

000 QUASI-ORTHOGONAL MODEL MERGING FOR CON- 001 002 TINUAL LEARNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Continual learning (CL) seeks to enable models to acquire new tasks sequentially
011 without overwriting prior knowledge. Recently, model merging has emerged as a
012 promising paradigm, where task vector, *i.e.*, parameter updates induced by fine-
013 tuning, are combined across tasks. However, naive sequential merging often suf-
014 fers from interference when task vectors overlap in conflicting directions. We
015 introduce Quasi-Orthogonal Model Merging (QOMM), a unified framework that
016 mitigates such interference through two complementary strategies. First, QOMM
017 employs Singular Value Decomposition (SVD) to extract the dominant subspace
018 of previously merged task vectors, and projects each new vector onto its ap-
019 proximate orthogonal complement. This Quasi-Orthogonal Projection (QOP) fil-
020 ters out conflicting directions, reducing interference. Second, QOMM integrates
021 Attention-Exclusive Fine-Tuning (AEFT), which restricts updates to Transformer
022 attention layers. This yields task vectors that are naturally more orthogonal, en-
023 hancing the effectiveness of QOP. By combining orthogonality-aware merging
024 with attention-exclusive fine-tuning, QOMM achieves a better balance between
025 stability (retaining past knowledge) and plasticity (adapting to new tasks). Experi-
026 ments on standard CL benchmarks demonstrate that QOMM consistently outper-
027 forms prior methods. Our code will be released.

028 029 1 INTRODUCTION 030

031 Continual learning (CL), also known as lifelong learning, equips intelligent systems to operate in
032 dynamic, non-stationary environments (De Lange et al., 2021; Masana et al., 2022; Van de Ven
033 et al., 2022). Unlike conventional paradigms that assume access to a fixed training set, CL requires
034 models to learn a sequence of tasks without revisiting data from earlier tasks. The central challenge
035 is the *stability-plasticity dilemma* (Kim & Han, 2023), in which models must remain stable enough
036 to retain prior knowledge while remaining plastic enough to assimilate new concepts.

037 Classical CL research has explored five broad families of strategies (Wang et al., 2024b): (1)
038 regularization-based methods that constrain updates relative to the old model; (2) replay-based meth-
039 ods that approximate past data distributions; (3) optimization-based methods that shape training dy-
040 namics to balance tasks; (4) representation-based methods that learn robust, transferable features;
041 and (5) architecture-based methods that adapt the network topology to accommodate new tasks while
042 retaining prior knowledge. While effective to varying degrees, these approaches often rely on stored
043 exemplars, auxiliary objectives, or task-specific modules that can complicate deployment.

044 Recently, model merging has emerged as a compelling alternative for CL (Liu & Soatto, 2023;
045 Marczak et al., 2024; Marouf et al., 2024; Kleiman et al., 2025). Instead of continually updating
046 a single network, a pre-trained base model is fine-tuned sequentially on each new task, and the
047 resulting task-specific parameter updates (*i.e.*, “task vectors”) are later integrated into a consoli-
048 dated model. This paradigm avoids gradient interference during sequential training and shifts the
049 stability-plasticity challenge to a post-hoc consolidation step. Even simple averaging merging strat-
050 egy (Wortsman et al., 2022) has shown surprising robustness to forgetting in certain settings, and
051 more sophisticated schemes such as MagMax (Marczak et al., 2024) merge task vectors by preserv-
052 ing maximum-magnitude updates to reduce forgetting.

053 Despite these advances, merging-based methods face a critical limitation—task interference during
consolidation. When task vectors overlap in conflicting directions, naive merging can overwrite

054 or negate essential knowledge from earlier tasks, leading to performance degradation that wors-
 055 ens as the number of tasks increases. Heuristic rules (*e.g.*, magnitude-based selection) lack an ex-
 056 plicit mechanism to guarantee compatibility between new and accumulated updates, leaving models
 057 vulnerable to negative transfer and effectively reintroducing the stability–plasticity trade-off at the
 058 merging stage itself.

059 In this work, we propose Quasi-Orthogonal Model Merging (QOMM), a unified framework that
 060 mitigates interference through two complementary mechanisms tailored to the structure of mod-
 061 ern Transformers. First, QOMM performs an **orthogonality-aware merge** via Quasi-Orthogonal
 062 Projection (QOP). Given previously merged task vectors, we compute their dominant singular sub-
 063 space using SVD and project each incoming task vector onto the approximate orthogonal comple-
 064 ment of this subspace. This suppresses conflicting directions while preserving compatible infor-
 065 mation from the new task. The projection is *quasi*-orthogonal because it excludes only the dominant
 066 shared subspace. It can be interpreted as a low-rank approximation of an orthogonal projection,
 067 enabling a gradual and controllable balance between knowledge from new and previous tasks. Sec-
 068 ond, QOMM incorporates an Attention-Exclusive Fine-Tuning (AEFT) protocol that restricts up-
 069 dates to Transformer attention layers (Vaswani et al., 2017). By confining adaptation to attention
 070 (*e.g.*, query/key/value projections, and output projections), AEFT encourages task vectors that are
 071 naturally more disentangled and closer to orthogonal, thereby enhancing the effectiveness of the
 072 subsequent projection step. Together, these components enable QOMM to improve the stability–
 073 plasticity balance in merging-based CL: stability is reinforced by suppressing conflicting directions,
 074 and plasticity is preserved by retaining novel orthogonal components.

075 In summary, our contributions are summarized as follows:

- 076 • We introduce Quasi-Orthogonal Model Merging (QOMM), a continual learning (CL) frame-
 077 work based on model merging that tackles the central challenge of task interference during
 078 consolidation. QOMM achieves this through an orthogonality-aware merging strategy. To the
 079 best of our knowledge, it is the first CL framework of its kind to incorporate orthogonality-
 080 aware merging to effectively reduce task interference.
- 081 • At the core of QOMM, we introduce Quasi-Orthogonal Projection (QOP)-an orthogonality-
 082 aware merging mechanism in which the orthogonal projection is approximated in a low-rank
 083 manner, with controllable fidelity of approximation. This allows for a gradual and flexible
 084 balance between knowledge from new and previously learned tasks.
- 085 • To further enhance QOMM, we propose Attention-Exclusive Fine-Tuning (AEFT), which re-
 086 restricts updates to Transformer attention layers, yielding task vectors that are naturally more
 087 disentangled and closer to orthogonal, thereby amplifying the effectiveness of QOP.

