probability (0.02) of being reversed before each trial starts. The reversal of the mean reward means
the next block begins. Based on results from (Beron et al., 2022), we used the last five rewards as
inputs to the BBN model to drive choice behavior. As shown in Fig. 6 (c-d), parameter-tuned BBN
generates choice and switching behavior that closely approximates those exhibited in the mice study.

7
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Figure 6: The choice pattern of BBN closely approximates humans and animals in MAB tasks.
(a-b) BBN-fitted versus actual slope and intercept values extracted from human data. (c-d) The
probability of choosing the optimal arm and switching to another arm upon block transition in mice
playing the 2-armed bandit game.

4.3 EFFICIENT EXPLORATION IN MDP PROBLEMS

Building on the strong performance in MAB tasks, we explored our brain-inspired model for MDP
problems, which involve sequential decision-making with delayed rewards and unknown transition
probabilities (Bellman, 1966; Bertsekas, 2012). Unlike bandit problems with immediate rewards
and no state transitions, MDPs require generalizing exploration principles. UCRL2 (Auer et al.,
2008) extends OFU to MDPs, while PSRL (Strens, 2000; Osband et al., 2013) generalizes posterior
sampling to RL. Hybrid algorithms like Optimistic Thompson Sampling (OTS) (Agrawal & Jia,
2017; Tiapkin et al., 2022; Hu et al., 2023) aim to improve exploration efficiency but face challenges
such as computational cost and uncertainty estimation.

We consider a finite-horizon MDP with state space S, action space A, horizon H , rewards rlsa, and
transition probabilities Psa conditioned on states s, actions a, and step l. The expected total return
at step l under policy π can be estimated iteratively using the Bellman equation:

Qt+1
sa = µsa +

∑
s′a′

πs′a′Psas′Q
t
s′a′

where µ = E(r) is the mean reward. Estimating uncertainty in Q-values remains an open issue in
RL. Donoghue et al. (O’Donoghue et al., 2018) proposed the Uncertainty Bellman Equation (UBE)
to provide an upper bound on the variance of Q-value posteriors. For tabular state space, this method
effectively propagating local variance estimates to global value uncertainty.

4.3.1 RUNNING BBN IN MDP TASKS

To apply BBN to drive action-selection in MDP tasks, we (1) define a BBN model with N neu-
rons, each corresponding to one of the N discrete actions, select network parameters that belong to
the ”optimistic” regime for a 2D network; (2) initialize state-action values to i.i.d. Gaussian distri-
butions; (3) sample input values for each neuron from the distributions of state-action values and
perform numerical simulation of the BBN network for T steps using the Runge-Kutta method; (4)
at the end of the simulation, select action a whose corresponding neuron has the highest activation
value; (5) collect the reward ra and move to the next state ; (6) Repeat (3)-(5) till episode ends; (7)
Update the distribution of state-action values using the uncertainty bellman equation (UBE) algo-

8
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rithm(O’Donoghue et al., 2018). (8) repeat (3)-(7) for next episode till game ends. We present the
pseudo-code for the Algorithm 2 in Appendix B.3.

We first compared the exploration efficiency of the BBN-based algorithm (UBE BBN) on the
SixArms (Strehl & Littman, 2008) task, with additional implementation details presented in Ap-
pendix B.4. We compare our model to PSRL(Osband et al., 2013), UCRL2 (Auer et al., 2008) and
OTS-MDP (Hu et al., 2023). We also specifically tested the role of BBN by replacing it with UCB
(UBE UCB) or Thompson sampling (UBE TS). In PSRL, we maintain a Gaussian distribution for
the rewards and a Dirichlet distribution for the transition probabilities. In the OTS-MDP and BBN
models, we follow(Hu et al., 2023) and limit our uncertainty estimation to the reward r for simplic-
ity. As shown in Fig. 5 (c), the cumulative regret is lowest in UBE-BBN, which demonstrates the
potential of BBN in promoting highly efficient exploration.

