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Abstract

We introduce the linear-transformation model,
a distributed model of differentially private data
analysis. Clients have access to a trusted platform
capable of applying a public matrix to their inputs.
Such computations can be securely distributed
across multiple servers using simple and efficient
secure multiparty computation techniques. The
linear-transformation model serves as an interme-
diate model between the highly expressive central
model and the minimal local model. In the cen-
tral model, clients have access to a trusted plat-
form capable of applying any function to their
inputs. However, this expressiveness comes at a
cost, as it is often prohibitively expensive to dis-
tribute such computations, leading to the central
model typically being implemented by a single
trusted server. In contrast, the local model as-
sumes no trusted platform, which forces clients
to add significant noise to their data. The linear-
transformation model avoids the single point of
failure for privacy present in the central model,
while also mitigating the high noise required in
the local model. We demonstrate that linear trans-
formations are very useful for differential privacy,
allowing for the computation of linear sketches of
input data. These sketches largely preserve utility
for tasks such as private low-rank approximation
and private ridge regression, while introducing
only minimal error, critically independent of the
number of clients.

1. Introduction
Differential Privacy (DP) (Dwork et al., 2006b) has become
the de-facto standard for ensuring the privacy of individu-
als whose data is used in data analytics. DP offers strong,
provable guarantees, such as composability and resilience to

1Aarhus University, Denmark. Correspondence to: Hannah
Keller <hkeller@cs.au.dk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

auxiliary information. In the classic central model of differ-
ential privacy, clients submit their data to a trusted central
server, which processes the data and releases a (necessarily)
noisy version of the result. Analysts can then use this re-
sult to perform queries on the data. Informally, differential
privacy guarantees that the analyst cannot confidently deter-
mine whether any individual contributed their data, except
with some small probability.

The central model requires trust that the server will not re-
veal any individual’s data and cannot be compromised by
external actors. However, universally trusted servers may
not exist in practice. In situations where privacy is critical
but trusting a single server is not feasible, alternative ap-
proaches are available: One such approach is to use secure
multiparty computation (MPC) techniques to distribute the
central server’s computations across multiple servers. Under
the assumption that a subset of these servers are honest, this
setup guarantees the same level of privacy as the central
model. However, MPC techniques often introduce signifi-
cant computational overhead, especially when distributing
complex or expressive computations.

Another option is to avoid relying on external servers al-
together. In this case, each client must publish their data
in a locally differentially private manner, by adding noise
directly to their data. While this removes the need for a
trusted server, it results in lower utility due to the increased
noise. This approach is known as the local model of differ-
ential privacy (Kasiviswanathan et al., 2008), an example of
which is randomized response (Warner, 1965).

Both the central and local models of differential privacy have
strengths and drawbacks. The central model typically yields
higher utility but requires strong trust in a single server
or the costly use of MPC. The local model, by contrast,
requires no trust in external parties but suffers from reduced
utility. These tradeoffs have motivated significant research
into finding a middle ground between these two models.
One promising direction is to limit the expressiveness of the
class of functionsF that can be executed in a trusted manner.
While this restriction allows for more efficient distributed
implementation, it is only useful if the DP mechanism built
around such functions can still achieve good accuracy.

A notable example of such restricted expressiveness is the
class of functions known as shuffles, where a central entity
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(or a distributed system) randomly permutes the messages
from clients before they reach the analysing server. This is
known as the shuffle model (Bittau et al., 2017; Erlingsson
et al., 2019; Cheu et al., 2019). The shuffle model has been
used to implement many differentially-private mechanisms
with reasonable utility (Erlingsson et al., 2019; Cheu et al.,
2019). Surprisingly, the shuffle model is more expressive
than initially expected: with a trusted shuffler, any function
can be securely computed in two rounds under the assump-
tion of an honest-majority (Beimel et al., 2020).

We therefore ask the following:

Question 1.1. What is the least expressive class of func-
tions F that needs to be securely implemented in order
to achieve computationally efficient distributed differential
privacy with utility comparable to that of the central model?

1.1. Our Contribution

In this work, we investigate the power of the linear-
transformation model (LTM) for differentially-private mech-
anisms. In this model, the clients only have access to a
trusted platform for performing arbitrary linear transforma-
tions of their collective inputs. Linear functions can be
distributed extremely efficiently with secure computations.
However, it is also known that the expressiveness of this
class of functions is strictly limited.

We demonstrate the benefits of this linear transformation
model (LTM) by showing that it can be used, in combina-
tions with linear sketches to construct private summaries of
a data set with noise comparable to that of central differen-
tially private mechanisms. As in the local model, each client
adds some amount of noise to their data before passing it
onto the linear sketch. We then release the linear transform
of the data. The benefit of having a trusted linear sketch is
that the noise can be combined, thereby significantly reduc-
ing the amount of noise per client. All of our mechanisms
require only a single round of communication from clients
to server.

We demonstrate the effectiveness of this model by exemplar-
ily applying it to problems in numerical linear algebra. A
particularly powerful and expressive class of linear sketches
with numerous linear algebra applications (Woodruff, 2014)
are Johnson-Lindenstrauss (JL) transforms. In this paper,
we focus on low rank approximation and regularized lin-
ear regression. Our contribution is to show how to design
mechanisms for these problems, with the most widely used
JL-transforms as the underlying secure sketch. For these
problems, we achieve utility comparable to that of the cen-
tral model with local privacy guarantees, assuming the JL-
transform is computed securely.

For both of the following problems, we have the option
of achieving ε differential privacy, via protocols based on

the Laplace mechanism, as well as (ε, δ)-differential pri-
vacy with slightly higher utility, via protocols based on the
Gaussian mechanism.

Low Rank Approximation. We are given a data ma-
trix A ∈ Rn×d. Our goal is to compute an orthogo-
nal projection X ∈ Rd×r minimizing the error OPT =
minX ∥A−AXXT ∥F , where ∥.∥F denotes the Frobenius
norm of a matrix. In the LTM, we give a (ε, δ) differentially
private mechanism with multiplicative error (1 + α) and
additive error Õ(kd3/2α−3ε−1 log δ−1). We also present a
ε differentially private mechanism with multiplicative error
(1 + α) and additive error Õ(k3d3/2α−6ε−1). State of the
art central model mechanisms (Dwork et al., 2014; Hardt &
Roth, 2012) have no multiplicative error and additive error
O(k
√
d ·ε−1) , which is optimal in terms of k and d. For the

local model, we are only aware of the result by (Arora et al.,
2018), which has a multiplicative error of O(log n log3 d)
and additive error O(k2n · dpoly(ε−1, log δ−1)). There are
several related questions we will survey in more detail in
Appendix F.

Ridge Regression. We are given a data matrix A ∈
Rn×d, a target vector b ∈ Rn and regularization param-
eter λ > 0. Our goal is to find x ∈ Rd minimizing
minx ∥Ax − b∥2 + λ · ∥x∥2, where ∥.∥ denotes the Eu-
clidean norm of a vector. Each row of the data matrix, as
well as the corresponding entry of b resides with a client.
Assume that λ ≥ poly(ε−1, d, log 1/δ). In the LTM, there
exists an (ε, δ) differentially private mechanism that can
compute an x̂ with error (1 + o(1)) · (∥Axopt − b∥2 +
λ · ∥xopt∥2) + poly(ε−1, d, log 1/δ). Unlike the low rank
approximation problem, we are not aware of other papers
achieving comparable bounds in any model. Regression has
been studied in the context of empirical risk minimization
and some results also exist for comparing closeness of the
computed predictor x̂ and that optimal xopt. While we view
the low rank approximation mechanisms as our main result,
we nevertheless believe this work can serve as a starting
point for achieving bounds for ridge regression in terms of
cost in any model including the central model.

Table 1 provides a comparison of the utility bounds for the
problems in the local, central, shuffle and LTM models. To
the best of our knowledge, there are no results on low rank
approximation in the shuffle model.

As a warm-up to illustrate the potential inherent in the LTM,
and to also highlight the comparison to the other models,
we consider the basic problem of computing histograms and
frequency of moments. More related work on problems
related to low rank approximation and regression, as well
as applications of linear sketching to differentially private
mechanisms can be found in Appendix F.
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Table 1. SOTA utility bounds for various models for frequency estimation and low rank approximation. Our bounds for low rank
approximation have a multiplicative error O(1 + αS), which we omitted for space.

Local Shuffle LTM (this work) Central

Frequency Est

Õ(
√
n)

Õ(ε−1) Θ̃(ε−1)
(Bassily et al., 2020) Θ̃(ε−1)

Ω(
√
n) (Ghazi et al., 2021)

(Bassily & Smith, 2015)

Low-Rank App

(Õ(log n log3 d), O(k2nd))

N.A. Õ(kd
3/2

α3
S
ε−1)(Arora et al., 2018) Θ̃(k

√
dε−1)

Ω(
√
n) (Dwork et al., 2014)

(Bassily & Smith, 2015)

2. Preliminaries

Notation. Column vectors are written in bold lowercase
letters b and matrices in bold uppercase letters A. The
transpose operator over vectors and matrices is bT and AT .
For any vector b, we denote by ∥b∥ =

√∑
i b

2
i its ℓ2-norm.

For any matrix A, we denote by ∥A∥F =
√∑

i

∑
j A

2
i,j

its Frobenius norm. We denote the inner product between
vectors ⟨a,b⟩ = aTb. Two vectors a,b are orthogonal if
their inner product is 0. An orthogonal matrix A is a real
square matrix where the columns have unit Euclidean norm
and are pairwise orthogonal.

Subspace Preserving Sketches. We consider subspace-
preserving sketches in this work, which are sparse Johnson-
Lindenstrauss transforms. Of particular interest for us
are algorithms that compute a subspace approximation of
A without prior knowledge of A. Such algorithms are
known as oblivious subspace embeddings. We will use
a family of such embeddings known as oblivious sparse
norm-approximating projections originally due to (Nelson
& Nguyên, 2013), but since improved upon in several sub-
sequent works.

Definition 2.1 (OSNAP (Nelson & Nguyên, 2013).).
Let Dsketch

m,n,s be a distribution over random matrices
{−1, 0, 1}m×n, where s entries of each column, chosen
uniformly and independently for each column, are set to ±1
with equal probability, and all other entries are set to 0. If
s = 1, we write Dsketch

m,n . We say that S ∼ Dsketch
m,n,s is an

(α, β, s,m) OSNAP for a n × d orthogonal matrix W if
with probability 1− β, for all a, b ∈ Rd and some precision
parameter α∣∣aTWTSTSWb− aTWTWb

∣∣ ≤ α · ∥Wa∥∥Wb∥.

We give bounds on available choices of (α, β, s,m) for
subspaces of rank k in Table 3 in the appendix.

Differential Privacy. Differential privacy (Dwork et al.,
2006b) offers privacy guarantees to individuals contributing

their data to some randomized algorithm. We say that two
datasets are neighboring if one can be obtained from the
other by the the replacement of a single individual with
another individual.
Definition 2.2 (Differential Privacy in the central model
(Dwork et al., 2006b)). Let ε ≥ 0 and δ ∈ [0, 1]. A random-
ized mechanismM : X → Y is (ε, δ)-differentially private,
if for all neighboring data sets x, x′ ∈ X and all outputs
S ⊆ Y it holds that

Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ,

where the probabilities are over the randomness of M.
If δ = 0, then we simply say that the mechanism is ε-
differentially private.

A probability distribution F is infinitely divisible if for any
positive integer n, there is a random variable Sn which can
be written as Sn =

∑
i∈[n]Xi such that each of the Xi are

random variables, independent and identically distributed,
and Sn has the probability distribution F .

3. Privacy Guarantees in the LTM
We consider a model in which the trusted component can
perform any public linear transformation of the inputs. The
model includes three algorithms: (1) R : X → Y is a ran-
domized encoder that takes a single user’s data and outputs
a randomized message, (2) T : Y ′ → Y∗ is the idealized
trusted component that performs a public linear transfor-
mation of its inputs, and (3) A : Y∗ → Z is an analysis
function that takes the results messages and estimates some
function from these messages.

