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Abstract

Large language models (LLMs) are typically001
fine-tuned on diverse and extensive datasets002
sourced from various origins to develop a com-003
prehensive range of skills, such as writing, rea-004
soning, chatting, coding, and more. Each skill005
has unique characteristics, and these datasets006
are often heterogeneous and imbalanced, mak-007
ing the fine-tuning process highly challeng-008
ing. Balancing the development of each skill009
while ensuring the model maintains its over-010
all performance requires sophisticated tech-011
niques and careful dataset curation. In this012
work, we propose a general, model-agnostic,013
reinforcement learning framework, MIXTURE-014
OF-SKILLS (MOS), that learns to optimize015
data usage automatically during the fine-tuning016
process. This framework ensures the optimal017
comprehensive skill development of LLMs by018
dynamically adjusting the focus on different019
datasets based on their current learning state.020
To validate the effectiveness of MOS, we con-021
duct extensive experiments using three diverse022
LLM backbones on two widely used bench-023
marks and demonstrate that MOS substantially024
enhances model performance. Building on the025
success of MOS, we propose MOSPEC, an026
adaptation for task-specific fine-tuning, which027
harnesses the utilities of various datasets for028
a specific purpose. Our work underlines the029
significance of dataset rebalancing and present030
MOS as a powerful, general solution for opti-031
mizing data usage in the fine-tuning of LLMs032
for various purposes.033

1 Introduction034

Large language models (LLMs) have demonstrated035

their extraordinary capabilities and are expected036

to proficiently master a diverse range of skills037

(Ouyang et al., 2022; Sanh et al., 2022; OpenAI,038

2023; Anil et al., 2023b; Touvron et al., 2023a,b;039

Anil et al., 2023a; Mesnard et al., 2024), such040

as writing, reasoning, chatting, coding, and more,041

Training Data Dtrn

Scorer ψψψ

LLM θθθ

ĩ ∼ pψψψ(N)

(xxx,yyy) ∼ Dĩ
trn

(xxx,yyy) ∼ Di
trn

Reward R{·}(i)

Figure 1: The overview of MIXTURE-OF-SKILLS. The
training collection Dtrn = {Di

trn}Ni=1 consists of vari-
ous SFT datasets, with Di

trn indicating the i-th dataset.
Please refer to Section 3 for more details.

through supervised fine-tuning (SFT) and reinforce- 042

ment learning from human feedback (RLHF) on 043

an extensive collection of datasets from various 044

sources (Bai et al., 2022; Longpre et al., 2023; Ding 045

et al., 2023). Each dataset contributes unique el- 046

ements to the model’s skill set, but this diversity 047

also brings challenges. 048

One common challenge in fine-tuning mod- 049

els across multiple datasets is dealing with their 050

heterogeneity (where different datasets exhibit 051

distinct characteristics) and imbalance (where 052

datasets vary in size and accessibility), making the 053

fine-tuning process highly challenging. To address 054

this challenge, Recent approaches often cap dataset 055

usage to prevent models from being overwhelmed 056

by large datasets, but this limits the utilization of 057

all available data (Raffel et al., 2020; Chung et al., 058

2022; Iyer et al., 2022; Wei et al., 2022). Previous 059

multilingual research adjusts dataset distribution 060

heuristically with a temperature term τ , which re- 061

quires extensive hyperparameter tuning and over- 062

looks dataset interactions and model learning dy- 063

namics (Arivazhagan et al., 2019; Conneau et al., 064

2020). This leads us to a critical research question: 065

Is there a better way to optimize the data usage? 066

Building on the research question posed, we first 067

confirm that adjusting the dataset usage properly 068
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can significantly enhance model performance (see069

