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Abstract
The Shapley value is a prominent tool for in-
terpreting black-box machine learning models
thanks to its strong theoretical foundation. How-
ever, for models with structured inputs, such as
graph neural networks, existing Shapley-based
explainability approaches either focus solely on
node-wise importance or neglect the graph struc-
ture when perturbing the input instance. This
paper introduces the Myerson-Taylor interaction
index that internalizes the graph structure into
attributing the node values and the interaction val-
ues among nodes. Unlike the Shapley-based meth-
ods, the Myerson-Taylor index decomposes coali-
tions into components satisfying a pre-chosen con-
nectivity criterion. We prove that the Myerson-
Taylor index is the unique one that satisfies a
system of five natural axioms accounting for
graph structure and high-order interaction among
nodes. Leveraging these properties, we pro-
pose Myerson-Taylor Structure-Aware Graph Ex-
plainer (MAGE), a novel explainer that uses the
second-order Myerson-Taylor index to identify
the most important motifs influencing the model
prediction, both positively and negatively. Ex-
tensive experiments on various graph datasets
and models demonstrate that our method consis-
tently provides superior subgraph explanations
compared to state-of-the-art methods.

1. Introduction
Graph Neural Networks (GNNs) are ubiquitous thanks to
their predictive power in many applications (Zhou et al.,
2020; Wu et al., 2020). GNNs proliferate in various real-
world applications, from natural language processing (Wu
et al., 2023b), image recognition and detection (Han et al.,
2022), point cloud analysis (Shi & Rajkumar, 2020; Zhang
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et al., 2022b) to AI for science (Sun et al., 2020). However,
understanding the rationale behind the prediction of GNNs
remains challenging. As GNNs are gaining popularity in
high-stake domains, their (lack of) explainability becomes
a growing concern (Yuan et al., 2022; Kakkad et al., 2023).
Attempts towards explaining GNNs can be categorized into
two main directions: white- and black-box explanability.
White-box explainers (Pope et al., 2019; Feng et al., 2022b)
typically necessitate access to a model’s internal structures
or gradients. In contrast, black-box explainers (Ying et al.,
2019; Luo et al., 2020; Vu & Thai, 2020; Schlichtkrull et al.,
2020; Yuan et al., 2020) only require querying the model’s
output; hence they are more versatile and applicable to a
broader range of architectures.

Shapley value (Shapley, 1953) is a game theory concept
successfully applied to explain black-box ML models in
various domains, such as tabular or image data (Lundberg &
Lee, 2017). However, adopting the Shapley values to models
with graph input poses a significant challenge, mainly due
to the combinatorial nature of graph structures. Several
works (Duval & Malliaros, 2021; Yuan et al., 2021; Ye
et al., 2023) have utilized the Shapley value to determine
node importance in the graph input by perturbing the graph
and measuring the change in the model’s prediction when
specific nodes are removed or ablated. The importance
scores, or attribution scores, are used to identify a subset
of nodes most influential to the model prediction (Zhang
et al., 2022a). However, existing approaches to leveraging
Shapley values for graph data encounter several challenges.

First, the Shapley value does not consider the graph structure
when perturbing the graph input. This can lead to perturbed
graphs that may be disconnected or pathological, which the
GNN model does not observe during the training. Assessing
the model on these pathological graphs may inject bias, ad-
versely affecting the estimated attribution scores. Therefore,
Shapley’s attribution may not reflect the true importance of
nodes (Zhang et al., 2022a).

Second, most existing methods focus on attributing impor-
tance scores for nodes or edges individually (Zhang et al.,
2022a; Duval & Malliaros, 2021). They then apply a greedy
algorithm to highlight a group of nodes/edges with the high-
est total node-wise importance. However, this approach is
not suitable for applications requiring the identification of
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multiple motifs because the sum of node-wise importance
is not sufficient to capture interaction among nodes within
each motif (Sundararajan et al., 2020; Masoomi et al., 2020;
Zhang et al., 2021a). Therefore, the highlighted nodes might
be disconnected and unintuitive to humans.

Finally, existing graph explainers only consider identify-
ing substructures that positively affect the prediction and
neglect the structures/motifs that may negatively affect the
model prediction, hindering the model from giving a higher
confidence score. Meanwhile, identifying negative struc-
tures can provide counterfactual reasoning, which can help
practitioners avoid drawing misleading conclusions from
the model’s output.

Proposed work. To address the aforementioned chal-
lenges, we introduce the Myerson-Taylor interaction index,
which generalizes the Myerson values (Myerson, 1977) and
Shapley-Taylor index (Sundararajan et al., 2020) to capture
both structure information and high-order node interactions
in the graph input when assigning importance scores. The
Myerson-Taylor index incorporates the structure informa-
tion into the Shapley values by only allowing interactions
from connected nodes, thus potentially mitigating the Out-
Of-Distribution (OOD) bias of the Shapley values.

Building on this, we propose a Myerson-Taylor Structure-
aware Graph Explainer (MAGE) that leverages the second-
order Myerson-Taylor index to compute pair-wise interac-
tion among nodes. These pair-wise importances are used to
compute the group attribution score, accounting for the im-
portance of a subgraph to the model prediction. MAGE then
solves an optimization model to find multiple explanatory
substructures that maximize the total absolute attribution
score. Thus, MAGE can effectively identify both positive
and negative motifs that contribute to the GNN output.

Extensive experiments on ten datasets and three GNN mod-
els to show MAGE’s effectiveness in explaining GNN pre-
dictions. MAGE empirically outperforms seven popular,
state-of-the-art baselines across diverse tasks, including
molecular prediction, image, and sentiment classification.
Specifically, we achieve up to 27.55% increase in the expla-
nation accuracy compared to the best baseline.

2. Related Work
Explainability for GNN models. There are two main ap-
proaches to finding explanations for GNN models: self-
interpretable methods and post-hoc methods (Chen et al.,
2023; Kakkad et al., 2023; Yuan et al., 2022; Amara et al.,
2022). Self-interpretable methods focus on designing model
architectures that inherently generate explanations from in-
put subgraphs (Feng et al., 2022a; Miao et al., 2022). In
contrast, post-hoc explanation aims to construct explana-
tions for existing trained models. Methods in post-hoc ex-

plainability for graph models can also be divided into two
categories, black-box and white-box, depending on how they
access the model information. White-box explainers usu-
ally require access to the internal structure, parameters, or
gradients of the model (Feng et al., 2022b; Schnake et al.,
2021; Baldassarre & Azizpour, 2019; Pope et al., 2019;
Huang et al., 2024). Black-box explainers only require to
query the model output to train a surrogate model (Huang
et al., 2022; Zhang et al., 2021b; Pereira et al., 2023), or
generative model (Chen et al., 2024; Wang & Shen, 2022;
Chen & Ying, 2024; Shan et al., 2021; Yuan et al., 2020;
Lin et al., 2021; Li et al., 2023) to construct explanations.
Another black-box approach is perturbation-based meth-
ods (Ying et al., 2019; Schlichtkrull et al., 2020; Luo et al.,
2020; Wang et al., 2021; Funke et al., 2022; Huang et al.,
2024), which attribute node/edge importance by perturbing
the input graphs and assess the change in model’s prediction.
Specifically, within this domain, (Duval & Malliaros, 2021;
Yuan et al., 2021; Ye et al., 2023) propose to treat a subgraph
as a supernode and other nodes of the graph as singletons.
They then use the Shapley values of the supernode as its
importance score. Although they leverage the graph input
to compute Shapley values for L-hop neighbors around the
supernode to reduce complexity, the underlying attribution
score still relies on the Shapley value, which neglects the
structural information (Zhang et al., 2022a). To address this,
Zhang et al. (2022a) propose to use Hamiache and Navarro
(HN) value (Hamiache & Navarro, 2020) to incorporate
graph structure by assigning zero weight for disconnected
subgraphs. However, they only focus on node-wise impor-
tance and neglect node interactions when forming multiple
motif groups.

Cooperative game theory. In ML’s explainability with
cooperative game theory, Grabisch & Roubens (1999); Sun-
dararajan et al. (2020); Tsai et al. (2023) propose allocation
rules to analyze high-order interactions among input fea-
tures of ML models. Zhang et al. (2021a); Masoomi et al.
(2020) study the group attribution, where features form non-
separable coalitions, acting as unified groups. However,
these works neglect graph inputs, thus omitting structural in-
formation in allocating importance scores. Recently, Zhang
et al. (2022a); Homberg et al. (2023) adopted the Myerson
value and HN-value to explain models with graph inputs.
However, they only focus on node-wise importance. In this
work, we propose a generalized allocation rule that consid-
ers both graph structure and high-order node interactions.

3. Preliminaries
A graph input is denoted by G = (V,E), where V is the
set of nodes, and E is the set of edges. While a graph input
may contain node and edge feature vectors, our framework
does not exploit this information; hence, we drop the node
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and edge features from the graph notation. A black-box
graph neural network (GNN) is represented by a function f
that takes G as input, and it outputs the probability or logit
value for predicting G to be in a specific class. To simplify
the notation, we use f(V ) to denote the output value: this
notation highlights the node composition of the input, and
the edges are taken implicitly. Similarly, for any subset of
nodes T ⊆ V , we use f(T ) to denote the GNN output to the
graph (T,ET ), where ET is the collection of edges induced
byE with both endpoints in the subset T . We refer to T as a
subset of nodes or a subgraph interchangeably. To simplify
notations, for any set T and nodes i and j, we use T ∪ i as
a shorthand for T ∪ {i}, and T ∪ ij for T ∪ {i, j}.

