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Abstract

Dataset distillation, a recent machine learning paradigm, aims to compress large datasets
into smaller, effective versions. In this paper, we introduce a near-Lossless Information
Compression (LIC) approach that directly compresses the key information of original
datasets into distilled forms with minimal information loss. Our LIC markedly surpasses
existing solutions in both efficiency and effectiveness, demonstrating superior performance
across a range of dataset sizes, from CIFAR-10 to ImageNet-1K. For instance, using a
ResNet-18 backbone with IPC = 10, LIC distills the entire ImageNet-1K dataset in just
80 minutes, achieving a top-1 validation accuracy of 48%, significantly outperforming the
SOTA method SRe2L (Yin et al., 2023), which only attains 25% accuracy and requires five
times longer to process. We will make our code publicly available.

1 Introduction

Dataset distillation (Wang et al., 2018) aims to distill the knowledge from a large training
dataset into a very small set of synthetic training images such that a model trained on it
can achieve comparable test performance as one trained on the original dataset. Distilled
data provides the significant benefits of accelerating model training and reducing storage
costs. As a highly effective paradigm, dataset distillation has shown its potential to facilitate
applications in multiple domains, such as continual learning (Zhao et al., 2020; Rosasco
et al., 2021), neural architecture search(Wang et al., 2021; Such et al., 2020), and privacy
protection (Xiong et al., 2023; Dong et al., 2022; Chen et al., 2022).

Though prior dataset distillation methods (Cazenavette et al., 2022, 2023; Zhao et al., 2020;
Wang et al., 2022; Zhao and Bilen, 2023; Zhao et al., 2023) have achieved great success, they
mainly focus on small-scale and low-resolution datasets, such as CIFAR (Wang et al., 2018),
Tiny-ImageNet (Cazenavette et al., 2022), while struggling with real-world datasets that are
larger-scale and higher-resolution, e.g., ImageNet-1K (Deng et al., 2009). An information
extraction-based approach, like SRe2L (Yin et al., 2023), has recently been proposed and
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efficiently generalized on ImageNet-1K. Specifically, it involves a dual-compression process,
where it condenses the information from a dataset into a pre-trained model via Squeeze,
followed by further compressing the information from the model into distilled images and
labels respectively using Recover and Relabel. However, this line of research struggles
with two issues (Sun et al., 2023): 1) poor cross-architecture generalization, and 2) significant
performance drop on the distilled dataset under the setting of low IPC or low-resolution.

As our first contribution, we undermine the key factors behind these challenges and con-
jecture that they are primarily due to the significant information loss introduced by the dual-
compression process (c.f. Appendix B for detailed exploration). We instead propose to drop
the conventional dual-compression approach and resort to leveraging a simple squeezing op-
eration and Relabel strategy to distill information from both data and label space. Though
efficient, its effectiveness is still largely limited by the information-compromised distilled im-
ages. As a remedy, we propose to compensate for the information loss in the distilled images by
aligning the effective information between them and their original counterparts. Our approach
demonstrates impressive adaptability and superior performance across various dataset sizes,
model architectures, and image resolutions. Our contributions are summarized as follows:

• We propose LIC, a simple yet effective approach that compensates the information loss
to enable near-Lossless Information Compression for dataset distillation.

• We demonstrate through extensive results that LIC notably outperforms all existing SOTA
methods for any-scale original datasets. For example, it successfully distills a dataset with
IPC = 10 from the full ImageNet-1K dataset within 1 hour, achieving an impressive 48%
top-1 validation accuracy using ResNet-18 (He et al., 2016).

2 Methodology

To compensate for the lost information in compressed images, we introduce a three-stage
efficient dataset distillation framework (c.f. Appendix C). This framework begins by selecting
a set of key samples (c.f. Section 2.1). Subsequently, it employs a squeezing-based technique to
condense these chosen samples into a distilled dataset, followed by compensating information
loss (c.f. Section 2.2). Furthemore, the Relabel method (Shen and Xing, 2022) is employed,
innovatively transferring the knowledge from the full original dataset into the more compact
label space of the distilled dataset (c.f. Section 2.3).

2.1 Selecting Key Samples

Our goal is to devise an effective method for identifying the crucial samples that are instrumen-
tal in benefiting the Relabel process. Motivated by the assumption in Proposition 1—which
suggests that each chosen sample (xi, yi) is supposed to receive an informative and accurate
label ϕθT (xi) from the pre-trained model during the Relabel phase—the goal then relaxes
to find the samples that are relabeled most accurately by the pre-trained model ϕθT . Thus,
we introduce a loss-based importance score si for each sample pair (xi, yi), defined as

si = −ℓ(ϕθT (xi), yi) . (1)
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The key sample selection procedure can be detailed below. Let Tc := {(xi, yi) | (xi, yi) ∈
T , yi = c} represents the subset of the dataset T , containing only those samples (xi, yi) that
are labeled with the class c. For each class data Tc, we identify the key samples xi based on
their importance scores si. Specifically, we select those samples for which si ≥ s̄, where s̄
denotes a predetermined threshold3.

We further simplify the whole procedure due to the computational overhead and diversity
issue, namely 1) computing the importance score for every sample xi in an entire class data Tc
presents a significant computational challenge, and 2) focusing solely on samples that closely
align with the true label can lead to a lack of diversity within the selected samples. In detail, we
utilize a pre-selection strategy inspired by Sun et al. (2023), which involves selecting a subset4

T ′
c ⊂ Tc uniformly at random to serve as a proxy for the entire Tc. Such a pre-selection strategy

not only promotes diversity in the data but also lessens the computational load (Sun et al.,
2023), thereby laying the groundwork for our subsequent score-based sample selection process.

2.2 Information Compensation for Compressed Data

In this subsection, we first formally define the squeezing operation for images and then
detail the case of effective information and the corresponding information loss. A method is
further devised based on information compensation to ensure the preservation of information
integrity in the squeezed images relative to their original versions.