Note that standard definitions of differential privacy in the
shuffle model only require T (R(x1), ..., R(xn)) to be differ-
entially private. This implicitly assumes that all clients are
honest and do not collude with the adversary, in particular
they are assumed not to leak the output of their randomizers
publicly. This implies that existing definitions of differential
privacy in the shuffle model could be satisfied even by (arti-
ficial) mechanisms in which a single client adds the whole
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noise while the others do not randomize their messages at all.
This is clearly a very weak privacy guarantee: in a setting
in which a large number of clients participate in a differen-
tially private data analysis, it is unrealistic to assume that
the adversary does not control even a single client. Luckily,
to the best of our knowledge, no proposed mechanisms in
the literature suffer from these vulnerabilities, still this coun-
terexample shows that the existing definition is not robust
enough, and we therefore formalize a notion of differential
privacy where we explicitly tolerate that a bounded number
of clients might collude with the adversary. This refined
definition could be applied to both the shuffle model and
our model to ensure that the privacy guarantee holds even
when a bounded number of clients might collude with the
adversary. Similar observations were also made by (Talwar
et al., 2023).

We assume that up to t′ < n clients and t < k servers may
collude in the semi-honest model, sharing information with
each other while following the protocol.

Definition 3.1 (Trusted Computation Model for Differential
Privacy). A tuple of algorithms P = (R, T,A) is (ε, δ)-
differentially private given corrupt clients Ccor if the out-
put ΠR(x1, ..., xn) = T (R(x1), ..., R(xn)), as well as cor-
rupted parties’ randomizer output R(xi) for all xi ∈ Ccor

satisfy (ε, δ)-differential privacy.

Multi-Central Model of Differential Privacy. (Steinke,
2020) introduce the multi-central model, which exactly de-
fines this split-trust model that instantiates the trusted com-
putation model above. They allow a semi-honest adversary
that honestly follows the protocol to corrupt up to all but
one servers and all but one client. We also operate in the
same semi-honest setting, but define parameters t and t′ for
the number of tolerated server and client corruptions.

The view View
R,Π,A
Ccor,Scor

(x) of the adversary consists of all
the information available to the corrupted clients Ccor and
servers Scor plus the final output of the honest, uncorrupted
servers. This view excludes only internal information of the
trustworthy servers and clients. The resulting protocol is
(ε, δ)-differentially private in the multi-central model if the
adversary’s view is (ε, δ)-indistinguishable from the output
on a neighboring dataset.

Figure 1 further illustrates what is contained in the adver-
sary’s view. If one server and one client are corrupted, the
adversary’s view contains all incoming and outgoing mes-
sages from that server and that client marked in red in the
figure.

Definition 3.2 (Instantiation of Trusted Computation Model
for Differential Privacy with MPC). Let Π be a k-party
MPC protocol that computes f : Rn → R with perfect
security, tolerating t corruptions. A tuple of algorithms P =
(R,Π, A) is (ε, δ)-differentially private if for all coalitions

C1

C2

Cn

S1

Sk

A

R(x1)1
x1

x2

xn

R(x1)k

R(x2)1

R(x2)k

R(xn)1

R(xn)k

T(R(x1)1,R(x2)1,…,R(xn)1)

T(R(x1)1,R(x2)1,…,R(xn)1)

A(T(R(x1),R(x2),…,R(xn)))

Figure 1. Adversary’s View

Algorithm 1 Linear Transformation Model
1: Input: Individual input vectors x1, . . . ,xn

representing values in Rd

2: Each client i ∈ [n] locally computes R(xi) on their
input xi.

3: Each client secret shares the resulting value using a
linear secret sharing scheme, and sends one share to
each server.

4: The servers jointly compute function T on the matrix,
which results from concatenating all n vector secret
shares.

5: The resulting matrix product is published and then
taken as input to any analysis function A.

6: Output: Output A(T (R(x1), . . . , R(xn))

Scor of up to t < k corrupt servers and for all possible S, all
coalitions Ccor of t′ < n corrupt clients and all neighboring
datasets x and x′:

Pr[ViewR,Π,A
Scor,Ccor

(x) ∈ S]
≤ eε · Pr[ViewR,Π,A

Scor,Ccor
(x′) ∈ S] + δ

where the probability is over all the randomness in the algo-
rithms (R,Π, A).

Algorithm 1 describes how clients and servers jointly com-
pute the linear transformation, allowing the transformed
data to be published and used for analysis.

With this definition, we can give our first result showing that
differential privacy is retained given a bounded number of
corruptions. The proof can be found in Appendix D.

Lemma 3.3. If P = (R, T,A) is (ε, δ)-differentially pri-
vate with t′ corrupt clients, and if Π is a perfectly secure
k-party MPC protocol that computes T correctly while tol-
erating t corrupt servers, then P = (R,Π, A) is (ε, δ)-
differentially private.
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3.1. Frequency Moments

To illustrate the possibilities inherent to the LTM, we con-
sider a simple application by way of estimating frequency
moments. For simplicity, assume in this section that all
clients are trustworthy, i.e. t′ = 0, but the arguments can be
straightforwardly extended to deal with arbitrary values of
t′. Here, each client is given a number [−∆,∆] and our goal
is to estimate Fk =

∑n
i=1 |xi|k. In the local model, even

if all entries are either 0 or 1, it is not possible to estimate
F1 without incurring an additive error of the order

√
n, that

is the estimated value F̃1 = F1 ± O(
√
n) for any privacy

preserving local mechanism (Bassily & Smith, 2015). In
contrast, simply computing Fk and adding an appropriate
amount of noise yields an additive error that only depends
on ∆, ε and δ.

We now consider the LTM. Let xk denote the vector of client
entries with xk

i = |xki |. We observe that Fk = fk(x) =
1Txk. Suppose that every client i samples gi from a distri-
bution, and we denote x̃ the vector of noisy client entries
with x̃k

i = |xki | + gi. To guarantee differential privacy,
we can use a differentially private additive noise mecha-
nism 1T (x̃k) = fk(x) +G, where the noise distribution is
infinitely divisible and G =

∑
i∈[n] gi.

Many different infinitely divisible distributions can be used
at this stage. One example is the geometric distribution,
since the sum of negative binomial random variables follows
a geometric distribution, which can be used in differentially
private mechanisms (Ghazi et al., 2020). The Laplace dis-
tribution, which is commonly used for ε-DP mechanisms,
is also infinitely divisible, since a zero-centered Laplace
distribution can be formulated as a sum of differences be-
tween Gamma distributions. Other possible options are
stable distributions, a subset of infinitely divisible distribu-
tions for which each gi and G follow the same distribution,
such as Gaussian or Cauchy. We provide parameter choices
and an error bound examples for the Gaussian and Laplace
distributions in Appendix B.

3.2. Privacy Preserving Mechanism for Oblivious
Johnson Lindenstrauss Transforms

We instantiate the trusted computation model for differ-
ential privacy for specific choices for the functions in tu-
ple (R, T,A). We will show how to guarantee differential
privacy for the tuples (Rdense

D , T dense
S , A) and (RD, TS, A),

which we will refer to as the dense sketching mechanism
and the sparse sketching mechanism, respectively.

Randomizer function RD : Rd → Rds. The randomizer
takes as input a d-dimensional row vector x, copies it s
times and concatenates the result to form xs. Then noise
is sampled independently from distribution D and added to
each of the ds entries in the resulting vector.

Rdense
D (x) = xs + g,g ∼ Dds (1)

We define a second alternative to this randomizer function,
which instead outputs 0ds if n < 8m ln(dm/δ) + t′:

RD(x) =

{
0ds n < 8m ln(dm/δ) + t′

Rdense
D (x) else

(2)

Transformation function TS : Rn×ds → Rm×d. This
function takes as a parameter a matrix S ∈ {−1, 0, 1}m×n

and takes as input a matrix A ∈ Rn×ds, which corresponds
to the vertical concatenation or stacking of n outputs from
a randomizer function R. We parse A as the horizontal
concatenation of matrices Ai ∈ Rn×d for i ∈ [s]. Let s
be the largest number of non-zero entries in a column of S.
Then S can be decomposed such that S = 1√

s

∑s
i Si, where

Si ∈ {−1, 0, 1}m×n is a matrix with only one non-zero
entry per column, and the assignment of non-zero entries to
indeces i is done uniformly at random. TS outputs the sum
of matrix products 1√

s

∑
i∈[s] SiAi.

TS(A) =
1√
s

∑
i∈[s]

SiAi (3)

We also define T dense
S : Rn×dm → Rm×d, where S is a

dense matrix rather than a sparse one, so we set s = m.
Then S can be decomposed such that S = 1√

m

∑m
i Si,

where Si ∈ {−1, 0, 1}m×n is a matrix with only one non-
zero entry per column and exactly n/m non-zero entries per
row.

Analysis function A. A takes a matrix in Rm×d, as well as
any public values, and outputs some data analysis. Examples
include low rank approximation and linear regression.

We now evaluate the noise distribution necessary to guar-
antee differential privacy in this model. We find that for
sufficiently large n, we can apply the infinite divisibility
of distributions to divide the noise into a number of pieces
corresponding the number (n− t′)/2m of honest clients ex-
pected to contribute to any entry of a column in the resulting
noisy matrix product. The concentration bound, formulated
in Lemma D.1 and used to bound this number of honest
clients, contributes to the necessary value of δ. Composition
theorems can be applied on the columns of the resulting ma-
trix product to yield the final differential privacy guarantee.
We will later see that adding suitable noise to data results
in only a small error in the resulting error for regularized
linear regression and low rank approximation.

We are now ready to state our privacy guarantees in the
LTM.
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Theorem 3.4. Let ε ≥ 0, δ ∈ (0, 1), m ∈ [n], t′ < n,
s ∈ [m]. Let S ∼ Dsketch

m,n,s with s non-zero entries per col-
umn. Also let noise gi be sampled from a symmetric distri-
bution D such that

∑
i∈[(n−s−t′)/(2m)] gi = G. G follows

a distribution D′ that defines an additive noise mechanism
that satisfies (ε/(sd), δ/(sd)−m exp(−(n−s−t′)/8m)))-
DP for function f(A) = (SA)j + n for n ∼ D′m on input
A ∈ Rn×d, where the subscript refers to one column of
SA. Then as long as input values are bounded above by
η, the sparse sketching mechanism (RD, TS, A), as defined
by equations 2 and 3 and for any A, is (ε, δ)-differentially
private in the trusted computation model for differential
privacy with t′ corrupt clients.

One additive mechanism to which this can easily be ap-
plied is the Gaussian mechanism. To do so, D is a normal
distribution with variance:

σ2 =

4s3η2 ln

(
1.25s

δ/d−m exp(
−(n−s−t′)

8m )

)
md2

ε2(n− s− t′) . (4)

If we would like to obtain a result for mechanisms with
δ = 0, we can instead use Rdense

D and use a dense sketching
matrix S ∈ {−1, 1}m×n.

Theorem 3.5. Let ε ≥ 0, δ ∈ [0, 1), m ∈ [n], t′ < n,
s ∈ [m]. Let S ∼ {−1, 1}m×n be a dense, uniformly
sampled matrix. Also let R add noise gi sampled from a
symmetric distribution D such that

∑
i∈[n/m−t′] gi = G.

G follows a distribution D′ that defines an additive noise
mechanism that satisfies (ε/(md), δ/(md))-DP for func-
tion f(A) = (SA)j + n for n ∼ D′m on input A ∈ Rn×d,
where the subscript refers to one column of SA. Then as
long as input values are bounded above by η, dense sketch-
ing mechanism (Rdense

D , T dense
S , A), as defined by equations 1

and 3 and for any A, is (ε, δ)-differentially private in the
LTM for differential privacy with t′ corrupt clients.

To instantiate this second theorem, D can be chosen as the
distribution formulated as the difference of two samples of
gamma distribution

Γ

(
1

n/m− t′ , 2ηm
2d/ε

)
. (5)

The proofs can be found in Appendix D. Corollary 3.6 below
follows directly from Theorem 3.4 and Lemma 3.3.

Corollary 3.6. Let (RD, TS, A) be the tuple of algorithms
above. If TS is computed correctly using an MPC protocol
ΠS with perfect security tolerating t semi-honest corrup-
tions, then the tuple of algorithms (RD,ΠS, A) is (ε, δ)-
differentially private with t′ corrupt clients.

3.3. Cryptographic Assumptions and Relations to the
Shuffle Model

The LTM can be securely distributed using simple cryp-
tographic techniques for secure multiparty computation
(MPC), such as linear secret-sharing (LSS). MPC ensures
that no adversary corrupting all but one server learns more
than the computation’s output. (Dwork et al., 2006a) first
explored combining differential privacy and MPC, focus-
ing on distributed noise generation requiring server inter-
action. (Cheu & Yan, 2023) establish lower bounds for
non-interactive multi-server mechanisms, while (Damgård
et al., 2023) propose an interactive MPC protocol for selec-
tion in distributed trust models.