Given a set of nodes1 V and a function f , an attribution rule
distributes the output value f(V ) to the members of V .

The Shapley value quantifies the potential change in the
model’s prediction resulting from removing or ablating a
particular node. The value attributed to each node is cal-
culated as the average of its marginal contribution over all
possible coalitions it could join.

Definition 3.1 (Shapley value (Shapley, 1953)). Given a
function f and a set of nodes V , the Shapley value of node
i ∈ V is defined as

ϕi =
1

|V |
∑

T⊆V \i

1(|V |−1
|T |

) (f(T ∪ i)− f(T )).
There are several drawbacks of the Shapley values: (i) it
focuses solely on node-wise importance, thus failing to
illustrate the interactions among nodes; (ii) it is not suitable
for graph inputs because it disregards the graph connectivity
structure. We next discuss several extensions in the literature
that attempt to alleviate these drawbacks.

The Shapley-Taylor index aims to capture the interactions
between nodes in the explanation task. To do this, Sun-
dararajan et al. (2020) generalized the Shapley value to
k-order explanation that attributes the model’s prediction
to interactions of subsets of nodes of size up to k. Denote
δS(T ) as the cooperative contribution (in terms of model
output) of a subset of nodes S when joining another subset
T . Specifically, we can write δS(T ) as

δSf(T ) =
∑
W⊆S

(−1)|S|−|W |f(W ∪ T ). (1)

Consider when S = {i}, then δif(T ) = f(T ∪ i)− f(T ),
which is equivalent to the marginal contribution of i to
subset T . If S = {i, j} with i ̸= j, then

δijf(T ) = f(T ∪ ij)− f(T ∪ i)− f(T ∪ j) + f(T ),

1To adapt to the graph explanation task, we use the terminolo-
gies ‘node’ and ‘subset’ throughout. In the game theory literature,
‘node’ is called ‘player’, and ‘subset’ is called ‘coalition’.

which is surplus created from interaction between to i and
j when both joins a subset T . Sundararajan et al. (2020)
defined the Shapley-Taylor index as follows.

Definition 3.2 (Shapley-Taylor index (Sundararajan et al.,
2020)). Given a function f and a set of nodes V , the k-
order Shapley-Taylor index of a subset S ⊆ V , |S| ≤ k is
defined as follows

ΦkS =


δSf(∅) if |S| < k,

k

|V |
∑

T⊆V \S

1(|V |−1
|T |

)δSf(T ) if |S| = k.

We observe the resemblance between the Shapley value
in Def. 3.1 and the Shapley-Taylor index in Def. 3.2: the
branch |S| = k of ΦkS has the same form with the Shapley
value, except that ΦkS utilizes the difference function δS to
capture the case when S is not a singleton. Further, when
k = 1, the Shapley-Taylor index recovers the Shapley value.

The Myerson value extends the Shapley value to account
for interaction restrictions in graph settings (Myerson, 1977).
To formally delineate the Myerson value, let ζ(T ) denote
the set of connected components of the subgraph induced
by T ⊆ V in the graph G = (V,E). We then define the
interaction-restricted function as

f |E(T ) =
∑

R∈ζ(T )

f(R).

If T is a connected subgraph on G, thus f |E(T ) = f(T ). If
T is disconnected, the worth of subgraph T is computed as
the sum of its connected components.

Definition 3.3 (Myerson value (Myerson, 1977) ). Given a
function f and a graph (V,E), the Myerson value of a node
i ∈ V is defined as

ψi =
1

|V |
∑

T⊆V \i

1(|V |−1
|T |

) (f |E(T ∪ i)− f |E(T )).
The Myerson value is defined directly upon the Shapley
value of the interaction-restricted function f |E . Consider-
ing f |E instead of f will only allow the interaction among
connected nodes; thus, the Myerson values explicitly cap-
ture the graph structure information into the score ψi. By
this definition, the Myerson value retains all the characteris-
tics of the Shapley value. If (V,E) is a complete graph, the
Myerson value coincides with the Shapley value.

4. Graph Explainer with Multiple Motifs
The explanation task focuses on finding a subgraph S ⊆ V
so that the output of f on S is ‘most similar’ to that of f on
the original input V . Cooperative game-based approaches to
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Figure 1. MAGE operates in two distinct phases: First, MAGE employs the second-order Myerson-Taylor index to calculate pairwise
interactions among graph nodes, represented by an interaction matrix B. This matrix B serves as the input for the motif optimization.
This optimization module searches for the m most influential motifs contributing to the model’s prediction.

find S often have two components: (i) an allocation rule that
attributes the importance scores to nodes or subsets of nodes
in V , (ii) an optimization model that takes the attribution
scores and finds the optimal explanatory structures.

For component (i), we introduce the Myerson-Taylor inter-
action index to capture structure information and high-order
interactions in graph input. For component (ii), we propose
an optimization model to identify the subgraph S. Figure 1
illustrates the overall flow of our method.

4.1. Myerson-Taylor Interaction Index

We first propose the Myerson-Taylor index, which general-
izes the Shapley value in both directions: capturing interac-
tions and capturing the graph structure of the input.

Definition 4.1 (Myerson-Taylor index). Given a function f
and a graph (V,E), the k-order Myerson-Taylor index of a
subset S ⊆ V , |S| ≤ k is defined as

ΨkS =


δSf |E(∅) if |S| < k,

k

|V |
∑

T⊆V \S

1(|V |−1
|T |

)δSf |E(T ) if |S| = k.

One can contrast Definition 4.1 and 3.2 to see that we replace
the original model f by the interaction-restricted function
f |E that explicitly takes the graph structure of (V,E) into
consideration. Figure 2a shows how an interaction-restricted
function f |E differs from the original function f when eval-
uating a disconnected subgraph. This interaction-restricted
function f |E is similar to the message-passing paradigm in
GNNs in the sense that both only allow information propaga-
tion and aggregation among connected nodes. Thus, the role
of f |E is to prevent the model from evaluating disconnected
subgraphs, which could be pathological or OOD samples
for the GNN models. In contrast, the Shapley-Taylor index
Ψk is structure-agnostic.

In general, the Myerson-Taylor index generalizes from both
the Myerson value and the Shapley-Taylor index to capture
high-order interactions and structural information in the
graph input. For a complete graph (V,E), the Myerson-
Taylor index recovers the Shapley-Taylor index, and for
k = 1, it recovers the Myerson value (Figure 2b).

4.2. Motif Search

This section delineates the procedure to find multiple motifs
that significantly sway the model’s predictions using the
Myerson-Taylor interactions. It is crucial to note that our
investigation extends beyond merely isolating a single motif
that bolsters the model’s confidence score as in prior graph
explainers (Yuan et al., 2021; Zhang et al., 2022a; Ye et al.,
2023). We also aim to uncover structures that obscure the
model’s understanding, hindering it from giving a higher
confidence score.

We define the space of possible explanations for the input
graph G as follows

Hm,M =

 (S1, . . . , Sm) ⊆ V m such that :
Sl ∩ Sh = ∅ ∀l, h, |∪ml=1Sl| ≤M
Sl induces a connected subgraph

 . (2)

An (m,M)-explanation for the input G is a decomposition
ofG intom subgraphs that are non-overlapping, of totally at
most M nodes, and each subgraph is a connected subgraph.
Note that we do not impose a minimum node count on each
motif, allowing for the possibility that Sl could be empty
and the number of highlighted motifs to fall below m. This
obviates the need for users to explicitly calibrate m in order
to select an appropriate explanation. Therefore, both m
and M serve as complexity budgets for the explanation. A
higher m allows for more dispersed explanations, and a
higher M enables explanations that include more nodes.

Let B ∈ Rn×n be a matrix capturing the second-order
Myerson-Taylor (Ψ2) between each node, i.e., Bij = Ψ2

ij .
Decompose B = B+ +B−, where B+ = max(0,B) and
B− = min(0,B) are matrices containing only positive and
negative interactions, respectively. We define the Myerson-
Taylor group attribution of a set S as

GrAttr(S) =
∑
i,j∈S
i≤j

τB+
ij + (1− τ)B−

ij ,

where we explicitly constrain i ≤ j to avoid double count-
ing. The parameter τ ∈ [0, 1] allows users to focus on
motifs that exert positive or negative contributions or both.
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(a) (b)

Figure 2. (a) Examples of how Shapley and Myerson values evaluate a disconnected coalition. The set T is not connected, and in the
Myerson value, the function f |E(T ) becomes the sum of output over two connected sets R1 and R2. (b) The relations between the four
allocation methods in this paper: solid arrows indicate the generalization direction, and dashed arrows indicate the recovery direction.
Conditions for recovery are written on the dashed arrows.

We propose to extract the motifs from the solution of

max
(S1,...,Sm)∈Hm,M

m∑
l=1

∣∣∣GrAttr(Sl)
∣∣∣. (3)

Problem (3) maximizes the sum of absolute group attri-
bution values of identified motifs. The absolute operator
ensures that negative interactions are also considered in the
maximization. Ideally, nodes in the same motifs should
strongly interact with each other either positively or neg-
atively, while interactions of nodes from different motifs
should be negligible.