On the loss of effective information. For the selected key samples (images), we compress
them into a more compact pixel space. However, given the constraints of limited pixel space
storage, compressing multiple images directly into one can result in a significant reduction in
the fineness and detail of the original information (c.f. Appendix B.2). We start with the
definition of information compression below.

Definition 1 (Image Squeezing and Expanding) Let {xi}Ni=1 be a set of N images,
where each image xi ∈ Rd resides in a d-dimensional space. We define a squeezing operation5

f that transforms this set of images into a single squeezed image x∗
j ∈ Rd as follows:

x∗
j = F({xi}Ni=1) , (2)

where x∗
j shares the same dimensional space as each xi. Conversely, the expanding operation

F−1 reconstructs a set of images {x̂i}Ni=1 from the squeezed image x∗
j , each in the same

d-dimensional space:
{x̂i}Ni=1 = F−1(x∗

j ) . (3)

Note that the expanded set of images, denoted as {x̂i}Ni=1, closely resemble the original set
{xi}Ni=1, albeit typically with a certain level of information degradation.

3. This threshold is determined by the number of samples necessitated for further use, i.e., the IPC.
4. We use the default size of this selected subset in Sun et al. (2023), see details in Section 3.1.
5. In practical terms, the squeezing operation for images involves resizing and concatenating them. For

instance, when handling 4 images, each with a resolution of 224 × 224 pixels, we first downscale each
image to 112× 112 pixels. Then, we concatenate these resized images into a single image, restoring the
resolution to 224× 224 pixels.
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We then define the effective information of a data sample.

Definition 2 (Observation-based Effective Information) Let xi represent a sample
from any domain (e.g., image). Define an observer group R = {rj}, where each observer rj is
capable of extracting or interpreting features from xi, and |R| ≥ 1. The effective information
of the sample xi, as observed by the group R, is conceptualized as the distribution pxi|R(z).
This distribution is formulated as:

pxi|R(z) := {z|z = rj(xi), ∀rj ∈ R} . (4)

Here, z denotes the set of features or interpretations extracted from xi by an observer rj
within R.

The Definition 2 posits that the effective information of a sample encompasses the set of
its features as perceived or extracted by a diverse set of observers. Samples are considered
to have similar effective information if they result in comparable feature sets across the
observers in R.

Compensating the loss of effective information. For a given squeezed sample x∗
j , we

aim to find ∆x that restores the effective information in the compensated squeezed image
(x∗

j + ∆x) to match that of the original images {xi}Ni=1. Specifically, for a compensated
squeezed image (x∗

j +∆x), the corresponding expanded images are given by

{x̂i}Nn=1 = F−1(x∗
j +∆x) . (5)

To align the effective information in these expanded images {x̂i}Nn=1 with the original images
{xi}Ni=1, we seek an optimal ∆x through the following minimization:

argmin
∆x

Exi,x̂i
DKL(pxi|R||px̂i|R) . (6)

Given the direct correlation between x̂i and xi, along with the shared observer group R
employed to assess their effective information, (6) can be further simplified to:

argmin
∆x

Exi,x̂i
Erj∥rj(xi)− rj(x̂i)∥ . (7)

To reduce computational complexity, we focus on a specific scenario where the observer group
consists of only one pre-trained model across various transformations6. Let R = {rj | rj =
gj ◦ ϕθT , ∀gj ∼ G}, where G denotes the transformation group. Therefore, to achieve (7), our
loss function is defined as

L∆x = Exi,x̂i
Egj∥ϕθT (gj(xi))− ϕθT (gj(x̂i))∥22 . (8)

By minimizing (8), we find the optimal compensation ∆x⋆ and capture the compensated
squeezed image x̃j = x∗

j +∆x⋆ as the distilled image.

6. In the context of image data, these transformations encompass a range of nonlinear and linear operations,
including techniques for image data augmentation.
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Balancing the semantic and textural information. Directly generating the compen-
sated squeezed image (x∗

j +∆x) through aligning its effective information with the original
image set {xi}Ni=1 may lead to a substantial loss of texture information. The reason is that
the model ϕθT tends to extract semantic information from input images, which often results
in a notable drop in the texture details. Therefore, to achieve a balance between semantic
richness and texture preservation in the distilled image x̃j , we leverage intermediate model
features instead of the last-layer logits, which helps in retaining more textural details (see
Section 3.3 for more details).

2.3 Relabel with Observer Model

Instead of using the basic one-shot label, we propose a re-label strategy for our multi-subfigure
distilled images x̃j , which provides more informative and diverse knowledge. The proposed
module is inspired by Yun et al. (2021) that a random image crop might contain a different
object than the one originally labeled and then lead to inaccurate or misleading training data,
which illustrates that the one-shot label strategy is challenging to express enough knowledge
for cropped images.

Re-label strategy can be implemented by using the soft labeling approach (Shen and
Xing, 2022) to generate region-level soft labels ỹkj = ℓ

(
ϕθT (x̃

k
j )
)
, where x̃k

j is the k-th region

in the distilled image x̃j and ỹkj is the soft label.

Therefore, we can train the model ϕθS on the distilled data by achieving:

L = −
∑

j

∑
k ỹ

k
j log ϕθS (x̃

k
j ) . (9)

3 Experiment

In this section, we evaluate the performance of our proposed LIC over various datasets and
neural network architectures. First, we demonstrate the superior results of LIC on real-world
datasets, cross-architecture generalization and efficiency. Next, we conduct extensive ablation
experiments to investigate the effect of each component of our method.

3.1 Experimental Setting

Datasets and neural network architectures. We conduct experiments on varying scales
and resolutions of images.

• Small-scale: we evaluate on two datasets, including CIFAR-10 (32 × 32) (Krizhevsky
et al., 2009b) and CIFAR-100 (32× 32) (Krizhevsky et al., 2009a).

• Large-scale: we also use two large-scale high-resolution datasets including Tiny-ImageNet
(64× 64) (Le and Yang, 2015) and ImageNet-1K (224× 224) (Deng et al., 2009).