Table 1). Moreover, inspired by Differentiable Data070

Selection (Wang et al., 2020a), we propose a gen-071

eral, model-agnostic reinforcement learning frame-072

work MIXTURE-OF-SKILLS (MOS) that learns to073

optimize data usage automatically during the fine-074

tuning process. To achieve this optimization, we075

introduce another set of parameters, ψψψ, known as076

the scorer network. As shown in Figure 1, this net-077

work dynamically adjusts data usage based on the078

current learning state of the LLM θθθ. Furthermore,079

the rewards used to update the scorer network ψψψ080

are provided by the LLM θθθ from three distinct per-081

spectives: transferability, difficulty, and learning082

trajectory, ensuring that the scorer network can083

effectively guide the data usage optimization pro-084

cess. All these efforts constitute the success of our085

MIXTURE-OF-SKILLS framework.086

To validate the effectiveness of MOS, we con-087

duct extensive experiments using three diverse088

model backbones: QWEN1.5-0.5B (Bai et al.,089

2023), GEMMA-2B (Mesnard et al., 2024), and090

LLAMA-3-8B (AI@Meta, 2024), on two widely-091

used benchmarks: MMLU (Hendrycks et al., 2021a)092

and MT-bench (Zheng et al., 2023). Our empir-093

ical results demonstrate that MOS substantially094

improves the models’ overall performance. Our095

analysis indicates that our model not only effec-096

tively learns optimal data utilization but also ac-097

celerates training convergence by 2.2×. Addition-098

ally, it demonstrates robustness against variations099

in sampling priors and integrates seamlessly with100

advanced instance selection methods. Furthermore,101

we explore the application of MOS in task-specific102

fine-tuning. We show that MOS, with minor re-103

ward modifications known as MOSPEC, can be104

effectively used for task-specific fine-tuning.105

Our contributions are summarized as follows:106

• We present a general, model-agnostic rein-107

forcement learning framework, MIXTURE-108

OF-SKILLS (MOS), that learns to automati-109

cally optimize data usage during the SFT pro-110

cess with three novel rewards (see Section 3).111

• Extensive experiments with three model back-112

bones on two benchmarks demonstrate that113

MOS significantly enhances model perfor-114

mance. Our analysis reveals that MOS not115

only effectively learns the optimal data us-116

age but also accelerates training convergence117

by 2.2×. Additionally, it maintains robust-118

ness against variations in sampling priors and119

is compatible with strong instance selection120

methods (see Section 4 and Section 5). 121

• We explore the application of MOS in task- 122

specific fine-tuning, introducing a variant 123

called MOSPEC. This variant, with minor 124

modifications to the rewards, is proven to 125

effectively harness diverse datasets for task- 126

specific fine-tuning (see Section 6). 127

2 Preliminaries 128

Supervised Fine-Tuning A large language 129

model (LLM), parameterized by θθθ, is capable of 130

following and responding to human instructions 131

after supervised fine-tuning (SFT). Given a single 132

training dataset D1
trn = {(xxxj , yyyj)}M1

j=1, where M1 133

is the size of D1
trn and xxxj and yyyj are the instruc- 134

tion and response of the j-th example, the objective 135

function during SFT is to minimize the negative 136

log-likelihood with respect to θθθ: 137

Ls(D1
trn;θθθ) = −

M1∑
j=1

log p(yyyj |xxxj ;θθθ). (1) 138

When fine-tuning the LLM θθθ over multiple datasets 139

Dtrn = {Di
trn}Ni=1, where Di

trn = {(xxxij , yyyij)}
Mi
j=1, 140

the objective function becomes: 141

L(Dtrn;θθθ) =

N∑
i=1

Ls(Di
trn;θθθ). (2) 142

Heuristic Balancing by Temperature Instead 143

of merging all datasets into a single training mix- 144

ture, a common approach is to adjust the sampling 145

probability of texts in different languages using 146

a temperature term τ (Arivazhagan et al., 2019; 147

Conneau et al., 2020). Specifically, the sampling 148

probability of the i-th dataset is q(i) = |Mi|∑N
n=1 |Mn|

149

and can be adjusted by the temperature τ as: 150

qτ (i) =
q(i)1/τ∑N
n=1 q(n)

1/τ
. (3) 151

Consequently, τ = 1 corresponds to propor- 152

tional sampling, equivalent to Equation 2. Con- 153

versely, τ =∞ corresponds to uniform sampling, 154

where smaller datasets are up-sampled to match the 155

largest dataset. The loss function becomes: 156

L(Dtrn;θθθ, qτ (N)) = Ei∼qτ (N)

[
Ls(Di

trn;θθθ)
]
.

(4)
157
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Differentiable Data Selection (DDS) Wang158

et al. (2020a) propose a general framework that159

automatically re-weighs training instances to en-160

hance model performance, utilizing a validation set161

Ddev. This framework consists of two components:162

the model θθθ and the scorer network ψψψ. The scorer163

networkψψψ is designed to calculate a sampling prob-164

ability for each training instance, which reflects its165

impact on validation performance. Training in-166

stances that have a greater similarity with Ddev are167

allocated a higher probability, thus increasing their168

likelihood of being selected for model θθθ updates.169

MOS is inspired by DDS but has key differences.170

Firstly, MOS focuses on rebalancing datasets, un-171

like DDS, which reweighs training instances. Sec-172

ondly, MOS does not require prior knowledge of173

downstream applications, whereas DDS relies on174

validation set feedback, risking overfitting to that175

specific validation set. Thirdly, DDS uses the same176

architecture for the scorer network ψψψ and model θθθ,177

limiting its scalability, while MOS uses a simple178

MLP model as its scorer network (see Section 3.1).179

3 MIXTURE-OF-SKILLS180

In this section, we provide a detailed overview of181

MIXTURE-OF-SKILLS (MOS). We begin by out-182

lining the reinforcement learning framework em-183

ployed in MOS (Section 3.1). Following this, we184

discuss the reward functions (Section 3.2).185

3.1 Learning to Optimize Data Usage186

We propose MIXTURE-OF-SKILLS (MOS) that187

learns to optimize the data usage during the fine-188

tuning process by training a scorer network, pa-189

rameterized by ψψψ, within a reinforcement learning190

(RL) framework. In this setup, the LLM θθθ and the191

training datasets Dtrn constitute the environment,192

while our scorer network serves as the RL agent.193

In this framework, unlike the static sampling proba-194

bilities described in Equation 3, the scorer network195

ψψψ dynamically adjusts the sampling probabilities196

for each dataset in Dtrn according to the current197

learning state of the LLM θθθ. Alternately, the LLM198

θθθ is optimized based on the sampling distribution199

given by the scorer network ψψψ.200

To provide a broader perspective, MOS can be201

conceptualized as the resolution of a bi-level op-202

timization problem (Colson et al., 2007). In this203

view, the outer level optimizes the parameters of204

the LLM θθθ, while the inner level focuses on adjust-205

ing the sampling probabilities through the scorer206

Algorithm 1: MIXTURE-OF-SKILLS

Input :Dtrn = {{(xxxij , yyyij)}
Mi
j=1}Ni=1, N

training datasets with the size of
Mi for the i-th dataset; S, update
frequency of ψψψ; T , total training
steps; α, learning rate for θθθ; γ,
learning rate for ψψψ;

