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CoTuning: A Large-Small Model Collaborating Distillation
Framework for Better Model Generalization

Anonymous Authors

ABSTRACT
Model compression and distillation techniques have become es-
sential for deploying deep learning models efficiently. However,
existingmethods often encounter challenges related tomodel gener-
alization and scalability for harnessing the expertise of pre-trained
large models. This paper introduces CoTuning, a novel framework
designed to enhance the generalization ability of neural networks
by leveraging collaborative learning between large and small mod-
els. CoTuning overcomes the limitations of traditional compression
and distillation techniques by introducing strategies for knowl-
edge exchange and simultaneous optimization. Our framework
comprises an adapter-based co-tuning mechanism between cloud
and edge models, a scale-shift projection for feature alignment,
and a novel collaborative knowledge distillation mechanism for
domain-agnostic tasks. Extensive experiments conducted on vari-
ous benchmark datasets demonstrate the effectiveness of CoTuning
in improving model generalization while maintaining computa-
tional efficiency and scalability. The proposed framework exhibits
a significant advancement in model compression and distillation,
with broad implications for research in the collaborative evolution
of large-small models.

CCS CONCEPTS
• Computing methodologies→ Image representations.

KEYWORDS
Knowledge Distillation, Collaborative Learning, Model Generaliza-
tion, Model Compression

1 INTRODUCTION
In recent years, foundational models such as GPT [31] and Sora [28]
have demonstrated strong generalization and versatility in various
tasks and industries, bringing opportunities for the implementation
of artificial intelligence. In practical applications, with a founda-
tional model trained with generic data on the Cloud-device, we
could then customize the cloud large model to a user-specific do-
main using tuning and model compression techniques according
to different edge devices and application scenarios. Subsequently,
through the evolutionary mode of collaborative evolution between
edge and cloud, the effect of reducing energy consumption and
improving overall model accuracy can be achieved. Among this,
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(a) Logit Knowledge Distillation (b) Feature Knowledge Distillation

(c) Our Collaborating Knowledge Distillation

Figure 1: Comparison of three kinds of distillation tech-
niques. (a) and (b) distill the student model from a static
teacher model, of which (a) updates the parameters accord-
ing to class predictions while (b) relies more on the interme-
diate features. (c) Our Cotuning framework simultaneously
updates the large-small models by conducting collaborative
knowledge distillation between their intermediate layers.

the effective transfer of global knowledge from large cloud-side
model to small edge-side models is of great research significance.

Most existing methods [1, 18, 24, 36] focus on improving the
precision of small edge models on specific tasks and scenes, but
overlook the requirement for their generalization performance.
Moreover, improving the generalization ability of edge-side small
models is an effective means to reduce costs, mitigate data privacy
issues, and facilitate collaborative evolution between edge and cloud
models. This is because edge-side small models typically require
cloud-side large models to undergo customized training based on
downstream user data and task requirements. On one hand, the
increase in the number of edge devices and application demands
leads to a sharp rise in cloud-side training costs and edge-side
storage space requirements. At the same time, adopting separate
training for each edge canmake it difficult for information exchange
between multiple edges, posing challenges for subsequent model
updates and evolution. Considering these factors, we propose train-
ing edge-side small models with good generalization capabilities.

A common solution is to use knowledge distillation techniques [6,
13, 40, 41] for model compression, which has played a crucial role in
deploying and utilizing deep learning models efficiently. As shown
in Figure 1(a) and 1(b), this specific approach involves using a static

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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pre-trained model to transfer structural knowledge [30, 33, 49] or
feature distribution knowledge [21, 32, 48] to a smaller model. How-
ever, existing methods primarily focus on compressing knowledge
from large-scale models into smaller counterparts to reduce com-
putational and storage requirements. As a result, these techniques
frequently encounter limitations due to the performance constraints
of the upstream large models and tend to neglect considerations
regarding model generalization.

To address these challenges, we propose a novel framework
named CoTuning, aimed at enhancing model generalization perfor-
mance while leveraging existing model compression and distillation
techniques. Figure 1 depicts the comparison between the proposed
method and traditional distillation approaches. Apparently, our
CoTuning method builds upon the foundation of conventional
knowledge distillation [13] but introduces strategies for collab-
orative learning [43] to mitigate the impact of upstream model
performance limitations and effectively improve model general-
ization. This training strategy involves aligning the distribution
of the smaller model with that of the larger model, while also in-
corporating collaborative optimization, allowing both models to
iteratively enhance each other’s performance. Technically, we ex-
plore a collaborative learning method that utilizes adapter-based
tuning strategies [4, 52, 56] for large models of different scales. At
the same time, large-small collaborative knowledge distillation is
employed to ensure the flow and interaction of knowledge. It turns
out that in many cases, collaborative learning between the cloud-
edge models is beneficial for improving performance compared to
traditional knowledge distillation methods.