Similar to the prior dataset distillation works (Yin et al., 2023; Zhao et al., 2023; Guo et al.,
2023), we employ ConvNet (Guo et al., 2023), ResNet-18 (He et al., 2016), MobileNet-V2
(Sandler et al., 2018), as our backbone networks on all datasets. Specifically, for ConvNet, we
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Table 1: Comparison with baseline models. In the table, bold means the best result, and entries
with “-” are absent due to scalability problems. See Appendix D for more details.

Architecture ConvNet ResNet-18

Dataset IPC MTT IDM TESLA DATM DREAM SRe2L LIC (Ours) SRe2L LIC (Ours)

1 46.3 ± 0.8 45.6 ± 0.7 48.5 ± 0.8 46.9 ± 0.5 51.1 ± 0.3 19.2 ± 1.1 51.7 ± 0.6 18.8 ± 0.5 40.7 ± 0.4
CIFAR-10 10 65.3 ± 0.7 58.6 ± 0.1 66.4 ± 0.8 66.8 ± 0.2 69.4 ± 0.4 34.7 ± 1.1 72.2 ± 0.2 38.0 ± 0.3 80.9 ± 0.4

50 71.6 ± 0.2 67.5 ± 0.1 72.6 ± 0.7 76.1 ± 0.3 74.8 ± 0.1 54.8 ± 0.6 78.3 ± 0.1 65.6 ± 1.0 89.2 ± 0.0

1 24.3 ± 0.3 20.1 ± 0.3 24.8 ± 0.5 27.9 ± 0.2 29.5 ± 0.3 14.4 ± 0.1 42.7 ± 0.3 11.8 ± 0.5 48.1 ± 0.7
CIFAR-100 10 40.1 ± 0.4 45.1 ± 0.1 41.7 ± 0.3 47.2 ± 0.4 46.8 ± 0.7 40.3 ± 0.3 54.8 ± 0.2 46.0 ± 0.4 64.7 ± 0.1

50 47.7 ± 0.2 50.0 ± 0.2 47.9 ± 0.3 55.0 ± 0.2 52.6 ± 0.4 56.3 ± 0.1 56.6 ± 0.1 60.2 ± 0.1 67.6 ± 0.1

1 8.8 ± 0.3 10.1 ± 0.2 - 17.1 ± 0.3 10.0 ± 0.4 4.6 ± 0.3 31.7 ± 0.4 5.7 ± 0.2 36.5 ± 0.2
Tiny-ImageNet 10 23.2 ± 0.2 21.9 ± 0.3 - 31.1 ± 0.3 - 22.5 ± 0.3 46.3 ± 0.2 33.8 ± 0.6 51.7 ± 1.0

50 28.0 ± 0.3 27.7 ± 0.3 - 39.7 ± 0.3 29.5 ± 0.3 42.3 ± 0.3 47.4 ± 0.1 51.0 ± 0.4 55.8 ± 0.9

1 - - 7.7 ± 0.2 - - 1.3 ± 0.1 14.5 ± 0.3 1.4 ± 0.1 6.8 ± 0.2
ImageNet-1K 10 - - 17.8 ± 1.3 - 18.4 ± 0.9 9.3 ± 0.4 24.0 ± 0.5 25.3 ± 0.4 48.5 ± 0.2

50 - - 27.9 ± 1.2 - - 38.8 ± 0.4 39.1 ± 0.2 45.7 ± 0.4 60.0 ± 0.2

use Conv-3 on CIFAR-10/100, and use Conv-4 on Tiny-ImageNet and ImageNet-1K. More
details about the used datasets and architectures can be found in Appendix D.

Baselines. We compare our method with several optimization-based distillation methods
that can scale to large high-resolution datasets, including MTT (Cazenavette et al., 2022),
IDM (Zhao et al., 2023), TESLA (Cui et al., 2023), DATM (Guo et al., 2023), ADD (Zhang
et al., 2023), DREAM (Liu et al., 2023b), and SRe2L (Yin et al., 2023). To the best of our
knowledge, SRe2L is the only published work that can efficiently scale to any-scale dataset,
so we consider it as our closest baseline. More details about these methods can be found in
Appendix D.

Implementation details. All the hyper-parameters used in our Algorithm 1 are general,
insensitive and easy-implemented for all datasets and network architectures (c.f. Section 3.3
and Appendix F for validation). We employ a generalized configuration for T ′ (c.f. Section 2.1
for definition), where the size |T ′| is set as 300. We set the number N = 4 of images squeezed
in a distilled image (c.f. Section 2.2 for definition) and number M = 200 of compression
iteration (c.f. Algorithm 1 for definition). More implementation details are provided in
Appendix D.

3.2 Comparison with the SOTA Methods

Results on CIFAR and ImageNet. Following previous research(Cazenavette et al., 2022;
Cui et al., 2023; Zhao et al., 2023), we set IPC to 1, 10, and 50 to compare with baselines
on varying datasets and networks. As the results reported in Table 1, our method LIC
outperforms other methods on varying datasets and neural networks with different IPC. It is
noteworthy that prior information extraction-based solutions like SRe2L struggle in scenarios
involving small distilled datasets such as CIFAR-100 with IPC = 1 or CIFAR-10 with all
IPC, further verifying our claims proposed in Section B. Detailed comparison among more
datasets and concurrent baselines, is in Appendix E.

Cross-architecture generalization. An important property of the distilled datasets is
their good generalization capability across unseen architectural models. Here we evaluate
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Figure 1: Ablation study on each component in our LIC. We evaluate the distilled dataset of
our LIC with different number M of compression iterations (1a), number N of images squeezed in
one distilled image (1b & 1c), feature alignment layer (1d). The yellow •, red •, and blue • denote
CIFAR-10, CIFAR-100, and Tiny-ImageNet respectively.