4.3.2 GRID WORLD

Figure 7: BBN-enhanced RL agent exhibits efficient exploration in the FourRooms task. (a)
The FourRooms environment. The agent starts at the red point and can receive a reward only at the
blue point. (b) The percent of grids covered (i.e. the coverage rate) by agents driven by various
exploration algorithms over the period of training. (c) Display of visitation counts over the course
of training. (d) Visitation counts for the UBE-BBN agent with or without action persistence. (e)
Number of episodes taken till first reaching the reward state for different agents. Pink and purple are
the UBE-BBN agents with and without action persistence respectively. Blue is PSRL and green is
UBE UCB

9
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We next evaluated the exploration efficiency of BBN on sparse-reward MDP tasks, specifically the
FourRooms task. In this task, an N-by-N grid world is divided into four compartments connected by
narrow passages (Fig. 7 (a)). The agent starts from the upper left corner (red dot) and explores the
environment to learn state-action values. First, we conducted reward-free exploration by assuming
no rewards at any state. Exploration efficiency was measured as the coverage rate (ratio of visited
states to total states) over episodes. Fig. 7 (b) shows that UBE-BBN achieved the fastest coverage
rate among all methods. Fig. 7 (c) provides examples of cumulative visitation counts for each
method during training. We then varied the environment size and repeated the experiments. UBE-
BBN scaled well with grid size, while other algorithms faltered (Fig. 19 in Appendix E). Additional
comparisons with more methods in different conditions are in Fig. 20-23 in Appendix E. Trajectories
(visitation counts in a single episode) in Fig. 24 reveal that UBE-BBN excelled in extended deep
exploration, covering hard-to-reach states effectively. Finally, we enhanced action persistence in
UBE-BBN by allowing the BBN model to inherit activity states from the previous step (Fig. 25).
This modification leveraged the Hopfield network’s persistence property, instilling action correlation
within episodes. As shown in Fig. 25, adding persistence further boosted UBE-BBN’s exploration
efficiency in the FourRooms task at large grid sizes.

Parameter sensitivity in MDP tasks: We additionally performed parameter sensitivity analysis
for the SixArms and FourRooms task (as shown in Fig. 18 in Appendix E.1) and demonstrated
that a broad range of “optimistic” network parameters yielded high performance on these tasks.
Hence, optimistic BBN generally delivers good performance in these MDP tasks without requiring
parameter fine-tuning.

5 DISCUSSION

We have demonstrated both theoretically and empirically that the BBN architecture can drive flex-
ible and efficient exploration in ways similar to humans and animals. However, several limitations
and open questions remain regarding its practical application. First, simulating the stochastic dif-
ferential equations incurs high computational costs. This issue may be circumvented by analytically
computing the attractor probabilities using Eq. 4 or by employing neuromorphic hardware. Sec-
ond, given the development of many hybrid TS and OFU methods in the RL community (Hu et al.,
2023; Tiapkin et al., 2022; Agrawal & Jia, 2017), it’s intriguing to consider what gives rise to BBN’s
superior performance. One possibility is that BBN, as a system of coupled Langevin equations, ef-
fectively implements Langevin sampling of the posterior distribution. Langevin sampling has been
shown to enjoy faster mixing and convergence rates than other sampling methods and is particu-
larly well-suited for approximate Bayesian inference (Welling & Teh, 2011). Third, the current
BBN algorithm lacks the ability to estimate uncertainty associated with state-action values, relying
instead on a separate algorithm (in this case, the UBE) to generate value distributions. How biolog-
ical neural networks compute and encode uncertainty remains an outstanding question, especially
in sequential decision settings. Recent studies have suggested that a distributed population code
(Dehaene et al., 2021) or a spatiotemporal activity pattern could encode uncertainty levels (Savin &
Denève, 2014). We hope future experimental and theoretical studies will provide more insights into
how the brain estimates and utilizes uncertainty. Lastly, given that humans and animals can flexibly
modulate their uncertainty bias in a context-dependent manner, a valuable extension for the BBN
algorithm would be to integrate contextual information into the network input. Expanding the BBN
model to include upstream neurons found in the biological foraging network might help implement
context-dependent E-E decisions (Fig. 8).
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APPENDIX

A SUPPLEMENTAL FIGURES

Figure 8: (a) A biological neural network in C. elegans that controls the exploration state (roaming)
and exploitation state (dwelling). (b) Architecture of the 3-D BBN model.