The linear transforms can be non-interactively computed
locally by servers and are also known to all participating
parties, that is, once initiated, the output of the protocol is
fully deterministic. Linear transforms can be computed non-
interactively by servers and are publicly known, making
the protocol fully deterministic once initiated. This enables
implementing the LTM with multiple central servers under
the minimal assumption that at least one server remains
honest. Using LSS has key advantages: clients send a sin-
gle message per server proportional to the input size and
sparsity s of the transformation matrix S, servers commu-
nicate only with the data analyst, and the total workload
scales only with the number of servers and matrix sparsity.
Since LSS supports information-theoretic security, our sys-
tem remains secure even against quantum adversaries. We
describe the type of secret-sharing scheme used for secure
linear transformations in Appendix H.

Secure aggregation and the shuffle model are two instanti-
ations of intermediate trust models for differential privacy.
Secure aggregation (Goryczka & Xiong, 2017; Bonawitz
et al., 2017; Mugunthan et al., 2019; Apple & Google, 2021;
Talwar et al., 2023) is a special case of the LTM, where the
linear transformation applied is a sum, which is useful in
federated learning. The shuffle model (Bittau et al., 2017;
Erlingsson et al., 2019; Cheu et al., 2019) can be distributed
among multiple servers using cryptographic protocols such
as mixnets.

Implementing shuffles requires servers to communicate over
a chain, increasing latency. In MPC-based shuffles, each
server must sequentially shuffle and randomize the cipher-
texts, leading to a round complexity proportional to the
number of servers involved. In contrast, the LTM enables
all servers to perform their computations in parallel, result-
ing in lower round complexity and latency.

Regarding the computational cost, servers in the LTM only
perform simple linear operations on secret shares, such as
matrix-vector multiplications, which are highly efficient.
On the other hand, MPC-based shuffles typically rely on
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mix-nets or similar constructions, where each server per-
forms, for every data point, multiple expensive public-key
operations (e.g., modular exponentiations with large moduli
and exponents). This introduces an overhead that is orders
of magnitude higher compared to simple matrix multiplica-
tions.

The total amount of data transmitted is comparable between
the two models, but the size of individual messages differs
substantially. In the LTM, secret shares can be as small
as the plaintext itself; for example, when working with 64-
bit types, each share is just 64 bits per server. In contrast,
MPC-based shuffles transmit ciphertexts that are signifi-
cantly larger due to the inherent expansion of public-key
encryption. For example, even with elliptic curve ElGamal,
each ciphertext would be at least 512 bits. As a result, the
total communication volume in MPC shuffles is larger.

Finally, shuffles require computationally intensive public-
key cryptography, which in turn requires computational as-
sumptions. In contrast, LSS enables efficient, unconditional
security and deterministic computation.1

4. Numerical Linear Algebra in LTM
In this section we give the utility guarantees of our mecha-
nism. We start with giving generic distortion bounds relating
the spectrum of the noisy matrix to the spectrum of the origi-
nal non-private matrix. Parameterizations of this mechanism
depend on the underlying class of subspace embeddings. In
this utility analysis, we limit outselves to OSNAPs with m
and s chosen according to (Cohen, 2016); other trade-offs
are possible and can be found in Appendix C. Applications
to specific problems such as regression and low rank approx-
imation are given towards the end of the section.

Here we present the formal utility statements for ridge re-
gression and low rank approximation. All proofs can be
found in the Appendix E.

We will use the following spectral bounds for both linear re-
gression and low rank approximation. We believe that there
may be further applications and that the bounds themselves
are therefore of independent interest.

Lemma 4.1. Let S ∈ 1√
s
· {−1, 0, 1}m×n be an

(α, β,m, s) OSNAP with S = 1√
s

∑
i∈[s] Si, where Si ∈

{−1, 0, 1}n×m has exactly one non-zero entry per row. Let
G =

∑
i∈[s] SiGi where every matrix Gi ∈ Rn×d has

independent Gaussian entries N (0, σ2). Further, let V be
a set of d-dimensional vectors lying in a k-dimensional sub-
space. Then with probability at least 1−β for some absolute

1The linear transformations we use are random but public and
sampled before the computation.

constant η

sup
x∈V

1

s
∥Gx∥22 ≤ η · 2

n

m
σ2 · ∥x∥2 · (

√
(k + log 1/β) ·m

+ (k + log 1/β)).

and

1

s
∥G∥2F ≤ η · 2nσ2 · d · log 1/β

Related, though slightly weaker bounds can also be derived
for the Gamma/Laplace mechanism. While it is possible to
derive bounds for sparse Rademacher sketches, we focus
on the dense constructions as these yield ε differentially pri-
vate mechanisms (as opposed to (ε, δ) differentially private
mechanisms).

Lemma 4.2. Let S ∈ 1√
s
· {−1, 0, 1}m×n be an

(α, β,m,m) OSNAP with S = 1√
m

∑
i∈[s] Si, where

Si ∈ {−1, 0, 1}m×n has exactly one non-zero entry per
row and n/m non-zero entries per column. Let L =
1√
m

∑
i∈[m] SiΓi where every matrix Γi ∈ Rn×d has inde-

pendent entries Xi − Yi, where Xi, Yi ∼ Γ(m/n, b). Then
with probability at least 1− β for some absolute constant η
and

∥L∥2F ≤ ηdm2b2 log2
m

β

We first begin with our utility results for low rank approx-
imation. Using the Gaussian mechanism, we obtain the
following guarantee.

Theorem 4.3. Let ε ≥ 0, δ ∈ (0, 1), t′ < n/2. Let
S ∼ Dsketch

m,n . Define Ak as an algorithm that com-
putes argminX rank k,∈Rn×d∥A − AXXT ∥2F . An instan-
tiation of the trusted computation model (RD, TS, Ak)
specified in Equations 2 and 3, using noise distribution
D ∼ N (0, σ2) according to Equation 4, computes an or-
thogonal projection X′ that with probability 1− β achieves
a multiplicative error (1 + O(αS)) and additive error

O
(

kd3/2

α3
S

log3/2(1/β)ε−1 log1/2(1/δ)
)

for the low rank
approximation problem.

Using dense Rademacher sketches and the Gamma/Laplace
mechanism, we instead obtain the following guarantee.

Theorem 4.4. Let ε ≥ 0, δ ∈ (0, 1), t′ < n/2. Let
S ∼ Dsketch

m,n . Define Ak as an algorithm that computes
argminX rank k,∈Rn×d∥A−AXXT ∥2F . An instantiation of
the trusted computation model (Rdense

D , T dense
S , Ak) specified

in Equations 1 and 3, using noise distribution D as the
difference between two independent Γ random variables
parameterized by Equation 5, computes an orthogonal pro-
jection X′ that with probability 1 − β with multiplicative
error (1 +O(αS)) and additive error O(k

3d3/2

α6
S
ε−1 log m

β ).
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Figure 2. Error ψ as function of privacy parameter ε, with n =
500000, d = 50 and k = 5. The standard deviations are depicted
by the vertical black lines and the y-axis is logarithmic in ψ.

For ridge regression, we achieve the following bound.

Theorem 4.5. Let ε ≥ 0, δ ∈ (0, 1), t′ < n and σ be chosen
as described in Theorem D.3. Let S ∼ Dsketch

m,n . Define Aλ

that performs linear regression on the sketched noisy inputs,
outputting argminx∥Ax−b∥2 +λ∥x∥2, where the error is
measured by minx∥Ax−b∥2 +λ∥x∥2. An instantiation of
the LTM (RD, TS, Aλ) specified in Equations 2 and 3, us-
ing noise distribution D ∼ N (0, σ2) according to Equation
4, which tolerates t′ corrupted clients, computes linear re-
gression parameters for any αS > 0 with probability 1− β
with multiplicative error 1+ Õ

(
αS + p+ p2

)
and additive

error Õ
(
p+ p2

)
, where p =

d3α−5
S log5 1

β ·ε−2 log 1
δ

λ .

5. Experimental Evaluation
In this section we present an empirical evaluation of differ-
ential privacy mechanisms for the low-rank approximation
problem in the central, the local and LTM models. The
local and LTM mechanisms we consider are algorithmically
identical up to their noise rate. An immediate question
thus is, for which parametrizations of the noise rate we
still achieve acceptable utility. In addition we implement
a Gamma/Laplace based LTM mechanism, to evaluate the
price of achieving pure ε-differential privacy. Additionally,
we experimentally evaluated the minimal computational
overhead introduced by the use of MPC for distributing the
execution of the LTM. In Appendix G we provide additional
experiments for the ridge regression problem as well as a
more in depth description of the low-rank approximation
experiments.

Setup. Our Gaussian mechanism in the LTM adds noise
sampled from N (0, σ2) to every entry in input data matrix
A. The variance σ2 depends on privacy parameters ε and
δ and is chosen proportional to n−p for p ∈ [0, 1]. This en-
ables us to interpolate between the local model (p = 0) and
the LTM (p = 1). The Laplace mechanism in the LTM on

the other hand adds the sum of m samples from Lap(0, 1/ε)
to every entry in SA. As a baseline for the central model, we
implemented MOD-SULQ (Chaudhuri et al., 2012), an ap-
proach where ATA is perturbed by adding Gaussian noise.
We measure the error in terms of the excess risk;

ψ =
∥A−AX′X′T ∥2F − ∥A−AXOPTX

T
OPT∥2F

n
,

where XOPT denotes the optimal solution and X′ denotes
the solution after adding noise to the training data. We
vary the privacy parameter ε and k based on the dataset at
hand. For each dataset we measure ψ for the central model,
the Laplace mechanism and the Gaussian mechanism with
p ∈ {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0}, by reporting the average
ψ over 20 runs of the algorithms per dataset.

Datasets. We evaluate our mechanism on synthetic and real
datasets, enabling us to vary the number of sampled points
n and interpolating between datasets of different sizes.

The synthetic datasets have a large spectral gap from the kth
to the (k + 1)st singular value with random bases, which
emphasizes the performance difference between the various
private mechanisms. The parameters of the four real-world
datasets from the UC Irvine Machine Learning Repository
are given in Table 2. For more thorough descriptions on the
datasets, see Appendix G.2.

Utility. Figure 3 shows our results for two privacy regimes
(ε ∈ {0.1, 0.5}) with synthetic data and Table 2 shows the
error for ε = 0.05 with real-world datasets. In all chosen
parameter settings for synthetic data, we observe that as
n grows, the error in the LTM asymptotically approaches
the error in the central model, both on real and synthetic
data sets (see Figure 3 and Table 2). Table 2 shows that
on real-world datasets, our Gaussian approach performs
significantly better than the Gaussian mechanism in the
local model and is very close to the central MOD-SULQ
(Chaudhuri et al., 2012) mechanism. Both with synthetic
and real-world datasets, our Laplace approach performs bet-
ter than the local model, though not as significantly as the
Gaussian approach. However, this is the price of achieving
pure ε-differential privacy with δ = 0. Finally Figure 2
shows our results for a varying privacy budget ε. As ex-
pected, the error in the LTM stays between the one in the
local and the central model, while it is decreasing in all
models.

Running Time. The only overhead of the LTM over the
local model is the execution of the linear transform in MPC,
and comes from distributing A +Gi ∈ Rn×d among the
servers for i ∈ [s] and then performing matrix multiplica-
tions Si(A +Gi) in MPC, where S1, . . . ,Ss is a decom-
position of some S ∈ Rm×n chosen according to (Nelson
& Nguyên, 2013; Cohen, 2016) with sparsity s. We imple-
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Figure 3. Plots depicting the asymptotic behavior of error ψ for ε ∈ {0.1, 0.5} (left, right), with d = 50 and k = 5. The gray line depicts
the error of the local mechanism, and the orange and lime lines depict our approach using Gaussian and Laplacian noise respectively. The
other lines resemble different values of p when using Gaussian noise. The standard deviations are depicted by the vertical black lines and
the x-axis is logarithmic in the number of clients n.

Table 2. Experimental evaluation of error ψ on real-world datasets. Here we are in the setting where ε = 0.05. For a more elaborate
version of the table, including standard deviation, see Table 9 in the appendix.