088 Extensive experiments on standard CL benchmarks, including Split-CIFAR100, Split-ImageNetR,
 089 Split-CUB200, and Split-Cars, demonstrate that QOMM consistently outperforms both strong base-
 090 lines and recent merging methods. On average, QOMM achieves 77.49% task-agnostic accuracy
 091 after the final task, surpassing the prior state-of-the-art approach by +2.99%. Ablation studies fur-
 092 ther verify that both components (*i.e.*, QOP and AEFT) are essential and synergistically contribute
 093 to the observed improvements.

095 2 RELATED WORK

097 **Model merging** refers to the process of consolidating multiple models which are typically fine-
 098 tuned from a common pre-trained initialization into a single network by integrating their parameters
 099 or task vectors. This paradigm avoids retraining from scratch and provides a scalable way to share
 100 knowledge across tasks. It has been proven effective and scalable in various domains, including
 101 language (Zhou et al., 2024), vision (Ye et al., 2023; Huang et al., 2023), and multimodal model-
 102 ing (Yang et al., 2024; Chen et al., 2024). Early work perform simple parameter integration, such
 103 as element-wise parameter averaging (Wortsman et al., 2022), Fisher-weighted fusion (Matena &
 104 Raffel, 2022), predictive-divergence minimization (Jin et al., 2022), or arithmetic operations on task
 105 vectors (Ilharco et al., 2022a). While these methods laid the foundation of model merging, they
 106 generally lacked mechanisms to explicitly resolve conflicts between task updates, and thus remain
 107 vulnerable to task interference. Subsequent methods introduced heuristics to alleviate such con-
 flicts. Ties-Merging prunes redundant parameters and resolves sign inconsistencies (Yadav et al.,

108 2023). DARE randomly drops and rescales parameters to reduce fusion conflicts (Yu et al., 2024).
 109 Consensus Merging filters unstable or harmful weights to improve robustness (Wang et al., 2024a).
 110 Although effective in some settings, these approaches remain heuristic and do not guarantee com-
 111 patibility across task vectors. Interference among task vectors remains an open challenge.

112 **Model Merging for Continual Learning (CL).** Model merging has recently been adapted to CL
 113 as a post-hoc consolidation strategy that avoids task interference during training. Several meth-
 114 ods achieve CL through distinct merging designs. TMC (Liu & Soatto, 2023) leverages linearly
 115 fine-tuned models (*i.e.*, tangent vectors) around a pre-trained initialization for continual learn-
 116 ing. CoFiMA (Marouf et al., 2024) ensembles parameters across tasks using Fisher informa-
 117 tion. SFA (Kleiman et al., 2025) periodically merges models with earlier checkpoints during train-
 118 ing. MagMax (Marczak et al., 2024) sequentially fine-tunes and merges parameters by maximum-
 119 magnitude selection. Despite their successes, existing merging-based CL methods remain vulnera-
 120 ble to task interference at the consolidation stage, where conflicting task vectors can inadvertently
 121 degrade previously acquired knowledge. Our work follows this “fine-tuning-then-merge paradigm”
 122 and proposes Quasi-Orthogonal Projection (QOP), an orthogonality-aware merging strategy that
 123 mitigates task interference by suppressing conflicting directions while preserving compatible infor-
 124 mation when merging new task vectors.

125 **Orthogonality in CL.** Orthogonality has long been recognized as a powerful principle for mitiga-
 126 ting forgetting by reducing conflicts among task updates. OWM (Zeng et al., 2019) restricts weight
 127 updates to be orthogonal to the subspace spanned by past inputs. OGD (Farajtabar et al., 2020) main-
 128 tains a subspace of past-task gradients and projects new gradients onto its orthogonal complement.
 129 SGP (Saha & Roy, 2023) combines orthogonal projections with scaled steps along important histori-
 130 cal directions to enhance generalization. O-LoRA (Wang et al., 2023) learns low-rank subspaces that
 131 are explicitly orthogonal across tasks for parameter-efficient adaptation. Although effective, these
 132 methods operate at the level of gradients or parameter updates during training. In contrast, our ap-
 133 proach applies orthogonality at the task vector level during merging, enabling explicit control over
 134 compatibility in post-hoc consolidation. Recent studies suggest that orthogonal task vectors can
 135 substantially improve merge quality (Xiong et al., 2024), and that restricting adaptation to Trans-
 136 former attention modules enhances merge fidelity (Jin et al., 2025). Inspired by these insights, we
 137 hypothesize and confirm empirically that attention-only fine-tuning implicitly promotes task-vector
 138 orthogonality (see §4.3). Thus, we explicitly incorporate Attention-Exclusive Fine-Tuning (AEFT)
 139 in our orthogonality-aware merging framework to further strengthen subspace separation and reduce
 140 interference in continual model merging.

141 3 PRELIMINARY

142 3.1 PROBLEM FORMULATION

143 In model-merging-based continual learning (MMCL), the goal is to learn from a sequence of tasks
 144 without revisiting previous training data. Let $\mathcal{D} = \{D_i\}_{i=1}^N$ denote a sequence of N disjoint task
 145 datasets. A pretrained base model with parameters Θ_0 is fine-tuned sequentially on each dataset
 146 D_i , producing a task-adapted model Θ_i . The corresponding parameter update, referred to as the
 147 task vector, is defined as $\Delta\Theta_i = \Theta_i - \Theta_0$. The collection of all task vectors is denoted by $\mathcal{T} =$
 148 $\{\Delta\Theta_i\}_{i=1}^N$. At task i , the merged model is represented as $\hat{\Theta}_i$, with its merged task vector given by
 149 $\Delta\hat{\Theta}_i = \hat{\Theta}_i - \Theta_0$. The merged model is iteratively updated by incorporating the new task vector
 150 $\Delta\Theta_i$ while mitigating interference with knowledge from previously integrated tasks. The objective
 151 is to obtain a final merged model $\hat{\Theta}_N$ that achieves good performance across all N tasks without
 152 access to any individual task dataset D_i .