Output :The converged model θθθ;
1 Initialize pψψψ0

(N) as Equation 3 with
τ =∞;

2 for t=0 to T do
3 ĩ ∼ pψψψ(N);
4 Sample batch (xxx,yyy) ∼ Dĩ

trn;
5 θθθ ← θθθ − α · ∇θθθL(yyy|xxx;θθθ);
6 if t % S == 0 then
7 for i=1 to N do
8 (xxx′, yyy′) ∼ Di

trn;
9 Compute rewardR{·}(i) for

Di
trn as in Section 3.2;

10 end
11 ψψψ ←

ψψψ+
∑N

i=1 γ ·R{·}(i) ·∇ψψψ log pψψψ(i)
12 end
13 end

network ψψψ. Hence, the training objective becomes: 207

ψψψ = argmin
ψψψ
J (Dtrn;θθθ(ψψψ)),where

θθθ(ψψψ) = argmin
θθθ

Ei∼pψψψ(N)[L(Di
trn;θθθ)].

(5) 208

Specifically, we present the algorithm of MOS 209

in Algorithm 1. MOS initially parameterizes the 210

initial sampling probability distribution with ψψψ as 211

shown in Equation 3, using a warm-up temperature 212

τ = ∞ (see line 1). When updating the LLM θθθ, 213

we employ the standard gradient-based optimiza- 214

tion method (see line 5). For computational effi- 215

ciency, the scorer network ψψψ is updated every S 216

steps (see line 6). During updates of ψψψ, we ran- 217

domly draw one mini-batch from each training set 218

{Di
trn}Ni=1 and compute the corresponding rewards 219

as described in Section 3.2 (see line 9). The training 220

dataset Di
trn that yields a high reward is considered 221

to be relatively more beneficial to the overall perfor- 222

mance, and its corresponding sampling probability 223

is increased (see line 11). 224

A critical issue in Algorithm 1 is that Equa- 225

tion 5 is not directly differentiable with respect 226

to ψψψ. To address this, reinforcement learning (RL) 227
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with suitable reward functions is needed (Wang228

et al., 2020a). The update rule for ψψψ becomes:229

ψψψ ← ψψψ +
N∑
i=1

R{·}(i) · ∇ψψψ log pψψψ(i). (6)230

Details for the rewards R{·}(i) are in Section 3.2231

and the update of the scorer network ψψψ follows the232

REINFORCE algorithm (Williams, 1992).233

Implementing the scorer network Given that234

the scorer networkψψψ is primarily designed to model235

a relatively simple distribution over the training236

datasets Dtrn, we utilize a fully connected 2-layer237

perceptron network for this task. The network238

takes as input a vector that specifies which train-239

ing datasets are accessible. Note that the scorer240

network ψψψ is used for adjusting the data usage dur-241

ing the fine-tuning process and is orthogonal to the242

reward model used in RLHF.243

3.2 Rewards for Learning244

We design the rewards of MOS from three perspec-245

tives: transferability (Section 3.2.1), difficulty (Sec-246

tion 3.2.2), and learning trajectory (Section 3.2.3).247

3.2.1 Transferability248

Transferring knowledge from one problem to an-249

other related problem is beneficial, and this trans-250

ferability is often measured by the similarity be-251

tween datasets (Du et al., 2018; Zhuang et al.,252

2021). Datasets with higher similarity are more253

likely to make more contributions to the targeted254

performance of the model.255

In this work, we represent the training datasets256

Dtrn using the mini-batch embeddings and then257

calculate the pairwise cosine similarities among258

the mini-batch embeddings for each dataset. We259

draw a random mini-batch Bi = {(xxxij , yyyij)}Lj=1260

from Di
trn, where L is the batch size, and the mini-261

batch embedding zzzi is defined as:262

zzzi =
1

L

L∑
j=1

eeeij , eeeij =
1

K

K∑
k=1

hhhk, (7)263

where K is the sequence length of the concatena-264

tion of xxxij and yyyij , and hhhk is the hidden state of the265

token wk in the concatenated sequence from the266

topmost layer of the LLM θθθt. Consequently, we de-267

fine the rewardRCOSSIM(i) for Di
trn as the average268

cosine similarity among all training datasets:269

RCOSSIM(i) =
1

N

N∑
n=1

zzzi · zzzn

∥zzzi∥ · ∥zzzn∥
, (8)270

where N is the number of datasets in Dtrn. 271

3.2.2 Difficulty 272

Recent work demonstrates that the transfer of 273

knowledge between datasets is not always guar- 274

anteed (Wu et al., 2021). In response, we attempt 275

to design the reward based on the inherent difficulty 276

of the dataset in this section. 277

Recently, the perplexity is used for measure the 278

dataset difficulty (Li et al., 2023b; Marion et al., 279

2023). Given a training example (xxxij , yyy
i
j) fromDi

trn 280

and the LLM θθθ, the perplexity is defined as: 281

PPL(yyyij ;xxx
i
j , θθθ)

=exp
(
− 1

|yyyij |

|yyyij |∑
k=1

logpθθθ(yj,k|xxxij , yyyj,<k)
)
.