Overall, CoTuning offers a straightforward yet powerful ap-
proach to enhance the generalization ability of neural networks. By
harnessing collaborative learning and simultaneous optimization
mechanisms, CoTuning overcomes the limitations of traditional
knowledge distillation methods, leading to models that generalize
better across diverse datasets and tasks. Extensive experiments
conducted on various benchmark datasets, i.e., cross-domain classi-
fication and retrieval tasks, demonstrate the efficacy of CoTuning
in improving model generalization performance while maintaining
computational efficiency and scalability. The proposed framework
not only advances the field of model compression and distillation
but also opens up new avenues for research in the collaborative
evolution of large-small models.

The main contributions can be summarized as follows:

* Adapter-based Co-tuning Framework between Cloud
and Edge Model: We propose a novel adapter-based co-
tuning framework that facilitates collaborative learning be-
tween the cloud and edge model. This framework enables
efficient knowledge transfer and adaptation from cloud-large
models to edge-small ones, also leading to improved model
generalization across distributed environments.

* Collaborative Distillation Mechanism for Domain Ag-
nostic Tasks: We present a novel cloud-edge collaborative
distillation mechanism tailored for domain-agnostic tasks,
enabling the seamless transfer of knowledge between mod-
els trained on different datasets or domains. This mechanism
enhances the adaptability and robustness of the CoTuning

framework, ensuring superior performance across diverse
application scenarios.

* Superior Experimental Results: Our experimental find-
ings demonstrate that the CoTuning framework achieves sig-
nificant performance improvements across multiple bench-
mark datasets, showcasing its outstanding performance in
terms of model generalization and efficiency.

2 RELATEDWORK
2.1 Knowledge Distillation
In the past decades, knowledge distillation technique [9, 13, 20, 23,
25, 34] has been proven effective in transferring knowledge from
larger, more capable teacher models to smaller, more suitable stu-
dent models for practical applications across various domains. Com-
mon knowledge distillation methods include logit-based distillation,
feature-based distillation, and relation-based distillation. For exam-
ple, the logit-based Decoupled Knowledge Distillation(DKD) [54]
method attempts to distill the knowledge by dividing the classical
KD into target class knowledge distillation (TCKD) and non-target
class knowledge distillation (NCKD). The DIST [17] method reveals
that both the intra-class and the inter-class relations make positive
impact on model distillation. These methods effectively transfer
teacher knowledge to downstream models. However, on one hand,
the performance of student model is constrained by the teacher
model, and on the other hand, such distillation methods often result
in student model with weak generalization.

2.2 Collaborative Learning
Collaborative Learning, where multiple models learn together and
share insights, has proven to be an effective method for distill-
ing knowledge across various tasks [5, 46, 47], such as classifica-
tion [16, 44] and translation [51]. In comparison to distillation per-
formed by a pre-trained static large network, collaborative learning
among multiple models may somewhat achieve better performance.
DML(Deep mutual learning) [53] utilizes a straightforward yet
effective method to enhance the network’s generalization capa-
bility by training collaboratively with a group of other networks.
ML-LMCL(Mutual Learning and Large-Margin Contrastive Learn-
ing) [2] employs mutual learning to promote knowledge exchange
between the model trained on clean manual transcripts and the
model trained on ASR transcripts. These methods primarily focus
on information exchange among models of equal scale. There is still
significant research significance in exploring how to achieve col-
laborative training between models of different sizes and improve
the models’ generalization performance.

2.3 Parameter-Efficient Tuning
Efficient parameter tuning techniques [3, 8, 10, 27, 35, 42, 50] have
become crucial for maximizing the utility of large pre-trained mod-
els in diverse domains such as natural language processing and
computer vision. These techniques aim to minimize computational
overhead while maintaining high performance levels. Two com-
mon approaches in this domain include prompted-based meth-
ods [10, 19, 22] and adapter-based methods [10, 14, 15]. During the
fine-tuning of downstream tasks, these adapters, or soft prompts,
are trained exclusively, while all pre-trained parameters remain
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Figure 2: The pipeline of the proposed CoTuning framework. The Adapter module serves as a bridge for cotuning between the
large-small models. The Scale-Shift Projectormaps features from the smaller model to a feature space with the same dimensions
as the larger one. A Collaborative Distillation mechanism is performed to achieve simultaneous model updates.

frozen. This ensures the generalization capability of the large model.
The standard adapter-based module consists of a small neural net-
work layer, typically comprising two fully connected layers and
non-linear layer, such as RELU. The Scaled Parallel Adapter(SPA)
builds upon this method by incorporating trainable low-rank ma-
trices into transformer layers to mimic weight adjustments. This
concept is an extension of LoRA’s [15] principles, adapted specifi-
cally for adapters. In this work, we also exploit the scaled parallel
adapter for the updates of the large model.