Table 2: Tiny-ImageNet top-1 accuracy on cross-architecture generalization. We use
Conv-4, ResNet-18, and MobileNet-V2 to distill the original dataset, and then transfer distilled data
to each other architecture.

Verifier \ Observer Conv-4 ResNet-18 MobileNet-V2

Conv-4 SRe2L 23.0 ± 0.3 14.7 ± 0.3 19.5 ± 0.3
Ours 46.6 ± 0.3 26.0 ± 1.0 25.9 ± 0.3

ResNet-18 SRe2L 32.5 ± 0.6 33.6 ± 0.3 36.4 ± 0.2
Ours 47.4 ± 0.3 51.9 ± 0.2 44.9 ± 0.2

MobileNet-V2 SRe2L 8.9 ± 0.4 8.9 ± 0.1 20.3 ± 0.4
Ours 36.7 ± 0.5 34.6 ± 0.8 44.5 ± 0.3

the generalizability of our distilled datasets when IPC =10. As reported in Table 2, our
distilled dataset performs best on unseen networks, which reflects the good generalizability of
the data and labels distilled by our method. Furthermore, our success stems from that our
LIC effectively keeps both textural and semantic information in distilled images, which is
evidenced by Cazenavette et al. (2023).

Efficiency comparison. Efficiency is also a key factor during the process of distilling
data. Here, We use a single RTX-4090 GPU for two methods to conduct experiments on
Tiny-ImageNet. As evidenced in Table 3, our method LIC achieves superior efficiency in
comparison to SOTA methods, demonstrating a notable advantage of efficacy and efficiency.
Significantly, our algorithm offers a versatile peak memory capacity, enabling adjustments to
batch size dynamically without sacrificing performance. This efficiency is attributed to the
fact that our Algorithm 1 can independently optimize images, allowing us to distill them one
by one. More comparisons are in Appendix E.

3.3 Ablation Study

In this section, we set the default IPC = 10 and employ ConvNet as the network backbone
to examine how the components used in our LIC influence the quality of distilled dataset
(see Appendix F for more investigation).
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Table 3: Efficiency comparison with SRe2L (Yin et al., 2023) on varying networks on
Tiny-ImageNet. Following SRe2L, Time Cost represents the consumption when generating 100
images simultaneously, and the peak value of GPU memory is measured with a batch size of 100.

Architecture Time Cost (s) Peak Memory (GB)

Conv-4 SRe2L 51.68 1.36
Ours 13.02 0.65

ResNet-18 SRe2L 191.14 3.62
Ours 25.34 1.56

MobileNet-V2 SRe2L 114.05 1.27
Ours 18.81 0.64

Influence of compression iteration number M . The number of iterations, denoted
as M , impacts two aspects: 1) A higher iteration count M enhances the ability of our
algorithm LIC to generate images of superior quality; 2) A lower iteration count M ensures
a faster execution of our Algorithm 1. Consequently, choosing an optimal iteration number
M represents a balance between quality and speed. As illustrated in Figure 1a, an iteration
count of M = 200 offers a well-rounded compromise for various datasets. Additionally, it
is noteworthy that our LIC exhibits robustness to variations in M . Specifically, setting M
beyond 200 yields negligible differences in performance.

Influence of size of squeezed images N . Specifically, though we can squeeze more
images from T into a distilled dataset S by increasing N increases to benefit the data
diversity, it also results in a lower resolution for the source images (see the definition of
squeezing in Footnote 5), thus hurting the textural information. Figure 1c & 1b showcases
that the validation performance rises to the highest on selected three datasets when N = 4.

Why and how to choose the feature alignment layer? The experimental results in
Figure 1d intuitively demonstrate the impact of the feature alignment layer, alongside the
discussion in Section 2.2. As depicted in Figure 1d, optimal performance is often achieved
through alignment at the deep layer. A plausible explanation for this observation is the
differing information encoded at various network depths: shallow layers tend to capture
more textural details, whereas logit layers are more adept at encoding semantic information.
Consequently, to effectively infuse the distilled dataset with a suitable balance of information,
we harness the feature alignment capabilities of the deep layer.

4 Conclusion

We demonstrate that LIC markedly surpasses existing SOTA techniques in the aspects
of effectiveness and efficiency across a range of dataset sizes and network architectures.
Additionally, we highlight the efficiency of LIC by showcasing its ability to distill the
ImageNet-1k dataset in just 80 minutes. We apply our LIC to a continual learning task,
with detailed results presented in Appendix G. We also visualize the distilled images in
Appendix H.
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Appendix A. Related Work

Wang et al. (2018) first introduces the dataset distillation as a bi-level meta-learning op-
timization problem. The outer loop aims at optimizing the meta-dataset, while the inner
loop focuses on training models using the distilled dataset. Existing methods can be roughly
divided into three paradigms for solving this bi-level optimization problem.

Uni-level optimization-based paradigm. Tackling this bi-level problem is complex,
especially when optimizing proxy models via gradient descent, which involves unraveling
an intricate computational graph. Recent studies (Zhou et al., 2022; Loo et al., 2022) have
proposed approximating model training using kernel ridge regression, which provides a closed-
form solution for optimal weights, thereby reducing training costs and improving performance.
Despite these advancements, such methods still struggle with extensive computational
demands or limitations due to the approximations in convex relaxation.

Matching-based paradigm. Another strategy involves emulating behaviors of the original
dataset in the distilled one. They focus on minimizing disparities between surrogate models
trained on both synthetic and original datasets. The key metrics for this are matching
gradients (Zhao et al., 2020; Kim et al., 2022; Zhang et al., 2023; Liu et al., 2023b), fea-
tures (Wang et al., 2022), distribution (Zhao and Bilen, 2023; Zhao et al., 2023), and training
trajectories (Cazenavette et al., 2022; Cui et al., 2022; Du et al., 2023; Cui et al., 2023;
Yu et al., 2023; Guo et al., 2023). Trajectory and gradient matching, in particular, has
shown impressive results with low IPC. However, these methods often tailor the distilled
dataset to specific network architectures, limiting their generalizability. Cazenavette et al.
(2023) address this by proposing the GLaD that synthesizes more realistic images to enhance
generalization. Nonetheless, computational and memory challenges remain, particularly when
scaling to large, high-resolution datasets like ImageNet-1K (Deng et al., 2009).

