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ABSTRACT

Continual learning (CL) seeks to enable models to acquire new tasks sequentially
without overwriting prior knowledge. Recently, model merging has emerged as a
promising paradigm, where task vector, i.e., parameter updates induced by fine-
tuning, are combined across tasks. However, naive sequential merging often suf-
fers from interference when task vectors overlap in conflicting directions. We
introduce Quasi-Orthogonal Model Merging (QOMM), a unified framework that
mitigates such interference through two complementary strategies. First, QOMM
employs Singular Value Decomposition (SVD) to extract the dominant subspace
of previously merged task vectors, and projects each new vector onto its ap-
proximate orthogonal complement. This Quasi-Orthogonal Projection (QOP) fil-
ters out conflicting directions, reducing interference. Second, QOMM integrates
Attention-Exclusive Fine-Tuning (AEFT), which restricts updates to Transformer
attention layers. This yields task vectors that are naturally more orthogonal, en-
hancing the effectiveness of QOP. By combining orthogonality-aware merging
with attention-exclusive fine-tuning, QOMM achieves a better balance between
stability (retaining past knowledge) and plasticity (adapting to new tasks). Exper-
iments on standard CL benchmarks demonstrate that QOMM consistently outper-
forms prior methods. Our code will be released.

1 INTRODUCTION

Continual learning (CL), also known as lifelong learning, equips intelligent systems to operate in
dynamic, non-stationary environments (De Lange et al., 2021; Masana et al., 2022; Van de Ven
et al., 2022). Unlike conventional paradigms that assume access to a fixed training set, CL requires
models to learn a sequence of tasks without revisiting data from earlier tasks. The central challenge
is the stability-plasticity dilemma (Kim & Han, 2023), in which models must remain stable enough
to retain prior knowledge while remaining plastic enough to assimilate new concepts.

Classical CL research has explored five broad families of strategies (Wang et al., 2024b): (1)
regularization-based methods that constrain updates relative to the old model; (2) replay-based meth-
ods that approximate past data distributions; (3) optimization-based methods that shape training dy-
namics to balance tasks; (4) representation-based methods that learn robust, transferable features;
and (5) architecture-based methods that adapt the network topology to accommodate new tasks while
retaining prior knowledge. While effective to varying degrees, these approaches often rely on stored
exemplars, auxiliary objectives, or task-specific modules that can complicate deployment.

Recently, model merging has emerged as a compelling alternative for CL (Liu & Soatto, 2023;
Marczak et al., 2024; Marouf et al., 2024; Kleiman et al., 2025). Instead of continually updating
a single network, a pre-trained base model is fine-tuned sequentially on each new task, and the
resulting task-specific parameter updates (i.e., “task vectors”) are later integrated into a consoli-
dated model. This paradigm avoids gradient interference during sequential training and shifts the
stability–plasticity challenge to a post-hoc consolidation step. Even simple averaging merging strat-
egy (Wortsman et al., 2022) has shown surprising robustness to forgetting in certain settings, and
more sophisticated schemes such as MagMax (Marczak et al., 2024) merge task vectors by preserv-
ing maximum-magnitude updates to reduce forgetting.

Despite these advances, merging-based methods face a critical limitation—task interference during
consolidation. When task vectors overlap in conflicting directions, naive merging can overwrite
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or negate essential knowledge from earlier tasks, leading to performance degradation that wors-
ens as the number of tasks increases. Heuristic rules (e.g., magnitude-based selection) lack an ex-
plicit mechanism to guarantee compatibility between new and accumulated updates, leaving models
vulnerable to negative transfer and effectively reintroducing the stability–plasticity trade-off at the
merging stage itself.

In this work, we propose Quasi-Orthogonal Model Merging (QOMM), a unified framework that
mitigates interference through two complementary mechanisms tailored to the structure of mod-
ern Transformers. First, QOMM performs an orthogonality-aware merge via Quasi-Orthogonal
Projection (QOP). Given previously merged task vectors, we compute their dominant singular sub-
space using SVD and project each incoming task vector onto the approximate orthogonal comple-
ment of this subspace. This suppresses conflicting directions while preserving compatible informa-
tion from the new task. The projection is quasi-orthogonal because it excludes only the dominant
shared subspace. It can be interpreted as a low-rank approximation of an orthogonal projection,
enabling a gradual and controllable balance between knowledge from new and previous tasks. Sec-
ond, QOMM incorporates an Attention-Exclusive Fine-Tuning (AEFT) protocol that restricts up-
dates to Transformer attention layers (Vaswani et al., 2017). By confining adaptation to attention
(e.g., query/key/value projections, and output projections), AEFT encourages task vectors that are
naturally more disentangled and closer to orthogonal, thereby enhancing the effectiveness of the
subsequent projection step. Together, these components enable QOMM to improve the stability-
plasticity balance in merging-based CL: stability is reinforced by suppressing conflicting directions,
and plasticity is preserved by retaining novel orthogonal components.