Problem (3) is a variant of the quadratic multiple knapsack
problem (Hiley & Julstrom, 2006) with absolute values. One
strategy to solve (3) is by linear relaxations and then using
off-the-shelf MILP solvers such as MOSEK (ApS, 2019) or
GUROBI (Gurobi Optimization, LLC, 2023). The detailed
discussions are provided in Appendix D.

4.3. Complexity Analysis

The Myerson-Taylor index is easier to compute than the
Shapley-Taylor index. The Shapley-Taylor index needs
to evaluate f for all possible subgraphs of V ; however,
the Myerson-Taylor index needs to evaluate f only for all
possible connected subgraphs of V . While the number of
connected subgraphs is still exponential in |V |, the number
of queries can be significantly reduced for sparse graphs.
This is an advantage of the Myerson-Taylor index when
explaining large, sparse inputs or deep architectures. As a
trade-off, the Myerson-Taylor index requires computing the
connected components for evaluated subsets, which can be
done in O(|V |) by the standard depth-first search algorithm.
Similar to other game-based explainers (Lundberg & Lee,
2017; Yuan et al., 2021; Ye et al., 2023; Sundararajan et al.,

2020), we also use Monte Carlo sampling to approximate
the Myerson-Taylor index.

Finally, MAGE is more computationally tractable compared
to other cooperative-based graph explainers because it de-
composes the attribution computation and subgraph search
into two distinct phases. Thus, we only need to compute
the interaction matrix B once for each input instance, and
this can be done in parallel. In contrast, methods based
on Monte Carlo Tree Search, like SubgraphX (Yuan et al.,
2021) and SAME (Ye et al., 2023), encounter a bottleneck
due to the need for recalculating attribution scores for each
motif candidate that is explored.

5. Axiomatic Justification
The Shapley value is theoretically attractive because it is
unique under a specific set of axioms, ensuring a consistent
scoring allocation as we change the model and the input.
This property is thus desirable for its extensions (Sundarara-
jan et al., 2020; Myerson, 1977; Grabisch & Roubens, 1999).
We now provide a theoretical justification underpinning the
Myerson-Taylor interaction index introduced in Section 4.1.
Let us first introduce a system of five axioms, which are
inspired by the axioms that support the Shapley-Taylor in-
teraction index (Sundararajan et al., 2020) and the Myerson
value (Selçuk & Suzuki, 2014). We recite the axioms for
the Shapley-Taylor index in Appendix A.

Axiom 1 (Linearity - L). A k-order interaction index Ik is
linear, i.e., for any models f1, f2, a graph G, and a constant
α, we have Ik(f1 + αf2, G) = Ik(f1, G) + αIk(f2, G),
where (f1 + αf2)(T ) = f1(T ) + αf2(T ),∀T ⊆ V .

Linearity is a widely accepted axiom in the solution concepts
of cooperative games, imposing additive behaviors to the
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allocation rules. We now define null nodes: a node i ∈ V
is a restricted null player if this node does not contribute to
any coalitions it joins to form a connected subgraph, i.e.,
f(T ∪ i) =

∑
R∈ζ(T ) f(R)+f(i) for any connected subset

T ∪ i ⊆ V .

Axiom 2 (Restricted Null Player - RNP). For a model f
and a graph G = (V,E), let node i ∈ V be a restricted null
player, then the k-order interaction index Ik(f,G) satisfies

(i) Iki (f,G) = f(i),

(ii) for any S ⊆ V, |S ∪ i| ≤ k, we have IkS∪i(f,G) = 0.

This axiom resembles the dummy axiom in the Shapley-
Taylor interaction. However, instead of considering ev-
ery possible subset of V , RNP only focuses on connected
subgraphs of V dictated by the edge information E. The
axiom also implies that isolated nodes are inherently cate-
gorized as null players, suggesting they should not integrate
with others to form motifs larger than their singular selves.
The following axiom replaces the symmetry axiom in the
Shapley-Taylor index.

Axiom 3 (Coalitional Fairness - CF). A k-order interaction
index Ik is coalitional fair for a graph G if for any con-
nected coalition T , i.e., |ζ(T )| = 1, and two models f1 and
f2 such that f1(R) = f2(R) for all R ̸= T , we then have

IkS1
(f1, G)− IkS1

(f2, G) = IkS2
(f1, G)− IkS2

(f2, G),

for any S1, S2 ⊆ T such that |S1| = |S2|.

Coalitional fairness dictates that a change in the value of a
connected coalition should result in an equitable redistribu-
tion of interaction levels across all subsets of equivalent size
within that coalition (Selçuk & Suzuki, 2014).

The next axiom requires the definition of unanimity func-
tions. A function uT for a T ∈ V is unanimity function if
the formation of the coalition T is necessary and sufficient
for uT to have non-zero value:

uT (S) =

{
1 if S ⊇ T,
0 otherwise.

Axiom 4 (Interaction Distribution - ID). A k-order interac-
tion index Ik satisfies ID if for any unanimity function uT ,
and a graph (V,E) in which T ⊆ V is connected, we have

IkS(uT , G) = 0,

for all S ⊊ T such that |S| < k.

Similar to (Sundararajan et al., 2020), the axiom ID ensures
the lower interaction orders (l < k) cannot be captured by k-
th order interactions and vice versa. Meanwhile, k-th order

interaction of a set S with |S| = k will capture interactions
of S and its supersets (∀T ⊋ S). ID is used to introduce the
efficiency axiom for the Shapley-Taylor interaction index,
arguably the main advantage of the Shapley-Taylor index
compared to the classical Shapley interaction index (Gra-
bisch & Roubens, 1999). We also expect a similar axiom
for the Myerson-Taylor index.

Axiom 5 (Component Efficiency - CE). A k-order inter-
action index Ik is component efficient if, for any graph
G = (V,E) and any model f , we have∑

S⊆C,|S|≤k

IkS(f,G) = f(C)− f(∅) ∀C ∈ ζ(V ).

The CE axiom ensures that the confidence score of the
model is fully and fairly distributed among its interacting
components. In case the graphG is connected, CE coincides
with the efficiency axiom of the Shapley-Taylor interaction,
i.e.,

∑
S⊆V,|S|≤k IkS(f,G) = f(V )− f(∅).

To justify the Myerson-Taylor index, we show that it is a
unique construction that can satisfy the above five axioms.

Theorem 5.1 (Uniqueness). The Myerson-Taylor index is
the unique interaction allocation rule that satisfies L, RNP,
CF, ID, and CE axioms.

This result emphasizes the importance of the Myerson-
Taylor index, as it uniquely extends the Myerson value and
Shapley-Taylor index to adhere to the five outlined axioms
that account for structural information and high-order node
interactions. The proof is relegated to Appendix B.

It is worth noting that the notion of coalition fairness in
our axiom system aligns with the four-axiom system of
the Myerson value proposed in (Selçuk & Suzuki, 2014)
instead of the fairness notion in the original work (Myerson,
1977). In Appendix C, we generalize the classical fairness
axiom (Myerson, 1977) to higher-order interactions and
show that the Myerson-Taylor index also complies with this
extended fairness criterion.

6. Experiments
We evaluate our method, Myerson-Taylor Structure-Aware
Graph Explainer (MAGE)2, on ten datasets and three GNN
models and compare it with eight baselines to show the ef-
fectiveness of MAGE in identifying explanatory structures.

Datasets. We use ten datasets commonly used in the graph
explainability literature, including synthetic data, biologi-
cal, text, and image data. For synthetic datasets, we use
Ba-2Motifs (Luo et al., 2020), BA-HouseGrid (Amara et al.,
2023), and SPMotif (Wu et al., 2022) for classification tasks

2Our implementation is available at: https://github.
com/ngocbh/MAGE/
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GStarX Ground Truth

SAME MAGE (ours)Match Explainer

GradCAM

(a)

Ground Truth

MAGE (ours)SAME

GStarX

(b) (c)

Figure 3. (a) An example in the Mutagenic dataset. Only MAGE correctly highlights the two -NO2 groups. (b) An example in the SPMotif
dataset. Only MAGE can identify the house motif in the input graph. (c) An example in BA-HouseGrid shows MAGE’s ability to highlight
negative motifs. Green indicates positive motifs, and red indicates negative motifs. (model prediction: grid)

Table 1. Results for single motif GCN & multiple motifs GIN. On average, MAGE achieves a 59.29% improvement in F1 on single motif
datasets, a 28.11% improvement in AMI on multi-motif datasets, and a 12.61% improvement in AUC across all datasets.