153 3.2 MOTIVATION

154 Our approach to model-merging-based continual learning is guided by three key insights. First,
 155 prior work has shown that orthogonal optimization is highly effective in mitigating parameter and
 156 gradient conflicts in continual learning. This motivates our Quasi-Orthogonal Projection (QOP)
 157 strategy, which employs approximate orthogonal projection of task vectors as a principled mecha-
 158 nism for incremental knowledge integration. Second, because this projection is constrained to the
 159 complement of the dominant singular subspace, the extracted orthogonal component is only approx-

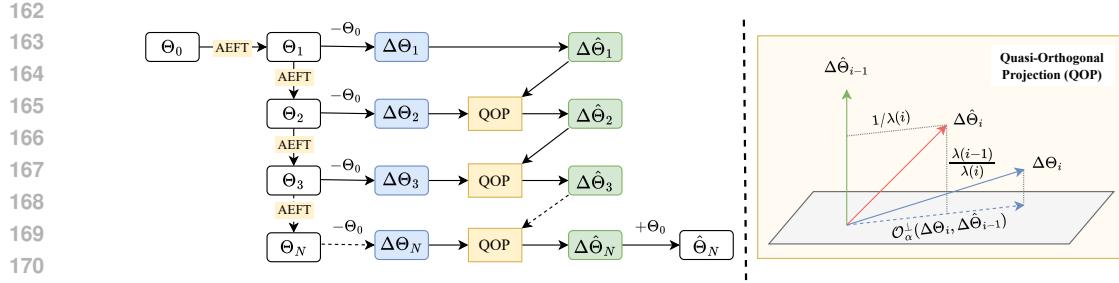


Figure 1: **Overview of Quasi-Orthogonal Model Merging (QOMM).** A pretrained model Θ_0 is fine-tuned on sequential tasks with AEFT, producing task vectors $\Delta\Theta_i = \Theta_i - \Theta_0$. Each $\Delta\Theta_i$ is projected onto the approximate orthogonal complement of the dominant subspace of previous task vectors via \mathcal{O}_α^\perp . The merged vector $\Delta\hat{\Theta}_i$ is then added to Θ_0 to yield the final model $\hat{\Theta}_i$. See §4.

imate. Thus, the benefits of QOP can be further enhanced if task vectors are explicitly encouraged to become more orthogonal during fine-tuning. Third, Jin et al. (2025) demonstrate that restricting fine-tuning to Transformer attention modules substantially improves model-merging performance, while AWD (Xiong et al., 2024) shows that enforcing orthogonality among task vectors is critical for reducing interference and improving merge quality. We hypothesize that the gains reported in Jin et al. (2025) stem from an implicit increase in task vector orthogonality, a hypothesis strongly supported by our empirical findings. Building on these insights, we propose Quasi-Orthogonal Model Merging (QOMM), a framework that integrates QOP with Attention-Exclusive Fine-Tuning (AEFT) to address the stability–plasticity trade-off in continual learning through principled model merging.

4 METHODOLOGY

4.1 OVERVIEW

Our QOMM method comprises two complementary components. First, Quasi-Orthogonal Projection (QOP) extracts the dominant shared subspace among prior task vectors and suppresses conflicting directions during sequential merging. This ensures stable and effective knowledge integration. Second, Attention-Exclusive Fine-Tuning (AEFT) restricts adaptation to Transformer attention layers, encouraging the emergence of more orthogonal task vectors and thereby enhancing the effectiveness of QOP. Together, QOP and AEFT provide a computationally efficient strategy for merging task-specific updates, enabling continual learning systems to acquire new skills without sacrificing performance on previously learned tasks. The overall procedure is summarized in Algorithm 1 and illustrated in Figure 1.

4.2 QUASI-ORTHOGONAL PROJECTION

As shown in Figure 1, we fine-tune the model on a sequence of tasks and compute the corresponding task vectors $\Delta\Theta_i$ by subtracting the pre-trained model weights Θ_0 . These task vectors are then merged using Quasi-Orthogonal Projection (QOP), which relies on orthogonal projection. Finally, we apply the merged task vector to the pre-trained model to obtain the resulting model $\hat{\Theta}$. QOP addresses task interference at the merging stage by decomposing each new task vector into parallel and orthogonal components with respect to the subspace spanned by previous task vectors. Intuitively, the parallel component reflects weight changes aligned with prior task directions and is thus more likely to cause interference, while the orthogonal component points in a novel direction and is less likely to conflict with past knowledge. To formalize this, we perform a singular value decomposition (SVD) on the merged task vectors to identify their dominant subspace. The new task vector is then projected onto the orthogonal complement of this subspace, effectively filtering out directions that overlap with earlier tasks. By retaining only this orthogonal component (and discarding the conflicting parallel component), QOP achieves a better balance between stability (preserving prior knowledge) and plasticity (adapting to new tasks).

216 **Algorithm 1** QOMM : Quasi-Orthogonal Model Merging

```

217   1:  $\Theta_1 = AEFT(\Theta_0)$ 
218   2:  $\hat{\Theta}_1 = \Theta_1$ 
219   3: Scaling factor  $\lambda_1 = 1$ 
220   4: for  $i = 2$  to  $N$  do
221     5:    $\Theta_i = AEFT(\Theta_{i-1})$ 
222     6:   Scaling factor  $\lambda_i = \sqrt{i}$ 
223     7:   for Attention weight matrices  $(W_0, \hat{W}_{i-1}, W_i) \in \mathbb{R}^{m \times n}$  in  $(\Theta_0, \hat{\Theta}_{i-1}, \Theta_i)$  do
224       8:      $\Delta\hat{W}_{i-1} \leftarrow \hat{W}_{i-1} - W_0$ 
225       9:      $\Delta W_i \leftarrow W_i - W_0$ 
226      10:     $\Delta W_i^\perp \leftarrow \mathcal{O}^\perp(\Delta W_i, \Delta\hat{W}_{i-1})$ 
227      11:     $\Delta\hat{W}_i \leftarrow \frac{\lambda_{i-1}\Delta\hat{W}_{i-1} + \Delta W_i^\perp}{\lambda_i}$ 
228      12:     $\hat{W}_{i-1} \leftarrow W_0 + \Delta\hat{W}_i$ 
229      13:  end for
230      14:   $\hat{\Theta}_i = \hat{\Theta}_{i-1}$ 
231  end for
232  15: end for
233  16: return  $\hat{\Theta}_N$ 
234
235
```

236 We conduct QOP at the layer level. At task i , for a given attention weight matrix $W \in \mathbb{R}^{m \times n}$ in
237 layer ℓ , we denote the pretrained parameters by $W_0^{(\ell)}$, the task-specific parameters (fine-tuned on
238 dataset D_i) by $W_i^{(\ell)}$, and the cumulative merge after tasks $1:i-1$ by $\hat{W}_{i-1}^{(\ell)}$. The associated task
239 vectors are always defined relative to the pretrained baseline: the task vector for task i is $\Delta W_i^{(\ell)} =$
240 $W_i^{(\ell)} - W_0^{(\ell)}$, and the cumulative task vector is $\Delta\hat{W}_{i-1}^{(\ell)} = \hat{W}_{i-1}^{(\ell)} - W_0^{(\ell)}$. The merged parameters
241 after incorporating task i are denoted by $\hat{W}_i^{(\ell)}$, with task vector $\Delta\hat{W}_i^{(\ell)}$. Unless otherwise noted, all
242 matrix-level operations (e.g., projections, scalings) are applied independently and identically to each
243 attention matrix. For simplicity, we omit the superscript (ℓ) when the layer is clear from context.