(9) 282

However, we argue that perplexity is not a suit- 283

able metric for evaluating the difficulty of non- 284

natural language texts, such as mathematical for- 285

mulas and programming codes. Our preliminary 286

study indicates that the perplexity scores given to 287

mathematical texts by various language models 288

are typically lower than those for natural language 289

texts, despite the common belief that mathemati- 290

cal problems pose significant challenges for LLMs 291

(Yue et al., 2023; Yu et al., 2023). Our prelimi- 292

nary study is presented in Appendix A. Therefore, 293

given a random mini-batch Bi = {(xxxij , yyyij)}Lj=1 294

from Di
trn, the rewardRDIFF(i) for Di

trn is: 295

RDIFF(i) =
1

L

L∑
j=1

PPL(yyyij ;xxx
i
j , θθθ)

PPL(yyyij ;xxx
i
j , θθθ0)

, (10) 296

where θθθ0 is the original LLM backbone and θθθ is 297

the fine-tuned LLM. The termRDIFF(i) represents 298

the relative decrease in perplexity for Di
trn after 299

fine-tuning. A high value ofRDIFF(i) suggests that 300

Di
trn is difficult to learn and requires more training 301

efforts, while a lower value indicates the opposite. 302

3.2.3 Learning Trajectory 303

We design the rewards RCOSSIM(i) and RDIFF(i) 304

based on the transferability and difficulty of the 305

training dataset Di
trn, as discussed in Section 3.2.1 306

and Section 3.2.2. However, both rewards ig- 307

nore the learning trajectory of the fine-tuning pro- 308

cess. Therefore, we introduce the exponential mov- 309

ing average (EMA) when estimating the rewards. 310

This approach can both better estimate the reward 311

and stabilize the data usage optimization process. 312
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µBOTH
MMLU MT-bench

µMU Math Med. Others µMB Turn 1 Turn 2

QWEN1.5-0.5B
PROP. (τ = 1) 32.82 30.95 23.40 31.30 31.76 3.47 4.18 2.76
TEMP. (τ = 10) 34.17 32.09 22.88 30.88 33.41 3.63 4.11 3.14
UNI. (τ = ∞) 33.81 31.52 21.45 29.97 33.02 3.61 4.21 3.01
MOS + COSSIM 34.30 31.95 21.90 31.18 33.28 3.67 3.96 3.38
MOS + COSSIM + EMA 35.13 32.45 22.27 31.56 33.82 3.78 4.44 3.13
MOS + DIFF 34.24 31.49 20.71 29.94 33.07 3.70 4.21 3.19
MOS + DIFF + EMA 34.83 32.11 21.84 31.01 33.53 3.76 4.11 3.40

GEMMA-2B
PROP. (τ = 1) 42.90 33.61 20.03 33.33 35.25 5.22 5.63 4.81
TEMP. (τ = 10) 41.86 36.16 21.03 37.92 37.55 4.76 5.49 4.03
UNI. (τ = ∞) 43.95 35.95 20.82 35.97 37.71 5.19 5.60 4.79
MOS + COSSIM 43.84 32.44 20.61 32.35 33.83 5.53 6.16 4.89
MOS + COSSIM + EMA 44.49 33.86 20.57 33.32 35.52 5.51 6.01 5.01
MOS + DIFF 44.93 34.32 20.29 34.06 36.00 5.55 6.04 5.06
MOS + DIFF + EMA 45.10 34.61 20.83 34.64 36.20 5.56 6.13 4.99

LLAMA-3-8B
PROP. (τ = 1) 60.97 56.78 26.61 62.03 59.19 6.52 6.96 6.08
TEMP. (τ = 10) 61.40 56.17 28.36 59.64 58.68 6.66 7.04 6.29
UNI. (τ = ∞) 60.99 55.72 27.65 60.77 57.93 6.63 7.04 6.21
MOS + COSSIM 62.49 56.95 28.91 59.91 59.59 6.80 7.11 6.50
MOS + COSSIM + EMA 63.85 58.08 27.60 61.54 60.90 6.96 7.28 6.65
MOS + DIFF 63.00 57.93 31.08 62.65 60.07 6.81 6.98 6.64
MOS + DIFF + EMA 63.26 58.34 32.81 62.21 60.49 6.82 7.34 6.30

Table 1: Main results given by QWEN1.5-0.5B, GEMMA-2B, and LLAMA-3-8B on MMLU and MT-bench. The best
and second-best results are highlighted in bold and underline. Note that µMB is upscaled by 10× to a range from 1
to 100 used for computing µBOTH.