Information extraction-based paradigm. The SRe2L framework (Yin et al., 2023), the
first work efficiently scaleable to ImageNet-1K, introduces a novel decoupled bi-level learning
paradigm. This involves three stages: 1) Squeeze relevant information from the original
dataset into a pre-trained model, 2) Recover this information into the image space, 3)
Relabel the distilled images by using the pre-trained model to further distill knowledge
into the label space (c.f. Section 2.3 for definition). Its efficiency and effectiveness have
garnered community attention, spurring a series of research efforts. Shao et al. (2023) note
that SRe2L is limited to specific backbones and layers, impacting the generalization of the
distilled dataset. They advocate for using diverse backbones for more precise and effective
distillation. Yin and Shen (2023) further enhance SRe2L with curriculum data augmentation.
Sun et al. (2023) introduce an optimization-free approach that achieves notable diversity
and realism in distilled datasets. However, inheriting the information loss issue from SRe2L
limits the efficacy of these methods, especially in small-scale datasets.
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Appendix B. Motivation and Intuitive Exploration

In this section, we explore the information extraction-based dataset distillation approaches.
We highlight two critical aspects: 1) the primary challenge of significant information loss,
which hurts the quality of distilled dataset, and 2) the pivotal role of Relabel in enhancing
the effectiveness of these methods. Consequently, we investigate the critical attributes
necessary for retaining the efficacy of Relabel and seek an alternative approach to effectively
distill information from datasets while adhering to these attributes.

B.1 Preliminary

We begin by formally defining the task of dataset distillation and subsequently unveil the
key challenges in this domain, thereby motivating our exploration.

Dataset distillation. Given a large-scale dataset T = {xi, yi}|T |
i=1 which consists of |T |

samples, dataset distillation aims to synthesize a smaller dataset S = {x̃j , ỹj}|S|j=1 with |S|
synthetic samples such that models trained on T will have similar test performance as models
trained on S:

Ex∼PD [ℓ (ϕθT (x), y)] ≃ Ex∼PD [ℓ (ϕθS (x), y)] , (10)

where PD is the test real distribution, x is a data sample, ℓ is the loss function, i.e., cross-
entropy loss. Here, θT and θS denotes the parameters of the neural network ϕ trained on
T and S, respectively.

A closer look at information extraction paradigm. Dataset distillation methods
recently introduce the information extraction idea (Yin et al., 2023)—as the first effective yet
efficient solution—to allow the dataset distillation on diverse-scale datasets such as ImageNet-
1K (Deng et al., 2009). These methods typically employ a three-stage distillation process,
indirectly transferring information from the original to the distilled images. The first stage
involves condensing information from the complete dataset into pre-trained neural network
models via Squeeze, followed by the extraction of this information into distilled images using
Recover (Yin et al., 2023; Liu et al., 2023a). Upon the distilled data samples, Relabel
applies a pre-trained model to further distill knowledge into the label space. However, this
paradigm encounters several key challenges:

• The Recover stage necessitates batch normalization in pre-trained models (Ioffe and
Szegedy, 2015) to align the statistical features between distilled and original images (Yin
et al., 2023; Liu et al., 2023a).

• Significant information loss during both Squeeze and Recover stages leads to distilled
images with minimal content, adversely affecting performance, particularly in low IPC
settings (Sun et al., 2023).

• Distilled images often exhibit unrealistic textures or semantics, tailored to specific networks,
thereby limiting their generalization ability (Shao et al., 2023).

• Despite outperforming other paradigms in terms of efficiency (Yin et al., 2023), the
Recover stage is still computationally demanding, requiring numerous optimization
iterations (Yin and Shen, 2023).
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Figure 2: Apply Relabel with the SOTA ADD (Zhang et al., 2023), DataDAM (Sajedi
et al., 2023). We evaluate the distilled images with IPC = 10 during the distillation process. The
results indicate that Relabel only assists the early-stage distilled datasets from SOTA methods in
achieving improved performance. We use ConvNet as the backbone architecture for CIFAR-10.

In the meanwhile, the importance of Relabel usually is under-estimated (Yin et al.,
2023; Shao et al., 2023). Until the recent study in Sun et al. (2023), they suspect the
application of Relabel contributes to the primary efficacy of distilled datasets.

Motivation. To solve the aforementioned four issues simultaneously while maintaining the
effectiveness of Relabel, we aim to explore a method to distill images by directly condensing
the information from the original dataset, instead of Squeeze and Recover.

B.2 Exploring Image Distillation with Relabel

To investigate a distillation approach aimed at generating high-quality images and retaining
the efficacy of Relabel, this section first unravels the potentials of Relabel by empirically
applying it to images distilled from various methods. We then identify the characteristics
of images that influence the effectiveness of the Relabel, which motivates us to further
examine a method with Relabel that satisfies these constraints in Section B.3.

Applying Relabel to alternative distillation methods. To further explore the
potential of Relabel, a natural idea is to directly apply Relabel, a versatile plug-and-play
component, to the distilled images from different SOTA approaches. Specifically, by using
Relabel, we can substitute the labels in the originally distilled dataset with new ones,
effectively creating an updated distilled dataset.