244 Furthermore, We define $\mathcal{O}^\perp(\cdot, \cdot)$ as a projection operator that maps the task vector ΔW_i onto the
245 orthogonal complement of the principal subspace spanned by the previously merged task vectors
246 \hat{W}_{i-1} . In essence, $\mathcal{O}^\perp(\cdot, \cdot)$ isolates the orthogonal component of the current task vector relative
247 to past updates, thereby enabling the integration of new knowledge while minimizing interference.
248 To accomplish this, we begin by computing the full singular value decomposition (SVD) of the
249 previously merged task vector:
250

$$\Delta\hat{W}_{i-1} = U_{i-1} \Sigma_{i-1} (V_{i-1})^\top, \quad (1)$$

251 where $U_{i-1} \in \mathbb{R}^{m \times m}$ contains left singular vectors, $V_{i-1} \in \mathbb{R}^{n \times n}$ contains right singular vectors
252 and $\Sigma_{i-1} \in \mathbb{R}^{m \times n}$ is a diagonal matrix of singular values in descending order.

253 We define $B_{pq} = u_p v_q^\top$, where u_p and v_q are the p -th and q -th columns of U_{i-1} and V_{i-1} respectively. $\{B_{pq}\}$ forms an orthonormal basis of the space of matrices with respect to the Frobenius
254 inner product, and thus any matrix can be uniquely expressed as a linear combination of these basis
255 elements. In particular,

$$\Delta\hat{W}_{i-1} = \sum_{p,q} c_{pq} B_{pq}, \quad c_{pq} = \langle \Delta\hat{W}_{i-1}, B_{pq} \rangle_F, \quad (2)$$

256 where $\langle \cdot, \cdot \rangle_F$ denotes the Frobenius inner product. The projection operator $\mathcal{O}^\perp(\cdot, \cdot)$ is constructed to
257 preserve components orthogonal to the subspace spanned by the most significant singular directions:

$$\mathcal{O}^\perp(\Delta W_i, \Delta\hat{W}_{i-1}) = \Delta W_i - \sum_{j=1}^{r_\alpha} \langle \Delta W_i, B_{jj} \rangle_F \cdot B_{jj}, \quad (3)$$

258 where the threshold rank r_α is determined by:
259

$$r_\alpha = \min \left\{ k \mid \frac{\sum_{j=1}^k \sigma_j^2}{\sum_{j=1}^{\min(m,n)} \sigma_j^2} \geq \alpha \right\}, \quad \alpha \in [0, 1]. \quad (4)$$

270 In Eq. (4), α is the projection threshold hyper-parameter, which controls the balance between retaining-
 271 ing existing knowledge and incorporating knowledge from new tasks.
 272

273 The naive update rule of our QOP strategy is defined as

$$274 \quad 275 \quad \Delta \hat{W}_i = \Delta \hat{W}_{i-1} + \mathcal{O}^\perp (\Delta W_i, \Delta \hat{W}_{i-1}), \quad (5)$$

276 where the projection operator ensures that learning from new tasks predominantly occurs in the
 277 orthogonal complement of the dominant singular subspaces identified from previous tasks.
 278

279 Although effective in promoting orthogonality, Eq. (5) suffers from an important limitation: as the
 280 number of tasks increases, the Frobenius norm of the merged update $\Delta \hat{W}_i$ grows monotonically.
 281 This accumulation leads to an undesirable drift, with the deviation of the merged model from the
 282 pre-trained initialization expanding unboundedly. To preserve a consistent magnitude of the merged
 283 model’s parameter shift across tasks, it is necessary to regulate the Frobenius norm $\|\Delta \hat{W}_i\|_F$, en-
 284 suring stability throughout the merging process.

285 To address this, we propose scaling both the accumulated update $\Delta \hat{W}_{i-1}$ and the newly projected
 286 task update. Since each task’s orthogonal contribution is treated as equally important, we adopt an
 287 adaptive normalization scheme, yielding the adaptive update rule:

$$289 \quad 290 \quad \Delta \hat{W}_i = \frac{\lambda_{i-1} \Delta \hat{W}_{i-1} + \mathcal{O}^\perp (\Delta W_i, \Delta \hat{W}_i)}{\lambda_i}, \quad (6)$$

292 where the scaling factor is defined recursively as $\lambda_1 = 1$ and $\lambda_i = \sqrt{i}$. This formulation ensures
 293 that the merged model remains close to the pre-trained model while progressively integrating task-
 294 specific knowledge in a balanced and controlled manner.
 295

296 Finally, the merged model parameters after incorporating i tasks are obtained as

$$297 \quad 298 \quad \hat{W}_i = W_0 + \Delta \hat{W}_i. \quad (7)$$

300 4.3 ATTENTION-EXCLUSIVE FINE-TUNING

301 While Quasi-Orthogonal Projection (QOP) pro-
 302 vides a principled mechanism for reducing
 303 interference, its effectiveness is ultimately
 304 bounded by the quality of task-vector orthog-
 305 onality. As shown in Eq. (3) and Eq. (4),
 306 the orthogonal projection only removes overlap
 307 with the dominant singular subspace, making
 308 the resulting updates approximate rather than
 309 exact. This motivates the need for a comple-
 310 mentary strategy that can actively promote the
 311 emergence of orthogonal task vectors during
 312 fine-tuning. Attention-Exclusive Fine-Tuning
 313 (AEFT) addresses this need by restricting task-
 314 specific parameter updates to the Transformer’s
 315 attention modules. This choice is motivated by
 316 two observations: (i) Constraining fine-tuning
 317 to Transformer attention modules substantially
 318 improves merged model performance (Jin et al.,
 319 2025), and (ii) Enforcing orthogonality among
 320 task vectors is critical for mitigating inter-
 321 ference and enhancing merge quality (Xiong et al.,
 322 2024). We hypothesize that constraining fine-
 323 tuning to attention-related linear layers, rather
 324 than performing full model updates, yields more
 325 orthogonal task vectors and thus enhancing the
 326 performance of QOP.