Specifically, we define the EMA as follows:313

R{·}(i) = βR′

{·}(i) + (1− β)R′′

{·}(i), (11)314

where β is the smoothing factor,R′

{·}(i) indicates315

the original reward for the current update,R′′

{·}(i)316

represents the reward for the previous update, and317

R{·}(i) is the smoothed reward for the current up-318

date. Note that bothRCOSSIM(i) andRDIFF(i) can319

be applied in Equation 11 and we set β = 0.9.320

4 Experiments321

We present our experimental setup (Section 4.1)322

and main results (Section 4.2) in this section.323

4.1 Experimental Setup324

Datasets In this work, we collect supervised325

fine-tuning (SFT) datasets for four distinct skills:326

Mathematics (Yue et al., 2023), Medicine (Zhang327

et al., 2023a), General (ShareGPT),1 and NLP328

(Sanh et al., 2022). Due to the constraint on329

compute, we sample 10% of examples from each330

dataset. More details can be found in Appendix B.331

1https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_unfiltered

Model Backbones We apply MOS to three di- 332

verse model backbones, including QWEN1.5-0.5B 333

(Bai et al., 2023), GEMMA-2B (Mesnard et al., 334

2024), and LLAMA-3-8B (AI@Meta, 2024). Opti- 335

mization details are in Appendix C. 336

Baselines We compare MOS with three heuris- 337

tic baselines based on Equation 3: proportional 338

sampling (PROP., τ = 1), temperature sampling 339

(TEMP., τ = 10), and uniform sampling (UNI., 340

τ = ∞). We do not use the maximum cap and 341

other instance selection methods as our baselines 342

because they fail to fully utilize all available data. 343

Evaluation In this work, we evaluate our models 344

on two widely-used benchmarks that are highly cor- 345

related with human judgments: MMLU (Hendrycks 346

et al., 2021a) and MT-bench (Zheng et al., 2023). 347

We conduct zero-shot evaluations on MMLU and 348

report the average accuracy across all the subjects 349

as µMU. To better understand the model perfor- 350

mance, we categorize the 57 subjects of MMLU into 351

three groups: mathematics, medicine, and others, 352

and also report the average accuracy of each group. 353

Moreover, we report the average score across all 354

eight skills of MT-bench as µMB. The overall per- 355
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Figure 2: Learned dataset distribution given by LLAMA-
3-8B with different variations of MOS. The x-axis in-
dicates the training steps, and the y-axis indicates the
sampling probabilities of datasets.

formance is reported as the average score of both356

µMU and µMB, denoted as µBOTH. Note that when357

computing µBOTH, MT-bench scores are upscaled358

by 10× to range from 1 to 100, maintaining consis-359

tency with MMLU. More details are in Appendix D.360

4.2 Main Results361

We present the main results in Table 1.362

An optimal temperature τ boosts performance,363

but no universally optimal τ exists. When com-364

paring the heuristic baselines, we observe that there365

is no universally optimal τ that consistently works366

well for all model backbones. As shown in Table 1,367

TEMP. (τ = 10) performs best for QWEN1.5-368

0.5B and LLAMA-3-8B, but is least effective for369

GEMMA-2B. This variability confirms the motiva-370

tion behind this work.371

MOS outperforms heuristic baselines, with372

larger models showing greater improvements.373

Our method consistently outperforms heuristic374

baselines across all three model backbones in terms375

of µBOTH. Notably, larger models show greater im-376

provements with our approach. As shown in Ta-377

ble 1, the best variant of our method surpasses the378

best heuristic baseline by +0.96, +1.15, and +2.45379

in µBOTH for QWEN1.5-0.5B, GEMMA-2B, and380

LLAMA-3-8B, respectively. This is particularly381

significant in the era of LARGE language models.382

Different rewards work better for different383

models, and EMA always helps. As shown in384

Table 1, MOS with COSSIM outperforms MOS385

with DIFF for QWEN1.5-0.5B and LLAMA-3-8B,386

while DIFF-based MOS yields better results for387

GEMMA-2B. Additionally, EMA consistently en-388
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Figure 3: Training loss curves of heuristic baselines and
MOS + DIFF + EMA.

hances overall performance in terms of µBOTH, sup- 389

porting our rationales concerning learning trajec- 390

tory in Section 3.2.3. 391

5 Analysis 392

In this section, we conduct an in-depth analysis of 393

MOS using LLAMA-3-8B. Our analysis encom- 394

passes the learned dataset distribution of MOS, the 395

training convergence speed of MOS, the impact 396

of sampling priors on MOS, and its compatibility 397

with the instance selection methods. 398

MOS with different rewards learns different 399

dataset distributions. We visualize the dataset 400

distribution learned by MOS using LLAMA-3-8B 401

as shown in Figure 2. Starting with equal sampling 402

probabilities, both COSSIM and DIFF variations 403

of MOS increase the probability for General and 404

decrease it for Medicine. However, COSSIM main- 405

tains the probabilities for Mathematics and NLP, 406

whereas DIFF upsamples Mathematics but down- 407

samples NLP. 408

MOS speeds up the convergence. We illustrate 409

the training dynamics of heuristic baselines and 410

MOS + DIFF + EMA in Figure 3. When compared 411

to TEMP. (τ = 10), which is the best-performing 412

heuristic baseline, MOS + DIFF + EMA demon- 413

strates notable improvements. Specifically, it con- 414

verges approximately 2.2× faster, as shown in Fig- 415

ure 3, and achieves a +1.86 improvement in terms 416

of µBOTH, as detailed in Table 1. 417

MOS demonstrates robustness to changes in 418

sampling priors. As indicated in line 1 in Al- 419

gorithm 1, we initialize our sampling probability 420

distribution with τ =∞. Consequently, we investi- 421

gate the effects of various sampling priors on MOS. 422
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µBOTH µMU µMB

TEMP. (τ = 10) 61.40 56.17 6.66

MOS + COSSIM + EMA
+ τ = 1 62.49 56.95 6.80
+ τ = 10 63.94 57.98 6.99
+ τ = ∞ 63.85 58.08 6.96

MOS + DIFF + EMA
+ τ = 1 62.29 56.51 6.81
+ τ = 10 63.66 58.22 6.91
+ τ = ∞ 63.26 58.34 6.82

Table 2: Results of MOS with different sampling priors
τ . The best results are highlighted in bold.