3 METHODOLOGY
In this section, we first detail some preliminary teacher-student
distillation methods for better understanding. Second, we highlight
the proposed Collaborative Knowledge Distillation framework to
improve the model generalization with three pivotal parts. Finally,
we describe how the CoTuning algorithm is optimized in an end-
to-end fashion.

3.1 Preliminary
In the realm of model compression and knowledge distillation, the
prevailing approach typically revolves around constraining the log-
its [13], or the middle-level features [12], of the student model to
match those of the teacher model. This alignment is commonly
achieved by minimizing the similarity measure between the predic-
tions of the two models, i.e., the Kullback-Leibler Divergence (KL)
and the Mean Square Error (MSE).

Given a training set {(𝑥𝑖 , 𝑦𝑖 )}N𝑖=1 for teacher-student knowledge
distillation, the model Φ(𝑥) = Φcls (𝒇 ) ◦ Φfea (𝑥) usually can be
divided into two main parts for better feature distillation, i.e., one
feature extractor Φfea and a classifier Φcls. Therefore, the feature
vector can be calculated by 𝒇𝑖 = Φfea (𝑥𝑖 ), while the logit output can
be gained from 𝒑𝑖 = Φcls (𝒇𝑖 ). Then, the common CE loss for model
training can be formulated as:

𝐿CE = − 1
N

N∑︁
𝑖=1

K∑︁
𝑗=1

𝑦𝑖, 𝑗 log𝑝𝑖, 𝑗 , (1)

where 𝑝𝑖, 𝑗 = exp(𝑝𝑖, 𝑗 )/
∑
𝑗 exp(𝑝𝑖, 𝑗 ) means normalized probability,

and K is the number of categories for classification.
As most pertinent literatures [13, 23, 54] introduced, the vanilla

knowledge distillation is always constrainedwith the KL loss, which
can be formulated as:

𝐿KD =
1
N

N∑︁
𝑖=1

𝐿KL (�̂�𝑡𝑖 | |�̂�
𝑠
𝑖 ), (2)

where 𝐿KL (�̂�𝑡𝑖 | |�̂�
𝑠
𝑖
) =

∑
𝑗∈K 𝑝

𝑡
𝑖, 𝑗

ln(𝑝𝑡
𝑖, 𝑗
/𝑝𝑠
𝑖, 𝑗
), and 𝑡/𝑠 mean logits

from teacher or student model, respectively.
When focusing on feature distillation [48], the MSE loss is often

the preferred choice to constrain the alignment between features.
This can be formulated as follows:

𝐿MSE =
1
N

N∑︁
𝑖=1

∥𝒇 𝑡𝑖 − 𝒇𝑠𝑖 ∥
2
2 . (3)

As advanced methods, the RKD [33] and the DIST [17] considered
match the teacher model and the student one with the relations,
containing inter-relations between different instances in one batch
and intra-relations among each category.

3.2 Collaborative Knowledge Distillation
In this paper, we primarily introduce a mechanism for collaborative
learning involving a cloud-side fundamental model and an edge-side
small model. The objective is to attain comparable feature distri-
butions across both models, aiming to enhance the small model’s
generalization performance across various scenarios for improved
deployment in practical applications. Specifically, regarding the
fundamental model, fine-tuning all parameters often triggers over-
fitting. Hence, we employ a parameter-efficient tuning technique
called scaled parallel adapter learning to adjust its model parame-
ters. Conversely, for the small-sized models on the edge side, we
optimize them directly using a full parameter training mode. Ad-
ditionally, we develop a feature projection module to align their
feature distributions with those of the fundamental model, of which
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is optimized alongside the scaled adapter in a step-by-step manner
to ensure stable performance. As shown in Figure 2, our method
consists of three parts as follows: adapter-based co-tuning mod-
ule, scaled-shift feature projection module, and novel knowledge
collaborative distillation mechanism.

3.2.1 Adapter-based Co-tuning Module. Instead of fine-tuning all
parameters of the fundamental model, we introduce adapter lay-
ers that adaptively adjust the model’s representations to match
those of the edge models. Specifically, when employing adapters for
fine-tuning to adapt to downstream tasks, the adapter adjusts the
model’s output offset on specific tasks by first reducing and then
increasing the dimensions of the fundamental model’s feature rep-
resentation. Throughout this process, the feature distribution space
becomes more condensed after the adapter reduces the dimension-
ality, resulting in lower feature dimensions while still preserving
critical features in the data. This helps in reducing redundant infor-
mation and improving computational efficiency while accurately
capturing task-relevant key features. In the subsequent expansion
of feature dimensions, the adapter remaps the low-dimensional
features back to the original feature dimension space of the fun-
damental model. This process enhances the expressiveness of the
features and makes them more suitable for specific tasks. By adopt-
ing this approach, the adapter effectively fine-tunes the model’s
feature representation, mitigating the risks of over-fitting and en-
hancing the model’s performance and generalization capabilities.