Method
Single Motif - GCN Multiple Motifs - GIN

BA-2Motifs BA-HouseGrid SPMotif MNIST75SP BA-HouseAndGrid BA-HouseOrGrid Mutagenic Benzene

F1↑ AUC↑ F1↑ AUC↑ F1↑ AUC↑ F1↑ AUC↑ AMI↑ AUC↑ AMI↑ AUC↑ AMI↑ AUC↑ AMI↑ AUC↑
GradCAM 0.634 0.753 0.459 0.485 0.491 0.616 0.193 0.492 0.825 0.994 0.931 0.997 -0.001 0.514 0.789 0.964

GNNExplainer 0.222 0.440 0.297 0.546 0.185 0.465 0.220 0.531 0.275 0.533 0.148 0.532 0.228 0.679 0.178 0.487
PGExplainer 0.042 0.498 0.057 0.434 0.066 0.097 0.236 0.607 0.100 0.088 0.170 0.002 0.099 0.573 0.186 0.042

Refine 0.144 0.474 0.191 0.398 0.164 0.508 0.153 0.459 0.254 0.429 0.123 0.488 0.210 0.623 0.207 0.529
MatchExplainer 0.586 0.706 0.587 0.712 0.190 0.513 0.162 0.483 0.537 0.810 0.521 0.788 0.216 0.576 0.318 0.545

SubgraphX 0.620 0.720 0.480 0.700 0.542 0.680 0.170 0.501 0.494 0.697 0.526 0.767 0.595 0.784 0.731 0.832
GStarX 0.180 0.480 0.267 0.544 0.203 0.498 0.280 0.517 0.203 0.494 0.130 0.484 -0.018 0.462 0.122 0.505
SAME 0.630 0.730 0.474 0.693 0.410 0.610 0.272 0.531 0.497 0.681 0.606 0.796 0.480 0.709 0.617 0.791

MAGE (ours) 0.858 0.890 0.832 0.849 0.547 0.699 0.634 0.716 0.998 0.999 0.998 0.999 1.000 1.000 0.917 0.959

Improvement (%) 35.33 18.19 41.74 19.24 0.92 2.79 126.43 17.96 20.97 0.50 7.20 0.20 68.07 27.55 16.22 -0.52

Table 2. Fidelity evaluation on sentiment classification and GCN.
#Q denotes the number of GNN queries needed.

Method GraphSST2 Twitter

Fidα↑ Fid↑ #Q↓ Fidα↑ Fid↑ #Q↓

GradCAM 0.169 0.253 N/A 0.268 0.363 N/A
SubgraphX 0.141 0.225 255K 0.238 0.32 312K

GStarX 0.161 0.273 17K 0.276 0.425 20K
SAME 0.141 0.216 24K 0.293 0.397 31K

MAGE (ours) 0.200 0.337 2K 0.317 0.471 3K

involving Barabási base structures with distinct motifs. For
molecular property prediction, we use Mutagenic (Kaz-
ius et al., 2005) and Benzene (Sanchez-Lengeling et al.,
2020). Molecular graphs are labeled based on their prop-
erty, and the chemical fragments (-NO2 and -NH2 for Mu-
tagenic and benzene rings for Benzene) are identified as
ground-truth explanations. For image classification, we
use MNIST75SP (Monti et al., 2017), where each image
in MNIST is transformed into a graph of superpixels, with
edges defined by the spatial neighborhood of the superpixels.
And for sentiment classification, we employ two datasets

GraphSST2 and Twitter (Yuan et al., 2022) where each node
corresponds to one word in the text, edges are constructed
by the Biaffine parser (Gardner et al., 2018).

Notably, BA-2Motifs, BA-HouseGrid, SPMotif, and
MNIST75SP have only one explanatory structure within
a graph, while graphs in BA-HouseAndGrid, BA-
HouseOrGrid, Mutag, and Benzene may have multiple ex-
planatory structures. GraphSST2 and Twitter do not have
ground truth explanations. Full descriptions of datasets are
provided in Appendix E.1.1.

Models. We use three popular GNNs: GCN (Kipf &
Welling, 2016), GIN (Xu et al., 2018), and GAT (Veličković
et al., 2017). We report the accuracy and hyperparameters in
the Appendix E.1.2. As GAT performs poorly on synthetic
data, we only explain for GAT on real-world data.

Baselines. We use seven common baselines in perturbation-
based graph explainability, including GNNExplainer (Ying
et al., 2019), PGExplainer (Luo et al., 2020), Refine (Wang
et al., 2021), MatchExplainer (Wu et al., 2023a), Sub-
graphX (Yuan et al., 2021), GStarX (Zhang et al., 2022a),
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SAME (Ye et al., 2023). SubgraphX, GStarX, and SAME
are cooperative game-based explainers; thus, they are in the
same category as our method. Moreover, we also compare
MAGE against GradCAM (Pope et al., 2019), a white-box
gradient-based explainer adapted to explain GNNs.

Metrics. We use the standard metrics for explanation tasks:
• For datasets with ground truth explanations, we eval-

uate the accuracy of explanations using the F1 score,
Adjusted Mutual Information (AMI), and Area Under
the Curve (AUC). The F1 score reports the overlap of
the nodes highlighted by the explainers compared to
the ground truth. For datasets with multiple motifs, we
use the AMI score, a widely used metric in clustering
tasks, to measure the explainer’s ability to identify dif-
ferent motifs in the graph structure. Following practice
in (Ying et al., 2019; Luo et al., 2020), we also report
the AUC score by comparing edge masks generated by
explainers against the ground truth edge masks.

• For datasets without ground-truth explanations, we uti-
lize the Fidelity (Fid) (Yuan et al., 2022) to measure
the faithfulness of explanations to the model’s predic-
tion. Because Fid is sensitive to OOD samples, thus
favoring OOD explanations (Zheng et al., 2023; Amara
et al., 2023), we also measure Fidα proposed in (Zheng
et al., 2023) to alleviate the OOD problem of Fid.

Appendix E.1.3 provides details for the above metrics.

Setup and implementation details. We split the dataset
into training, validation, and test subsets with respective
ratios of 0.8, 0.1, and 0.1. We train GNN models to a
reasonable performance and then run the explainers for
graph instances in the test datasets. We report the average
metrics over instances in the test dataset.

Regarding hyperparameter settings, we set the number of
explanatory nodes M and components m according to the
ground truth explanations for all the baselines if they are
available. For the datasets without ground truth (sentiment
classification), we set M to be 30% of the number of nodes
in the graph. We set τ = 1 for our method as ground-
truth explanations, and baselines are only for motifs with
positive contributions. The number of permutations used
to compute the Myerson-Taylor index is set to 200, and we
use MOSEK (ApS, 2019) with default parameters for the
motif search. All the results are averaged over five times
tests with different random seeds.

6.1. Quantitative Results

We report the results for datasets with ground truth expla-
nations in Table 1. Our method demonstrates superior per-
formance to all baselines by achieving a 12.51% improve-
ment in the AUC metric. MAGE improves the F1 score by
58.64% for datasets with a single motif. For multi-motif
datasets, MAGE also improves the AMI score by 28.11%

Table 3. Ablating Shapley-Taylor (Φ2) and Myerson-Taylor (Ψ2)
indices and connectivity constraints in the problem (3).

Method BA-2Motifs BA-HouseGrid

F1 ↑ AUC↑ F1 ↑ AUC↑

MAGE (Φ2) w/o connectivity 0.699 0.773 0.634 0.735
MAGE (Φ2) w/ connectivity 0.709 0.787 0.636 0.734

MAGE (Ψ2) w/o connectivity 0.854 0.885 0.819 0.838
MAGE (Ψ2) w/ connectivity 0.858 0.890 0.832 0.849

compared to the baselines, indicating more faithful explana-
tions in datasets with multiple explanatory structures. No-
tably, MAGE accurately identifies all -NO2 and -NH2 chem-
ical groups contributing to a molecule’s mutagenic property
for the GCN model. Compared to GradCAM, a white-box
gradient-based method, MAGE’s explanations are better
than GradCAM by 17% in the AUC and 65% in the F1
score. For sentiment classification tasks without ground
truth (Table 2), MAGE achieves a 14% higher fidelity score
than the best baselines. Moreover, Table 2 also shows that
MAGE is much more query-efficient than other game-based
methods. Additional results for other models and running
time analysis are provided in the appendix.

6.2. Qualitative Results

We show qualitative results for different tasks in Figure 9,
and Figures 3a-3c. More examples are in Appendix E.2.

Positive motifs. For topology-based tasks, as shown in
Figure 3b, MAGE accurately identifies the house motif
that represents the graph class. For molecular classifica-
tion tasks, including Mutagenic and Benzene, MAGE can
highlight all chemical groups that exist in the molecular
structure (e.g., -NO2 and -NH2 in Mutagenic shown in Fig-
ure 3a, and carbon rings in Benzene in Figure 9). Thus,
the structures highlighted by MAGE align with the ground
truth explanations. In contrast, other baselines struggle to
provide meaningful explanations in these cases. Moreover,
Figure 4 shows an example from sentiment classification
where MAGE adeptly highlights the main verb ‘deserves’ in
a sentence, which is crucial for assessing the sentence’s over-
all sentiment. Appendix E.2.4 provides more visualizations
for the remaining datasets.

Negative motifs. Figure 3c shows that MAGE can identify
substructures with negative contributions to the prediction.
We examine a GIN model trained on the BA-HouseGrid
dataset to classify house and 3× 3 grid motifs. We explain
the model’s prediction for a grid example with a manually
injected five-cycle motif into the structure. When we set
τ = 1.0, MAGE can correctly identify the grid structure,
which causes the model prediction. As we calibrate τ = 0.5
to consider both negative and positive contributions, MAGE
can effectively highlight five-cycle and grid motifs. Here,
a five-cycle structure may mislead the model’s prediction
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Figure 4. An example in the Graph-SST2 dataset. MAGE’s explanation is more concise and correctly captures the main verb ‘deserves’,
crucial to determining a sentence’s sentiment, while other baselines fail to identify it.

towards a label for the house motif.

6.3. Ablation Study

This experiment shows the usefulness of structural informa-
tion in graph explainer. First, we ablate the second-order
Myerson-Taylor index in MAGE with the second-order
Shapley-Taylor. Second, we run MAGE without enforcing
the connectivity constraint for explanatory structures (Sl) in
the optimization problem (3). Other settings are the same as
in Table 1. Table 3 shows that the Myerson-Taylor index im-
proves the MAGE’s explanation significantly compared to
the Shapley-Taylor, and the connectivity constraint also im-
proves the explanation accuracy. Connectivity constraint for
each motif is important to avoid fragmented explanations,
which are hard to interpret for humans.