µBOTH µMU µMB

RANDOM
PROP. (τ = 1) 59.78 54.39 6.52
TEMP. (τ = 10) 60.62 54.89 6.63
UNI. (τ = ∞) 59.21 54.21 6.42

IFD
PROP. (τ = 1) 60.43 55.03 6.58
TEMP. (τ = 10) 61.02 55.13 6.69
UNI. (τ = ∞) 60.62 54.92 6.63
MOS + COSSIM + EMA 62.01 56.81 6.72
MOS + DIFF + EMA 62.05 56.43 6.77

Table 3: Compatibility between MOS and IFD. RAN-
DOM and IFD indicate the 10% data from each dataset
selected by random sampling and IFD selection, respec-
tively. The best results are highlighted in bold.

As shown in Table 2, MOS with different sampling423

priors consistently outperforms the best heuristic424

baseline TEMP. (τ = 10). Moreover, selecting the425

appropriate sampling prior for MOS can further426

enhance performance. These results underscore the427

robustness and effectiveness of our approach.428

MOS is compatible with the instance selection429

method. Following Li et al. (2023b), we lever-430

age QWEN1.5-0.5B to calculate the Instruction-431

Following Difficulty (IFD) scores for each train-432

ing instance and select the top 10% of training433

instances with the highest scores from each dataset.434

As shown in Table 3, combining MOS with IFD435

further improves the model performance, indicat-436

ing the successful combination of MOS and IFD.437

6 Fine-tuning from Generalist to438

Specialist439

Large, general-purpose models offer broad capa-440

bilities but can be costly to deploy in real-world441

applications. Many scenarios require only a narrow442

set of functionalities, making smaller, specialized443

models more effective for specific tasks than larger,444

µALL
GSM8K MATH M-math
5-shot 5-shot 0-shot

Generalist
TEMP. (τ = 10) 29.17 49.62 9.54 28.36
MOS + COSSIM + EMA 29.26 50.40 9.78 27.60
MOS + DIFF + EMA 30.88 49.58 10.26 32.81

Math Specialist
MATHLLAMA-3-8B 27.04 41.02 9.76 30.34
MOSPEC + C.S. + E. 30.63 51.10 10.64 30.16
MOSPEC + D. + E. 31.91 52.10 11.40 32.24

Table 4: Results on GSM8K, MATH, and M-math given by
generalists and math specialists. µALL indicates the av-
erage performance over all three benchmarks. MOSPEC
+ C.S. + E. and MOSPEC + D. + E. indicates MOSPEC
+ COSSIM + EMA and MOSPEC + DIFF + EMA, re-
spectively. The best results are highlighted in bold.

general-purpose ones (Luo et al., 2023; Azerbayev 445

et al., 2023; Wu et al., 2024a). MIXTURE-OF- 446

SKILLS (MOS) is a framework designed to op- 447

timize data usage for various fine-tuning purposes, 448

including task-specific fine-tuning. This section 449

explores the application of MOS in this context. 450

We aim to fine-tune LLAMA-3-8B to spe- 451

cialize in mathematics using datasets from Sec- 452

tion 4.1, referring to this modified version as MO- 453

SPEC. For MOSPEC with COSSIM, we compute 454

the cosine similarity between Mathematics and 455

other datasets, including Mathematics itself. For 456

MOSPEC with DIFF, we double the reward for 457

the Mathematics dataset. For comparison, we 458

fine-tune LLAMA-3-8B directly on Mathematics 459

dataset in Section 4.1, denoted as MATHLLAMA-3- 460

8B. Both MOSPEC and MATHLLAMA-3-8B use 461

the identical hyperparameters from Appendix C, 462

except MATHLLAMA-3-8B is fine-tuned for 12 463

epochs for fairness. We evaluate the models on 464

math-related subjects in MMLU (0-shot, denoted as 465

M-math), GSM8K (5-shot) (Cobbe et al., 2021), and 466

MATH (5-shot) (Hendrycks et al., 2021b). 467

SFT datasets from other sources are benefi- 468

cial for the specific target task. As shown in 469

Table 4, the MATHLLAMA-3-8B model trained 470

solely on the Mathematics subset performs the 471

worst among all models. This indicates that incor- 472

porating additional SFT datasets is advantageous. 473

The performance gap is particularly evident on the 474

GSM8K dataset, which requires step-by-step reason- 475

ing. We believe this discrepancy arises from the 476

Mathematics subset’s incompleteness, while other 477

SFT datasets can address these shortcomings. 478
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Figure 4: Learned dataset distribution given by LLAMA-
3-8B with MOSPEC + COSSIM + EMA (left) and MO-
SPEC + DIFF + EMA (right).