Dataset n d k Local LTM Laplace LTM Gauss Central
Power (Hebrail & Berard, 2012) 2049280 6 3 1.2× 10−2 4.0× 10−3 2.1× 10−6 1.8× 10−6

Elevation (Kaul, 2013) 434874 2 1 1.2× 10−1 1.5× 10−2 4.7× 10−8 4.5× 10−8

Ethylene (Fonollosa, 2015) 4178504 18 5 5.9× 10−4 5.8× 10−4 2.4× 10−6 7.9× 10−6

Songs (Bertin-Mahieux, 2011) 515345 89 15 5.6× 10−7 5.6× 10−7 5.6× 10−7 5.6× 10−7

mented our approach in MP-SPDZ (Keller, 2020) and pro-
vide our results in Appendix G.1. Notably, for s = 1 even
with one million clients, the computation on each server
lasts less than 2 seconds, which shows that securely dis-
tributing in the LTM using MPC techniques is a practically
relevant approach.
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A. Differential Privacy Basics
We first define the Gaussian and Laplace mechanisms, which
we use later.

Lemma A.1 (The Gaussian Mechanism (Dwork & Roth,
2014)). Let f : X → Rk be a function and let ε ≥ 0 and
δ ∈ [0, 1]. The Gaussian mechanism adds to each of the
k components of the output, noise sampled from N(0, σ2)
with

σ2 ≥ 2(∆2f)
2 ln(1.25/δ)

ε2
,

where ∆2f = maxx∼x′∥f(x) − f(x′)∥2 denotes the ℓ2
sensitivity of function f . The Gaussian mechanism is (ε, δ)
differentially private.

Lemma A.2 (The Laplace Mechanism (Dwork et al.,
2006b)). Let f : X → Rk be a function and let ε ≥ 0.
The Laplace mechanism adds to each of the k components
of the output, noise sampled from Lap(∆1f/ε), where
∆1f = maxx∼x′ |f(x) − f(x′)| denotes the ℓ1 sensitiv-
ity of function f . The Laplace mechanism is ε differentially
private.

We will use sequential composition of differentially private
mechanisms.

Lemma A.3 (Sequential Composition (Dwork et al.,
2006b)). Let Mi : X → Yi be an (εi, δi)-differentially
private mechanism for i ∈ [k]. Then mechanism M :

X →∏k
i=1 Yi defined asM(x) = (M1(x), . . . ,Mk(x)),

is (
∑k

i=1 εi,
∑k

i=1 δi)-differentially private.

B. Frequency Estimation
Since Gaussians are popular in differentially private mech-
anisms, we will describe the parameter choices for this
distribution. Let gi be Gaussian distributed with zero
mean and variance σ2 ≥ 2∆k ln(1.25/δ)

n·ε2 . Then we have
F̃k = 1T (xk + g) = Fk +

∑n
i=1 gi. We now observe

that
∑n

i=1 gi is Gaussian distributed with zero mean and

variance n · σ2 ≥ 2∆k ln(1.25/δ)
ε2 . Thus, assuming a trusted

computation of 1T g, F̃k is a differentially private estimate
of Fk with error 2∆k ln(1.25/δ)

ε2 .

We also describe the analogous parameter choices for the
Laplace mechanism. Let gi be sample from the distribu-
tion defined as the difference between two Gamma distri-
butions Γ( 1n ,

2∆k

ε ). Again, we have F̃k = 1T (xk + g) =
Fk+

∑n
i=1 gi. We now observe that

∑n
i=1 gi is Laplace dis-

tributed, centered at 0 and with scale 2∆k

ε . Thus, assuming
a trusted computation of 1T g, F̃k is a differentially private
estimate of Fk with error 2∆k

ε .
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C. Sparse Oblivious Subspace Embeddings
Oblivious subspace embeddings (OSEs) (Sarlós, 2006), al-
low for faster approximation algorithms for problems in lin-
ear algebra. Achlioptas (Achlioptas, 2003) provided the first
Johnson-Lindenstrauss transform with some amount of spar-
sity. The first embedding with asymptotically smaller num-
ber of non-zeros than dense Johnson-Lindenstrauss trans-
forms was probably due to (Kane & Nelson, 2012), who
also applied them in the context of subspace embeddings.
In a remarkable result, the super-sparse version with only 1
non-zero entries per column, was first analyzed in (Clarkson
& Woodruff, 2013) and improved independently in (Meng
& Mahoney, 2013; Nelson & Nguyên, 2013), by increasing
the target dimension m. In (Nelson & Nguyên, 2013), the
sparse Johnson-Lindenstrauss transform (Kane & Nelson,
2012) was studied with a wider range of parameters. Subse-
quent works (Cohen, 2016; Høgsgaard et al., 2023) further
analyze and improve the relationship between m and s, em-
phasizing different parameters. Table 3 provides the exact
interplay between m and s in those works. (Liang et al.,
2014) proposes an approach to boost the success probability
β of an OSE, which gives an alternative to increasing the
target dimension.

When dealing with rank k approximation, we will condition
on

(1− αS)∥A−AXXT ∥2F ≤ ∥S(A−AXXT )∥2F
≤ (1 + αS)∥A−AXXT ∥2F

for all rank k orthogonal matrices X. When dealing with
regression, we will condition on

(1− αS)∥Ax′ − b∥2 ≤ ∥S(Ax− b)∥2

≤ (1 + αS)∥Ax′ − b∥2

for all x ∈ Rd. For the parameters given here, this is true
with the probability given in table 3 (assuming k = d in the
case of regression). For the case of regression in particular,
it is sometimes beneficial to select αS as large as possible.
A sufficiently largest value of αS such that S still provide
a subspace embedding guarantee is 1/3. Throughout this
paper, we will sometimes bound αS by 1.

We further will give our utility proofs using the spar-
sity/target dimension bounds from (Cohen, 2016). Other
tradeoffs are possible, but they have worse bounds for
most ranges of parameters. The results in (Meng & Ma-
honey, 2013; Nelson & Nguyên, 2013; Høgsgaard et al.,
2023) give different trade-offs depending on which set
of parameters are considered the most dominant. No-
tably, the s = 1 sketches of (Meng & Mahoney, 2013;
Nelson & Nguyên, 2013) result in an additive error of
Õ
(

k4d3

α4
Sβ2 ε

−2 log 1
δ

)
for low rank approximation and a term

Õ
(

d7ε−2 log 1
δ

α5
Sβ2λ

+
d14ε−4 log2 1

δ

α6
Sβ4λ2

)
in both the multiplicative

and additive error. The utility guarantees using the bounds
from (Høgsgaard et al., 2023) change only by logarithmic
factors compared to those in Theorems 4.3 and 4.5.

D. Privacy Proofs
Proof Sketch of Lemma 3.3. This proof can be seen as anal-
ogous to the security proof of Theorem 4 in (Talwar et al.,
2023). Recall that each server learns nothing more from
a perfectly secure multi-party computation protocol other
than what is implied by their own input and the output of
the function being evaluated. Then there is a simulator
Sim

R,Π,A
Scor,Scor=c(x) whose output is (ε, δ) indistinguishable

from the adversary’s view View
R,Π,A
Scor,Ccor

(x). Note that the
secret shares that are part of the view of the corrupted servers
in the protocol Π are independent of the input values of the
corrupted clients, and all can be easily simulated by random
sampling.

A bit more formally, let x be an input dataset, where xi is
the input value contributed by client i and x̃i is the vector of
input shares for server i that serves as input to Π. There is a
mapping from x ∈ Xn to x̃ ∈ X̃ k. DenoteX = {xi}i∈Ccor

and X ′ = {x′i}i∈Ccor
.Then for any two datasets x, x′ that

differ in one entry xi with i /∈ Ccor:

Pr[ViewR,Π,A
Scor,Ccor

(x) ∈ S]
≤ Pr[SimR,Π,A

Scor,Ccor
(f(R(x1), . . . , R(xn), X) ∈ S]

≤ eε Pr[SimR,Π,A
Scor,Ccor

(f(R(x′1), . . . , R(x
′
n), X

′) ∈ S] + δ

= eε Pr[ViewR,Π,A
Scor,Ccor

(x′) ∈ S] + δ

Lemma D.1. Let γ ∈ (0, 1), and let S ∼ Dsketch
m,n . Then

the probability that S has at least (1 − γ) n
m and at most

(1 + γ) n
m non-zero entries in every row is bounded by;

Pr
(
∃i ∈ [m] :

∣∣∣Xi −
n

m

∣∣∣ > γ · n
m

)
< 2m exp

(
−γ

2n

2m

)
,

where Xi denotes the number of non-zero entries in row i.

Proof. We only give a proof of the lower bound, as a proof
of the upper bound is completely analogous. Let Xij denote
the indicator random variable that is 1 if Sij is non-zero
and 0 otherwise. Note that each entry of S can be thought
of as an independent Bernoulli random variable Xij , and
the number of non-zero entries in a row is the sum of n of
these random variables. Fixing a row k ∈ [m], we can use a
Chernoff bound for sums of Bernoulli random variables to
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Table 3. Trade-off between the target dimension m and sparsity s of sparse OSEs that are generated such that they have s non-zeros
entries per column. Here α denotes the accuracy of the OSE and β denotes its fail probability. Variable k is the parameter to k-rank
approximation, which can be replaced by dimension d for linear regression. The paper by (Achlioptas, 2003) was the first to propose the
construction, while its application to preserving subspaces was given by (Clarkson & Woodruff, 2009).

Paper Target Dimension m Sparsity s With Probability
(Achlioptas, 2003) O(k+log 1/β

α2 ) m 1− β
(Nelson & Nguyên, 2013) O( k2

α2β ) 1 1− β
(Cohen, 2016) O(k log(k/β)

α2 ) O( log(k/β)α ) 1− β
(Høgsgaard et al., 2023) O( k

α2 ) O( 1
α · ( k

log(1/α) + k2/3 log1/3(k))) 1− 2−k2/3

get a concentration bound around the expected number of
non-zero entries Xk =

∑n
j=1Xkj in row k. In order to do

this, we first need the expected value of Xk;

E[Xk] =

n∑
j=1

Pr(Xkj = 1) =
n

m
.

Thus a Chernoff bound gives us that

Pr
(
Xk < (1− γ) n

m

)
< exp

(
−γ

2n

2m

)
.

Applying a union bound over all rows of S then gives us
exactly what we were to prove;

Pr
(
∃i ∈ [m] : Xi < (1− γ) n

m

)
≤

m∑
k=1

Pr
(
Xk < (1− γ) n

m

)
< m exp

(
−γ

2n

2m

)
.

To prove Theorem 3.4, we first prove a simpler version of
the theorem below.

Lemma D.2. Let ε ≥ 0, δ ∈ (0, 1), m ∈ [n], t′ < n.
Let S ∼ Dsketch

m,n with one non-zero entry per column.
Also let gi ∼ D be samples from a distribution such
that

∑
i∈[(n−t′)/(2m)] gi = G. G follows a distribution

D′ that defines an additive noise mechanism that satis-
fies (ε/d, δ/d−m exp(−(n− t′)/8m)))-DP for function
f(A) = (SA)j + n with n ∼ D′m on input A ∈ Rn×d,
where the subscript refers to one column of SA. Then
as long as input values are bounded above by η, tuple of
algorithms (RD, TS, A), as defined by equations 2 and 3
and for any A, is (ε, δ)-differentially private in the trusted
computation model for differential privacy with t′ corrupt
clients.

Proof of Lemma D.2. Let ε, δ, RD and TS be given as de-
scribed in the theorem. If δ/d ≤ m exp(−(n − t′)/8m),

then the RD outputs 0d, which is entirely independent of
the input and is therefore (ε, δ) differentially private.

Otherwise,M(A) = TS(RD(a1), . . . , RD(an)) = S(A+
G) where ai denotes row i of A ∈ Rn×d and G← Dn×d,
and we now prove that this is (ε, δ) differentially private.

Note that Si(A +G) is a d-dimensional vector, when Si

refers to the i-th row of S. If (Si(A+G))j is (ε/d, δ/d)-
DP, then sequential composition (Lemma A.3) gives that
M is (ε, δ) differentially private.

Now consider d = 1 and let mechanismM1 : Rn → Rm be
defined asM1(a) = S(a+ g) for a ∈ Rn, with g← Dn.