We also conduct an ablation study to compare the group at-
tribution approximation of four methods, Shapley, Myerson,
second-order Shapley-Taylor, and second-order Myerson-
Taylor on Imagenet with ResNet50 and ViT16 models. We
leave this experiment to the appendix.

7. Conclusion
This paper introduced the Myerson-Taylor index, which cap-
tures high-order interactions and the graph structure to ex-
plain GNN models. We proposed MAGE, a graph explainer
that leverages the second-order Myerson-Taylor index to
compute the motifs’ attributions and highlight ones that are
influential to the GNN’s prediction, both positively and neg-
atively. Extensive experiments on various domains show the
compelling results of MAGE compared to other baselines.

Limitation and future work. Our approach, similar to
other game-based explainers, offers consistent, stable, and
model-agnostic importance scores but at the expense of high
computational costs. Exact computations for these methods
require exponential time with respect to the number of nodes
(|V |) in a graph. In practice, we usually need to approximate
the importance scores using Monte Carlo sampling. Notably,
MAGE outperforms other game-based explainers for GNNs

in terms of efficiency, requiring fewer model queries and
offering faster run times.

Further, our Myerson-Taylor index treats GNN models as
black-box models, thus permitting unrestricted information
sharing among nodes in a connected component. This fea-
ture may not align with the practical, layer-restricted in-
formation propagation in GNNs. Addressing this discrep-
ancy remains an open question. Moreover, as the Myerson-
Taylor index uniquely generalizes the Myerson and Shapley-
Taylor indices to include network structures and retains all
their characteristics, extensions of the Myerson-Taylor index
to study the interactions of players in (weighted) network
games would be a potential research direction.
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A. Axioms of the Shapley-Taylor Interaction Index
For comparison purposes, we provide the axiomatic characterizations of the Shapley-Taylor interaction index (Sundararajan
et al., 2020).

Axiom A.1 (Linearity - L). Ik is a linear function, i.e., for any two functions f1, f2, we have Ik(f1 + αf2) = Ik(f1) +
αIk(f2), for any constant α.

Axiom A.2 (Dummy - D). If i is a dummy node, i.e., for any subset T ⊆ V \ i, f(T ∪ i) = f(T ) + f(i), then

IkS∪i =

{
f(i) if S = ∅,
0 if S ⊆ V, |S| ≤ k − 1.

Axiom A.3 (Symmetry - S). For any permutation order π on V , we have IkS(f) = IπS(πf) where πf(T ) = f(πT ).

Axiom A.4 (Interaction Distribution - ID). For a unanimity function uT , for all S ⊊ T, |S| < k, we have IkS(uT ) = 0.

Axiom A.5 (Efficiency - E). For any function f , we have∑
S⊆V,|S|≤k

IkS(f) = f(V ).

Theorem A.1 (Shapley-Taylor uniqueness (Sundararajan et al., 2020)). Shapley-Taylor index is the only interaction index
that satisfies five axioms: L, D, S, E, and ID.

While there exist several methods to compute interaction among players (Grabisch & Roubens, 1999), the key attraction of
the Shapley-Taylor interaction index is its satisfaction with the efficiency axiom (Axiom A.5). The idea of the Shapley-Taylor
index is drawn from the Taylor expansion of the multilinear extension of a cooperative game (Owen, 1972; Sundararajan
et al., 2020). It posits that the interactions within a subset S of size l less than k are analogous to the l-th order term in a
Taylor series, capturing only the interactions inherent to that subset. On the other hand, the k-order Shapley-Taylor indices
are akin to the Lagrange remainder of the series, encompassing both the interactions of the set itself and those of higher
orders.

B. Proofs
This section provides the detailed proofs for Theorem 5.1.

Let FV denote a space of functions acting on the set of vertices V without restriction

FV = {f : 2V → R},

and FV |E be a space of interaction-restricted functions on the graph (V,E)

FV |E =

f |E =
∑

R∈ζ(T )

f(R) where f ∈ F

 .

Thus, the space of interaction-restricted function FV |E is a subspace of F .

For convenience, we present a definition of the Myerson-Taylor index using the Shapley-Taylor index as follows.

Definition B.1 (Myerson-Taylor index). Given a function f and a graph (V,E), the k-order Myerson-Taylor index of a
subset S ⊆ V , |S| ≤ k is

ΨkS(f,E) = ΦkS(f |E),

where ΦkS is the Shapley-Taylor index of S with respect to the interaction-restricted function f |E .

By Definition B.1, the Myerson-Taylor index is defined directly upon the Shapley-Taylor index, thus inherently retaining all
characteristics of the Shapley-Taylor index for interaction-restricted functions.

To prove Theorem 5.1, we first need to show the Myerson-Taylor index satisfies five axioms, which can be done by combining
definitions of the Myerson-Taylor index and interaction-restricted functions.
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Proposition B.2. The Myerson-Taylor index satisfies the linearity (L) axiom.

Proof of Proposition B.2. For a graph (V,E) and two functions f1, f2 ∈ FV , we have

(f1 + αf2)|E(T ) =
∑

R∈ζ(T )

(f1 + αf2)(R)

=
∑

R∈ζ(T )

f1(R) +
∑

R∈ζ(T )

αf2(R)

= f1|E(T ) + αf2|E(T ).

Thus, the communication restriction preserves the linearity.

As the Myerson-Taylor index is defined upon the Shapley-Taylor index, which is also a linear function on FV , the
Myerson-Taylor index is a linear function on FV .

Proposition B.3. The Myerson-Taylor index satisfies the restricted null player (RNP) axiom.

Proof of Proposition B.3. We first show that for any restricted null node i of the graph (V,E) and function f , i is also a
dummy node of the interaction-restricted function f |E .

Consider any restricted null node i, we have

f(T ∪ i) =
∑

R∈ζ(T )

f(R) + f(i),

for any connected subset T ∪ i ⊆ V .

If T ∪ i is connected, we directly have f |E(T ∪ i) = f(T ∪ i) = f |E(T ) + f(i).

If T ∪ i is not connected,

f |E(T ∪ i) =
∑

R∈ζ(T∪i)

f(R). (4)

Because i is a restricted null node, i does not provide any profit when joining others to form a connected subgraph, hence,
for a connected component R ∈ ζ(T ∪ i) such that R ∋ i, we have

f(R) =
∑

W∈ζ(R\i)

f(W ) + f(i)

= f |E(R \ i) + f(i).

Combining with (4), we have f |E(T ∪ i) = f |E(T ) + f(i) in case T ∪ i is not connected.

We then deduce that i is also a dummy node with respect to the interaction-restricted function f |E , i.e.,

f |E(T ∪ i) = f |E(T ) + f |E(i),

for any T ⊆ V .

By the dummy feature axiom (Axiom A.2), we have

ΨkS(f,E) = ΦkS(f |E) =

{
f(S) if |S| = 1,

0 if S ∋ i.

Proposition B.4. The Myerson-Taylor index satisfies the component efficiency axiom (CE).
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Proof of Proposition B.4. For any graph (V,E), a function f , and a connected component C ∈ ζ(V ), we define a charac-
teristic game fC such that

fC |E(T ) =
∑

R∈ζ(T∩C)

f(R) ∀T ⊆ V.

Because fC |E(T ) = fC |E(T ∩ C) for any T ⊆ V , C will be the carrier (the grand coalition) of fC |E , which means any
nodes not in C are dummy nodes. By the dummy axiom (Axiom A.2), we have ΨkS(f

C , E) = ΦkS(f
C |E) = 0, for all

S ̸⊆ C such that |S| ≤ k.

On the other hand, we notice that every connected component of a subgraph induced by a subset T is also connected in the
graph (V,E), we thus have

f |E(T ) =
∑

R∈ζ(T )

f(R)

=
∑

C∈ζ(V )

∑
R∈ζ(T∩C)

f(R)

=
∑

C∈ζ(V )

fC |E(T ).

By the linearity axiom (Axiom A.1), for any component C ∈ ζ(V ), we have∑
S⊆C,|S|≤k

ΨkS(f,E) =
∑

S⊆C,|S|≤k

ΦkS(f |E)

=
∑

C′∈ζ(V )

∑
S⊆C,|S|≤k

ΦkS(f
C′
|E)

=
∑

S⊆C,|S|≤k

ΦkS(f
C |E)

= fC |E(C) = f(C).

The third equality follows as any node i ∈ C is the dummy node in the game of other component fC
′ |E , C ′ ̸= C;

thus, ΦkS(f
C′ |E) = 0, for any S ⊆ C. The last equality follows from the efficiency axiom of the Shapley-Taylor

index (Axiom A.5). This completes the proof.

Proposition B.5. The Myerson-Taylor index satisfies the coalitional fairness axiom (CF).

Proof of Proposition B.5. For any graph (V,E) and a connected coalition T , consider two functions f1, f2 such that
f1(R) = f2(R),∀R ̸= T . We define a function g = f1 − f2 so that, for any subset R ⊆ V , we have

g(R) =

{
f1(R)− f2(R) if R = T,

0 otherwise.