Considering the reasons mentioned above, our approach seeks to
leverage the adapter’s capabilities to acquire compact feature repre-
sentations for downstream tasks and promote collaborative learning
between the fundamental model and the small-sized models at the
edge. To achieve this, we utilize a scaled parallel adapter 𝜽𝑘 for
each block of the fundamental model, where 𝜽𝑘 = {𝜽𝑑

𝑘
, 𝜽𝑟
𝑘
, 𝜽𝑢
𝑘
, 𝜽𝑠
𝑘
}.

Here 𝜽𝑑
𝑘
indicates down-sampling layer, 𝜽𝑟

𝑘
is non-linear layer, 𝜽𝑢

𝑘
is up-sampling layer, 𝜽𝑠

𝑘
represents a scaling factor, the subscript

𝑘 indicates which layer the adapter module is employed. For any
input feature 𝒇 , the output features 𝒇 through adapter 𝜽𝑘 can be
represented as follows,

𝒇𝑘 = 𝜽𝑘 (𝒇 ) = 𝜽𝑢
𝑘
(𝜽𝑟
𝑘
(𝜽𝑑
𝑘
(𝒇 ))) ∗ 𝜽𝑠

𝑘
, (4)

where 𝑘 indicates which adapter module is exploited for feature
extraction.

3.2.2 Scaled-Shift Feature Projection Module. The scaled-shift fea-
ture projection module aims to align the feature distributions of the
edge models with those of the fundamental model. This is achieved
by projecting the feature representations of the edge models into a
common feature space, where they can be compared and aligned
with the representations of the fundamental model. To ensure sta-
bility and robustness, we introduce a scaled-shift mechanism that
adjusts the projection parameters in a controlled manner.

Figure 3 elucidates the precise operations of this module. In
particular, for a specific intermediate layer 𝑘 of the small model,
whose features defined as 𝒇𝑠

𝑘
, we initially employ a standard pro-

jection module to map it to a space with the identical dimension-
ality as the features of the large model. Generally speaking, the
parameters of the projection module at the 𝑘 layer is concluded

Figure 3: Pipeline of the scaled-shift projection module. The
input features are the low-dimensional features from the
intermediate layer of the student model. After linearly pro-
jecting them into a high-dimensional space, they undergo
feature-wise scaling and shifting operations to obtain the
final output features. These features are then utilized for
subsequent interactions between the large-small models.

as 𝝓𝑘 = {𝝎𝑘 , 𝜷𝑘 ,𝜸𝑘 }, where 𝝎𝑘 , 𝜸𝑘 and 𝜷𝑘 corresponds to the lin-
ear projection layer, the scaling and the shifting parameters. First,
we utilize 𝝎𝑘 to project the student features into the same dimen-
sion as the teacher model, then the features can be represented as
𝒇𝑠
𝑘
′ = 𝝎𝑘 (𝒇𝑠𝑘 ). Subsequently, we further utilize feature-wise scaling

and shifting operations to modify the significance and offset of
each input feature, while retaining the inherent physical interpreta-
tion of the features intact. Therefore, the feature output 𝒇𝑠,𝝓

𝑘
after

passing through this projection module can be derived as follows,

𝒇
𝑠,𝝓
𝑘

= 𝜸𝑘 ⊙ 𝝎𝑘 (𝒇𝑠𝑘 ) + 𝜷𝑘 . (5)

During the parameter initialization phase, note that the scaling and
shifting parameters of this module are set to 1 and 0, respectively.

3.2.3 Novel Collaborative Knowledge Distillation Mechanism. Tra-
ditional feature distillation methods typically entail calculating the
correlation between the intermediate layer features of the student
and teacher models, followed by optimizing the student model’s
feature representation through correlation constraints to align it
with that of the teacher model. Therefore, the key issue lies in
how to define the consistency between the distributions of two
feature representations. Common approaches involve using simi-
larity metrics such as L2 loss, similarity preserving loss, and feature
structural loss to optimize the alignment between feature distri-
butions. However, in the FCFD [25] method, it is emphasized that
the similarity between features is not solely dictated by the fea-
tures themselves but is rather defined by how subsequent layers
will interpret, decode, and manipulate them. This insight inspires
us to pursue a more seamless integration of the projection and
adapter modules, rather than merely aligning their outputs at the
corresponding intermediate layers. More specifically, we believe
that if the features of the teacher model and the student model
have consistent representations, then a teacher-friendly adapter
structure should produce similar effects on the student model.