In summary, our contributions are summarized as follows:

• We introduce Quasi-Orthogonal Model Merging (QOMM), a continual learning (CL) frame-
work based on model merging that tackles the central challenge of task interference during
consolidation. QOMM achieves this through an orthogonality-aware merging strategy. To the
best of our knowledge, it is the first CL framework of its kind to incorporate orthogonality-
aware merging to effectively reduce task interference.

• At the core of QOMM, we introduce Quasi-Orthogonal Projection (QOP)-an orthogonality-
aware merging mechanism in which the orthogonal projection is approximated in a low-rank
manner, with controllable fidelity of approximation. This allows for a gradual and flexible
balance between knowledge from new and previously learned tasks.

• To further enhance QOMM, we propose Attention-Exclusive Fine-Tuning (AEFT), which re-
stricts updates to Transformer attention layers, yielding task vectors that are naturally more
disentangled and closer to orthogonal, thereby amplifying the effectiveness of QOP.

Extensive experiments on standard CL benchmarks, including Split-CIFAR100, Split-ImageNetR,
Split-CUB200, and Split-Cars, demonstrate that QOMM consistently outperforms both strong base-
lines and recent merging methods. On average, QOMM achieves 77.49% task-agnostic accuracy
after the final task, surpassing the prior state-of-the-art approach by +2.99%. Ablation studies fur-
ther verify that both components (i.e., QOP and AEFT) are essential and synergistically contribute
to the observed improvements.

2 RELATED WORK

Model merging refers to the process of consolidating multiple models which are typically fine-
tuned from a common pre-trained initialization into a single network by integrating their parameters
or task vectors. This paradigm avoids retraining from scratch and provides a scalable way to share
knowledge across tasks. It has been proven effective and scalable in various domains, including
language (Zhou et al., 2024), vision (Ye et al., 2023; Huang et al., 2023), and multimodal model-
ing (Yang et al., 2024; Chen et al., 2024). Early work perform simple parameter integration, such
as element-wise parameter averaging (Wortsman et al., 2022), Fisher-weighted fusion (Matena &
Raffel, 2022), predictive-divergence minimization (Jin et al., 2022), or arithmetic operations on task
vectors (Ilharco et al., 2022a). While these methods laid the foundation of model merging, they
generally lacked mechanisms to explicitly resolve conflicts between task updates, and thus remain
vulnerable to task interference. Subsequent methods introduced heuristics to alleviate such con-
flicts. Ties-Merging prunes redundant parameters and resolves sign inconsistencies (Yadav et al.,
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2023). DARE randomly drops and rescales parameters to reduce fusion conflicts (Yu et al., 2024).
Consensus Merging filters unstable or harmful weights to improve robustness (Wang et al., 2024a).
Although effective in some settings, these approaches remain heuristic and do not guarantee com-
patibility across task vectors. Interference among task vectors remains an open challenge.

Model Merging for Continual Learning (CL). Model merging has recently been adapted to CL
as a post-hoc consolidation strategy that avoids task interference during training. Several meth-
ods achieve CL through distinct merging designs. TMC (Liu & Soatto, 2023) leverages linearly
fine-tuned models (i.e., tangent vectors) around a pre-trained initialization for continual learn-
ing. CoFiMA (Marouf et al., 2024) ensembles parameters across tasks using Fisher informa-
tion. SFA (Kleiman et al., 2025) periodically merges models with earlier checkpoints during train-
ing. MagMax (Marczak et al., 2024) sequentially fine-tunes and merges parameters by maximum-
magnitude selection. Despite their successes, existing merging-based CL methods remain vulnera-
ble to task interference at the consolidation stage, where conflicting task vectors can inadvertently
degrade previously acquired knowledge. Our work follows this “fine-tuning-then-merge paradigm”
and proposes Quasi-Orthogonal Projection (QOP), an orthogonality-aware merging strategy that
mitigates task interference by suppressing conflicting directions while preserving compatible infor-
mation when merging new task vectors.