Thus, g = βuT where β = f1(T )−f2(T ) and uT is the unanimity function defined on the subset T . For any S ⊆ T, |S| ≤ k,
we have ΨkS(g,E) = βΦkS(uT |E) = βΦkS(uT ). The last equation is in fact that T is connected.

By the symmetry axiom (Axiom A.3), we have ΦkS1
(uT ) = ΦkS2

(uT ) for any S1, S2 ⊆ T such that |S1| = |S2|. We deduce
ΨkS1

(g,E) = ΨkS2
(g,E). The proof follows from the linearity of the Myerson-Taylor index.

Proposition B.6. The Myerson-Taylor interaction index satisfies the interaction distribution axiom (ID).

Proof of Proposition B.6. Consider unanimity function uT and a graph (V,E) in which T ⊆ V is connected.
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For any S ⊊ T such that |S| < k, we have

ΨkS(uT , E) = ΦkS(uT |E) = δSuT |E(∅)

=
∑
W⊆S

(−1)|S|−|W |uT |E(W )

=
∑
W⊆S

(−1)|S|−|W |
∑

R∈ζ(W )

uT (R)

= 0.

The last equality follows as uT (R) = 0,∀R ⊆ S ⊊ T . Hence, ΨkS(uT , E) = 0 for any S ⊊ T, |S| < k.

We present several elementary results needed to show the uniqueness.

The following result extends the result of Selçuk & Suzuki (2014, Lemma 1) to k-order interactions.

Lemma B.7 (Selçuk & Suzuki (2014)). If an interaction index Ik satisfies L and RNP axioms then, for any graph (V,E), a
function f , and a subset S ⊆ V, |S| ≤ k, we have IkS(f,E) = IkS(f |E , E).

Proof of Lemma B.7. Consider the function g = f − f |E . We have

g(T ) =


0 if T is connected,

f(T )−
∑

R∈ζ(T )

(R) otherwise.

Notice that, by definition, g(T ∪ i)−
∑
R∈ζ(T ) g(R) = 0 for any node i and connected coalition T ∪ i. Thus, every node is

a restricted null player in the game with the characteristic function g and, by RNP axiom, must receive zero payoffs. That is,
IkS(g,E) = 0 for any subset S. By L axiom, we deduce that IkS(f,E) = IkS(f |E , E).

Proposition B.8. Let Ik be a k-order interaction index that satisfies five axioms, L, RNP, CF, ID, and CE. For any graph
(V,E) and a connected subset T , then

IkS(uT , E) =



1 if S = T and |S| < k,

0 if S ̸= T and |S| < k,

1(|T |
k

) if S ⊆ T and |S| = k,

0 if S ̸⊆ T and |S| = k.

Proof of Proposition B.8. The procedure is similar to Sundararajan et al. (2020) in which the restricted null player (RNP)
replaces the dummy feature (Axiom A.2), and the coalitional fairness (CF) plays the role of symmetry axiom (Axiom A.3).

We notice that any node i /∈ T is a restricted null node of uT as T is connected. Hence, by RNP, IkS(uT , E) = 0 for any
S \ T ̸= ∅ (or S ̸⊆ T ).

Consider the case |T | < k, for any subset S such that S ⊊ T , IkS(uT , E) = 0 by ID axiom. Therefore, IkS(uT , E) = 0 for
any S ̸= T . By CE axiom, we have

∑
S IkS(uT , E) = uT (C) = 1 where C ∈ ζ(V ), C ⊇ T is a connected component

containing T . As IkS(uT , E) = 0 for all S ̸= T . We deduce IkS(uT , E) = 1 for S = T .

For the case |T | ≥ k, by RNP and ID axiom, we also have IkS(uT , E) = 0 for any S such that S ̸⊆ T or S ⊊ T, |S| < k.
Hence, by CE axiom, we have

∑
S⊆T,|S|=k IkS(uT , E) = 1. By the coalitional fairness axiom (CF), we then have

IkS(uT , E) = 1

(|T |
k )

.

This completes the proof.
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Proof of Theorem 5.1. Propositions B.2-B.6 assert that the Myerson-Taylor index satisfies five axioms. The following shows
its uniqueness.

Let Ik be a k-order interaction index that satisfies five axioms. Consider a graph (V,E) and a function f ∈ FV . By
Lemma B.7, we have Ik(f,E) = Ik(f |E , E) as Ik satisfies L and RNP. Thus, we only need to show that Ik is a unique
allocation rule in the space of interaction-restricted functions FV |E = {f |E : f ∈ FV }

By Hamiache (1999, Lemma 2), an interaction-restricted function f |E ∈ FV |E can be decomposed into

f |E =
∑
T⊆V

T is connected

∆f |E (T )uT ,

where ∆f |E (T ) =
∑

R⊆T⊆N (R)
R is connected

(−1)|T |−|R|f(R).

Here, N (R) is the set of vertices that are adjacent to R, i.e., N (R) = {i : ∃ij ∈ E, j ∈ R}. Hence, the set of unanimity
functions of connected subgraphs {uT : T ⊆ V where T is connected} forms a basis of the space of FV |E . By the L axiom,
we have

IkS(f |E , E) =
∑
T⊆V

T is connected

∆f |E (T )I
k
S(uT , E).

Since Ik satisfies five axioms, IkS(uT , E) is uniquely determined for any connected coalition T by Proposition B.8. Thus,
Ik is uniquely determined for any interaction-restricted function f |E . This completes the proof.

C. Additional Results
C.1. Fairness of the Myerson-Taylor index

We extend the Myerson value to high-order interaction using four axioms as in (Selçuk & Suzuki, 2014) as they align
with the analyses for the Shapley-Taylor index (Sundararajan et al., 2020). In what follows, we adapt the classical fairness
axiom (Myerson, 1977) to higher-order interactions and show that the Myerson-Taylor index complies with this extended
fairness criterion.

The following axiom extends the classical fairness axiom of the Myerson value (Myerson, 1977).

Property 6 (Fairness - F). A k-order interaction index Ik is fair if, for any graph (V,E), characteristic function f , and
ij ∈ E, we have

IkS∪i(f,E)− IkS∪i(f,E \ ij) = IkS∪j(f,E)− IkS∪j(f,E \ ij),

for all S ⊆ V \ ij such that |S| ≤ k − 1.

Proposition C.1. The Myerson interaction index satisfies the fairness properties.

Before going to the proof of Proposition C.1, we present a generalized property from the equal treatment of equals in (Béal
& Navarro, 2020) to interaction indices.

Property 7 (Equal treatment of equals). For any function f any two equal nodes i, j such that f(T ∪ i) = f(T ∪ j),∀T ⊆
V \ ij, we then have IkS∪i(f) = IkS∪j(f),∀S ⊆ V \ ij, |S| ≤ k − 1.

It is known that equal treatment of equals is weaker than symmetry: any allocation rule satisfying symmetry also satisfies
equal treatment of equals, while the reverse does not necessarily apply (Béal & Navarro, 2020).

Lemma C.2. Symmetry implies equal treatment of equals.

Proof. Consider a function f and two equal nodes i, j. Let π be a permutation of V such that

π(l) =


i if l = j,

j if l = i,

l otherwise.
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We have πf = f as f(T ∪ i) = f(T ∪ j) for all T ⊆ V \ ij. By the symmetry axiom, we have IkS∪i(f) = Ikπ(S∪i)(πf) =
IkS∪j(f), for any S ⊆ V \ ij.

We are now ready to prove Proposition C.1. In what follows, we use ζ(T,E \ ij) to denote a set of connected components
of the subgraph of (V,E \ ij) induced by a subset T .

Proof of Proposition C.1. Consider any graph (V,E), a function f , and any edge ij ∈ E, we define a characteristic function
g = f |E − f |E\ij . For any subset T ⊆ V , we have

g(T ) =
∑

R∈ζ(T,E)

f(R)−
∑

R∈ζ(T,E\ij)

f(R).

Thus g(T ) = 0 if {i, j} ̸⊆ T as removing the edge ij does not affect the components in T . Consequently, for any T ⊆ V \ij,
g(T ∪ i) = g(T ∪ j) = 0.

In other words, i and j are equals in the game g. According to the equal treatment of equals property (Lemma C.2), we have
ΦkS∪i(g) = ΦkS∪j(g),∀S ⊆ V \ ij, |S| ≤ k − 1.

Using the linearity axiom and replacing the Shapley-Taylor index with the Myerson interaction index, we deduce

ΨkS∪i(f,E)−ΨkS∪i(f,E \ ij) = ΨkS∪j(f,E)−ΨkS∪j(f,E \ ij).

This completes the proof.

C.2. Reduction

The following result reduces the high-order interaction Shapley-Taylor into the classical Shapley value.

Proposition C.3 (Reduction). Let Φk is the k-order Shapley-Taylor interaction and ϕ is the Shapley value, for any function
f and a player i, we have

ϕi(f) =
∑
S⊆V \i
|S∪i|≤k

1

|S ∪ i|
ΦkS∪i(f).

Proof of Proposition C.3. We show Propsition C.3 for any unanimity functions uT , T ⊆ V . The proof for a general function
f follows by applying linear axiom (L) to the Shapley value and the Shapley-Taylor interaction index.

We first consider the case that i /∈ T , thus, by the dummy axiom (D), we have ϕi(uT ) = ΦkS∪i(uT ) = 0, for any S ⊆ V \ i.