Figure 2 illustrates that, compared to the initial real images7, namely those with zero
distillation iterations, the application of Relabel to distilled and disturbed images yields
only a marginal improvement or even harm. The observation demonstrates that the model
used for Relabel, which was pre-trained solely on the original full dataset comprising real

7. Conventional dataset distillation approaches typically commence by selecting a set of initial real images,
denoted as {xj}|S|

j=1, from the original full dataset T . These images are then progressively transformed
into distilled images, represented as {x̃j = xj + ϵj}|S|

j=1, through successive distillation iterations. Here, ϵj
signifies the learned shift applied to each image.
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Figure 3: Apply Relabel into a squeezing-based method. We squeeze every N real random-
sampled original images into one distilled image, thus forming a distilled dataset. We utilize ConvNet
as the backbone. The red • and blue • respectively denote CIFAR-100 and Tiny-ImageNet. The
solid line ‘—’ and dashed line ‘- -’ respectively represent w/ and w/o Relabel.

images, struggles to accurately relabel the distilled data. We conjecture that it might be
caused by disturbed distilled images, which have contained altered semantic and textural
information and will diverge from the characteristics of real images (see Appendix H for a
detailed visualization).

Beyond the above empirical observation, Proposition 1 below further posits that a model
well-trained on original and undisturbed samples might only provide sub-optimal labels for
disturbed ones (e.g., distilled images).

Proposition 1 (Model Labeling under Perturbation) Consider a model ϕθT that has
been effectively trained on a dataset T , such that it accurately assigns a label ϕθT (x) to each
sample (x, y) drawn from T . It is proposed that for any sample (x+ ϵ), where ϵ represents
a disturbance added to x (e.g., random noise), the model ϕθT will yield a label that is less
precise than the label assigned to the undisturbed sample x. Formally, this can be expressed
as:

∥ϕθT (x+ ϵ)− ϕθT (x)∥ ≥ 0 , (11)

implying that the deviation in the model’s output due to the disturbance ϵ is non-negative.

B.3 Examining Squeezing Strategy with Relabel

The analysis in Section B.2 indicates that disturbed images would hurt the performance of
Relabel. Therefore, we intuitively shift our attention to the squeezing-based operation (c.f.
Footnote 5 for definition), a simple distillation method inspired by Kim et al. (2022) that
can approximately retain the semantic and textural details of the original real images8.

We find that directly applying image distillation through squeezing negatively impacts
the preservation of information, which consequently undermines the efficacy of Relabel
when applied to the distilled images. As shown in Figure 3, integrating Relabel with
our squeezing-based method boosts performance. Yet, the benefit diminishes when the

8. We defer the corresponding visualizations in Appendix H.
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number N of images squeezed into a single distilled image grows. This reduction likely stems
from the increased loss of semantic and textural information with higher N , undermining
both model training and the labeling accuracy of Relabel for these distilled images. This
suggests a trade-off between the quantity of images squeezed and the preservation of essential
information within each image for effective distillation.

In the following sections, we justify how to compensate for the lost information in these
compressed images, a crucial aspect of our proposed LIC.

Appendix C. Framework

The whole distillation process for an entire dataset by using our proposed LIC is illustrated
in Algorithm 1 and Figure 4.

Soft Label

[tiger, cat, dog, car, …]

Compensate
Info. Loss

Distilled Image

Select &
Squeeze

Relabel

Crop &
Resize

. . .

Compensated Images

Siamese
Select

Figure 4: Overview of our proposed three-stage dataset distillation framework. Stage
1: select and squeeze the top N × IPC impactful images per class into IPC composite image each,
where N = 4 and IPC = 1 in this case. Stage 2: refine these composite images to produce distilled
images, compensating the information loss. Stage 3: relabel distilled images for accurate, informative
annotations.

Appendix D. Experiment Details

Datasets. In addition to the datasets described in Section 3.1, we note that prevalent
dataset distillation techniques struggle to scale to large, high-resolution datasets. To this
end, we evaluate the baselines and our proposed LIC using two representative subsets of
ImageNet-1K, specifically ImageNet-100 and ImageNet-10, as documented in (Kim et al.,
2022).

Baselines. We benchmark our proposed LIC against a range of SOTA distillation techniques
capable of handling large, high-resolution datasets.

• MTT (Cazenavette et al., 2022) pioneers a trajectory matching-based strategy, effective
across both low and high-resolution datasets.
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Algorithm 1 An efficient framework for dataset distillation

Input: Original full dataset T , a corresponding pre-trained observer model ϕθT and initial
S = ∅.
Parameters: The number N for squeezing images, the number M of compression
iterations, the size of T ′

c .
for T ′

c ⊂ Tc ⊂ T do
{Stage 1. Selecting Key Samples}
for (xi, yi) ∈ T ′

c do
Calculate si = −ℓ(ϕθT (xi), yi)

end for
Select top-(N × IPC) images {xi}N×IPC

i=1 via si
{Stage 2. Compressing Effective Information}
for j = 1 to IPC do

Squeeze N selected images as x∗
j = F({xi}Ni=1)

for m = 1 to M do
∆x← ∆x+∇∆xL∆x

end for
{Stage 3. Relabel with Observer Model}
Relabel x̃j = x∗

j +∆x⋆ with ỹj
S = S ∪ {(x̃j , ỹj)}

end for
end for
Output: Small distilled dataset S

• IDM (Zhao et al., 2023) presents an efficient dataset condensation technique utilizing
distribution matching, offering a scalable alternative to computationally demanding
optimization-focused methods (Zhao et al., 2020; Cazenavette et al., 2022), notably
adapting to ImageNet-100.

• TESLA (Cui et al., 2023) marks the first distillation approach that extends to the full
ImageNet-1K, circumventing the extensive memory demands associated with MTT-derived
methods through a constant memory footprint.

• ADD (Zhang et al., 2023) demonstrates effective scalability across varying dataset resolu-
tions, enhancing distillation speed through model augmentation.

• DataDAM (Sajedi et al., 2023) efficiently distills images across multiple resolutions and
scales by matching spatial attention maps between real and distilled samples at various
layers within families of randomly initialized neural networks.

• DATM (Guo et al., 2023) stands out by occasionally surpassing the training performance
of the full original dataset, for instance, achieving IPC = 100 on CIFAR-100.

• DREAM (Liu et al., 2023b) introduces an efficient technique while also delivering the most
remarkable results.