Figure 9: Stability analysis on the three types of BBN models that generate optimistic, neutral
or conservative bias to uncertainty.
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Figure 10: Slope and intercept shift. (Left column) The slope decreases as the total uncer-
tainty increases while relative uncertainty is kept unchanged. (Right column) The intercept in-
creases (optimistic), stays unchanged (neutral), or decreases (conservative) as relative uncertainty
increases and total uncertainty kept unchanged.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 11: Attractor state probability as a function of network parameters Warm colors indi-
cate a higher chance of finding the network in the state that receives greater input uncertainty.
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Figure 12: Uncertainty bias in multi-dimensional BBN models. (Top row) State dynamics of
3-D BBN model with conservative, neutral and optimistic uncertainty biases. The concentration of
state dynamics reveal the three attractor states, which are visited with different relative proportion
in the three types of BBNs. Input noise is strongest along the Z-direction is the largest and lowest
along the X-direction. (Middle row) Probability of attractor states with the highest (orange), median
(green), and lowest (blue) input uncertainty as the network scales from 2D to 10-D under the con-
servative, neutral, or optimistic parameter regimes, computed from numerical simulations. For the
same type of network, internal model parameters are kept the same as the dimensionality increases.
The dotted curve indicates perfectly equal partition of probability among all N states. (Bottom row)
Theoretically predicted state probability for the same network models presented above in the middle
row, presented in the same format.
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Figure 13: State entry dynamics near the saddle point for a 3D BBN. Red points show simulated
state dynamics when the network is initialized from the saddle point. Green circle denotes the saddle
point, green crosses denote the attractor centers, and the projected 2D histogram reveal the relative
occupancy of the three attractors (pink indicates high state probability).

Figure 14: Theoretical vs. simulated attractor state probability in multi-dimensional BBNs.

B METHOD DETAILS

B.1 PARAMETER SELECTION

Parameter Definition Suggested range
w inhibitory weights [2, 4], increase to make states more stable
b activity baseline [5.5, 7], increase makes network optimistic
k threshold of sigmoid [6, 8], increase makes network conservative
n slope of sigmoid [1, 2], increase amplifies uncertainty bias
γ leak current or decay rate 0.5
τ time constant 1

Table 1: Internal Model Parameters

Parameter Definition Suggested range
Ī mean of input scale raw input values to [-2, 2]
σ2 variance of input scale raw input variance to [0, 2]

Table 2: External Parameters

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Parameter Definition Suggested range
N number of neurons typically equal to number of actions choices
T total simulation steps [400, 1000]
dt step length 0.1 or 0.2 if using suggested parameter ranges

Table 3: tab: Hyperparameters

In this section, we list the primary parameters used in BBN (Tables 1, 2, 3) and provide a principled
way to determine optimal parameters for new environments.

Based on our experience and past literature (May et al., 2012; Hu et al., 2023; Agrawal & Jia, 2017),
optimistic bias generally promotes efficient exploration. In addition, our sensitivity analysis on MDP
tasks (Fig. 18) showed that a broad range of ”optimistic” parameters yielded high performance,
obviating the need for extensive fine-tuning. Further, we have shown that network parameters that
yield optimistic bias for a 2D BBN preserve such bias in higher dimensions (Fig. 3(c) and Fig. 12).
Thus, the steps to set up a N -dimensional BBN model are:

(1) Define a BBN model with N interconnected neurons;

(2) Select internal network parameters 1 from the ”optimistic” regime based on sensitivity analysis
results presented in (Fig. 3(a-b) and Fig. 11), or use the parameter ranges suggested below as a
starting point;

(3) Verify that the 2D network has two attractors and exhibits optimistic bias by numerically sim-
ulating the model under anisotropic 2D Gaussian noise with µ = [0, 0],σ = [1,0.1]); tune the
parameters if necessary using the tips provided below;

(4) Apply these parameters to all neurons in the ND network;

(5) Scale the input to the network (typically past rewards or Q-values) to a range that permits the
existence of multiple attractors (use suggested range or verify empirically).