For a certain intermediate layer 𝑘 , we could obtain the projected
student feature𝒇𝑠,𝝓

𝑘
and the corresponding teacher feature𝒇 𝑡

𝑘
. Then,

with the next layer adapter module denoted as 𝜃𝑘+1, we employ it
to propagate these features forward and acquire the corresponding
outputs,

𝒇
𝑠,𝝓
𝑘+1,𝒇

𝑡

𝑘+1 = 𝜽𝑘+1 (𝒇
𝑠,𝝓
𝑘

), 𝜽𝑘+1 (𝒇 𝑡𝑘 ) . (6)
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Thus a straightforward form of feature distillation can be achieved
using the following appearance loss,

𝐿MSE = ∥𝒇𝑠,𝝓𝑘+1 − 𝒇
𝑡

𝑘+1∥22 . (7)

As previously discussed, considering the dimensionality reduction
operation in the adapter, it can project the original representa-
tion into a low-dimensional compact feature expression space. In
this case, we can conduct knowledge distillation in this reduced-
dimensional feature space. In other words, we exclusively employ
module 𝜽𝑑

𝑘+1 to conduct the feature alignment operations. Then the
collaborative feature distillation loss can be calculated as,

𝐿𝑡&𝑠MSE = ∥𝜽𝑑
𝑘+1 (𝒇

𝑠,𝝓
𝑘

) − 𝜽𝑑
𝑘+1 (𝒇

𝑡
𝑘
)∥22 . (8)

Compared to directly aligning the features after two mappings,
associating them at the intermediate layer offers more advantages.
Firstly, reduced-dimensional features can partially eliminate redun-
dancy and better capture essential data information. Constraining
features in this space mitigates model overfitting and enhances gen-
eralization. Moreover, conducting computations in low-dimensional
feature space often lowers computational resource usage. In con-
clusion, this novel collaborative knowledge distillation mechanism
further enhances the adaptability of the edge models by incorporat-
ing domain-specific knowledge into the training process. By lever-
aging domain-specific information, such as task-related features or
contextual cues, we enable the edge models to better generalize to
specific application scenarios. This mechanism is integrated into
the training pipeline to ensure that the edge models effectively
capture and adapt to relevant knowledge during training.

3.3 Model Training
The optimization and model training process involve fine-tuning
the fundamental model using scaled parallel adapter learning and
training the edge models using full parameter training. The feature
projection module and the novel knowledge distillation mechanism
are optimized alongside the scaled adapter in an end-to-end fashion
to ensure consistent and stable performance across all components
of the framework. The total loss for our method is formulated as:

𝐿CoTuning = 𝐿𝑡CE + 𝐿𝑠CE + 𝛼𝐿𝑠KD + 𝜆
∑︁
𝑘∈𝐾

𝐿𝑡&𝑠MSE, (9)

where 𝐾 is the number of blocks with co-tuning module, 𝛼 and
𝜆 are the hyper-parameters for controlling the influence of the
logit-based and the feature-based distillation losses, respectively.
Notice that here we utilize the same formulation of DKD [54] for
𝐿𝑠KD. The whole training processing with CoTuning framework is
summarized in Algorithm 1.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
To validate the effectiveness of the proposed method, we conducted
experiments on both classification and retrieval tasks. For the classi-
fication task, we utilized the OfficeHome [39] benchmark. In Office-
Home, there are 4 domains of images with a total of 65 classes, in-
cluding Art, Clipart, Product, and Realworld. We train the model on
each domain and do cross-domain testing on the others. For the re-
trieval task, we conducted training on the VIPeR [7] andMarket [55]

Algorithm 1: CoTuning
Input: Training dataset 𝐷 ; Training Epochs 𝐸𝑝; teacher
model 𝚽𝑡 ; student model 𝚽𝑠 ; adapters 𝜽 ; projectors 𝝓;
selected layers 𝐾 for feature distillation
Output: student model 𝚽𝑠
while epoch ⩽ 𝐸𝑝 do

for data batch 𝒙 in D do
Forward propagation, obtain class prediction and
intermediate features for 𝑘 ∈ 𝐾 layers:

𝒑𝑠 ,𝒇𝑠
𝑘
= 𝚽

𝑠 (𝒙)
𝒇
𝑠,𝝓
𝑘

= 𝝓𝑘 (𝒇𝑠𝑘 )
𝒑𝑡 ,𝒇 𝑡

𝑘
= 𝚽

𝑡 (𝒙)

𝒇
𝑠,𝝓,𝑑
𝑘+1 ,𝒇

𝑡,𝑑

𝑘+1 = 𝜽𝑑
𝑘+1 (𝒇

𝑠,𝝓
𝑘

), 𝜽𝑑
𝑘+1 (𝒇

𝑡
𝑘
)

Calculate the Loss,
Calculate 𝐿𝑡CE, 𝐿

𝑠
CE according to Eq 1 with 𝒑𝑡 ,𝒑𝑠

Calculate 𝐿𝑠KD according to [54] with 𝒑𝑡 ,𝒑𝑠

Calculate 𝐿𝑡&𝑠MSE:= ∥𝒇𝑠,𝝓,𝑑𝑘+1 − 𝒇
𝑡,𝑑

𝑘+1∥22
Backward propagation,

updates 𝚽𝑠 , 𝝓, 𝜽 simultaneously
end

end

datasets, and testing on the VIPeR, Market, CUHK-SYSU(SYSU) [45],
VeRI [26] and Inshop-Clothes(Inshop) [29] datasets. The VIPeR
dataset contains 632 classes with a total of 1264 images, while the
Market dataset contains 1501 classes with a total of 32,668 images.
Both of these two datasets are fine-grained retrieval datasets fo-
cused on pedestrians. SYSU is also a pedestrian retrieval dataset,
VeRI is a vehicle retrieval dataset, and Inshop is a retrieval dataset
for fashion products.