• SRe2L (Yin et al., 2023) is a novel entrant that efficiently handles ImageNet-1K, significantly
outpacing other methods in managing large, high-resolution datasets and serving as our
primary comparison point.
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Evaluating main results. For both dataset distillation and performance evaluation, we
employ identical neural network architectures. Consistent with previous studies (Cazenavette
et al., 2022; Cui et al., 2023; Zhao et al., 2023), we use Conv-3 for CIFAR-10 and CIFAR-
100 distillation tasks, Conv-4 for Tiny-ImageNet (with the exception of DREAM, which
utilizes Conv-3) and ImageNet-1K, Conv-5 for ImageNet-10, and Conv-6 for ImageNet-100
distillation. In line with Cazenavette et al. (2022); Cui et al. (2023), MTT and TESLA
apply a reduced resolution for distilling 224× 224 images. According to Yin et al. (2023), for
retrieving and evaluating distilled datasets, SRe2L and LIC adopt ResNet-18.

Evaluating the distilled dataset. We detail the hyperparameter configurations for our
distilled dataset evaluation in Table 4. Consistent with recent works (Yin and Shen, 2023;
Yin et al., 2023; Shao et al., 2023), the evaluation on the ImageNet-1K dataset follows
the parameters outlined in Table 4a. For other datasets, their assessments are guided by
the parameters specified in Table 4b. Furthermore, we implement Differentiable Siamese
Augmentation (DSA) as described by Zhao and Bilen (2021) to enhance images during both
the distillation and evaluation phases of our experiments.

config value

epochs 300
optimizer AdamW
learning rate 0.001
weight decay 1e-4
scheduler MultiStepLR

(a) ImageNet-1K evaluation setting.

config value

epochs 1000
optimizer AdamW
learning rate 0.001
weight decay 1e-4
scheduler MultiStepLR

(b) Default evaluation setting.

Table 4: Hyperparameter setting.

Appendix E. Experiment Results

Comparison with more datasets and baselines. In addition to the experiments
discussed in Section 3.2, we further benchmark our proposed LIC against a broader set of
baselines, encompassing recent contributions (Yu et al., 2023; Shao et al., 2023; Sun et al.,
2023; Liu et al., 2023a). Our analysis also spans additional subsets of the ImageNet-1K
dataset, namely ImageNet-100 and ImageNet-10 (Kim et al., 2022). The outcomes, presented
in Table 5, consistently affirm the superior performance of LIC in dataset distillation tasks.

E.1 Efficiency Comparison

Beyond assessing performance in Section 3.2, we expand our evaluation to include additional
baselines. Results presented in Table 6 underscore the exceptional efficiency of our proposed
LIC, which also requires the least GPU memory.

18



Architecture ConvNet ResNet-18

Dataset IPC DataDAM ADD IDM RDED LIC (Ours) G-VBSM CDA WMDD RDED LIC (Ours)

1 32.0 ± 1.2 49.2 45.6 ± 0.7 23.5 ± 0.3 50.0 ± 0.3 - - - 22.9 ± 0.4 40.7 ± 0.4
CIFAR-10 10 54.2 ± 0.8 67.1 58.6 ± 0.1 50.2 ± 0.3 72.2 ± 0.2 53.5 ± 0.6 - - 37.1 ± 0.3 80.9 ± 0.4

50 67.0 ± 0.4 73.8 67.5 ± 0.1 68.4 ± 0.1 78.3 ± 0.1 59.2 ± 0.4 - - 62.1 ± 0.1 89.2 ± 0.0

1 14.5 ± 0.5 29.8 20.1 ± 0.3 19.6 ± 0.3 42.7 ± 0.3 25.9 ± 0.5 - - 11.0 ± 0.3 48.1 ± 0.7
CIFAR-100 10 34.8 ± 0.5 45.6 45.1 ± 0.1 48.1 ± 0.3 54.8 ± 0.2 59.5 ± 0.4 - - 42.6 ± 0.2 64.7 ± 0.1

50 49.4 ± 0.3 52.6 50.0 ± 0.2 57.0 ± 0.1 56.6 ± 0.1 65.0 ± 0.5 - - 62.6 ± 0.1 67.6 ± 0.1

1 8.3 ± 0.4 - 10.1 ± 0.2 12.0 ± 0.1 31.7 ± 0.4 - - 7.6 ± 0.2 9.7 ± 0.4 36.5 ± 0.2
Tiny ImageNet 10 18.7 ± 0.3 - 21.9 ± 0.2 39.6 ± 0.1 46.3 ± 0.2 - - 41.8 ± 0.1 41.9 ± 0.2 51.7 ± 1.0

50 28.7 ± 0.3 - 27.7 ± 0.3 47.6 ± 0.2 47.4 ± 0.1 - 48.7 59.4 ± 0.5 58.2 ± 0.1 55.8 ± 0.9

1 - - - 39.7 ± 0.4 - - - 24.9 ± 1.1 43.9 ± 0.7
ImageNet-10 10 - 74.6 - - 71.5 ± 0.8 - - - 53.3 ± 0.1 76.3 ± 0.8

50 - - - - 81.1 ± 0.1 - - - 75.5 ± 0.5 85.8 ± 0.8

1 - - 11.2 ± 0.5 7.1 ± 0.2 17.8 ± 0.3 - - - 8.1 ± 0.3 20.8 ± 0.3
ImageNet-100 10 - 48.4 17.1 ± 0.6 29.6 ± 0.1 50.2 ± 0.4 - - - 36.0 ± 0.3 65.0 ± 0.1

50 - - 26.3 ± 0.4 50.2 ± 0.2 64.3 ± 0.5 - - - 61.6 ± 0.1 79.8 ± 0.2

1 2.0 ± 0.1 - - - 14.5 ± 0.3 - - 3.2 ± 0.3 6.6 ± 0.2 6.8 ± 0.2
ImageNet-1k 10 6.3 ± 0.0 - - - 24.0 ± 0.5 31.4 ± 0.5 - 38.2 ± 0.2 42.0 ± 0.1 48.5 ± 0.2

50 15.5 ± 0.2 - - - 37.3 ± 0.1 51.8 ± 0.4 53.5 57.6 ± 0.5 56.5 ± 0.1 60.0 ± 0.2

Table 5: Comparison with SOTA dataset distillation methods.