S is sampled such that it has only one non-zero entry per
column; thus, the columns of S are orthogonal. This means
that the entries of (S(a+ g))j and (S(a+ g))j′ for j ̸= j′,
have disjoint support. Therefore, the privacy guarantee can
be analyzed independently for each entry of S(a+ g).

Denote by E the event that the support of S(a + g)j has
at least n−t′

2m uncorrupted clients, whose set of indices we
denoteN . We can formulate S(a+g)j = (Sa)j+(Sg)j =
(Sa)j +

∑
k∈[n] Sj,kgk = (Sa)j +

∑
k∈N Sj,kgk +∑

k∈[n]\N Sj,kgk. Also note that
∑

k∈N Sj,kgk contains at

least n−t′

2m terms in event E, the sum of which suffice for
guaranteeing DP.

Due to the fact that D is symmetric, −1 · gk follows the
same distribution as gk, and

∑
k∈N Sj,kgk follows the same

distribution as
∑

k∈N gk. Due to the infinite divisibility of
D′, the sum of the first n−t′

2m terms of
∑

k∈N gk are samples
from D′.

Then in event E, M1 is (ε, δ − m exp(−(n − t′)/8m)))
differentially private using the additive noise mechanism
that adds noise fromD′. Setting γ = 1/2, Lemma D.1 gives
that E occurs with probability at least 1−m exp(−n−t′

8m ).
Since event E does not occur with probability at most
m exp(−(n − t′)/8m), M1 is (ε, δ − m exp(−(n −
t′)/8m))) differentially private except with probability
m exp(−(n − t′)/8m). Then M1 is (ε, δ)-differentially
private.
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Proof of Theorem 3.4. Let ε, δ, RD and TS be given as de-
scribed in the theorem. If δ/d ≤ m exp(−(n−s−t′)/8m),
then the RD outputs 0d, which is entirely independent of
the input and is therefore (ε, δ) differentially private.

Otherwise, M(A) = TS(RD(a1), . . . , RD(an)) =
1√
s

∑
i∈[s] Si(A + Gi) where ai denotes row i of A ∈

Rn×d and Gi ← Dn×d. Here, S has been decomposed
such that S = 1√

s

∑s
i Si, where Si ∈ {−1, 0, 1}m×n is a

matrix with only one non-zero entry per column.

We argue (ε/s, δ/s)-DP based on Lemma D.2. Note that
the non-zero entry per column in each Si is not sampled
uniformly at random from all possible rows; rather, for Si is
sampled uniformly at random from the remaining n−i rows
(removing the one that was already chosen to be non-zero,
sampling without replacement). Therefore, we replace n
with n− s when applying Lemma D.2.

By sequential composition, releasing Si(A + Gi) for all
i ∈ [s] satisfies (ε, δ)-DP, and thus by post-processing, the
scaled sum of these is also (ε, δ)-DP.

Corollary D.3. Let ε ≥ 0, δ ∈ (0, 1), t′ < n, m ∈ [n],
s ∈ [n] and D be the Gaussian distribution N (0, σ2) with:

σ2 =
4s3η2 ln(1.25s/(δ/d−m exp(−(n−s−t′)

8m )))md2

ε2(n− s− t′)

Let S ∼ Dsketch
m,n,s . Then as long as input values are bounded

above by η, tuple of algorithms (RD, TS, A), as defined
by equations 2 and 3 and for any A, is (ε, δ)-differentially
private in the trusted computation model for differential
privacy with t′ corrupt clients.

Proof of Corollary D.3. We apply Theorem 3.4, setting D
to a Gaussian distribution with the variance specified in the
corollary. First note that zero-centered Gaussians are sym-
metric around the origin. Due to infinite divisibility of Gaus-
sians,

∑
i∈[(n−s−t′)/(2m)] gi = G when gi ∼ D is Gaus-

sian distributed with variance
∑

i∈[(n−s−t′)/(2m)] σ
2 =

(n− s− t′)σ2/(2m)

Notice that the ℓ2-sensitivity of algorithm TS is ∆2TS =
maxA,A′∥SA − SA′∥2 = 2η

√
s, where A,A′ ∈ Rn×d

differ in a single row, and every entry of A,A′ is bounded
above by η.

Based on the Gaussian mechanism (Lemma A.1), the ad-
ditive noise mechanism adding Gaussian noise satisfies
(ε/(sd), δ/(sd)−m exp(−(n−s−t′)/8m)))-DP for func-
tion f(A) = (SA)j + n with n ∼ Lap(0, 2ηm2d/ε)m on
input A ∈ Rn×d, where the subscript refers to one column
of SA.

Lemma D.4. Let ε ≥ 0, δ ∈ [0, 1), m ∈ [n], t′ < n.
Let S ∈ {−1, 0, 1}m×n with one non-zero entry per col-
umn and n/m non-zero entries per row. Also let noise
gi be sampled from a symmetric distribution D such that∑

i∈[(n)/m−t′] gi = G. G follows a distribution D′ that de-
fines an additive noise mechanism that satisfies (ε/d, δ/d)-
DP for function f(A) = (SA)j+n with n ∼ D′m on input
A ∈ Rn×d, where the subscript refers to one column of SA.
Then as long as input values are bounded above by η, tu-
ple of algorithms (Rdense

D , TS, A), as defined by equations 1
and 3 and for any A, is (ε, δ)-differentially private in the
trusted computation model for differential privacy with t′.

Proof of Lemma D.4. Let ε, δ, Rdense
D and TS be given as

described in the theorem.

We show thatM(A) = TS(R(a1), . . . , R(an)) = S(A +
G) where ai denotes row i of A ∈ Rn×d and G← Dn×d,
is (ε, δ) differentially private.

Note that Si(A +G) is a d-dimensional vector, when Si

refers to the i-th row of S. If (Si(A+G))j is (ε/d, δ/d)-
DP, then sequential composition (Lemma A.3) gives that
M is (ε, δ) differentially private.

Consider d = 1 and let mechanismM1 : Rn → Rm be
defined asM1(a) = S(a+ g) for a ∈ Rn, with g← Dn.

S is sampled such that it has only one non-zero entry per
column; thus, the columns of S are orthogonal. This means
that the entries of (S(a+ g))j and (S(a+ g))j′ for j ̸= j′,
have disjoint support. Therefore, the privacy guarantee can
be analyzed independently for each entry of S(a+ g).

Note that the support of S(a + g)j has at least n
m − t′

uncorrupted clients, whose set of indices we denote N .
We can formulate S(a + g)j = (Sa)j + (Sg)j =
(Sa)j +

∑
k∈[n] Sj,kgk = (Sa)j +

∑
k∈N Sj,kgk +∑

k∈[n]\N Sj,kgk.

Due to the fact that D is symmetric, −1 · gk follows the
same distribution as gk, and

∑
k∈N Sj,kgk follows the same

distribution as
∑

k∈N gk. Due to the infinite divisibility
of D′, the sum of the first n

m − t′ terms of
∑

k∈N gk are
samples from D′.

ThenM1 is (ε, δ)-differentially private.

Proof of Theorem 3.5. Let ε, δ, Rdense
D and T dense

S be given
as described in the theorem.

We know M(A) = TS(RD(a1), . . . , RD(an)) =
1√
m

∑
i∈[m] Si(A + Gi) where Gi ← Dn×d. Recall

from Equation 3 that S has been decomposed such that
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S = 1√
m

∑m
i Si, where Si ∈ {−1, 0, 1}m×n is a matrix

with only one non-zero entry per column and n/m non-zero
entries per row.

We argue (ε/s, δ/s)-DP based on Lemma D.4.

By sequential composition, releasing Si(A + Gi) for all
i ∈ [s] satisfies (ε, δ)-DP, and thus by post-processing, the
scaled sum of these is also (ε, δ)-DP.

Corollary D.5. Let ε ≥ 0, t′ < n, m ∈ [n], s ∈ [n],
and let D be the distribution formulated as the difference
of two samples of gamma distribution Γ( 1

n/m−t′ , b) with
parameter

b = 2ηm2d/ε

Let S ∼ {−1, 1}m×n sampled uniformly. Then as long
as input values are bounded above by η, (Rdense

D , TS, A) is
ε-differentially private in the trusted computation model for
differential privacy with t′ corrupt clients C ′.

Proof of Corollary D.5. We apply Theorem 3.5, setting D
to the difference between two samples of the gamma dis-
tribution Γ( 1

n/m−t′ , 2ηm
2d/ε). Note that the resulting dis-

tribution is centered at 0 and symmetric. Due to infinite
divisibility of Laplace distributions,

∑
i∈[n/m−t′] gi = G

when gi ∼ D is Laplace distributed with mean zero and
scale parameter b = 2ηm2d/ε.

Notice that the ℓ1-sensitivity of algorithm TS is ∆1TS =
maxA,A′∥SAj − SA′

j∥1 = 2ηm, where A,A′ ∈ Rn×d

differ in a single row, and every entry of A,A′ is bounded
above by η.

Based on the Laplace mechanism (Lemma A.2), the ad-
ditive noise mechanism adding Laplace noise satisfies
ε/(dm)-DP for function f(A) = (SA)j + n with n ∼
Lap(0, 2ηm2d/ε)m on input A ∈ Rn×d, where the sub-
script refers to one column of SA.

E. Utility Proofs
Lemma E.1. Let G ∈ Rn×d such that all entries in G
are independently sampled from a normal distribution with
mean 0 and variance at most σ2. Further, let V be a set of
d-dimensional vectors lying in a k-dimensional subspace.
Then with probability at least 1− β for some absolute con-
stant η

sup
x∈V
∥Gx∥22 ≤ n · σ2 · ∥x∥2 + η · σ2 · ∥x∥2

· (
√
(k + log 1/β) · n+ (k + log 1/β)).

Moreover, with probability at least 1− β

∥G∥2F ≤ η · σ2 · n · d · log 1/β.

Proof. Denote by Gi the ith row of G. We start by ob-
serving that GT

i x is Gaussian distributed with mean 0 and
variance σ2 · ∥x∥2. Thus, we focus our attention on con-
trolling ∥Gx∥2

σ2·∥x∥2 , that is, we assume that x is a unit vector
and that the entries of G are standard normal Gaussian ran-
dom variables. The overall claim then follows by rescaling.
Consider an ε-net Nε of V , that is, for every x ∈ V with
unit norm there exists a vector x′ ∈ Nγ with ∥x− x′∥ ≤ ε.
Such nets exist with |Nγ | ≤ exp(η · k log 1/γ) for some
absolute constant η, see (Pisier, 1999). Suppose γ = 1/4.
Using concentration bounds for sums of Gaussians (see for
example Lemma 1 of (Laurent & Massart, 2000)), we then
have for any ∥x′∥ with probability 1− β

P
[
∃x′ ∈ Nγ : ∥Gx′∥2 − E[∥Gx′∥2]

≥ 2(
√
(logNγ + log 1/β) · n+ (logNγ + log 1/β))

]
≤|Nγ | · exp(−(η · k + log 1/β)) ≤ β.

for some absolute constant η.

We now extend this argument to all vectors, using an ar-
gument from (Arora et al., 2006) (Lemma 4 of that ref-
erence). Let U be an orthogonal basis of V . Then our
goal is to control ∥Gx∥2 = xTUTGTGUx. Define the
matrix B := UTGTGU − n · I, where I is the iden-
tity matrix. Note that E[UTGTGU] = n · I and that
∥Bx∥ is the deviation of ∥Gx∥ around its expectation. Let
∥B∥op := supx∈V ∥Bx∥.

∥B∥op = ⟨Bx,x⟩ = ⟨Bx′,x′⟩+ ⟨B(x′ + x),x′ − x⟩

≤2(
√

(logNγ + log 1/β) · n+ (logNγ + log 1/β))

+ ∥B∥op · ∥x′ + x∥∥x′ − x∥

≤2(
√
(logNγ + log 1/β) · n+ (logNγ + log 1/β))

+ 2γ · ∥B∥op
≤2(

√
(logNγ + log 1/β) · n+ (logNγ + log 1/β))

+ 1/2 · ∥B∥op

Rearranging implies that ∥B∥op ≤
4(
√

(logNγ + log 1/β) · n + (logNγ + log 1/β)).
The first claim now follows by rescaling η.