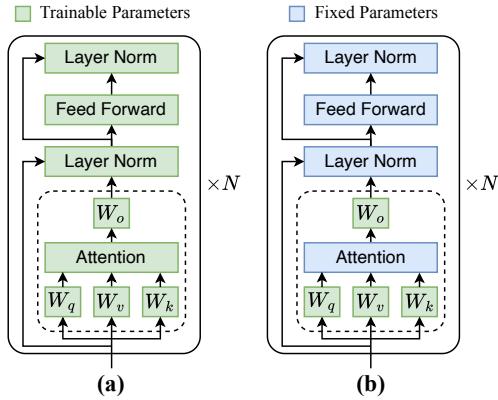


Figure 2: Two fine-tuning paradigms. (a) Full-Model Fine-Tuning (FMFT) where all the parameters will be updated. (b) Attention-Exclusive Fine-Tuning (AEFT) where only W_q, W_k, W_v, W_o will be updated. See §4.3 for details.

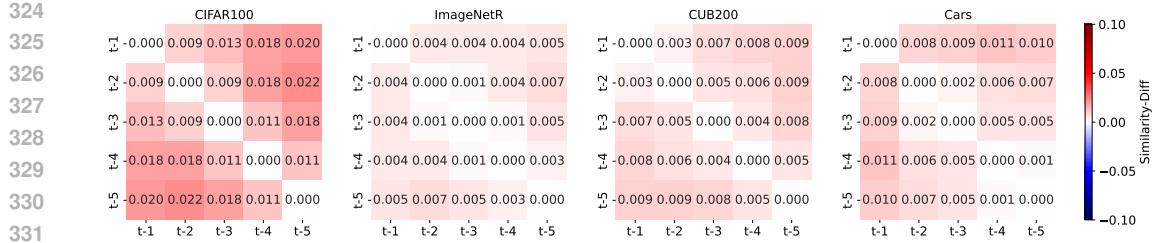


Figure 3: Cosine similarity difference matrices ($M^{\text{Diff}} = M^{\text{FMFT}} - M^{\text{AEFT}}$) across four benchmarks. Positive values (red) indicate that FMFT produces higher similarity between task vectors than AEFT, meaning lower orthogonality. This pattern confirms that AEFT encourages task vectors to be more orthogonal, thereby reducing interference. See §4.3 for details.

Two fine-tuning paradigms are illustrated in Figure 2. To evaluate our hypothesis, we compare Full-Model Fine-Tuning (FMFT) with Attention-Exclusive fine-tuning (AEFT) across four datasets (CIFAR-100, ImageNet-R, CUB-200, and Cars) in a continual learning setup. Each dataset is divided into five sequential tasks, and for each paradigm, we derive five task vectors. We then compute the cosine similarity matrices $M^{\text{FMFT}}, M^{\text{AEFT}} \in \mathbb{R}^{5 \times 5}$, where $M_{ij}^{\text{FMFT}} = \cos(\Delta W_i^{\text{FMFT}}, \Delta W_j^{\text{FMFT}})$ and $M_{ij}^{\text{AEFT}} = \cos(\Delta W_i^{\text{AEFT}}, \Delta W_j^{\text{AEFT}})$, with $\cos(\cdot, \cdot)$ denoting cosine similarity. Figure 3 presents the difference matrix $M^{\text{Diff}} = M^{\text{FMFT}} - M^{\text{AEFT}}$. The results indicate that task vectors from full fine-tuning exhibit higher similarity (*i.e.*, lower orthogonality) than those from attention-exclusive updates. This trend persists when scaling to 10/20/50 tasks (see §A.2), confirming that attention-constrained fine-tuning yields more orthogonal task vectors, thus supporting our hypothesis.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets. To ensure consistency with prior work, we follow the experimental setup of MagMax (Marczak et al., 2024), adopting the same datasets and task configurations for both class-incremental learning (CIL) and domain-incremental learning (DIL) settings. For CIL, we use CIFAR100 (Krizhevsky et al., 2009) and ImageNet-R (Hendrycks et al., 2021) as generic image classification benchmarks, and CUB200 (Wah et al., 2011) and Cars (Krause et al., 2013) as fine-grained datasets. Each dataset is partitioned into N disjoint subsets of classes, where $N \in \{5, 10, 20, 50\}$ for generic benchmarks and $N \in \{5, 10, 20\}$ for fine-grained benchmarks (due to their smaller size). For DIL, we adopt DomainNet (Peng et al., 2019) as the benchmark dataset and divide it into six tasks based on domains (clipart, infographics, painting, quickdraw, real, and sketch).

Baselines. We evaluate QOMM against well-established CL baselines, including LwF (Li & Hoiem, 2017) and EWC (Kirkpatrick et al., 2017), as well as recent model merging strategies such as ModelSoup (Wortsman et al., 2022), Task Arithmetic (TA) (Ilharco et al., 2022a), and TIES-Merging (TIES) (Yadav et al., 2023). In addition, we compare with MagMax (Marczak et al., 2024) and its two variants: RandMix, which randomly samples each parameter from one of the fine-tuned models, and MaxAbs, which applies independent fine-tuning instead of sequential adaptation. Finally, we report zero-shot performance, reflecting the capability of the pre-trained model, and joint performance, corresponding to a model fine-tuned on the entire dataset.

Implementation details. We use the CLIP pre-trained model (Radford et al., 2021) with a ViT/B-16 image encoder (Dosovitskiy et al., 2021). Following the fine-tuning procedure of Ilharco et al. (2022b), we adapt the image encoder using AdamW with weight decay and a cosine annealing learning rate schedule. For each split task of each dataset, we use the following training configurations: CIFAR-100 (batch size 64, learning rate 1.8×10^{-5} , 20 epochs, weight decay 0.09), ImageNet-R (batch size 64, learning rate 1.7×10^{-5} , 20 epochs, weight decay 0.09), CUB-200 and Cars (batch size 32, learning rate 3×10^{-5} , 24 epochs, weight decay 0.09), and DomainNet (batch size 64, learning rate 1.8×10^{-5} , 20 epochs, weight decay 0.09). We use the final classification layer output by CLIP’s text encoder and keep it frozen during fine-tuning, following (Ilharco et al., 2022b). This