MOSPEC can harness diverse datasets to en-479

hance task-specific performance. When com-480

paring MOS and MOSPEC with the same reward481

type, MOSPEC consistently outperforms MOS on482

mathematical benchmarks in Table 4. By assign-483

ing a higher reward, MOSPEC effectively learns484

the optimal dataset distribution for learning the485

mathematical capabilities. As shown in Figure 4,486

COSSIM and DIFF in MOSPEC effectively guide487

the scorer networkψψψ to increase the sampling prob-488

ability of Mathematics.489

We believe this property of MOS is particularly490

meaningful when the task-specific dataset is not491

sufficiently large or comprehensive.492

7 Related Work493

Data Engineering for LLMs The success of494

large language models (LLMs) heavily relies on495

their training datasets. Researchers gather or create496

extensive datasets (Raffel et al., 2020; Gao et al.,497

2021; Penedo et al., 2023; Wang et al., 2023; Li498

et al., 2023a; Cui et al., 2023; Wu et al., 2024b)499

Recent efforts focus on selecting data subsets to500

enhance training efficiency. Xie et al. (2023) esti-501

mate the quality of each subset in the pretraining502

dataset mixture using a small proxy model. Recent503

approaches filter out low-quality examples using504

perplexity (Li et al., 2023b; Marion et al., 2023).505

Dataset Rebalancing The standard practice for506

dataset rebalancing in fine-tuning large language507

models (LLMs) involves capping the number of508

examples per dataset (Raffel et al., 2020; Chung509

et al., 2022; Iyer et al., 2022; Wei et al., 2022).510

However, this approach does not fully utilize all511

available data. Previous multilingual research often512

rebalances datasets for multiple languages using513

a temperature term τ (Arivazhagan et al., 2019; 514

Conneau et al., 2020). Furthermore, Wang et al. 515

(2020a) reweigh training examples based on their 516

similarity with the validation set. Inspired by Wang 517

et al. (2020a), Wang et al. (2020b) and Wu et al. 518

(2021) propose rebalancing the dataset distribution 519

for machine translation tasks. 520

Multi-Task Learning Our work is also related 521

to multi-task learning (Ruder, 2017; Crawshaw, 522

2020; Zhang et al., 2023b). Both transferability 523

and difficulty are commonly used for reweighting 524

the importance of tasks to achieve better overall per- 525

formance and mitigate the conflicts between tasks 526

(Kendall et al., 2018; Chen et al., 2018; Yu et al., 527

2020; Wang et al., 2021). We highlight that tasks 528

are the specific goals the model works towards, 529

while skills are the broader abilities that allow the 530

model to perform a wide range of tasks. 531

Ours In this work, MIXTURE-OF-SKILLS 532

(MOS) is inspired by Wang et al. (2020a) and re- 533

lated to Wang et al. (2020b) and Wu et al. (2021), 534

but offers several key advancements. Unlike pre- 535

vious methods, MOS does not require knowledge 536

of downstream applications, avoiding the risk of 537

overfitting to validation sets. Additionally, MOS 538

introduces novel rewards tailored for LLMs and 539

considers the learning trajectory during fine-tuning, 540

enhancing overall performance. Finally, MOS is 541

highly adaptable for specific fine-tuning needs, set- 542

ting it apart from prior works. 543

8 Conclusion 544

In this work, we address the critical challenge of op- 545

timizing data usage during the fine-tuning process 546

of LLMs. We propose a general, model-agnostic 547

reinforcement learning framework, MIXTURE-OF- 548

SKILLS (MOS), that dynamically adjusts dataset 549

usage to enhance model performance with three 550

novel rewards. Through extensive experiments on 551

three diverse model backbones and two widely- 552

used benchmarks, we demonstrate that MOS signif- 553

icantly improves overall model performance. Addi- 554

tionally, we explore the application of MOS in task- 555

specific fine-tuning, leading to the development of 556

MOSPEC. Our experiments show that models fine- 557

tuned with MOSPEC on various datasets outper- 558

form those trained solely on task-specific datasets. 559

In summary, MOS provides a powerful and flexible 560

solution to the challenges of dataset heterogeneity 561

and imbalance in the fine-tuning of LLMs. 562
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9 Limitations563

Computational Overhead In this study, the564

scorer network ψψψ and the large language model565

(LLM) θθθ are updated in an alternating fashion. Al-566

though the scorer network ψψψ is a relatively simple567

two-layer MLP model, the overall training duration568

increases by approximately 20%, compared with569

the heuristic baselines, when the LLM θθθ is updated570

for the same number of steps.571

Number of Datasets Our experiments are lim-572

ited to four datasets due to computational resource573

constraints. The performance of our approach as574

the dataset count increases remains unexplored.575

These limitations are acknowledged and we576

leave them to the future work.577
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A Preliminary Study on Perplexity980