Orthogonality in CL. Orthogonality has long been recognized as a powerful principle for mitigat-
ing forgetting by reducing conflicts among task updates. OWM (Zeng et al., 2019) restricts weight
updates to be orthogonal to the subspace spanned by past inputs. OGD (Farajtabar et al., 2020) main-
tains a subspace of past-task gradients and projects new gradients onto its orthogonal complement.
SGP (Saha & Roy, 2023) combines orthogonal projections with scaled steps along important histori-
cal directions to enhance generalization. O-LoRA (Wang et al., 2023) learns low-rank subspaces that
are explicitly orthogonal across tasks for parameter-efficient adaptation. Although effective, these
methods operate at the level of gradients or parameter updates during training. In contrast, our ap-
proach applies orthogonality at the task vector level during merging, enabling explicit control over
compatibility in post-hoc consolidation. Recent studies suggest that orthogonal task vectors can
substantially improve merge quality (Xiong et al., 2024), and that restricting adaptation to Trans-
former attention modules enhances merge fidelity (Jin et al., 2025). Inspired by these insights, we
hypothesize and confirm empirically that attention-only fine-tuning implicitly promotes task-vector
orthogonality (see §4.3). Thus, we explicitly incorporate Attention-Exclusive Fine-Tuning (AEFT)
in our orthogonality-aware merging framework to further strengthen subspace separation and reduce
interference in continual model merging.

3 PRELIMINARY

3.1 PROBLEM FORMULATION

In model-merging-based continual learning (MMCL), the goal is to learn from a sequence of tasks
without revisiting previous training data. Let D = {Di}Ni=1 denote a sequence of N disjoint task
datasets. A pretrained base model with parameters Θ0 is fine-tuned sequentially on each dataset
Di, producing a task-adapted model Θi. The corresponding parameter update, referred to as the
task vector, is defined as ∆Θi = Θi − Θ0. The collection of all task vectors is denoted by T =

{∆Θi}Ni=1. At task i, the merged model is represented as Θ̂i, with its merged task vector given by
∆Θ̂i = Θ̂i − Θ0. The merged model is iteratively updated by incorporating the new task vector
∆Θi while mitigating interference with knowledge from previously integrated tasks. The objective
is to obtain a final merged model Θ̂N that achieves good performance across all N tasks without
access to any individual task dataset Di.

3.2 MOTIVATION

Our approach to model-merging–based continual learning is guided by three key insights. First,
prior work has shown that orthogonal optimization is highly effective in mitigating parameter and
gradient conflicts in continual learning. This motivates our Quasi-Orthogonal Projection (QOP)
strategy, which employs approximate orthogonal projection of task vectors as a principled mecha-
nism for incremental knowledge integration. Second, because this projection is constrained to the
complement of the dominant singular subspace, the extracted orthogonal component is only approx-
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Quasi-Orthogonal
Projection (QOP)

Figure 1: Overview of Quasi-Orthogonal Model Merging (QOMM). A pretrained model Θ0 is
fine-tuned on sequential tasks with AEFT, producing task vectors ∆Θi = Θi−Θ0. Each ∆Θi is
projected onto the approximate orthogonal complement of the dominant subspace of previous task
vectors via O⊥

α . The merged vector ∆Θ̂i is then added to Θ0 to yield the final model Θ̂i. See §4.

imate. Thus, the benefits of QOP can be further enhanced if task vectors are explicitly encouraged
to become more orthogonal during fine-tuning. Third, Jin et al. (2025) demonstrate that restricting
fine-tuning to Transformer attention modules substantially improves model-merging performance,
while AWD (Xiong et al., 2024) shows that enforcing orthogonality among task vectors is critical
for reducing interference and improving merge quality. We hypothesize that the gains reported in Jin
et al. (2025) stem from an implicit increase in task vector orthogonality, a hypothesis strongly sup-
ported by our empirical findings. Building on these insights, we propose Quasi-Orthogonal Model
Merging (QOMM), a framework that integrates QOP with Attention-Exclusive Fine-Tuning (AEFT)
to address the stability–plasticity trade-off in continual learning through principled model merging.