We found that simulation step number of T=400 is sufficient for bandit and MDP tasks t. Below
are sample network dynamics in the first episode of a 2-armed bandit game. Multiple transitions
occurred between the attractor states, reflecting equal state probability as expected for equal uncer-
tainty for the two arms.

Figure 15: State dynamics of BBN in a two-armed bandit game
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B.2 RUNNING BBN IN BANDIT GAMES

To make the BBN model play bandit games, we

(1) define a BBN model with N neurons, each corresponding to one of the N bandit arms;

(2) pick network parameters that yield “optimistic” exploration for a 2-D BBN, and simply apply
the parameters to all neurons in the N-D model;

(3) at each trial, sample input I from the reward memory buffer and numerical simulation of the
network for T steps using the Runge-Kutta method;

(4) at the end of the simulation, select the arm a whose corresponding neuron has the highest acti-
vation value;

(5) collect the reward ra and add it to memory buffer for arm a;

(6) repeat (3)-(5) for the next trial till game ends.

B.2.1 RUNNING BBN IN MDP TASKS

Here we consider the tabular case MDP, so the states and Q-values are parameterized as entries in a
lookup table, where each state-action pair maps to a Q-value. To implement BBN in action selection,
the agent needs to estimate the uncertainty of Q-values for BBN’s input. However, how to estimate
uncertainty of the cumulative rewards in MDP tasks remains an open issue in the RL community
because the choice of an action affects both the current immediate reward and subsequent state
transfer. O’Donoghue et al. (2018) gave an upper bound on the variance of posterior distribution of
the Q-values by proposing the Uncertainty Bellman Equation (UBE), which connects the uncertainty
at any time-step to the expected uncertainties at subsequent time-steps. We leverage the upper bound
on the variance by UBE to obtain uncertainty estimation for Q-values.

Here we present detailed steps to apply BBN to drive action selection in MDP tasks: (1) define a
BBN model with N neurons, each corresponding to one of the N discrete actions, select network
parameters that belong to the ”optimistic” regime for a 2D network;

(2) initialize state-action values to i.i.d. Gaussian distributions;

(3) sample input values for each neuron from the distributions of state-action values and perform
numerical simulation of the BBN network for T steps using the Runge-Kutta method;

(4) at the end of the simulation, select action a whose corresponding neuron has the highest activa-
tion value;

(5) collect the reward ra and move to the next state ;

(6) Repeat (3)-(5) till the episode ends;

(7) Update the distribution of state-action values using the uncertainty bellman equation (UBE)
algorithm(O’Donoghue et al., 2018).

(8) repeat (3)-(7) for next episode till game ends. We present the pseudo-code for the Algorithm 2
in Appendix B.3. The pseudocode along with detailed task parameters are presented below.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.3 PSEUDOCODES

Algorithm 1 presents the pseudocode of BBN in Multi-armed Bandit Games
and Algorithm 2 presents the pseudocode of UBE-BBN in playing MDP tasks.

Algorithm 1: BBN for multi-armed bandit games
Input :

The horizon of the multi-armed bandit game H;
The number of arms A ;
The total simulation steps for BBN model T ;

Output:
The selected arm a at each trial h;

Initialize the model parameter for BBN model;
Initialize the value for each neuron xi;
for h = 1, 2, ..., H do

for t = 1, 2, ..., T do
sample Ii from reward history for each arm ai

τi
dxi

dt ← −γixi +
N∑
j ̸=i

wijf(xj) + bi + Ii ;

xi ← xi + dxi ;
end
select an arm a← argmax(xi);
receive a reward ra ∼ N (µa, σ

2
a);

add ra to reward history of arm a;
end
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Algorithm 2: UBE-BBN for MDP tasks
Input :

The horizon of the MDP task H;
The maximum episode τ ;
The number of total states S ;
The number of actions A ;
The total simulation steps for BBN model T ;

Output:
The selected action a at each timestep t;