Perplexity measures how well a probability model981

predicts a sample, quantifying the model’s un-982

certainty in making these predictions. It is de-983

signed for natural language texts because it relies984

on the probability distributions typical to human985

languages. However, non-natural language texts,986

such as mathematical formulas or programming987

code, often involve symbols and structures whose988

relationships are governed by logical or mathemat-989

ical rules rather than linguistic context. We hypoth-990

esize that using perplexity to measure the difficulty991

in these contexts does not capture the essential as-992

pects of understanding or generating such texts.993

To verify our hypothesis, we conduct a pre-994

liminary study on perplexity and present the re-995

sults in Table 5. We observe that the perplexity996

of Mathematics is commonly lower than that of997

other datasets given by QWEN1.5-0.5B, GEMMA-998

2B, and LLAMA-3-8B, regardless of whether the999

models are fine-tuned, while the perplexity of NLP1000

is the highest among all the datasets. However,1001

Mathematics is associated with a higher value of1002

∆, while NLP achieves the lowest value of ∆, sug-1003

gesting that Mathematics is difficult to learn while1004

NLP is easy to learn. If we utilize the perplexity1005

as a measure of difficulty in Section 3.2.2, MOS1006

incorrectly assigns a higher sampling probability1007

to NLP.1008

B Training Datasets1009

In this work, we collect four distinct supervised1010

fine-tuning (SFT) datasets:1011

• Mathematics: Yue et al. (2023) introduce1012

MathInstruct, a comprehensive collection1013

of mathematical SFT datasets.21014

• Medicine: Zhang et al. (2023a) introduce a1015

medical SFT dataset MedInstruct.31016

• General: The ShareGPT dataset serves as our1017

general SFT dataset, contributed by the gen-1018

eral public and characterized by a high degree1019

of diversity and quality.41020

• NLP: Sanh et al. (2022) open-source P3, which1021

is a collection of prompted English datasets1022

covering a diverse set of NLP tasks.5 Note1023

2https://huggingface.co/datasets/TIGER-Lab/
MathInstruct

3https://huggingface.co/datasets/casey-martin/
MedInstruct

4https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_unfiltered

5https://huggingface.co/datasets/bigscience/P3

that the P3 collection consists of 660 subsets, 1024

totaling 122M examples. To ensure task diver- 1025

sity, we initially randomly select 1K examples 1026

from each subset. 1027

Due to the constraint on compute, we sample 10% 1028

of examples from each dataset and present the 1029

dataset statistics in Table 6. 1030

C Optimization 1031

We fine-tune all the parameters of large lan- 1032

guage models (LLMs) using the AdamW optimizer 1033

(Kingma and Ba, 2015; Loshchilov and Hutter, 1034

2019) with a learning rate of 1× 10−5 and a batch 1035

size of 64. We fine-tune all the models for 3 epochs, 1036

or the equivalent number of steps. During the train- 1037

ing process, we apply the linear learning rate sched- 1038

ule, which includes a warm-up phase comprising 1039

10% of the total training steps. For MOS, ψψψ is up- 1040

dated for every 100 steps with the learning rate of 1041

1× 10−4 and the batch size of 64. ψψψ is initialized 1042

by τ =∞ in Equation 3. 1043

D Evaluation 1044

In this work, we evaluate two widely-used bench- 1045

marks that are highly correlated with human judg- 1046

ments: 1047

• MMLU: Hendrycks et al. (2021a) propose the 1048

MMLU benchmark, covering 57 subjects across 1049

STEM, humanities, social sciences, and more. 1050

We categorize the subjects into three groups: 1051

mathematics, medicine, and others, and con- 1052

duct zero-shot evaluations. We report the av- 1053

erage accuracy for each group and the overall 1054

accuracy across all subjects, denoted as µMU. 1055

Detailed subject categorization is available in 1056

Table 7. 1057

• MT-bench: Zheng et al. (2023) propose the 1058

MT-bench, a multi-turn conversational bench- 1059

mark designed to measure large language 1060

models’ capabilities. This benchmark cov- 1061

ers eight key skills, including coding, writing, 1062

roleplay, and more. LLM responses are scored 1063

by GPT-4 on a scale from 1 to 10. The overall 1064

score across all eight skills is denoted as µMB. 1065

The overall performance is reported as the average 1066

score of both µMU and µMB, denoted as µBOTH. 1067

Note that when computing µBOTH, MT-bench 1068

scores are upscaled by 10× to range from 1 to 1069

100, maintaining consistency with MMLU. 1070
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https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/bigscience/P3


QWEN1.5-0.5B GEMMA-2B LLAMA-3-8B

PPLθθθ0 PPLθθθ ∆ PPLθθθ0 PPLθθθ ∆ PPLθθθ0 PPLθθθ ∆

Mathematics 4.18 2.94 0.70 5.85 2.31 0.39 5.65 2.94 0.52
Medicine 8.38 4.45 0.53 8.60 2.95 0.34 5.86 2.51 0.43
General 6.05 4.01 0.66 9.66 3.51 0.36 4.25 2.51 0.59
NLP 37.70 7.98 0.21 49.28 4.78 0.10 29.79 4.19 0.14

Table 5: Preliminary results on perplexity. PPLθθθ0
and PPLθθθ are the average perplexity scores on each subset given

by the original LLM backbone and the fine-tuned LLM with PROP. (τ = 1), respectively. ∆ = PPLθθθ

PPLθθθ0
indicates

the relative decrease in perplexity. A high value of ∆ indicates the dataset is difficult to learn, while a lower value
indicates the opposite.

#exam. #words Inst.L Resp.L Turns

Mathematics 26.2K 3.4M 47.6 84.0 1.0
Medicine 5.2K 1.0M 36.5 147.4 1.0
General 9.3K 9.3M 54.3 202.4 3.6
NLP 62.6K 8.6M 127.9 9.7 1.0

Total 103.4K 22.3M 88.4 84.3 1.2

Table 6: Dataset statistics of the training datasets in this
work. Inst.L, Resp.L, and Turns indicate the average of
instruction length (in words), response length (in words),
and number of conversation turns.
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Subjects

Mathematics Abstract Algebra, College Mathematics, Elementary Mathematics, High School Mathematics, High
School Statistics

Medicine Anatomy, Clinical Knowledge, College Medicine, Human Aging, Human Sexuality, Medical Genetics,
Nutrition, Professional Medicine, Virology

Others Astronomy, Business Ethics, College Biology, College Chemistry, College Computer Science, College
Physics, Computer Security, Conceptual Physics, Econometrics, Electrical Engineering, Formal Logic,
Global Facts, High School Biology, High School Chemistry, High School Computer Science, High
School European History, High School Geography, High School Government And Politics, High School
Macroeconomics, High School Microeconomics, High School Physics, High School Psychology, High
School US History, High School World History, International Law, Jurisprudence, Logical Fallacies,
Machine Learning, Management, Marketing, Miscellaneous, Moral Disputes, Moral Scenarios, Philoso-
phy, Prehistory, Professional Accounting, Professional Law, Professional Psychology, Public Relations,
Security Studies, Sociology, US Foreign Policy, World Religions

Table 7: MMLU subject categorization.
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