4 METHODOLOGY

4.1 OVERVIEW

Our QOMM method comprises two complementary components. First, Quasi-Orthogonal Projec-
tion (QOP) extracts the dominant shared subspace among prior task vectors and suppresses conflict-
ing directions during sequential merging. This ensures stable and effective knowledge integration.
Second, Attention-Exclusive Fine-Tuning (AEFT) restricts adaptation to Transformer attention lay-
ers, encouraging the emergence of more orthogonal task vectors and thereby enhancing the effec-
tiveness of QOP. Together, QOP and AEFT provide a computationally efficient strategy for merging
task-specific updates, enabling continual learning systems to acquire new skills without sacrificing
performance on previously learned tasks. The overall procedure is summarized in Algorithm 1 and
illustrated in Figure 1.

4.2 QUASI-ORTHOGONAL PROJECTION

As shown in Figure 1, we fine-tune the model on a sequence of tasks and compute the correspond-
ing task vectors ∆Θi by subtracting the pre-trained model weights Θ0. These task vectors are then
merged using Quasi-Orthogonal Projection (QOP), which relies on orthogonal projection. Finally,
we apply the merged task vector to the pre-trained model to obtain the resulting model Θ̂. QOP ad-
dresses task interference at the merging stage by decomposing each new task vector into parallel and
orthogonal components with respect to the subspace spanned by previous task vectors. Intuitively,
the parallel component reflects weight changes aligned with prior task directions and is thus more
likely to cause interference, while the orthogonal component points in a novel direction and is less
likely to conflict with past knowledge. To formalize this, we perform a singular value decomposi-
tion (SVD) on the merged task vectors to identify their dominant subspace. The new task vector is
then projected onto the orthogonal complement of this subspace, effectively filtering out directions
that overlap with earlier tasks. By retaining only this orthogonal component (and discarding the
conflicting parallel component), QOP achieves a better balance between stability (preserving prior
knowledge) and plasticity (adapting to new tasks).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 QOMM : Quasi-Orthogonal Model Merging

1: Θ1 = AEFT (Θ0)

2: Θ̂1 = Θ1

3: Scaling factor λ1 = 1
4: for i = 2 to N do
5: Θi = AEFT (Θi−1)

6: Scaling factor λi =
√
i

7: for Attention weight matrices (W0, Ŵi−1,Wi) ∈ Rm×n in (Θ0, Θ̂i−1,Θi) do
8: ∆Ŵi−1 ← Ŵi−1 −W0

9: ∆Wi ←Wi −W0

10: ∆W⊥
i ← O⊥

(
∆Wi,∆Ŵi−1

)
11: ∆Ŵi ← λi−1∆Ŵi−1+∆W⊥

i

λi

12: Ŵi−1 ←W0 +∆Ŵi

13: end for
14: Θ̂i = Θ̂i−1

15: end for
16: return Θ̂N

We conduct QOP at the layer level. At task i, for a given attention weight matrix W ∈ Rm×n in
layer ℓ, we denote the pretrained parameters by W

(ℓ)
0 , the task-specific parameters (fine-tuned on

dataset Di) by W
(ℓ)
i , and the cumulative merge after tasks 1:i − 1 by Ŵ

(ℓ)
i−1. The associated task

vectors are always defined relative to the pretrained baseline: the task vector for task i is ∆W
(ℓ)
i =

W
(ℓ)
i −W

(ℓ)
0 , and the cumulative task vector is ∆Ŵ

(ℓ)
i−1 = Ŵ

(ℓ)
i−1 −W

(ℓ)
0 . The merged parameters

after incorporating task i are denoted by Ŵ
(ℓ)
i , with task vector ∆Ŵ

(ℓ)
i . Unless otherwise noted, all

matrix-level operations (e.g., projections, scalings) are applied independently and identically to each
attention matrix. For simplicity, we omit the superscript (ℓ) when the layer is clear from context.

Furthermore, We define O⊥(·, ·) as a projection operator that maps the task vector ∆Wi onto the
orthogonal complement of the principal subspace spanned by the previously merged task vectors
Ŵi−1. In essence, O⊥(·, ·) isolates the orthogonal component of the current task vector relative
to past updates, thereby enabling the integration of new knowledge while minimizing interference.
To accomplish this, we begin by computing the full singular value decomposition (SVD) of the
previously merged task vector:

∆Ŵi−1 = Ui−1Σi−1

(
Vi−1

)⊤
, (1)

where Ui−1 ∈ Rm×m contains left singular vectors, Vi−1 ∈ Rn×n contains right singular vectors
and Σi−1 ∈ Rm×n is a diagonal matrix of singular values in descending order.