If i ∈ T , by the dummy axiom, we have∑
S⊆V \i
|S∪i|≤k

1

|S ∪ i|
ΦkS∪i(uT ) =

∑
S⊆T\i
|S∪i|=k

1

k
ΦkS∪i(uT )

=
∑
S⊆T\i
|S∪i|=k

1

k

1(
t
k

)
=

1

k

(
t−1
k−1

)(
t
k

) =
1

t
.

The first equation follows by the ID axiom. The second equation follows by Sundararajan et al. (2020, Proposition 4).

It is known that ϕi(T ) = 1
t ,∀i ∈ T (Algaba et al., 2019). We deduce that ϕi(f) =

∑
S⊆V \i
|S∪i|≤k

1
|S∪i|Φ

k
S∪i(f), for i ∈ T .

This completes the proof.
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Proposition C.3 indicates that the Shapley-Taylor index distributes the importance score of i, which is the Shapley value of i,
to interactions up to size k that node i can join.

Since the Myerson value is a generalization of the Shapley value and the Myerson-Taylor index is a generalization of the
Shapley-Taylor index, the reduction in Proposition C.3 holds for the Myerson values and the Myerson-Taylor index.

D. Implementation Details
D.1. Myerson-Taylor Interaction Index

We present a permutation-based sampling algorithm to compute the Myerson-Taylor index for a given graph input and
black-box model in Algorithm 1. The algorithm leverages the principle that the Shapley-Taylor index represents the
expected value of discrete derivatives over a randomly chosen ordering of nodes in V . The main difference compared to the
Shapley-Taylor is that the Myerson-Taylor uses the interaction-restricted function f |E (Line 8), instead of the vanilla f .
Detailed implementation to compute the interaction-restricted value for a coalition T is provided in Algorithm 2.

Algorithm 1 Permutation-based sampling algorithm for the k-order Myerson-Taylor index.

Input :a graph G = (V,E), a value function f : 2|V | → R, order k
Output : interaction index B

1 A← 0 ; /* Accumulated interactions */
2 C← 0 ; /* Count interactions */
3 for t = 0, 1, . . . do
4 π ← a random ordering of {1, 2, . . . , |V |} for all subset S ⊆ V with size l, |S| = l do
5 i← left most index of S’s elements in the ordering π T ← {π1, . . . , πi−1} ; /* A set

of predecessors of S in π */
6 AS ← AS + δSf |E(T ) ; /* f |E(T ) is computed by Algorithm 2 */
7 CS ← CS + 1

8 end
9 end

10 B← 0 for every subset S ⊆ V up to size k, |S| ≤ k do
11 if |S| ≤ k then
12 BS ← δSf |E(∅)
13 else
14 BS ← AS/CS

15 end
16 end

Algorithm 2 Value of an interaction-restricted function (f |E(T )).
Input :a graph G = (V,E), a value function f : 2|V | → R, a coalition T
Output :A value v ∈ R

17 ζ(T )← a set of components of subgraph (T,ET ) v ← 0 for every component C in ζ(T ) do
18 v ← v + f(C)
19 end
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D.2. Motif Search

We provide a linear relaxation approach to solve the problem (3), which can be explicitly rewritten as follows

max
S1,...,Sm⊆V

m∑
l=1

∣∣∣∣∣∣∣∣
∑
i,j∈Sl
i≤j

τB+
ij + (1− τ)B−

ij

∣∣∣∣∣∣∣∣ (5)

s. t. Sl ∩ Sh = ∅ 1 ≤ l, h ≤ m (6)
|∪ml=1Sl| ≤M (7)
(Sl, ESl

) is connected 1 ≤ l ≤ m (8)

The above optimization problem is a variant of the quadratic multiple knapsack problem (Hiley & Julstrom, 2006) with
absolute values. One strategy to solve (3) is by linear relaxations and then using off-the-shelf MILP solvers such as
MOSEK (ApS, 2019) or GUROBI (Gurobi Optimization, LLC, 2023). The absolute operator in the objective can be cast to
linear constraints using the big-M method, a widely used technique in integer programming to linearize constraints with
absolute values. To capture the connectivity constraints (8), we employ the linear connectivity constraints as in (Mak-Hau &
Yearwood, 2019; Althaus et al., 2014). The linear connectivity constraints are initially relaxed and added in a lazy fashion
whenever the incumbent optimal solution violates them. Problem (3) also exhibits symmetry in the solution (shuffling the
set indices returns the same solution), and we break this symmetry using aggressive symmetry-breaking constraints of the
MILP solvers.

E. Experiments
E.1. Experimental Details

E.1.1. DATASETS

We use the popular datasets in the literature of GNN explanability (Sato, 2020; Yuan et al., 2022; Agarwal et al., 2023).

• BA-2Motifs (Luo et al., 2020): The dataset is a binary classification task where each graph incorporates a Barabasi-
Albert base structure linked with either a house or five-cycle motif. The label and ground-truth explanation of a graph
is determined by the motif the graph contains.

• SPMotif (Wu et al., 2022): The dataset contains graphs combining a base structure (Tree, Ladder, or Wheel) and a
motif (Cycle, House, Crane). A spurious correlation between the base and the motif is manually injected into each
graph. A graph’s label and ground truth explanation is determined based on the motif it contains.

• BA-HouseGrid: Similar to BA-2Motifs but with two distinct motifs, house and 3× 3 grid. The house and grid motif
are chosen because they do not have overlapping structures such as those found in the house and five-cycle.

• BA-HouseAndGrid: Each graph is a Barabási structure that may linked with either house or grid motifs. Graphs
containing both motif types are labeled as 1, otherwise 0.

• BA-HouseOrGrid: Similar to BA-HouseAndGrid, however, graphs with either house or grid motifs are labeled as 1,
otherwise 0.

• Mutagenic (Kazius et al., 2005): The dataset is a molecular property prediction task, which is to identify if a molecule
is mutagenic or not. The functional groups -NO2 and -NH2 are considered as ground-truth explanations that lead to
mutagenicity (Luo et al., 2020).

• Benzene (Sanchez-Lengeling et al., 2020): The dataset contains 12000 molecular graphs extracted from ZINC15 (Ster-
ling & Irwin, 2015). The task is to determine the presence of benzene rings in a molecule. Ground-truth explanations
are the carbon atoms in the benzene rings.

• MNIST75SP (Monti et al., 2017): An image classification dataset where each image in MNIST is converted to a
superpixel graph. Each node represents a superpixel where node features are the superpixel’s central coordinate and
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Table 4. Statistics and properties of datasets. The datasets above the dashed blue line are synthetic, and below the dashed blue line are
real-world ones.

Dataset no. graphs no. classes no. nodes no. edges

BA-2Motifs 1000 2 25.00 25.48
BA-HouseGrid 10000 2 26.97 28.95

SPMotif 18000 3 45.98 66.72
BA-HouseAndGrid 10000 2 29.42 41.01
BA-HouseOrGrid 10000 2 24.73 34.31

Mutagenic 2951 2 30.13 30.45
Benzene 12000 2 20.58 21.83

MNIST75SP 70000 10 70.57 295.25
GraphSST2 70042 2 10.20 9.20

Twitter 6940 3 21.10 20.10

Table 5. Accuracy of GNNs models on evaluated datasets. The datasets above the dashed blue line are synthetic, and below the dashed
blue line are real-world ones.

Dataset GCN GIN GAT

BA-2Motifs 97.00 100.00 41.00
BA-HouseGrid 100.00 99.90 52.30

SPMotif 86.00 96.17 50.11
BA-HouseAndGrid 99.30 99.90 51.10
BA-HouseOrGrid 100.00 100.00 51.10

Mutagenic 89.86 91.55 92.57
Benzene 85.42 91.92 85.92

MNIST75SP 82.44 89.43 94.64
GraphSST2 89.13 87.86 89.24

Twitter 69.22 63.87 67.34

brightness intensity. The spatial proximity between the superpixels determines the edges. Graph-truth explanations are
the top 15 superpixels with the highest intensity.

• GraphSST2 and Twitter (Yuan et al., 2022): The datasets are sentiment classification tasks. GraphSST2 has two
classes, and Twitter has three classes. Each node corresponds to one word in the text, edges are constructed by the
Biaffine parser (Gardner et al., 2018), and node features are pre-trained BERT embedding of words. No ground-truth
explanations are available for these datasets.

Table 4 provides statistics for chosen datasets.

E.1.2. MODELS

In this paper, we use three GNN models commonly used in explainability literature: GCN (Kipf & Welling, 2016), GIN (Xu
et al., 2018), and GAT (Veličković et al., 2017). The accuracy of these models is provided in Table 5. As SubgraphX
released the checkpoint for GCN for BA-2Motifs, we used their checkpoint. As GAT performs poorly on synthetic datasets,
we only explain for GAT on real-world datasets. Note that GAT’s poor performance on synthetic datasets is also reported
in (Amara et al., 2023, Table 3) and (Zheng et al., 2024, Table 2).

E.1.3. METRICS

For a GNN model f and input graph G = (V,E), the output of explainers is a subgraph (S,ES). Let (Sgt, Egt) be the
ground truth explanation. Following previous practice in (Ying et al., 2019; Luo et al., 2020), we use the below metrics for
datasets with ground truth explanations:

• Area Under the ROC Curve (AUC): To measure AUC metrics, we treat the explanation task as the binary classification
task on the edges of the input graph. We then compute the explanation accuracy by comparing binary edge masks
generated by explainers ES against the ground truth edge masks corresponding to Egt.