Architecture Time Cost (s) Peak Memory (GB)

Conv-4

DREAM 33906.17 15.92
DATM 12470.90 20.16
SRe2L 51.68 1.36
Ours 13.02 0.65

ResNet-18 SRe2L 191.14 3.62
Ours 25.34 1.56

MobileNet-V2 SRe2L 114.05 1.27
Ours 18.81 0.64

Table 6: Efficiency comparison with SOTA methods on varying networks on Tiny-ImageNet.

Appendix F. Ablation

Ablation study on ImageNet-1K. The results depicted in Figure 5 demonstrate that,
despite exhibiting different behaviors when applied to Conv-4 and ResNet-18 architectures,
the parameters of our LIC maintain their robustness against variations. Consequently, the
configuration outlined in Section 3.1 is applicable across all datasets.

Effectiveness of each technique. To assess the efficacy of the individual components
within LIC, we decompose it into three core techniques. The term "Selection" denotes
the synthesis of samples based on their importance scores, "Compensation" pertains to
the refinement of data through image alignment, and "Relabel" involves the use of labels
furnished by a pre-trained model.
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Figure 5: Ablation study on each component in our LIC. We evaluate the distilled dataset of
our LIC with different number M of compression iterations (5a), number N of images squeezed in
one distilled image (5b & 5c), feature alignment layer (5d). The yellow •, and blue • denote ConvNet,
and ResNet respectively.

Dataset Original +Selection +Compensation +Relabel

CIFAR-10 47.0 ± 0.1 52.5 ± 1.1 58.7 ± 0.4 72.2 ± 0.2
CIFAR-100 27.8 ± 0.6 31.8 ± 0.4 40.8 ± 0.5 54.8 ± 0.2

Tiny-ImageNet 7.2 ± 0.5 11.7 ± 0.6 20.4 ± 0.8 46.3 ± 0.2
ImageNet-1K 7.7 ± 0.1 12.3 ± 0.1 10.5 ± 0.1 24.0 ± 0.5

Table 7: Effectiveness of accumulated techniques in LIC. The validation accuracy experiences
a progressive improvement as we incrementally apply the four techniques within our LIC.

Appendix G. Continual Learning

In comparison to SRe2L, our study implements a five-step class-incremental learning approach
using ResNet-18 across CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, each with an
IPC setting of 10. The results of these experiments are depicted in Figures 6, 7, and 8 for
CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively.

Appendix H. Visualization

Baselines. Within the scope of CIFAR-10 distillation under the IPC = 10 setting, we
illustrate the visual representations of distilled datasets. This includes visualizations for
ADD (Zhang et al., 2023) in Figure 11, DataDAM (Sajedi et al., 2023) in Figure 12,
SRe2L (Yin et al., 2023) in Figure 14, and DREAM (Liu et al., 2023b) in Figure 13. Distilled
images of each method are generated starting from actual images, showcased in Figures 9
and 10.

A simple squeezing-based method. The image squeezing process entails resizing and
concatenating images to facilitate dataset distillation. For example, consider the manipulation
of 4 images, each originally sized at 224× 224 pixels. The initial step involves downsizing
each image to 112× 112 pixels. Subsequently, these reduced images are merged into a single
composite image, effectively reverting to the original resolution of 224 × 224 pixels. This
approach underpins a simplistic, squeezing-based dataset distillation method, whereby N
randomly selected original images are compressed into one distilled image to compose a
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Figure 6: Visualization of continual learning on CIFAR-10 with IPC = 10.
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Figure 7: Visualization of continual learning on CIFAR-100 with IPC = 10.
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Figure 8: Visualization of continual learning on Tiny-ImageNet with IPC = 10.

condensed dataset. In the context of distilling CIFAR-10 with an IPC = 10 configuration, we
exhibit the visual outcomes of this process for diverse settings: N = 1 in Figure 15, N = 4
in Figure 16, N = 9 in Figure 17, N = 16 in Figure 18, and N = 25 in Figure 19.

Our proposed LIC. With an IPC setting of 10, we illustrate the distilled datasets
generated by our proposed LIC. These include visualizations for CIFAR-10 in Figure 20,
CIFAR-100 in Figure 21, Tiny-ImageNet in Figure 22, and ImageNet-1k in Figure 23.
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Figure 9: Visualization of initialized images before distilling on CIFAR-10.
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Figure 10: Visualization of initialized data before distilling on CIFAR-10 data showcases the mixture
of 4 images per initial instance.
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Figure 11: Synthetic data visualization on CIFAR-10 from ADD (Zhang et al., 2023)
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Figure 12: Synthetic data visualization on CIFAR-10 from DataDAM (Sajedi et al., 2023)
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Figure 13: Synthetic data visualization on CIFAR-10 from DREAM (Liu et al., 2023b)
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Figure 14: Synthetic data visualization on CIFAR-10 from SRe2L (Yin et al., 2023)
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Figure 15: Squeezed real data visualization on CIFAR-10 with N = 1
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Figure 16: Squeezed real data visualization on CIFAR-10 with N = 4
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Figure 17: Squeezed real data visualization on CIFAR-10 with N = 9
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Figure 18: Squeezed real data visualization on CIFAR-10 with N = 16
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Figure 19: Squeezed real data visualization on CIFAR-10 with N = 25
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Figure 20: Synthetic data visualization on CIFAR-10 from LIC(Ours)
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Figure 21: Synthetic data visualization on CIFAR-100 from LIC(Ours)
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Figure 22: Synthetic data visualization on Tiny-ImageNet from LIC(Ours)
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Figure 23: Synthetic data visualization on ImageNet-1k from LIC(Ours)
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