We define Bpq = upvq
⊤, where up and vq are the p-th and q-th columns of Ui−1 and Vi−1 respec-

tively. {Bpq} forms an orthonormal basis of the space of matrices with respect to the Frobenius
inner product, and thus any matrix can be uniquely expressed as a linear combination of these basis
elements. In particular,

∆Ŵi−1 =
∑

p,q
cpqBpq, cpq = ⟨∆Ŵi−1, Bpq⟩F , (2)

where ⟨·, ·⟩F denotes the Frobenius inner product. The projection operatorO⊥(·, ·) is constructed to
preserve components orthogonal to the subspace spanned by the most significant singular directions:

O⊥(∆Wi,∆Ŵi−1

)
= ∆Wi −

∑rα

j=1
⟨∆Wi, Bjj⟩F ·Bjj , (3)

where the threshold rank rα is determined by:

rα = min

{
k

∣∣∣∣∣
∑k

j=1 σ
2
j∑min(m,n)

j=1 σ2
j

≥ α

}
, α ∈ [0, 1]. (4)
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In Eq. (4), α is the projection threshold hyper-parameter, which controls the balance between retain-
ing existing knowledge and incorporating knowledge from new tasks.

The naive update rule of our QOP strategy is defined as

∆Ŵi = ∆Ŵi−1 +O⊥
(
∆Wi,∆Ŵi−1

)
, (5)

where the projection operator ensures that learning from new tasks predominantly occurs in the
orthogonal complement of the dominant singular subspaces identified from previous tasks.

Although effective in promoting orthogonality, Eq. (5) suffers from an important limitation: as the
number of tasks increases, the Frobenius norm of the merged update ∆Ŵi grows monotonically.
This accumulation leads to an undesirable drift, with the deviation of the merged model from the
pre-trained initialization expanding unboundedly. To preserve a consistent magnitude of the merged
model’s parameter shift across tasks, it is necessary to regulate the Frobenius norm ||∆Ŵi||F , en-
suring stability throughout the merging process.

To address this, we propose scaling both the accumulated update ∆Ŵi−1 and the newly projected
task update. Since each task’s orthogonal contribution is treated as equally important, we adopt an
adaptive normalization scheme, yielding the adaptive update rule:

∆Ŵi =
λi−1∆Ŵi−1 +O⊥

(
∆Wi,∆Ŵi

)
λi

, (6)

where the scaling factor is defined recursively as λ1 = 1 and λi =
√
i. This formulation ensures

that the merged model remains close to the pre-trained model while progressively integrating task-
specific knowledge in a balanced and controlled manner.

Finally, the merged model parameters after incorporating i tasks are obtained as

Ŵi = W0 +∆Ŵi. (7)

4.3 ATTENTION-EXCLUSIVE FINE-TUNING

Layer Norm

Feed Forward

Layer Norm

Attention

Layer Norm

Feed Forward

Layer Norm

Attention

Trainable Parameters Fixed Parameters

(a) (b)

Figure 2: Two fine-tuning paradigms. (a)
Full-Model Fine-Tuning (FMFT) where all
the parameters will be updated. (b)
Attention-Exclusive Fine-Tuning (AEFT)
where only Wq,Wk,Wv,Wo will be up-
dated. See §4.3 for details.

While Quasi-Orthogonal Projection (QOP) pro-
vides a principled mechanism for reducing
interference, its effectiveness is ultimately
bounded by the quality of task-vector orthog-
onality. As shown in Eq. (3) and Eq. (4),
the orthogonal projection only removes overlap
with the dominant singular subspace, making
the resulting updates approximate rather than
exact. This motivates the need for a comple-
mentary strategy that can actively promote the
emergence of orthogonal task vectors during
fine-tuning. Attention-Exclusive Fine-Tuning
(AEFT) addresses this need by restricting task-
specific parameter updates to the Transformer’s
attention modules. This choice is motivated by
two observations: (i) Constraining fine-tuning
to Transformer attention modules substantially
improves merged model performance (Jin et al.,
2025), and (ii) Enforcing orthogonality among
task vectors is critical for mitigating interfer-
ence and enhancing merge quality (Xiong et al.,
2024). We hypothesize that constraining fine-
tuning to attention-related linear layers, rather
than performing full model updates, yields more orthogonal task vectors and thus enhancing the
performance of QOP.
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Figure 3: Cosine similarity difference matrices (MDiff =MFMFT−MAEFT) across four benchmarks.
Positive values (red) indicate that FMFT produces higher similarity between task vectors than AEFT,
meaning lower orthogonality. This pattern confirms that AEFT encourages task vectors to be more
orthogonal, thereby reducing interference. See §4.3 for details.