378
 379
 380
 381
 382
 383 Table 1: Comparison on different methods. Our method outperforms other continual learning meth-
 384 ods and merging-based approaches on a wide variety of class-incremental scenarios. We report
 385 task-agnostic accuracy (%) after the final task. Our results in **bold** are the best across all tasks, and
 386 the prior best performing results are underlined. See §5.2 for details.
 387
 388

Method	CIFAR100				ImageNet-R				CUB200				Cars		Avg
	/5	/10	/20	/50	/5	/10	/20	/50	/5	/10	/20	/5	/10	/20	
Zero-shot		66.91				77.73			56.08				64.71		67.21
Joint		<u>90.94</u>				<u>87.55</u>			81.57				88.21		87.38
LwF	83.25	74.35	72.05	68.84	81.15	82.97	81.82	80.32	65.12	60.67	58.90	71.72	69.84	62.98	72.36
EWC	84.41	76.24	75.39	72.97	82.15	82.42	81.48	81.47	59.10	54.49	53.31	69.46	60.78	57.42	70.79
RandMix	81.55	77.04	75.36	72.91	83.10	81.88	80.18	78.50	59.86	58.53	58.08	67.32	65.62	64.95	71.78
MaxAbs	81.95	76.75	74.39	73.04	83.03	82.33	80.92	79.33	60.15	58.01	56.59	67.36	63.55	58.95	71.17
ModelSoup	81.41	77.04	75.29	72.92	83.08	81.87	80.27	78.53	59.77	58.44	58.01	67.37	65.59	64.88	71.85
TIES	81.72	77.23	74.66	73.76	83.08	82.27	80.83	79.57	60.94	58.22	56.97	70.45	64.90	61.17	71.84
MAGMAX	84.16	<u>80.41</u>	78.49	76.75	83.60	83.33	82.27	<u>81.75</u>	63.89	60.74	58.90	<u>73.61</u>	69.28	<u>65.84</u>	74.50
QOMM (ours)	85.20	83.09	80.69	77.84	85.77	84.52	83.05	81.78	69.02	64.84	62.10	80.54	74.90	71.50	77.49
Performance Δ	+0.79	+2.68	+2.20	+1.09	+2.17	+1.19	+0.78	+0.03	+3.90	+4.10	+3.20	+6.93	+5.06	+5.66	+2.99

392
 393 Table 2: DIL Performance (%) of different methods on DomainNet. See §5.2 for details.
 394
 395

Dataset	LwF	EWC	RandMix	MaxAbs	Avg	TIES	MAGMAX	Ours
DomainNet (DIL)	69.67	70.74	64.31	67.51	64.98	66.42	69.00	69.32

396 fine-tuning recipe preserves the open-vocabulary nature of the model and does not harm the accuracy compared to training the classification layer (Ilharco et al., 2022b). Each experiment is run on a single NVIDIA GeForce RTX 4090 GPU.

401 **Memory Complexity.** As shown in Figure 1, during the model merging-based continual learning
 402 process, only a fixed set of models must be maintained in memory at any step i : the current merged
 403 version, the incoming model for merging, and the original pre-trained base model. This strategy
 404 results in memory complexity of $\mathcal{O}(|\Theta|)$, with $|\Theta|$ denoting the parameter count of a single model.
 405 Notably, the memory footprint stays invariant to the total count of downstream tasks being processed.

406 5.2 MAIN RESULTS

407 **Class-incremental learning (CIL).** Table 1 summarizes the task-agnostic accuracies (%) across
 408 four widely used class-incremental benchmarks. Our method consistently outperforms all continual
 409 learning and merging-based baselines, achieving the highest accuracy in every setting. Averaged
 410 over all datasets and task splits, our approach reaches 77.49%, a +2.99% gain over the second-best
 411 method (MAGMAX). On CIFAR100, our method yields the best results across all splits, with
 412 margins of up to +2.68% compared to the second-best approach, demonstrating strong scalability as the
 413 number of tasks increases. On the more challenging ImageNet-R benchmark, our approach again
 414 secures the top performance with consistent gains, highlighting robustness in large-scale recogni-
 415 tion. For fine-grained datasets, improvements are even more pronounced: on CUB200, our method
 416 exceeds prior approaches by +3-4%, while on Cars it achieves the largest margins in the table, out-
 417 performing alternatives by +5-6%. These substantial gains indicate that our method is particularly
 418 effective in domains with subtle inter-class variations and high visual similarity. Overall, the results
 419 establish our approach as a new state of the art for class-incremental learning, providing consistent,
 420 robust, and significant improvements across both coarse- and fine-grained benchmarks.

421 **Domain-incremental learning (DIL).** Table 2 presents the results on DomainNet under the DIL
 422 setting. EWC achieves the highest performance with 70.74%, while our method delivers a com-
 423 petitive 69.32%. Notably, our approach surpasses strong merging-based methods such as MAG-
 424 MAX (69.00%), TIES (66.42%), and MaxAbs (67.51%), as well as the simple averaging baseline
 425 (64.98%). These findings indicate that our method remains highly effective on challenging domain-
 426 incremental scenarios, performing on par with the strongest continual learning approaches.

427 5.3 ABLATION STUDY

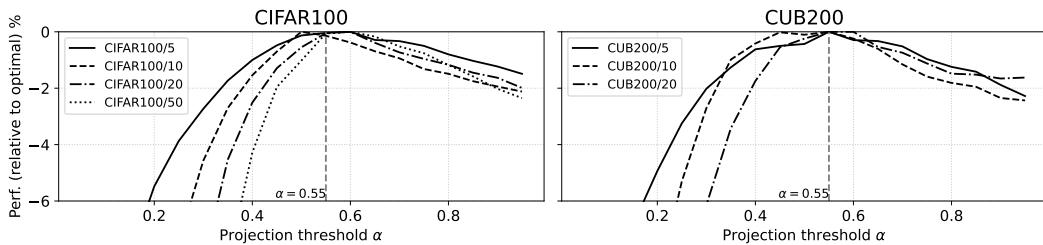
428 In this section, we evaluate the effectiveness of the two proposed components (*i.e.* QOP and AEFT)
 429 as well as the influence of the hyperparameter α introduced in §4. The experiments are conducted

432 Table 3: CIL Performance (%) of MagMax, QOP, and QOP + AEFT on CIFAR100 and CUB200
 433 with different number of tasks. See §5.3 for details.

Method	CIFAR100				CUB200		
	5	10	20	50	5	10	20
MagMax	84.16	80.41	78.49	76.75	63.89	60.74	58.90
QOP	82.82	78.05	69.61	52.60	64.74	57.44	45.79
QOP + AEFT	85.20	83.09	80.69	77.84	69.02	64.84	62.10

440
 441 on two representative datasets: the generic image classification benchmark CIFAR100 and the fine-
 442 grained recognition dataset CUB200.