For the second claim, we observe that ∥G∥2F has a Gaussian
distribution with mean 0 and variance n · d · σ2. The same
concentration inequality we applied above also implies that
the probability that ∥G∥F exceeds 2

√
σ2 · n · d · log 1/β

is at most 1− β.
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Proof of Lemma 4.1. We first argue that G is Gaussian dis-
tributed. Each Gi has independent Gaussian entries and
multiplying a Gaussian with a random Rademacher does not
change the distribution. Therefore, the entries of SiGi are
likewise Gaussian distributed, with mean 0 and variance at
most (1+γ) n

mσ
2 ≤ 2 n

mσ
2 due to Lemma D.1. Concluding,

the variance of the entries of G =
∑

i∈[s] SiGi is therefore
at most 2s n

mσ
2. Applying Lemma E.1, we then have with

probability 1− β

sup
x∈V
∥Gx∥22 ≤ 2

n

m
σ2 · ∥x∥2 + η · 2s n

m
σ2 · ∥x∥2

· (
√

(k + log 1/β) ·m+ (k + log 1/β)).

and

∥G∥2F ≤ η · 2snσ2 · d · log 1/β
as desired

Proof of Lemma 4.2. We have ∥L∥F ≤ √
m ·

∥maxi∈[m] SiΓi∥F , thus it is sufficient to give a
high probability bound on ∥SiΓi∥F .

The entries of SiΓi are Laplace distributed entries with
mean 0 and scale parameter b by infinite divisibility of a
Laplace random variable into Γ distributed random variables.
Thus the expected value of ∥SiΓi∥2F is md · 2b2.

To prove high concentration, let us consider the moments of
the Laplace distribution. For a Laplace random variable L
with mean 0 and scale b, we have E[L2ℓ] = (2ℓ)!b2ℓ. Then
due to Hoelder’s inequality

E
[
∥SiΓi∥2ℓF

]
=E


md∑

j=1

L2
j

ℓ


≤E

md∑
j=1

L2ℓ
i

 ·
md∑

j=1

1
ℓ

ℓ−1

ℓ−1

=(2ℓ)!b2ℓ · (md)ℓ

Applying Markov’s inequality, we then have for any γ > 1

P
[
∥SiΓi∥2F > γ ·md · 2b2

]
=P
[
∥SiΓi∥2ℓF >

(
γ ·md · 2b2

)ℓ]
≤ (2ℓ)!b2ℓ(md)ℓ

(γ ·md · 2b2)ℓ
=

(2ℓ)!

(2γ)ℓ

≤ (2ℓ)2ℓ

(2γe2)ℓ

√
6πℓ

For γ > 4ℓ2 and ℓ = log m
β , this term is at most

β/m. We can therefore conclude that with probability
1 − β, maxi∈[m] SiΓi ≤ 4 log m

β and thus ∥L∥2F ≤
ηm2db2 log2 m

β , for some absolute constant η.

Proof of Theorem 4.3. We will use the following inequality.
The applications to vector and matrix norms are straightfor-
ward corollaries.

Lemma E.2 (Generalized Triangle Inequality (Becchetti
et al., 2019)). For any two real numbers a, b and any α > 0

|a2 − b2| ≤ α · a2 +
(
1 +

1

α

)
· (a− b)2.

Finally, we require the following consequence of subspace
embedding properties.

Lemma E.3 (Paraphrased from Definition 1, Lemma 11,
and Theorem 12 (Cohen et al., 2015)). S be drawn from an
OSNAP distribution. Then for any matrix A ∈ Rn×d and
any rank k orthogonal matrix X ∈ Rd×k, we have

∥SA− SAXXT ∥F = (1± α) · ∥A−AXXT ∥F .

Without noise, the low rank approximation outputs XOPT =
argminX rank k,∈Rn×d∥A − AXXT ∥2F , and after sketch-
ing with Gaussian noise of variance σ2 outputs X′ =
argminX rank k,∈Rn×d∥(A + G) − (A + G)XXT ∥2F . Let
X′ be the matrix returned by the mechanism. We have

∥A−AX′X′T ∥F

≤ (1 + αS)

√
1

s

∥∥∥∥∥∥
∑
i∈[s]

SiA− SiAX′X′T

∥∥∥∥∥∥
F

≤ (1 + αS)

√
1

s∥∥∥∥∥∥
∑
i∈[s]

Si(A+Gi)− Si(A+Gi)X
′X′T

∥∥∥∥∥∥
F

+ (1 + αS)

√
1

s

∥∥∥∥∥∥
∑
i∈[s]

SiGi − SiGiX
′X′T

∥∥∥∥∥∥
F

where the first inequality follows from the subspace em-
bedding property. By optimality of X′ for the low rank
approximation problem on

∑
i∈[s] Si(A + Gi), we then
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have

∥A−AX′X′T ∥F

≤ (1 + αS)

√
1

s

·

∥∥∥∥∥∥
∑
i∈[s]

Si(A+Gi)− Si(A+Gi)XOPTX
T
OPT

∥∥∥∥∥∥
F

+ (1 + αS)

√
1

s

∥∥∥∥∥∥
∑
i∈[s]

SiGi − SiGiX
′X′T

∥∥∥∥∥∥
F

≤ (1 + αS)
2
∥∥A−AXOPTX

T
OPT

∥∥
F

+ (1 + αS)

√
1

s

∥∥∥∥∥∥
∑
i∈[s]

SiGi − SiGiXOPTX
T
OPT

∥∥∥∥∥∥
F

+ (1 + αS)

√
1

s

∥∥∥∥∥∥
∑
i∈[s]

SiGi − SiGiX
′X′T

∥∥∥∥∥∥
F

where the inequality follows from Lemma E.3. Now notice
that I−XOPTX

T
OPT and I−X′X′T are orthogonal projec-

tions, multiplying by which cannot increase the Frobenius
norm of a matrix. Therefore, for X = X′ or X = XOPT:

√
1

s

∥∥∥∥∥∥
∑
i∈[s]

SiGi − SiGiXXT

∥∥∥∥∥∥
F

=

√
1

s

∥∥∥∥∥∥
∑
i∈[s]

SiGi(I−XXT )

∥∥∥∥∥∥
F

≤
√

1

s

∥∥∥∥∥∥
∑
i∈[s]

SiGi

∥∥∥∥∥∥
F

Then:

∥A−AX′X′T ∥F
≤ (1 + αS)

2∥A−AXOPTX
T
OPT∥F

+ (1 + αS)2
1

s

∥∥∥∥∥∥
∑
i∈[s]

SiGi

∥∥∥∥∥∥
F

(6)

Using Lemma 4.1, we have 1
s

∥∥∥∑i∈[s] SiGi

∥∥∥2
F
≤ 2n ·

σ2 · d log(1/β). To simplify the error, observe that for the
sketching matrix by (Cohen, 2016) (see Table 3), we can set
s = log k

αS
and m = k log k

α2
S

log(1/β). Using the bound on
the variance from Theorem D.3 and plugging this in above,
we can simplify the additive and multiplicative errors.

∥A−AX′X′T ∥2F
≤ (1 + αS)

2∥A−AXOPTX
T
OPT∥2F

+ η(1 + αS)

√
σ2 · n · d · log 1

β̃

≤ (1 + 3αS)∥A−AXOPTX
T
OPT∥2F

+ Õ

(
kd3/2

α3
S

log3/2(1/β)ε−1 log1/2(1/δ)

)
The stated bound follows by rescaling αS by a factor of
3.

Proof of Theorem 4.4. The proof follows the same line of
reasoning as Theorem 4.3. The main difference is that upon

reaching Equation 6, we must bound 1
m

∥∥∥∑i∈[m] SiGi

∥∥∥2
F

via Lemma 4.2 rather than using Lemma 4.1. Assum-
ing the semi-trusted corruption model with at most t cor-
ruptions, each entry of Gi consists of Xj − Yj where
Xj , Yi ∼ Γ(1/(n − t), b). Consequently, the entries of∑

i∈[m] SiGi are a sum of m · ⌈ n
n−t⌉ matrices where each

entry is either 0 or a Laplacian distributed random variable
with mean 0 and scale b. Using Lemma 4.2, we therefore
have with probability 1− β.

1

m

∥∥∥∥∥∥
∑
i∈[m]

SiGi

∥∥∥∥∥∥
2

F

∈ O(1) ·m2 · n

n− tdb
2 log2

m · n
n−t

β

∈ O(1) ·m2 · db2 log2 m
β
,

where we used n
n−t ≤ 2 by assumption. Since S is a dense

Rademacher matrix, we have m = k+log β−1

α2
S

(Achlioptas,

2003; Woodruff, 2014) and s = m, and b = 2ηm2d/ε
following Equation 5.

Thus we obtain, with probability 1 − β, a (1 + αS) mul-
tiplicative approximation using the same calculation as
in Theorem 4.3 and a suitable rescaling, and an additive
O(k

3d3/2

α6
S
ε−1 log2 k

αSβ
) approximation.

Proof of Theorem 4.5. Let ε, δ, RD and TS be
given as in the theorem. We consider the output
Areg(TS(RD(a1), . . . , RD(an))).

If n ≤ 8m ln(dm/δ) + t′, then the RD outputs 0d, then the
optimal x′ = 0d, leading to error ∥Ax′ − b∥22 + λ∥x′∥22 =
∥b∥2 ≤ η′n ≤ η′m ln(dm/δ) + t′.

Otherwise, M(A) = TS(RD(a1), . . . , RD(an)) =
1√
s

∑
i∈[s] Si(A + Gi) where ai denotes row i of A ∈
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Rn×d and G ← N (0, σ2)n×d, is (ε, δ) differentially pri-
vate.

To streamline the presentation, we give the analysis without
corrupted clients. Adding corrupted clients merely changes
the analysis along the same lines as Theorem 4.3.

We first the control the terms ∥∑i∈[s] Si(Gix
′−gi)∥2 and

∥∑i∈[s] Si(GixOPT − gi)∥2. Using Lemma 4.1 with an
added coordinate of −1 to both x′ and xOPT, we get

1

s
∥
∑
i∈[s]

Si(Gix− gi)∥2 ≤ η · σ2nd log
1

β
(∥x∥2 +1) (7)

for either x = xOPT or x = x′ and for a sufficiently large
constant η. Then we have using Lemma E.3

∥Ax′ − b∥2 + λ∥x′∥2

≤ (1 + αS)∥S(Ax′ − b)∥2 + λ∥x′∥2

=(1 + αS)
1

s
∥
∑
i∈[s]

Si(Ax′ − b)∥2 + λ∥x′∥2

=λ∥x′∥2 + (1 + αS)
1

s

· ∥
∑
i∈[s]

Si((A+Gi −Gi)x
′ − b+ gi − gi)∥2

≤(1 + αS)
1

s(
(1 + αS)∥

∑
i∈[s]

Si((A+Gi)x
′ − (b+ gi))∥2

+

(
1 +

1

αS

)
∥
∑
i∈[s]

Si(Gix
′ − gi)∥2

)
+ λ∥x′∥2

≤(1 + αS)
2 ·
(
1

s
∥
∑
i∈[s]

Si((A+Gi)x
′ − (b+ gi)∥2

(8)

+ λ · ∥x′∥2
)

+ 2 ·
(
1 +

1

αS

)
ησ2nd log

1

β
(∥x′∥2 + 1)

(9)

where the second to last inequality follows by applying
Lemma E.2 and the final inequality follows from Equation
7. By optimality of x′ for the instance 1

s∥
∑

i∈[s] Si(Ax′ +

Gi − (b+ gi))∥2 + λ∥x′∥2, we then have

1

s
∥
∑
i∈[s]

Si((A+Gi)x
′ − (b+ gi)∥2 + λ · ∥x′∥

≤ 1

s
∥
∑
i∈[s]

Si((A+Gi)xOPT − (b+ gi)∥2 + λ · ∥xOPT∥2

which likewise implies

∥x′∥ ≤ 1

λ
·
(
1

s
∥
∑
i∈[s]

Si((A+Gi)xOPT − (b+ gi))∥2

+ λ · ∥xOPT∥2
)
.