Two fine-tuning paradigms are illustrated in Figure 2. To evaluate our hypothesis, we compare
Full-Model Fine-Tuning (FMFT) with Attention-Exclusive fine-tuning (AEFT) across four datasets
(CIFAR-100, ImageNet-R, CUB-200, and Cars) in a continual learning setup. Each dataset is di-
vided into five sequential tasks, and for each paradigm, we derive five task vectors. We then compute
the cosine similarity matrices MFMFT,MAEFT ∈ R5×5, where MFMFT

ij = cos(∆W FMFT
i ,∆W FMFT

j )

and MAEFT
ij =cos(∆WAEFT

i ,∆WAEFT
j ), with cos(·, ·) denoting cosine similarity. Figure 3 presents

the difference matrix MDiff = MFMFT−MAEFT. The results indicate that task vectors from full
fine-tuning exhibit higher similarity (i.e., lower orthogonality) than those from attention-exclusive
updates. This trend persists when scaling to 10/20/50 tasks (see §A.2), confirming that attention-
constrained fine-tuning yields more orthogonal task vectors, thus supporting our hypothesis.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets. To ensure consistency with prior work, we follow the experimental setup of Mag-
Max (Marczak et al., 2024), adopting the same datasets and task configurations for both class-
incremental learning (CIL) and domain-incremental learning (DIL) settings. For CIL, we use CI-
FAR100 (Krizhevsky et al., 2009) and ImageNet-R (Hendrycks et al., 2021) as generic image classi-
fication benchmarks, and CUB200 (Wah et al., 2011) and Cars (Krause et al., 2013) as fine-grained
datasets. Each dataset is partitioned into N disjoint subsets of classes, where N ∈ {5, 10, 20, 50}
for generic benchmarks and N ∈ {5, 10, 20} for fine-grained benchmarks (due to their smaller size).
For DIL, we adopt DomainNet (Peng et al., 2019) as the benchmark dataset and divide it into six
tasks based on domains (clipart, infographics, painting, quickdraw, real, and sketch).

Baselines. We evaluate QOMM against well-established CL baselines, including LwF (Li & Hoiem,
2017) and EWC (Kirkpatrick et al., 2017), as well as recent model merging strategies such as Mod-
elSoup (Wortsman et al., 2022), Task Arithmetic (TA) (Ilharco et al., 2022a), and TIES-Merging
(TIES) (Yadav et al., 2023). In addition, we compare with MagMax (Marczak et al., 2024) and
its two variants: RandMix, which randomly samples each parameter from one of the fine-tuned
models, and MaxAbs, which applies independent fine-tuning instead of sequential adaptation. Fi-
nally, we report zero-shot performance, reflecting the capability of the pre-trained model, and joint
performance, corresponding to a model fine-tuned on the entire dataset.

Implementation details. We use the CLIP pre-trained model (Radford et al., 2021) with a ViT/B-
16 image encoder (Dosovitskiy et al., 2021). Following the fine-tuning procedure of Ilharco et al.
(2022b), we adapt the image encoder using AdamW with weight decay and a cosine annealing learn-
ing rate schedule. For each split task of each dataset, we use the following training configurations:
CIFAR-100 (batch size 64, learning rate 1.8 × 10−5, 20 epochs, weight decay 0.09), ImageNet-R
(batch size 64, learning rate 1.7 × 10−5, 20 epochs, weight decay 0.09), CUB-200 and Cars (batch
size 32, learning rate 3 × 10−5, 24 epochs, weight decay 0.09), and DomainNet (batch size 64,
learning rate 1.8× 10−5, 20 epochs, weight decay 0.09). We use the final classification layer output
by CLIP’s text encoder and keep it frozen during fine-tuning, following (Ilharco et al., 2022b). This
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Table 1: Comparison on different methods. Our method outperforms other continual learning meth-
ods and merging-based approaches on a wide variety of class-incremental scenarios. We report
task-agnostic accuracy (%) after the final task. Our results in bold are the best across all tasks, and
the prior best performing results are underlined. See §5.2 for details.