443
 444 **Analysis of QOP and AEFT.** Table 3 presents CIL results on CIFAR100 and CUB200 with varying
 445 task numbers. When using QOP alone, the performance is comparable to MagMax when the number
 446 of tasks is small, for example at 5 tasks on both datasets. However, as the number of tasks increases,
 447 QOP suffers from a severe drop in accuracy, whereas MagMax degrades more gradually. This
 448 phenomenon can be attributed to the fact that QOP is based on an approximate orthogonal projection,
 449 which becomes less effective as task interference grows. By contrast, incorporating AEFT into QOP
 450 substantially alleviates this issue. QOP + AEFT consistently outperforms both QOP and MagMax
 451 across all task numbers, demonstrating not only higher accuracy in the low-task regime but also
 452 much greater robustness as the number of tasks increases. This improvement arises because AEFT
 453 enforces stronger orthogonality among task vectors, thereby reducing interference and preserving
 454 performance even under a large number of tasks.



463 Figure 4: **Sensitivity to projection threshold α .** Results are reported on CIFAR100 (left) and
 464 CUB200 (right) under different task splits. Accuracy is measured relative to the optimal α for each
 465 setting, and performance remains robust within $\alpha \in [0.5, 0.6]$, with $\alpha = 0.55$ yielding near-optimal
 466 accuracy in most cases. See §5.3 for details.

467
 468 **Sensitivity to Projection Threshold α .** We investigate the impact of the projection threshold α on
 469 QOMM’s performance across CIFAR100 (generic classification) and CUB200 (fine-grained classi-
 470 fication), as shown in Figure 4. The results demonstrate that QOMM’s performance is relatively stable
 471 for $\alpha \in [0.5, 0.6]$, with $\alpha = 0.55$ consistently providing near-optimal accuracy across different task
 472 splits. Based on this observation, we fix $\alpha = 0.55$ for all experiments in our work.

474 6 CONCLUSION

475
 476 We presented Quasi-Orthogonal Model Merging (QOMM), an orthogonality-aware merge method
 477 for continual learning that explicitly addresses task interference during consolidation. QOMM
 478 integrates two complementary components: Quasi-Orthogonal Projection (QOP), which suppresses
 479 conflicting directions by projecting new task vectors onto the approximate orthogonal complement
 480 of previously merged subspaces, and Attention-Exclusive Fine-Tuning (AEFT), which amplifies the
 481 effectiveness of QOP by restricting adaptation to Transformer attention layers to produce more
 482 orthogonal task vectors. Together, QOMM achieves a better balance between stability (retaining past
 483 knowledge) and plasticity (adapting to new tasks). Extensive experiments on standard CL bench-
 484 marks demonstrate that QOMM consistently outperforms existing methods, and ablations confirm
 485 the necessity of both QOP and AEFT. We hope that this work encourages further exploration of
 486 orthogonality-aware strategies for advancing model merging-based CL.

486 REFERENCES
487

488 Chi Chen, Yiyang Du, Zheng Fang, Ziyue Wang, Fuwen Luo, Peng Li, Ming Yan, Ji Zhang, Fei
489 Huang, Maosong Sun, et al. Model composition for multimodal large language models. *arXiv*
490 *preprint arXiv:2402.12750*, 2024.

491 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
492 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
493 tasks. *IEEE transactions on Pattern Analysis and Machine Intelligence*, 44(7):3366–3385, 2021.

494

495 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
496 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
497 age is worth 16x16 words: Transformers for image recognition at scale. In *International Confer-
498 ence on Learning Representations*, 2021.

499

500 Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for contin-
501 ual learning. In *International Conference on Artificial Intelligence and Statistics*, pp. 3762–3773,
502 2020.

503

504 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
505 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
506 analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF International
507 Conference on computer vision*, pp. 8340–8349, 2021.

508

509 Yongqi Huang, Peng Ye, Xiaoshui Huang, Sheng Li, Tao Chen, Tong He, and Wanli Ouyang. Ex-
510 perts weights averaging: A new general training scheme for vision transformers. *arXiv preprint
511 arXiv:2308.06093*, 2023.

512

513 Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
514 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint
515 arXiv:2212.04089*, 2022a.

516

517 Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
518 mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
519 lating weights. *Advances in Neural Information Processing Systems*, 35:29262–29277, 2022b.

520

521 Ruochen Jin, Bojian Hou, Jiancong Xiao, Weijie Su, and Li Shen. Fine-tuning attention modules
522 only: Enhancing weight disentanglement in task arithmetic. In *The International Conference on
523 Learning Representations*, 2025.

524

525 Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
526 merging weights of language models. *arXiv preprint arXiv:2212.09849*, 2022.

527

528 Dongwan Kim and Bohyung Han. On the stability-plasticity dilemma of class-incremental learning.
529 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
530 20196–20204, 2023.

531

532 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
533 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
534 ing catastrophic forgetting in neural networks. *Proceedings of the National Academy of Sciences*,
535 114:3521–3526, 2017.

536

537 Anat Kleiman, Gintare Karolina Dziugaite, Jonathan Frankle, Sham Kakade, and Mansheej Paul.
538 Soup to go: Mitigating forgetting during continual learning with model averaging. *arXiv preprint
539 arXiv:2501.05559*, 2025.

540

541 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
542 categorization. In *Proceedings of the IEEE International Conference on Computer Vision Work-
543 shops*, pp. 554–561, 2013.

544

545 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
546 2009.

540 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE Transactions on Pattern Analysis*
 541 and *Machine Intelligence*, 40:2935–2947, 2017.

542

543 Tian Yu Liu and Stefano Soatto. Tangent model composition for ensembling and continual fine-
 544 tuning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 545 18676–18686, 2023.

546

547 Daniel Marczak, Bartłomiej Twardowski, Tomasz Trzciński, and Sebastian Cygert. Magmax: Lever-
 548 aging model merging for seamless continual learning. In *European Conference on Computer*
 549 *Vision*, pp. 379–395, 2024.

550

551 Imad Eddine Marouf, Subhankar Roy, Enzo Tartaglione, and Stéphane Lathuilière. Weighted en-
 552 semble models are strong continual learners. In *European Conference on Computer Vision*, pp.
 553 306–324, 2024.

554

555 Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost
 556 Van De Weijer. Class-incremental learning: survey and performance evaluation on image clas-
 557 sification. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5513–5533,
 558 2022.