For evaluation, we employ the classification Accuracy(ACC) and
Rank-1 accuracy (R-1) for the classification and retrieval task. We
further report the average performance for each task.

4.2 Implemented Details
We use DeiT-Base/16 [37] pre-trained on Imagenet as our backbone
and keep it frozen in the entire training stage, and the inner di-
mension of the adapter module is set as 32. We appended trainable
adapter modules to the last 6 layers of the pre-trained model. The
amount of trainable parameters is around 0.6M, which accounts
for 0.69% of the total parameters of the pre-training model. The
reported student model exploited the DeiT-Tiny/16 structure. For
data processing, all images are resized to 224 × 224 for all datasets,
and data augmentation involves random crop and random erasing.
For optimizing, we set the batch size as 128, and use Adam for
optimization which trains 300 epochs for each task. The learning
rate is initialized as 3.5 × 10−4, which is then decreased via the
Cosine Annearling strategy. All the balanced factors for losses are
set to 1 and the temperature 𝑇 for knowledge distillation is set to 4.

4.3 Compared Methods
The methods compared in this work conclude:
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Table 1: Comparison of the classification task on the Office-
Home dataset. The reported result is trained on one source
domain and then test on the others. 𝑠ACC indicates the aver-
age cross-domain classification accuracy.

Source Target Avg

Arts→ Product Clipart Realworld 𝑠ACC

SPA 76.5 58.4 82.4 72.4
VKD 47.9 33.1 58.6 46.5
SKD 53.6 39.3 64.0 52.3
DKD 53.9 39.9 64.4 52.7
DIST 47.7 36.7 58.9 47.8
DML 45.0 32.2 55.2 44.1
RKD 48.9 34.8 59.3 47.7
SP 42.5 31.5 54.6 42.9
PKT 48.8 35.0 60.9 48.2
Scratch 39.3 29.5 51.6 40.1
Ours 56.2 40.4 66.2 54.3

Product→ Arts Clipart Realworld 𝑠ACC

SPA 65.6 81.9 51.6 66.4
VKD 21.4 48.7 27.7 32.6
SKD 28.2 56.2 34.7 39.7
DKD 26.8 55.0 33.9 38.6
DIST 26.0 53.1 30.0 36.4
DML 23.1 49.7 29.6 34.1
RKD 21.4 47.9 27.9 32.4
SP 20.0 45.9 27.0 31.4
PKT 21.5 49.4 28.4 33.1
Scratch 17.8 42.4 23.2 27.8
Ours 31.6 60.0 37.5 43.0

Clipart→ Arts Product Realworld 𝑠ACC

SPA 68.1 76.4 79.8 74.8
VKD 27.1 46.1 43.8 39.0
SKD 33.2 51.4 50.3 45.0
DKD 33.4 50.8 49.6 44.6
DIST 29.2 46.0 45.3 40.2
DML 31.1 48.2 47.8 42.4
RKD 27.5 45.4 43.0 38.6
SP 26.6 43.4 41.4 37.1
PKT 29.7 46.4 44.9 40.3
Scratch 20.6 39.0 37.0 32.2
Ours 36.6 55.2 54.4 48.7

Realworld→ Arts Product Clipart 𝑠ACC

SPA 73.0 82.4 54.6 70.0
VKD 42.1 63.4 36.6 47.4
SKD 48.9 69.7 41.2 53.3
DKD 47.8 67.7 40.9 52.1
DIST 44.8 64.9 38.8 49.5
DML 44.4 65.0 38.1 49.2
RKD 42.0 63.7 37.0 47.6
SP 39.8 61.6 31.5 43.1
PKT 36.2 58.1 33.4 42.6
Scratch 36.0 58.8 31.5 42.1
Ours 49.8 71.2 43.8 54.9

1) Scaled Parallel Adapter(SPA) [10]: it attaches a small number
of parameters to the fundamental model and efficiently fine-tunes
them. This method can be considered as the upper bound.

2) Vanilla Knowledge Distillation(VKD) [13]: it mimicks the dif-
ference between teacher and student predictions via the Kullback-
Leibler (KL) divergence.

3) Spherical Knowledge Distillation(SKD) [9]: it normalizes the
predictions of both the teacher and the student models according
to the magnitude confidence.

4) Decoupled Knowledge Distillation(DKD) [54]: it divides the
classical KD into target class knowledge distillation (TCKD) and
non-target class knowledge distillation (NCKD).

5) Distillation from A Stronger Teacher(DIST) [17]: it executes
knowledge distillation with both inter-relations and intra-relations.