Insertion both bounds back into Equation 9, we obtain

∥Ax′ − b∥2 + λ∥x′∥2

≤ (1 + αS)
21

s
∥
∑
i∈[s]

Si((A+Gi)xOPT − (b+ gi))∥2 + λ∥xOPT∥2


+ 2

(
1 +

1

αS

)
ησ2nd log

1

β
+ 2

(
1 +

1

αS

)
ησ2nd log 1

β

λ
(10)

·
(
1

s
∥
∑
i∈[s]

Si((A+Gi)xOPT − (b+ gi))∥2

+ λ · ∥xOPT∥2
)

(11)

We now turn our attention to ∥∑i∈[s] Si((A+Gi)xOPT −
(b+ gi))∥2. Using Lemma E.2 and Equation 7, we have

1

s
∥
∑
i∈[s]

Si((A+Gi)xOPT − (b+ gi))∥2 + λ · ∥xOPT∥2

≤(1 + αS)
1

s
∥
∑
i∈[s]

Si(AxOPT − b)∥2

+

(
1 +

1

αS

)
1

s
∥
∑
i∈[s]

Si(GixOPT − gi)∥2 + λ · ∥xOPT∥2

≤(1 + αS)
2∥AxOPT − b∥2

+

(
1 +

1

αS

)
ησ2nd log

1

β
(∥xOPT∥2 + 1) + λ∥xOPT∥2

≤(1 + αS)
2
(
∥AxOPT − b∥2 + λ∥xOPT∥2

)
+

(
1 +

1

αS

)
ησ2nd log 1

β

λ
(λ∥xOPT∥2 + λ)

≤
(
(1 + αS)

2 +

(
1 +

1

αS

)
ησ2nd log 1

β

λ

)
(
∥AxOPT − b∥2 + λ · ∥xOPT∥2

)
+

(
1 +

1

αS

)
ησ2nd log

1

β

Inserting this into Equation 11 and collecting all the terms,
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we obtain

∥Ax′ − b∥2 + λ∥x′∥2

≤
(

32

αS

ησ2nd log 1
β

λ
+

2

αS

(
ησ2nd log 1

β

λ

)2
 (12)

+ (1 + αS)
4

)(
∥AxOPT − b∥2 + λ∥xOPT∥2

)
+

32

αS

ησ2nd log 1
β

λ
+

2

αS

(
ησ2nd log 1

β

λ

)2


By our choice of σ2 from Theorem D.3 and using the
sketching matrix of (Cohen, 2016) (see Table 3), we have
σ2 · n ∈ O(d2 log4 d · α−4

S · log4 1
β ε

−2 · log 1
δ ). Thus, we

have

∥Ax′ − b∥2 + λ∥x′∥2

≤(∥AxOPT − b∥2 + λ∥xOPT∥2) ·
(
1 + 15αS

+ Õ

(
d3α−5

S log5 1
β · ε−2 log 1

δ

λ

+
d6α−10

S log10 1
β · ε−4 log2 1

δ

λ2

))

+ Õ

(
d3α−5

S log5 1
β · ε−2 log 1

δ

λ

+
d6α−10

S log10 1
β · ε−4 log2 1

δ

λ2

)

Note that we can get a constant multiplicative error as long
as the regularization factor λ depends on a sufficiently large
polynomial in d, while being independent of n. Generally
such a relationship still has good generalization properties
when training a regression model. If λ is sufficiently large,
one should choose αS to be as small as possible, minimizing

the tradeoff between αS and α−5
S

λ . If λ is not sufficiently
large, one should choose αS = 1/3 such that S is an obliv-
ious subspace embedding, but the target dimension does
not have a prohibitively large dependency on the sketch
distortion.

F. Related Work
There is substantial work on the shuffle model, which also
aims at facilitating differential privacy in a distributed set-
ting. We discuss the relationship between the LTM and the

shuffle model in more detail in Section 3. For the prob-
lems we studied here, there is an abundance of prior work
discussed as follows.

Low Rank Approximation: There are various ways in
which one could formulate the low rank approximation prob-
lem. The setting which is most important to us is the seminal
paper (Dwork et al., 2014), who achieved a worst case ad-
ditive error of the order k

√
d for outputting an orthogonal

projection matrix Vk in the row space of A. This bound is
also optimal. In the local model where each client holds a
row of the data matrix A, and we wish to output an orthogo-
nal projection in the column space of A, (Upadhyay, 2018)
gave an algorithm with an additive error of the order

√
n,

which matches the lower bound by (Bassily & Smith, 2015)
up to lower order terms. This is different from computing
a projections in the row space of A considered by (Dwork
et al., 2014) and indeed our own results. The only know
local algorithm to do likewise in the local model is due to
(Arora et al., 2018), with a substantially larger multiplicative
and additive error compared to our results. To the best of
our knowledge, no single round shuffle protocol improving
over the local bounds is known.

Low rank approximation and its sister problem PCA, have
seen substantial attention in settings more loosely related to
our work. Much of the work on private low rank approxi-
mation (Blum et al., 2005; Chaudhuri et al., 2012; Dwork
et al., 2014; Hardt & Roth, 2012; 2013; Hardt & Price, 2014;
Balcan et al., 2016; Kapralov & Talwar) considers the data
to be fixed, often using Gaussian noise. In addition, a strong
spectral gap assumption, typically of the form that the first
singular value is substantially larger than the second, is cru-
cial to the analysis. We note that all algorithms operating
with this assumption do not yield worst case bounds.

When there is no spectral gap, we compare to the central
model exponential mechanism approach from (Chaudhuri
et al., 2012), implemented by (Kapralov & Talwar). (Liu
et al., 2022) also provide a solution to this problem; however,
it is unfortunately computationally intractable.

Ridge Regression The previous work most related to ours
is due to (Sheffet, 2019). The author gave a mechanism that
preserved the entire spectrum of a data matrix in a private
manner and also showed that the returned regression vector
x̂ is close to the optimal x assuming that the matrix is well
conditioned.

Most previous work (Kifer et al., 2012; Cai et al., 2021;
Bassily et al., 2014; Wang et al., 2015; 2018a;b; 2023; Wang,
2018; Varshney et al., 2022; Milionis et al., 2022; Liu et al.,
2022; Zheng et al., 2017) study private linear regression
in the context of risk minimization, where the algorithm is
given i.i.d. samples from some unknown distribution and
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aims at computing a solution with good out of sample perfor-
mance. Even without privacy constraints risk minimization
yields an additive error that depends on n. Another line of
work studies varies loss functions, including regression in a
Bayesian setting (Minami et al., 2016; Foulds et al., 2016;
Dimitrakakis et al., 2014). We are not aware of any prior
work on linear regression in the local DP model.

DP via Johnson-Lindenstrauss Transforms. The
Johnson-Lindenstrauss lemma has been previously used in
differential privacy. (Blocki et al., 2012) studies the DP
guarantee a JL transform itself gives in the central model, in
the context of cut queries and directional variance queries.
(Kenthapadi et al., 2013) and (Stausholm, 2021a) use JL
transforms together with Gaussian noise in the context of
DP Euclidean distance approximation, to decrease the error.
This was subsequently improved in (Stausholm, 2021b),
using Laplace noise. The difference to our work is that the
transform is used to reduce d instead of n, by having every
client apply it locally before adding noise. In (Nikolov,
2023) the authors make use of JL transforms to achieve
private query release, by applying it before releasing a
bundle of queries. (Ghazi et al., 2023) studies pairwise
statistics in the local model of differential privacy and uses
JL transforms to reduce client-sided dimensionality.

Differentially Private Non-Oblivious Sketches. Non-
Oblivious sketches, such as CountSketch, have also been
used in combination with either distributed or central DP.
(Zhao et al., 2022; Pagh & Thorup, 2022) provide an analy-
sis of differentially private CountSketch in the central model.
(Melis et al., 2016) consider differentially private CountS-
ketch and Count-Min Sketch in a distributed setting, but
they reduce the dimensionality of each input, which can be
done by users locally, rather than reducing the dependence
on the number of users, as we do.

G. Experimental Evaluation
Find here more in depth descriptions of the experiments we
carried out. Section G.1 provides the running time experi-
ments and in Section G.2 we discuss our utility investigation
both for ridge regression and low-rank approximation.

G.1. Running Time of LTM

As mentioned in the main body, the only overhead of the
LTM over the local model is the execution of the linear trans-
form in MPC, and comes from distributing A+Gi ∈ Rn×d

among the servers for i ∈ [s] and then performing matrix
multiplications Si(A+Gi) in MPC, where S1, . . . ,Ss is
a decomposition of some S ∈ Rm×n chosen according to
(Nelson & Nguyên, 2013; Cohen, 2016) with sparsity s. We
implemented our approach in MP-SPDZ (Keller, 2020), a

popular and easy to use MPC framework, for multiple com-
binations of n and s, using S servers from Amazon Web
Services t3.large instances. We use additive secret sharing
over the ring of integers modulo 264, which results in no
communication between servers, and semi-honest security
against an adversary that corrupts all but one servers.

We fix the dimensionality d = 10 and
m = 50, and vary the number of clients
n ∈ {100000, 250000, 500000, 750000, 1000000},
the sparsity s ∈ {1, 10, 20, 30, 40, 50} of the sketch (which
dictates how many linear transformations we need to apply)
and the number of servers S ∈ {2, 3}. The data matrix A is
generated at random such that all entries are smaller than
232 and the decomposition S1, . . . ,Ss of some sketch S is
generated according to our mechanism. Every parameter
setting is then evaluated by running the protocol 10 times
and averaging over the running times. Table 4 shows
the runtime for each server and the total communication
load for one particular combination of parameters, which
includes three servers: Even with one million clients, the
computation on each servers lasts less than 2 seconds. We
conclude that the use of MPC in the LTM does not hinder
the computational efficiency of our proposed mechanisms,
showing that they can easily be used in practice. Table 5
reports communication and time required when running the
protocol with two servers, and Table 6 reports time and
communication requirements when varying s.

Table 4. Computation cost TMPC and communication cost CMPC

of the LTM using MPC for varying number of clients n. Here
m = 100, d = 10, s = 1 and we are working with S = 3 servers.

n TMPC (sec) CMPC (MB)
100000 0.172± 0.019 24.024
250000 0.457± 0.058 60.024
500000 0.861± 0.102 120.024
750000 1.219± 0.128 180.024
1000000 1.641± 0.165 240.024

Table 5. Computation cost TMPC and communication cost CMPC

of the LTM using MPC for varying number of clients n. Here
m = 100, d = 10, s = 1 and we are working with S = 2 servers.

n TMPC (sec) CMPC (MB)
100000 0.177± 0.028 16.016
250000 0.453± 0.036 40.016
500000 0.824± 0.101 80.016
750000 1.240± 0.157 120.016
1000000 1.683± 0.130 160.016

G.2. Interpolation between Local and Central DP

In contrast to the central model of differential privacy, the
performance of differentially private outputs in the local
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Table 6. Computation cost TMPC and communication cost CMPC

of the LTM using MPC for varying sparsity s. Here m = 100,
d = 10, n = 500000 and we are working with S = 3 servers.

s TMPC (sec) CMPC (MB)
1 0.851± 0.099 80.016
10 6.863± 0.388 800.016
20 13.002± 0.445 1600.016
30 20.356± 1.171 2400.016
40 28.023± 0.660 3200.016
50 33.708± 1.384 4000.016

model decreases with increasing number of clients n. For
regression and matrix factorization problems, our theoretical
results for the LTM and the Gaussian mechanism suggest
that this performance decrease can be avoided without sacri-
ficing privacy under reasonable assumptions. It is natural to
ask for which parametrizations of the Gaussian mechanism
the performance remains acceptable. If more noise still
yields good performance, we can tolerate more corrupted
clients. Therefore, we evaluate empirically how the error of
ridge regression and low-rank approximation develops as n
grows in practice and against synthetic benchmarks.

The experiments described here thus aim to demonstrate
that, as the number of clients increases, the asymptotic error
of differential privacy mechanisms in the LTM is between
the error in the central and local models.

G.2.1. RIDGE REGRESSION

We here investigate the error for the ridge regression prob-
lem due to its wide spectrum of possible error bounds from
Theorem 4.5, depending on problem parameters, as well
as due to its singular dependency on a multiplicative error.
Therefore, we use approximation factor as an error measure:

ϕ =
∥Ax′ − b∥22 + λ∥x′∥22

∥AxOPT − b∥22 + λ∥xOPT∥22
where xOPT denotes the optimal solution and x′ denotes the
solution after adding noise to the training data.

We evaluate the error for synthetic datasets, as well as for
four real-world datasets. It is not possible to interpolate
between two different datasets in order to gain insights into
asymptotic behaviour. For synthetic datasets, varying the
number of sampled points n allows us to interpolate between
datasets of different sizes. Real-world datasets are useful
to gauge the relative performance of our mechanisms, and
to benchmark our synthetic datasets against the behavior of
the mechanisms in practice.