559

560 Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. *Advances*
 561 in *Neural Information Processing Systems*, 35:17703–17716, 2022.

562

563 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 564 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF International Conference*
 565 on *Computer Vision*, pp. 1406–1415, 2019.

566

567 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 568 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 569 models from natural language supervision. In *International Conference on Machine Learning*,
 570 pp. 8748–8763, 2021.

571

572 Gobinda Saha and Kaushik Roy. Continual learning with scaled gradient projection. In *Proceedings*
 573 of the *AAAI Conference on Artificial Intelligence*, volume 37, pp. 9677–9685, 2023.

574

575 Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
 576 *Nature Machine Intelligence*, 4(12):1185–1197, 2022.

577

578 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 579 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Informa-*
 580 *tion Processing Systems*, 30, 2017.

581

582 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 583 birds-200-2011 dataset. 2011.

584

585 Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, and Pascal Frossard.
 586 Localizing task information for improved model merging and compression. *arXiv preprint*
 587 *arXiv:2405.07813*, 2024a.

588

589 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
 590 learning: Theory, method and application. *IEEE Transactions on Pattern Analysis and Machine*
 591 *Intelligence*, 2024b.

592

593 Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
 594 Xuanjing Huang. Orthogonal subspace learning for language model continual learning. *arXiv*
 595 *preprint arXiv:2310.14152*, 2023.

596

597 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 598 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
 599 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
 600 inference time. In *International Conference on Machine Learning*, pp. 23965–23998, 2022.

594 Feng Xiong, Runxi Cheng, Wang Chen, Zhanqiu Zhang, Yiwen Guo, Chun Yuan, and Ruifeng
 595 Xu. Multi-task model merging via adaptive weight disentanglement. *arXiv preprint*
 596 *arXiv:2411.18729*, 2024.

597 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
 598 solving interference when merging models. *Advances in Neural Information Processing Systems*,
 599 36:7093–7115, 2023.

600 Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
 601 Model merging in Ilms, mllms, and beyond: Methods, theories, applications and opportunities.
 602 *arXiv preprint arXiv:2408.07666*, 2024.

603 Peng Ye, Chenyu Huang, Mingzhu Shen, Tao Chen, Yongqi Huang, Yuning Zhang, and Wanli
 604 Ouyang. Merging vision transformers from different tasks and domains. *arXiv preprint*
 605 *arXiv:2312.16240*, 2023.

606 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
 607 Absorbing abilities from homologous models as a free lunch. In *International Conference on*
 608 *Machine Learning*, 2024.

609 Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent pro-
 610 cessing in neural networks. *Nature Machine Intelligence*, 1(8):364–372, 2019.

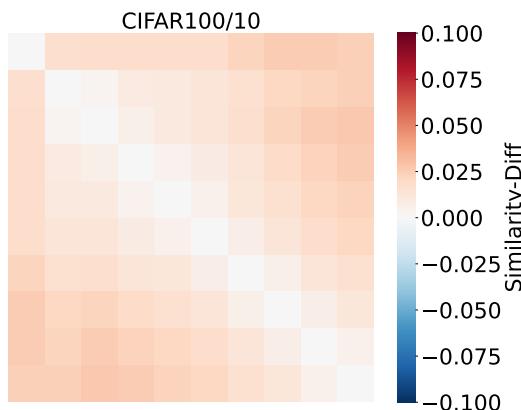
611 Yuyan Zhou, Liang Song, Bingning Wang, and Weipeng Chen. Metagpt: Merging large language
 612 models using model exclusive task arithmetic. *arXiv preprint arXiv:2406.11385*, 2024.

617 A APPENDIX

619 A.1 LLM USAGE

621 We used LLM solely for polishing the writing of this paper, including improving grammar, clarity,
 622 and style. The model was not involved in research ideation, experimental design, analysis, or the
 623 generation of scientific results. All content and claims in the paper are the responsibility of the
 624 authors.

626 A.2 SIMILARITY DIFF



627
 628 Figure 5: Cosine similarity difference matrix ($M^{\text{Diff}} = M^{\text{FMFT}} - M^{\text{AEFT}}$) for CIFAR100/10

644 Figures 5, 6 and 7 present cosine similarity difference matrices ($M^{\text{Diff}} = M^{\text{FMFT}} - M^{\text{AEFT}}$)
 645 for CIFAR100 split into 10, 20, and 50 tasks, respectively. In all cases, off-diagonal entries are
 646 predominantly red, indicating that FMFT task vectors are consistently more similar (less orthogonal)
 647 than those from AEFT, supporting hypothesis H_1 .

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

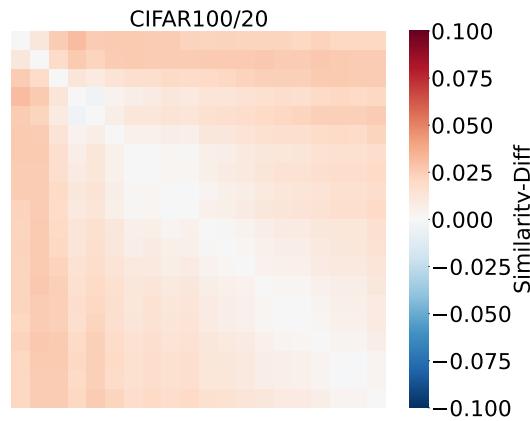


Figure 6: Cosine similarity difference matrix ($M^{\text{Diff}} = M^{\text{FMFT}} - M^{\text{AEFT}}$) for CIFAR100/20

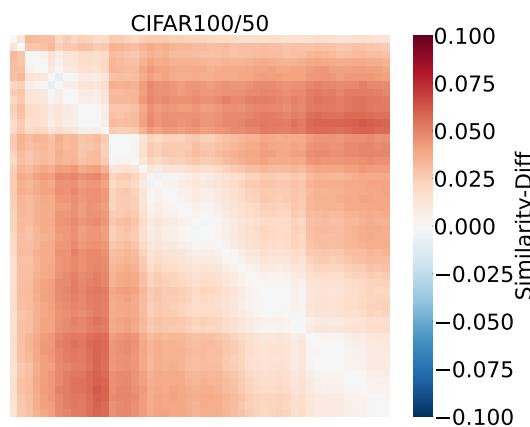


Figure 7: Cosine similarity difference matrix ($M^{\text{Diff}} = M^{\text{FMFT}} - M^{\text{AEFT}}$) for CIFAR100/50