Method CIFAR100 ImageNet-R CUB200 Cars Avg
/5 /10 /20 /50 /5 /10 /20 /50 /5 /10 /20 /5 /10 /20

Zero-shot 66.91 77.73 56.08 64.71 67.21
Joint 90.94 87.55 81.57 88.21 87.38

LwF 83.25 74.35 72.05 68.84 81.15 82.97 81.82 80.32 65.12 60.67 58.90 71.72 69.84 62.98 72.36
EWC 84.41 76.24 75.39 72.97 82.15 82.42 81.48 81.47 59.10 54.49 53.31 69.46 60.78 57.42 70.79
RandMix 81.55 77.04 75.36 72.91 83.10 81.88 80.18 78.50 59.86 58.53 58.08 67.32 65.62 64.95 71.78
MaxAbs 81.95 76.75 74.39 73.04 83.03 82.33 80.92 79.33 60.15 58.01 56.59 67.36 63.55 58.95 71.17
ModelSoup 81.41 77.04 75.29 72.92 83.08 81.87 80.27 78.53 59.77 58.44 58.01 67.37 65.59 64.88 71.85
TIES 81.72 77.23 74.66 73.76 83.08 82.27 80.83 79.57 60.94 58.22 56.97 70.45 64.90 61.17 71.84
MAGMAX 84.16 80.41 78.49 76.75 83.60 83.33 82.27 81.75 63.89 60.74 58.90 73.61 69.28 65.84 74.50

QOMM (ours) 85.20 83.09 80.69 77.84 85.77 84.52 83.05 81.78 69.02 64.84 62.10 80.54 74.90 71.50 77.49
Performance ∆ +0.79 +2.68 +2.20 +1.09 +2.17 +1.19 +0.78 +0.03 +3.90 +4.10 +3.20 +6.93 +5.06 +5.66 +2.99

Table 2: DIL Performance (%) of different methods on DomainNet. See §5.2 for details.

Dataset LwF EWC RandMix MaxAbs Avg TIES MAGMAX Ours

DomainNet (DIL) 69.67 70.74 64.31 67.51 64.98 66.42 69.00 69.32

fine-tuning recipe preserves the open-vocabulary nature of the model and does not harm the accu-
racy compared to training the classification layer (Ilharco et al., 2022b). Each experiment is run on
a single NVIDIA GeForce RTX 4090 GPU.

Memory Complexity. As shown in Figure 1, during the model merging-based continual learning
process, only a fixed set of models must be maintained in memory at any step i: the current merged
version, the incoming model for merging, and the original pre-trained base model. This strategy
results in memory complexity of O(|Θ|), with |Θ| denoting the parameter count of a single model.
Notably, the memory footprint stays invariant to the total count of downstream tasks being processed.

5.2 MAIN RESULTS

Class-incremental learning (CIL). Table 1 summarizes the task-agnostic accuracies (%) across
four widely used class-incremental benchmarks. Our method consistently outperforms all continual
learning and merging-based baselines, achieving the highest accuracy in every setting. Averaged
over all datasets and task splits, our approach reaches 77.49%, a +2.99% gain over the second-best
method (MAGMAX). On CIFAR100, our method yields the best results across all splits, with mar-
gins of up to +2.68% compared to the second-best approach, demonstrating strong scalability as the
number of tasks increases. On the more challenging ImageNet-R benchmark, our approach again
secures the top performance with consistent gains, highlighting robustness in large-scale recogni-
tion. For fine-grained datasets, improvements are even more pronounced: on CUB200, our method
exceeds prior approaches by +3-4%, while on Cars it achieves the largest margins in the table, out-
performing alternatives by +5-6%. These substantial gains indicate that our method is particularly
effective in domains with subtle inter-class variations and high visual similarity. Overall, the results
establish our approach as a new state of the art for class-incremental learning, providing consistent,
robust, and significant improvements across both coarse- and fine-grained benchmarks.

Domain-incremental learning (DIL). Table 2 presents the results on DomainNet under the DIL
setting. EWC achieves the highest performance with 70.74%, while our method delivers a com-
petitive 69.32%. Notably, our approach surpasses strong merging-based methods such as MAG-
MAX (69.00%), TIES (66.42%), and MaxAbs (67.51%), as well as the simple averaging baseline
(64.98%). These findings indicate that our method remains highly effective on challenging domain-
incremental scenarios, performing on par with the strongest continual learning approaches.