Setup. As a baseline for the central model, we imple-
mented the so-called Sufficient Statistics Perturbation (SSP)
algorithm (Vu & Slavkovic, 2009). Operating between SSP

and a locally private algorithm, our LTM model approach
adds Gaussian noise sampled from N (0, σ2) to every entry
of A and b. Our choice of σ2 is proportionate to varying
powers of n−p, ranging from p = 1 (the LTM model) to
p = 0 (the local model).

We generate synthetic data by first sampling every entry in
A from N (0, 1), then sampling xOPT such that all entries
are sampled fromN (0, µ2), and finally setting b = AxOPT.
We vary parameters d ∈ {3, 10, 50}, ε ∈ {0.01, 0.03,
0.05, 0.1}, λ ∈ {1, 10, 100}, and µ2 ∈ {1, n, n2}. For
all combinations of those parameters, we generate 17 syn-
thetic datasets of sizes {1000i·1.5|i = 0, . . . , 16}. For each
of those we then measure ϕ for the SSP mechanism and the
Gaussian mechanism with p ∈ {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0},
by running the algorithms 30 times per dataset and reporting
the average ϕ.

Real-World Datasets In addition to synthetic datasets,
we also evaluated our mechanism for ridge regression on 4
datasets marked as suitable for regression on the UC Irvine
Machine Learning Repository. The following table provides
their number of entries n and dimensionality d. A more
thorough description of the datasets is found below the
table.

Dataset n d
Power (Hebrail & Berard, 2012) 2049280 6
Elevation (Kaul, 2013) 434874 2
Ethylene (Fonollosa, 2015) 4178504 18
Songs (Bertin-Mahieux, 2011) 515345 89

• The first dataset consists of electric power consump-
tion measurements in one household (Hebrail & Be-
rard, 2012) and the feature we try to predict is
sub metering 3. We ignore the date and time fea-
tures and the data points that had missing values. This
leaves us with 6 features (plus the one we are predict-
ing) and 2049280 data points.

• The Elevation dataset (Kaul, 2013) consists of 434874
open street map elevation measurements from North
Jutland, Denmark. We predict the elevation from the
longitude and latitude features.

• The Ethylene dataset (Fonollosa, 2015) contains record-
ings of sensors exposed to a mixture of gas. We trained
on the part where the sensors were exposed to a mix-
tures of Ethylene and CO in air. The feature we are
predicting is the last one TGS2620, which leaves us
with d = 18 and n = 4178504.

• The Songs dataset (Bertin-Mahieux, 2011), consists of
89 audio features that are meant to predict the release
year of a song.
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Software and Hardware All in the main body described
mechanisms, are implemented in Python 3.6.9 making use
of numpy. Experiments were executed on an Ubuntu 18.04
LTS machine, with an Intel Core i7-10510U CPU clocked
at 1.8GHz and 16GB of RAM.

Results and Interpretation. Figure 4 provides our exper-
imental results based on synthetic data, and Table 7 shows
the error resulting from real-world datasets. As expected,
our approach performs asymptotically better than the Gaus-
sian mechanism in the local model, but worse than SSP in
the central model. We also found that as n increases, the
error of our approach asymptotically approaches the error
in the central model. For p = 0.9, 0.8, 0.7, 0.6, the error
eventually decreases for a sufficiently large n for the privacy
regimes we considered (ε ∈ {0.01, 0.03, 0.05, 0.1}).
For p = 0.5 though we saw a significant jump towards
the local model in terms of asymptotic behaviour. In all
the settings we considered, p = 0.5 showed an asymptotic
increase of the error. We tested on synthetic datasets of up to
n = 40 million, and the error also increases in this regime.

Table 7 shows the results we got by applying the local,
our mechanism and SSP on real-world data. They include
standard deviations, though for many of the results those are
so small that they appear as 0 in the table. We found, that our
mechanism performs significantly better than the Gaussian
mechanism for local privacy. In most it even performs so
good, that there is basically no difference to the central
model.

Table 7. Experimental evaluation of error ϕ on real-world datasets,
including standard deviations. Here we are in the setting where
ε = 0.03 and λ = 10.

Dataset Local Our Central
Power 2.364± .007 1.055± .000 1.001± .001
Elevation 1.939± .008 1.000± .000 1.000± .000
Ethylene 3.125± .002 1.000± .000 1.000± .000
Songs 20.64± .016 1.000± .000 1.000± .000

Varying λ On Figure 5, we provide plots for the same
setting of parameters as on Figure 4 (d = 10 and µ2 = n).
Though, we also vary λ ∈ {1, 10, 100} here. The experi-
ments show that varying λ does not change the asymptotic
behavior of any of the mechanisms we investigated, in the
sense that a variance proportional to n−0.6 or lower even-
tually had decreasing error, while a variance proportional
to n0.5 produced increasing errors. The increase of λ does
however produce a significantly lower error in all settings
(note the y-axes on the figure). Our theoretical results like-
wise predict this behaviour, as while the error bounds of

Theorem 4.5 improve with increasing λ, they do not affect
the dependency on n. Thus, we view the experiments as a
confirmation that the theoretical bounds, while potentially
improvable, express the correct asymptotic relationship be-
tween parameters and approximation bounds.

G.2.2. LOW-RANK APPROXIMATION

In addition to the error in ridge regression, we investigate
the error when performing low-rank approximation. Com-
pared to ridge regression, the additive error plays a more
significant role (see Theorem 4.3), so we measure the error
in terms of the excess risk as opposed to the approximation
factor:

ψ =
∥A−AX′X′T ∥2F − ∥A−AXOPTX

T
OPT∥2F

n
,

where XOPT denotes the optimal solution and X′ denotes
the solution after adding noise to the training data. Again,
we evaluate the error for synthetic datasets as well as four
real-world datasets. We utilize the same software, hardware
and real-world datasets as for ridge regression (see Table 8).
For a thorough description of the datasets, consult the above
section on ridge regression. We ignore the feature we were
predicting when performing ridge regression i.e. matrix A
is the same in both settings.

Setup. As for ridge regression, our mechanism in the LTM
adds Gaussian noise sampled from N (0, σ2) to every entry
of A, dependent on privacy parameters ε and δ. By choos-
ing σ2 proportional to n−p for p ∈ [0, 1], we interpolate
between the local model (p = 0) and the central model. We
also implement a Gamma/Laplace based mechanism in the
LTM, which adds the sum ofm samples from Lap(0, 1/ε) to
every entry in SA, in order to investigate the δ = 0 regime
in the LTM. As a baseline for the central model, we imple-
mented MOD-SULQ, an approach presented by (Chaudhuri
et al., 2012), where ATA is perturbed by adding Gaussian
noise.

We generate synthetic data by first producing a matrix A′

where every entry is sampled from N (0, 1) and then chang-
ing its singular values such that there are exactly k big
ones and the rest are small. More specifically, we set
A = U′ΣV′, where U′Σ′V′ is the SVD of A and Σ is a
diagonal matrix with the first k values set to

√
n/k and the

rest set to 1/n. We vary parameters ε ∈ {0.05, 0.1, 0.5} and
k ∈ {5, 10} for d = 50. For all combinations of parameters,
we generate 17 synthetic datasets of sizes {1000i·1.5|i =
0, . . . , 16}. For each of those we then measure ψ for the
central mechanism, the Laplace mechanism and the Gaus-
sian mechanism with p ∈ {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0}, by
running the algorithms 20 times per dataset and reporting
the average ψ.
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Figure 4. Plots depicting the asymptotic behavior of error ϕ for ε ∈ {0.01, 0.03, 0.05, 0.1} (top left, top right, bottom left, bottom right),
with d = 10, λ = 10 and µ2 = n. The grey line depicts the error of the local mechanism, the blue line does it in the central model and
the orange one depicts our approach. The other lines resemble different values of p. In most cases the standard deviations are so small,
that it is not possible to see those.
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Figure 5. Plots depicting the error ϕ as n increases, for ε ∈ {0.01, 0.03, 0.05, 0.1} (top to bottom) and λ ∈ {1, 10, 100} (left to right).
The middle row depicts the same choice of parameters as Figure 4.
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Results and Interpretation. Figure 6 shows our experi-
mental results for some of the parameters mentioned above,
based on synthetic data and Table 9 provides the error re-
sulting from real-world datasets summarized in Table 8. As
expected and in par with ridge regression, our approach
performs better than the Gaussian mechanism in the local
model but worse than MOD-SULQ in the central model.
We observed that as n grows, the error of our approach
asymptotically approaches the error in the central model. In
the privacy regimes we considered (ε ∈ {0.05, 0.1, 0.5}),
the error of intermediate mechanisms (p ∈ [0, 1]), decreases
with increasing n as well.

Table 9 shows the experimental results of running our mech-
anisms, the Gaussian mechanism in the local model and
MOD-SULQ in the central model on real-world data. The
k’s we used for the individual datasets are provided in Ta-
ble 8. Similar to ridge regression, we found that our Gaus-
sian mechanism in the LTM performs significantly better
than the Gaussian mechanism in the local model. Both with
synthetic and real-world datasets, our Laplace approach also
performs better than the local model, though not as signifi-
cantly as the Gaussian approach. However, this is the price
of achieving pure ε-differential privacy with δ = 0.

Table 8. Parameters of real-world datasets.
Dataset n d k
Power (Hebrail & Berard, 2012) 2049280 6 3
Elevation (Kaul, 2013) 434874 2 1
Ethylene (Fonollosa, 2015) 4178504 18 5
Songs (Bertin-Mahieux, 2011) 515345 89 15

H. Distributed Computation of Linear
Sketches

The linear transformation we consider is motivated by ef-
ficient secure distributed cryptographic tools from secure
multi-party computation; in particular, we can use linear
secret-sharing. We require this secret sharing scheme to
be information-theoretically secure. We use an additive
secret sharing scheme, such that clients C1, . . . , Cn gener-
ate k shares of their noisy inputs x1, . . . , xn, where k is
the number of servers that compute the linear transforma-
tion. We use [xi] to denote a secret sharing of some client
Ci’s noisy input xi for some i ∈ [n]. For some field F of
size p and some prime number p, [xi] consists of shares
xi1, . . . , x

i
k ∈ F such that

∑k
j=1 x

i
j = xi. To split a secret

into k shares, a client can sample k − 1 random field el-
ements xi1, . . . , x

i
k−1 and compute the last secret share as

xi −∑k−1
j=1 x

i
j . Therefore, it also seems intuitive that an

adversary that sees all but one of the shares knows noth-
ing about the input. For every j ∈ [k], server Sj receives
{xij}i∈n from the respective parties. We define these shares

such that the security of our distributed protocol does not
rely on any computational assumption.

Since the linear transformation is public, servers can apply
the transformation locally to their secret shares without any
need to communicate with each other. Each server then re-
veals their shares of the resulting linear transformation, such
that the linear sketch can be revealed in the clear. For more
details on MPC based on secret sharing, see e.g., (Cramer
et al., 2015).
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Figure 6. Plots depicting the asymptotic behavior of error ψ for ε ∈ {0.1, 0.5} (top, bottom) and k ∈ {5, 10} (left, right), with d = 50.
The gray line depicts the error of the local mechanism, and the orange and lime lines depict our approach using Gaussian and Laplacian
noise respectively. The other lines resemble different values of p when using Gaussian noise. The standard deviations are depicted by the
vertical black lines and the x-axis is logarithmic in the number of clients n.
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Table 9. Experimental evaluation of error ψ on real-world datasets, including standard deviations. Here we are in the setting where
ε = 0.05.

Dataset Local LTM Laplace LTM Gauss Central
Power (1.206± 0.651)× 10−2 (4.036± 2.448)× 10−3 (2.108± 2.400)× 10−6 (1.763± 0.621)× 10−6

Elevation (1.193± 0.896)× 10−1 (1.520± 4.484)× 10−2 (4.718± 4.201)× 10−8 (4.465± 4.836)× 10−8

Ethylene (5.877± 1.256)× 10−4 (5.821± 1.074)× 10−4 (2.420± 0.486)× 10−6 (7.901± 1.909)× 10−6

Songs (5.617± 0.283)× 10−7 (5.629± 0.311)× 10−7 (5.556± 0.347)× 10−7 (5.613± 0.324)× 10−7
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