6) Deep Mutual Learning(DML) [53]: it trains multiple students
that enable learn collaboratively throughout the training process.

7) Relational Knowledge Distillation(RKD) [33]: it proposes to
distill complex relationships and dependencies between feature
representations from the teacher and student model.

8) Similarity-Preserving Knowledge Distillation(SP) [38]: it em-
ploys pairwise activation similarities for distillation.

9) Probabilistic Knowledge Transfer(PKT) [34]: it minimizes
the divergence between the probability distribution between the
teacher and student models.

10) Training from scratch(Scratch): it trains models without lever-
aging pre-trained knowledge or parameters.

5 RESULTS
5.1 Comparisons to state-of-art approaches
Table 1 and Table 2 respectively showcase the performance of the
model in classification and retrieval tasks. Among all reported meth-
ods, SPA represents the results obtained by fine-tuning based on
the teacher model, and its performance can be regarded as the
upper limit of the distilled student model’s performance. For the
classification task, the proposed method achieves an average ac-
curacy of 54.3%, 43.0%, 48.7%, and 54.9% across the Arts, Product,
Clipart, and Realworld domains, respectively. It outperforms the
second-best distillation method by an average generalization per-
formance improvement of 1.6% to 3.7%. For the retrieval task, the
proposed method achieves an average accuracy of 45% and 57.8%
for the VIPeR and the Market dataset. On the Market dataset, it
outperforms the second-best DIST method by an average perfor-
mance improvement of 2.2%. On the VIPeR dataset, it exceeds the
average performance of the second-best method by 3.5%. Through
comparisons, we observe that most existing logit-based distillation
methods perform well when tailored for specific tasks. However,
once these methods are applied to cross-domain scenarios or tasks,
the performance of the distilled student appears significantly de-
creases. This could be attributed to the fact that, in comparison
to logit-based distillation, our feature-based distillation method
typically allows for the preservation of more detailed information,
consequently leading to better generalization capabilities.

5.2 Comparisons with different student models
In this section, we evaluate the generalization performance with dif-
ferent student models. We continue to use DeiT-B as the pre-trained
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Figure 4: Comparison with different student models on the OfficeHome datasets. We train the student model using the Arts split
data, and show the performance on the (a)Product, (b)Clipart, and (c)RealWorld domain. The gray and pink bar corresponds to
the classification accuracy of the Resnet18 and the DeiT-T/16 model.

Table 2: Comparison of the retrieval task on the VIPeR and
the Market dataset. We report the Rank-1 matching rate in
the table. 𝑠R1 indicates the average retrieval Rank-1 score.

Source Target Avg

Market→ VIPeR Market SYSU VeRI InShop 𝑠R1

SPA 36.4 88.5 80.1 47.9 56.4 61.9
VKD 28.2 89.0 70.8 31.5 43.3 52.6
SKD 32.9 90.5 72.9 35.7 43.5 55.1
DKD 31.0 90.9 73.9 34.4 45.6 55.2
DIST 32.6 90.4 74.3 35.9 44.4 55.6
DML 28.8 90.0 71.7 34.9 43.8 53.8
RKD 28.2 89.1 71.7 32.1 44.4 53.1
SP 25.3 86.9 66.8 29.0 42.0 50.0
PKT 31.3 90.0 70.5 32.6 44.2 53.7
Scratch 22.5 83.8 61.9 26.3 40.0 46.9
Ours 34.2 90.8 77.2 39.7 47.3 57.8

VIPeR→ VIPeR Market SYSU VeRI InShop 𝑠R1

SPA 54.7 41.2 69.0 43.2 49.1 51.4
VKD 50.6 23.3 53.1 27.8 34.3 37.8
SKD 52.8 27.1 53.8 28.4 33.0 39.0
DKD 57.6 26.8 56.3 26.6 34.6 40.3
DIST 55.7 27.6 56.3 29.9 34.9 40.9
DML 56.0 23.9 54.4 25.6 33.7 38.7
RKD 57.3 27.0 58.9 31.0 33.4 41.5
SP 47.8 20.3 51.2 25.0 32.4 35.3
PKT 56.3 26.2 55.3 28.5 33.8 40.0
Scratch 47.5 23.7 52.2 24.4 34.8 36.5
Ours 59.8 32.6 61.9 34.1 36.6 45.0

large model but select small models with CNN and transformer
architectures, validating them on the OfficeHome classification task.
We choose ResNet-18 [11] and Deit-Tiny as the small model for
comparison. Here, we use the OfficeHome-Arts dataset for train-
ing and evaludate the generalization performance of the student
models in the remained three domains: Product, Clipart, and Real
World. In Figure 4, we show the classification accuracy of SKD,
DKD, DIST, VKD, and the proposed method. The three subplots
(a),(b) and (c) respectively depict the classification accuracy in the

Product, Clipart, and Real-world scenarios. The gray and pink bars
correspond to the results obtained using ResNet18 and Deit-T/16
structures as the student models, respectively.