5.3 ABLATION STUDY

In this section, we evaluate the effectiveness of the two proposed components (i.e. QOP and AEFT)
as well as the influence of the hyperparameter α introduced in §4. The experiments are conducted
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Table 3: CIL Performance (%) of MagMax, QOP, and QOP + AEFT on CIFAR100 and CUB200
with different number of tasks. See §5.3 for details.

Method CIFAR100 CUB200
5 10 20 50 5 10 20

MagMax 84.16 80.41 78.49 76.75 63.89 60.74 58.90
QOP 82.82 78.05 69.61 52.60 64.74 57.44 45.79
QOP + AEFT 85.20 83.09 80.69 77.84 69.02 64.84 62.10

on two representative datasets: the generic image classification benchmark CIFAR100 and the fine-
grained recognition dataset CUB200.

Analysis of QOP and AEFT. Table 3 presents CIL results on CIFAR100 and CUB200 with varying
task numbers. When using QOP alone, the performance is comparable to MagMax when the number
of tasks is small, for example at 5 tasks on both datasets. However, as the number of tasks increases,
QOP suffers from a severe drop in accuracy, whereas MagMax degrades more gradually. This
phenomenon can be attributed to the fact that QOP is based on an approximate orthogonal projection,
which becomes less effective as task interference grows. By contrast, incorporating AEFT into QOP
substantially alleviates this issue. QOP + AEFT consistently outperforms both QOP and MagMax
across all task numbers, demonstrating not only higher accuracy in the low-task regime but also
much greater robustness as the number of tasks increases. This improvement arises because AEFT
enforces stronger orthogonality among task vectors, thereby reducing interference and preserving
performance even under a large number of tasks.
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Figure 4: Sensitivity to projection threshold α. Results are reported on CIFAR100 (left) and
CUB200 (right) under different task splits. Accuracy is measured relative to the optimal α for each
setting, and performance remains robust within α ∈ [0.5, 0.6], with α = 0.55 yielding near-optimal
accuracy in most cases. See §5.3 for details.

Sensitivity to Projection Threshold α. We investigate the impact of the projection threshold α on
QOMM’s performance across CIFAR100 (generic classification) and CUB200 (fine-grained classifi-
cation), as shown in Figure 4. The results demonstrate that QOMM’s performance is relatively stable
for α ∈ [0.5, 0.6], with α = 0.55 consistently providing near-optimal accuracy across different task
splits. Based on this observation, we fix α = 0.55 for all experiments in our work.

6 CONCLUSION

We presented Quasi-Orthogonal Model Merging (QOMM), an orthogonality-aware merge method
for continual learning that explicitly addresses task interference during consolidation. QOMM in-
tegrates two complementary components: Quasi-Orthogonal Projection (QOP), which suppresses
conflicting directions by projecting new task vectors onto the approximate orthogonal complement
of previously merged subspaces, and Attention-Exclusive Fine-Tuning (AEFT), which amplifies the
effectiveness of QOP by restricting adaptation to Transformer attention layers to produce more or-
thogonal task vectors. Together, QOMM achieves a better balance between stability (retaining past
knowledge) and plasticity (adapting to new tasks). Extensive experiments on standard CL bench-
marks demonstrate that QOMM consistently outperforms existing methods, and ablations confirm
the necessity of both QOP and AEFT. We hope that this work encourages further exploration of
orthogonality-aware strategies for advancing model merging-based CL.
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A APPENDIX

A.1 LLM USAGE

We used LLM solely for polishing the writing of this paper, including improving grammar, clarity,
and style. The model was not involved in research ideation, experimental design, analysis, or the
generation of scientific results. All content and claims in the paper are the responsibility of the
authors.

A.2 SIMILARITY DIFF
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Figure 5: Cosine similarity difference matrix (MDiff = MFMFT −MAEFT) for CIFAR100/10

Figures 5, 6 and 7 present cosine similarity difference matrices (MDiff = MFMFT − MAEFT)
for CIFAR100 split into 10, 20, and 50 tasks, respectively. In all cases, off-diagonal entries are
predominantly red, indicating that FMFT task vectors are consistently more similar (less orthogonal)
than those from AEFT, supporting hypothesis H1.
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CIFAR100/20
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Figure 6: Cosine similarity difference matrix (MDiff = MFMFT −MAEFT) for CIFAR100/20

CIFAR100/50
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Figure 7: Cosine similarity difference matrix (MDiff = MFMFT −MAEFT) for CIFAR100/50
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