Initialize the model parameter for BBN model;
Initialize the value for each neuron xi;
for iter = 1, 2, ..., τ do

for h = 1, 2, ..., H do
s← current state ;
for t = 1, 2, ..., T do

sample Ii from Qsi ∼ N (Q̂si,varQ̂si) ;

τi
dxi

dt ← −γixi +
N∑
j ̸=i

wijf(xj) + bi + Ii ;

xi ← xi + dxi ;
end
select an action a← argmax(xi);
receive a reward rsa ∼ N (µsa, σ

2
sa);

move to next state s′ ;
update P̂sas′ ;

end
update Q values using dynamic programming:
for h = H, H-1, ..., 1 do

for s ∈ S do
for a ∈ A do

µ̂sa ← Ersa;
Q̂h

sa ← µ̂sa +
∑

s′a′ πs′a′ P̂sas′Q
h+1
s′a′ ;

employ the Uncertainty Bellman Equation (UBE):
varQ̂h

sa ← varµ̂sa +
∑

s′a′ πs′a′Psas′varQ̂
h+1
s′a′ ;

end
end

end
end

B.4 BANDIT AND MDP TASK PARAMETERS

Bandit parameters for performance comparison We chose to use Gaussian bandits where re-
ward values are sampled from N (µi, σ

2
i ). For 2-armed bandit games, the reward mean µ for both

arms are sampled from a Gaussian distributionN (0, 12) at the beginning of each block. The reward
variance is 9 and 4 respectively. For 3-armed bandit games, the reward mean µ for all arms are
sampled from a Gaussian distributionN (0, 12) at the beginning of each block. The reward variance
are 9,1,0.25 respectively. Note that while we chose to use Gaussian bandits here, the model can be
extended to non-Gaussian input distributions and performs well empirically in non-Gaussian (e.g.
Bernoulli) bandit tasks.

Bandit parameters for fitting to mice data We follow the bandit parameters in (Beron et al.,
2022). The mean rewards of the Bernoulli bandits are 0.8 and 0.2 respectively.

SixArms SixArms(Strehl & Littman, 2008) consists of seven states and six actions. The agent
starts in state 0. We consider episodic case, so the state is reset every 20 steps. A transition is of
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the form (a, p, r), where a is action, p is the transition probability, and r is the reward for taking the
transition.

Figure 16: SixArms.

For more detailed parameters for each algorithm used in our experiments, please refer to our code:
https://github.com/anonymousforICLR/BrainBandit

C DATASETS FOR MODEL FITTING

Gershman19 is from (Gershman, 2019). In their experiment, participants were given a choice be-
tween two arms, labeled either as “safe” (S) or “risky” (R). The safe arms always return deterministic
rewards, while the risky arms sample rewards from a Gaussian distribution. There are four types of
bandit settings: RS, SR, RR, and SS, which are denoted by compound labels (e.g., “SR” denotes
trials in which the left arm is safe and the right arm is risky). The reward mean µ for both risky
arms and safe arms are sampled from a Gaussian distribution N (0, 102) at the beginning of each
block. The reward variance for risky arms is 16, and for safe arm is 0. By comparing the slope and
intercept of the choice probability curve for each type, we can quantify the degree of randomness
and preference for uncertainty.

Fan23(Fan et al., 2023) further explored the relationship between trait somatic anxiety and differ-
ent exploration strategies in decision-making. They used the same experimental design as Gersh-
man19(Gershman, 2019) and evaluated the anxiety for each individual. In Fig 6 (a-b), the slope and
intercept of human data in (Gershman, 2019) are drawn directly from the paper. And for humans
with high or low anxiety, we split the 40% of the population with the highest ”somatic anxiety”
score and the 40% with the lowest ”somatic anxiety” score in the collected data from (Fan et al.,
2023), and then performed probit regression respectively.

Mizell24 from (Mizell et al., 2024) involved younger adults (ages 18–25) and older adults (ages
65–74) making decisions between two virtual slot machines to measure exploration behaviors called
Horizon Task. The rewards are sampled from a Gaussian distribution. Participants first completed
instructed trials, sampling the slot machines under two conditions: unequal information (one drawn
from one machine and three from the other) and equal information (two drawn from each machine).
They then made free choices in either a short horizon (one choice) or a long horizon (six choices)
condition. The task assessed directed exploration (choosing the more informative option) and ran-
dom exploration (choosing the lower reward option). We use unequal information condition of the
collected data to fit our model.