It can be seen that when both the teacher and student models
are of Transformer architecture, the distilled student models tend
to achieve better results. Our method demonstrates a 3% improve-
ment in average performance compared to the second-best DKD
method. However, when the teacher and student models adopt
two different structures, Transformer and CNN respectively, the
performance of the distilled student models significantly declines.
Specifically, the average performance of DKD decreases from 52.6%
to 36.9%, and SKD decreases from 52.5% to 38.2%. In comparison,
we observe that our method still achieves a favorable average clas-
sification accuracy of 48.9% in the scenario of CNN student models.
We speculate that this may result from the beneficial effects of
collaborative feature learning between the adapter and the projec-
tion model. In traditional distillation methods, the learning of the
feature projection module and the teacher model often follows an
independent/isolated learning strategy. This could result in a gap
between the features of the student and teacher models, particularly
when substantial structural differences exist between the two. We
hypothesize that achieving improved feature alignment requires
a certain level of correlation between the projection modules of
the student and teacher models. In this work, we employ feature-
level collaborative learning to align the features and achieve this
effect. The results of the experiments to some extent validate our
speculation.

5.3 Validation of feature collaborative
knowledge distillation(FCKD)

In this section, our aim is to analyze the impact of feature collabo-
rative distillation involved in this method on model generalization.
We conduct validation on the OfficeHome dataset. Specifically, we
demonstrate the performance of models under six different training
strategies, as illustrated in Figure 5. Among them, (a) and (b) both
employ training with static pre-trained parameters, with (b) addi-
tionally incorporating distillation loss based on feature mappings
compared to (a). (c) and (d) represent training modes using the
concept of mutual learning that both the teacher and the student
model require updates. Here (c) involves only distillation loss at
the logits level, while (d) adds distillation loss based on standard
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Figure 5: Illustration of six training strategies. (a) static teacher with logit-KD loss. (b) static teacher with logit-KD loss and
feature-level MSE loss. (c) trainable teacher with logit-KD loss. (d) trainable teacher with logit-KD loss and feature-level MSE
loss. (e) our feature collaborating learning method. (f) our scale-shift feature collaborating learning method. Modules in green
indicate that they are trainable.

Method Setting Distillation Loss Source: Arts

Teacher Scale-Shift FCKD Logit-KD Feature-MSE Product Clipart Realworld Avg

(a) static ✗ ✗ ✓ ✗ 53.9 39.9 64.4 52.7
(b) static ✗ ✗ ✓ ✓ 53.2 40.4 64.4 52.7
(c) trainable ✗ ✗ ✓ ✗ 50.0 35.3 60.9 48.7
(d) trainable ✗ ✗ ✓ ✓ 55.5 32.3 45.3 44.5

(e) trainable ✗ ✓ ✓ ✓ 55.6 40.1 65.9 53.9
(f) trainable ✓ ✓ ✓ ✓ 56.2 40.4 66.2 54.3

Table 3: Comparison with different training settings. (a) and (b) indicate standard distillation strategies without or with the
feature MSE loss. (c) and (d) indicate mutual distillation of teacher and student models without or with the feature MSE loss. (e)
and (f) correspond to our proposed collaborating distillation method without or with a scale-shift operation.

feature projection on top of that. (e) and (f) adopt the distillation
strategy proposed in this work, with (e) removing the scaling factor
from the feature projection module. The comparative results are
shown in Table 3.

According to the performance comparison in Tables 3 (a) and (b),
we observe that with a static pre-trained teacher model, directly
aligning features does not lead to effective performance improve-
ment. The results in Table 3(c) and (d) indicate that in the mutual
learning distillation strategy, where both the student and teacher
models are optimized simultaneously, directly aligning features
can even result in a significant performance decrease. The result in
Table 3(e) confirms that exploiting our collaborative feature learn-
ing between the projection and the adapter module can lead to
a 5.2% increase in average performance. It precisely validates the
positive impact of jointly optimizing features through adapter and
projector modules on enhancing model generalization performance.
In addition to this, the result of (f) shows that adding a scaling
factor can further enhance our generalization performance by 0.4%.

It demonstrates that adding the operation of scaling and shift also
contributes to the improvement of model generalization.

6 CONCLUSION
Existing model compression techniques often face limitations due
to the performance constraints of the upstream large models and
tend to overlook concerns related to the generalization of small
models. Our goal is to train small models with good generalization
capabilities. In contrast to existing methods that mostly extract
knowledge from static teacher models or simply align feature rep-
resentations using projection modules, we propose collaboratively
distilling knowledge between large and small models. Through the
collaborative action of adapters and projection modules, we con-
duct feature knowledge interaction in a low-dimensional compact
representation space similar to that of the teacher model. Extensive
experiments validate that models trained in this way reveal good
generalization performance across multiple tasks and scenarios.
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