Zajkowsk17 is from (Zajkowski et al., 2017). Participants also performed a Horizon Task, where
they made explore-exploit decisions between two virtual slot machines under two conditions: un-
equal information and equal information. The task involved 160 games, each consisting of 5 or 10
choices, with the key manipulation being the horizon length: short (5 choices) or long (10 choices).
Continuous theta-burst transcranial magnetic stimulation (TMS) was used to selectively inhibit the
right frontopolar cortex (RFPC) when participants performed the Horizon Task. We use unequal
information condition of the collected data to fit our model.
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D FURTHER RESULTS ON BANDIT TASKS

D.1 LIMITED MEMORY BUFFER SIZE

BBN doesn’t need all the past experience in the memory buffer. For example, in the experiment of
fitting to mice behavior, we only used the last 5 reward histories since the reward for each bandit will
change over time. We also performed additional experiments to test if the limited memory buffer
would hurt the performance in bandit tasks. We limited the buffer size to 8 for each arm. Fig 17
shows BBN with limited memory buffer size still consistently outperforms other methods.

Figure 17: BBN with limited memory buffer size achieve similar efficient exploration in bandit
tasks

E FURTHER RESULTS ON MDP TASKS

E.1 PARAMETER SENSITIVITY ANALYSIS

Figure 18: Parameter sensitivity analysis of UBE-BBN with different parameter combinations
evaluated in two MDP tasks. Performance in the SixArms task was evaluated by the cumulated
regret of the agent, while performance in the FourRooms grid world task was evaluated by the
coverage rate. a broad range of “optimistic network parameters” generally yielded high performance
on these tasks.
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E.2 PERFORMANCE ON VARIATIONS OF GRID WORLD TASKS

As shown in Fig.19, UBE-BBN yields fastest coverage rate among all the methods on different
environments. Fig.20 gives examples of cumulative visitation counts for more algorithms during
training. Only UBE-BBN covers all states with less than 450 episodes.

Figure 19: Learning curves on different sizes of FourRooms environments.
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Figure 20: Comparison of exploration efficiency across different exploration algorithms in
Four Rooms) (a) Visitation counts in reward free setting; (b) Number of episodes until first en-
counter of the reward state.
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Figure 21: Trajectories (visitation counts in a single episode) of UBE-TS, UCRL2, and UBE-
BBN in expanded Four Rooms task with reward
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Figure 22: Comparison of visitation counts across algorithms in a Four Rooms game with
reward and penalty).
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Figure 23: Comparison of visitation counts across algorithms in a Nine Rooms game.

Fig.24 shows the trajectories of agents, which are the visitation counts in a single episode. As
shown, ϵ-greedy, UCRL2, UBE-TS only perform exploration around the starting state, failing to do
”deep” exploration. PSRL, OTS-MDP and UBE-UCB can perform ”deep” exploration, but they all
act deterministically, so they will be stuck at a certain state. UBE-BBN is also driven by uncertainty

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

like UBE-UCB to perform ”deep” exploration, but with stochastic sampling of action choices, it will
not be stuck at a certain state.

Figure 24: Agent trajectories (visualized through visitation counts) in single episodes over the
course of training.

Action persistence further boosts BBN performance. BBN with persistence refers to taking neu-
ron values at the end of last step as the starting point for the next step, while BBN without per-
sistence refers to initializing neuron values at each step. We compare the different behavior of the
BBN model with and without persistence across four different grid sizes: 15×15, 19×19, 23×23, and
103×103. The results presented here show the trajectories during the first episode of exploration,
and the exploration length corresponds to the number of states in the grid world. As shown in Fig.
25, for the same exploration length, the BBN model with persistence explores a larger portion of the
grid world.
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Figure 25: Trajectories (visitation counts in a single episode) of BBN with/without persistence.
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