• F1 score: The F1 score reports the overlap of the nodes highlighted by the explainers S compared to the ground truth
explanation Sgt. We use the F1 score for datasets where graphs contain only a single motif.

• Adjusted Mutual Information (AMI): AMI score is a common metric for evaluating different clustering algorithms. We
use the AMI score to measure explainers’ ability to identify different explanatory substructures. Specifically, for an

22



Explaining Graph Neural Networks via Structure-aware Interaction Index

Table 6. Explanation accuracy for the GIN model on datasets with a single motif. Note that GradCAM is a gradient-based method;
GNNExplainer, PGExplainer, Refine, and MatchExplainer are perturbation-based; The last four methods are cooperative game-based.

Method BA-2Motifs BA-HouseGrid SPMotif MNIST75SP

F1 ↑ AUC↑ F1 ↑ AUC↑ F1 ↑ AUC↑ F1 ↑ AUC↑

GradCAM 0.934 0.988 0.876 0.978 0.776 0.887 0.230 0.486
GNNExplainer 0.280 0.486 0.360 0.508 0.176 0.491 0.257 0.525
PGExplainer 0.314 0.363 0.449 0.491 0.429 0.415 0.202 0.484

Refine 0.116 0.427 0.231 0.506 0.153 0.475 0.194 0.543
MatchExplainer 0.672 0.765 0.482 0.635 0.189 0.494 0.196 0.499

SubgraphX 0.863 0.901 0.862 0.839 0.484 0.673 0.205 0.501
GStarX 0.185 0.484 0.268 0.544 0.170 0.486 0.307 0.532
SAME 0.909 0.914 0.846 0.827 0.347 0.607 0.275 0.525

MAGE (ours) 0.940 0.942 0.954 0.942 0.630 0.729 0.586 0.675

Table 7. Explanation accuracy for the GCN model on datasets with multiple motifs.

Method BA-HouseAndGrid BA-HouseOrGrid Mutagenic Benzene

AMI↑ AUC↑ AMI↑ AUC↑ AMI↑ AUC↑ AMI↑ AUC↑

GradCAM 0.570 0.776 0.980 0.998 0.423 0.887 0.669 0.928
GNNExplainer 0.242 0.491 0.184 0.485 0.151 0.578 0.173 0.492
PGExplainer 0.483 0.699 0.428 0.541 0.689 0.949 0.216 0.056

Refine 0.241 0.457 0.114 0.452 0.463 0.876 0.199 0.618
MatchExplainer 0.612 0.842 0.606 0.818 0.231 0.601 0.165 0.508

SubgraphX 0.532 0.714 0.533 0.779 0.672 0.840 0.326 0.643
GStarX 0.201 0.497 0.130 0.481 0.003 0.472 0.049 0.515
SAME 0.528 0.714 0.631 0.813 0.787 0.895 0.109 0.536

MAGE (ours) 0.675 0.879 0.999 0.999 0.987 0.993 0.584 0.784

explanation S = (S1, . . . , Sm) and ground truth explanation Sgt = (Sgt1 , . . . S
gt
l ), the mutual information between

two partitions S and Sgt is calculated by

MI(S, Sgt) =

m∑
i=1

l∑
j=1

p(i, j) log
p(i, j)

p(i)p′(j)
,

where p(i) = |Si|
|V | is the probability that a node picked at random from explanation S falls into a motif Si. Similarity,

we have p′(j) =
|Sgt

j |
|V | and p(i, j) =

|Si∩Sgt
j |

|V | . The vanilla MI tends to favor partitions with a higher number of clusters,
regardless of the actual amount of ‘mutual information’ between the label assignments, adjusted MI (AMI) is used to
alleviate this bias (Vinh et al., 2009). Even though most of the current explainers do not consider the multiple motif
setting, they might highlight multiple disconnected components. For these baselines, we consider each connected
component in the highlighted subgraph as one identified motif.

For datasets without ground truth explanations, we use the following metrics:

• Fidelity (Fid) (Pope et al., 2019; Yuan et al., 2021): Fidelity measures the faithfulness of an explanation by reporting
the changes in the model output when removing or keeping only selected nodes S

Fid+(S) = f(V )− f(V \ S),
Fid−(S) = f(V )− f(S),
Fid(S) = Fid+(S)− Fid−(S).

The higher fidelity means that S is more important to the model prediction.

• Robust Fidelity (Fidα): Since it is known that Fid is sensitive to the OOD samples, we report Fidα, a new metric
proposed in (Zheng et al., 2023) to alleviate the OOD problem of Fid

Fid+α (S) = f(V )− Ef(V \ Ωα(S)),
Fid−α (S) = f(V )− Ef(S ∪ Ω1−α(V \ S)),
Fidα(S) = Fid+α (S)− Fid−α (S),
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Table 8. Results on sentiment classification tasks. Note that GradCAM is a gradient-based method, while the other methods are cooperative
game-based.

(a) GIN

Method GraphSST2 Twitter

Fidα ↑ Fid ↑ Fidα ↑ Fid ↑

GradCAM 0.140 0.259 0.251 0.412
SubgraphX 0.147 0.307 0.239 0.398

GStarX 0.132 0.264 0.243 0.403
SAME 0.149 0.281 0.301 0.475

SAGE (ours) 0.172 0.309 0.374 0.590

(b) GAT

Method GraphSST2 Twitter

Fidα ↑ Fid ↑ Fidα ↑ Fid ↑

GradCAM – – – –
SubgraphX 0.112 0.192 0.086 0.129

GStarX 0.141 0.250 0.093 0.147
SAME 0.123 0.203 0.106 0.158

SAGE (ours) 0.148 0.266 0.112 0.176

where Ωα(T ), 0 ≤ α ≤ 1 is a random subset of T where a node in T is included with probability α and erased with
probability 1− α. The key idea of Fidα is that if a subset S is important to the model prediction, removing or keeping
a superset of S should also change the model output significantly. In case α = 1, Fidα coincides with the original Fid
metric. In this paper, we set α = 0.8.

E.1.4. EXPERIMENTAL SETUP AND IMPLEMENTATION

We mainly follow the experimental settings as in (Yuan et al., 2021; 2022), where we leverage their codebase3 for GNN
models and baseline explainers. We use the default hyperparameters for the baselines as in (Yuan et al., 2022).

Following (Zheng et al., 2023), we only explain for well-trained models with reasonable performance and graph instances
that the GNN models correctly predict. We split the dataset into training, validation, and test subsets with respective ratios
of 0.8, 0.1, and 0.1. We train GNN models to a reasonable performance and then run the explainers for graph instances in
the test datasets. We report the average metrics over instances in the test dataset. For synthetic and molecular datasets, we
explain all instances in the test set with ground truth explanations. For MNIST75SP, GraphSST2, and Twitter, we randomly
select 200 instances for evaluation.

E.2. Remaining Results

E.2.1. QUANTITATIVE RESULTS

We provide the remaining results for other combinations of GNN models and datasets in Table 6, 7, and 8. In terms of
explanation accuracy (Table 6 and Table 7), MAGE outperforms other cooperative game-based explainers in most settings
while providing competitive performance with GradCAM, a while-box explainer.

E.2.2. ABLATION STUDY

Ablation for the group attribution. This experiment validates that higher-order interactions can better approximate the
group attribution than node-wise values such as Shapley and Myerson values.

For a given group S, the Shapley (ϕ) or Myerson (ψ) values estimate the contribution of a group S to the model prediction
by the sum of node-wise importance

GrAttr(ψ, S) =
∑
i∈S

ψi.

The change in the model prediction in the absence of the group S is then estimated by

GrAttr(ψ, S̄) = GrAttr(ψ, V )−GrAttr(ψ, V \ S)
= GrAttr(ψ, S).

Here, we can see that GrAttr(ψ, S̄) = GrAttr(ψ, S) when we use node-wise importance to approximate the group
attribution.

Meanwhile, we can estimate the group attribution of S using the second-order Shapley-Taylor (Φ) or Myerson-Taylor (Ψ)

3https://github.com/divelab/DIG/tree/dig-stable/benchmarks/xgraph
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index as follows

GrAttr(Ψ, S) =
∑
i,j∈S

Ψij

GrAttr(Ψ, S̄) = GrAttr(Ψ, V )−GrAttr(Ψ, S).

To show that second-order interaction indices provide a better approximation of the group attribution, we conduct an
experiment on image classification tasks where the Shapley values were more frequently used. Specifically, we use
ResNet50 (He et al., 2016) and ViT-B/16 (Dosovitskiy et al., 2020) models pre-trained on Imagenet. We then compute
four attribution methods, including the Shapley values, Myerson values, 2nd-order Shapley-Taylor index, and 2nd-order
Myerson-Taylor index for 50 representative images provided by SHAP (Lundberg & Lee, 2017). Each image is segmented
into 49 (7× 7) patches to compute the Shapley values and Shapley-Taylor indices. We build a grid graph on 49 patches as
the interaction-restricted function for the Myerson value and Myerson-Taylor index. Two patches are connected if they are
spatially adjacent.

We measure the faithfulness of the group attributions of four methods using infidelity metric (Yeh et al., 2019), which
evaluates the difference between the estimated group attribution and the model’s prediction in the presence (Infid+) and
absence of the group (Infid−)

Infid+(Ik) = ES
∣∣GrAttr(Ik, S)− (f(S)− f(∅))

∣∣ ,
Infid−(Ik) = ES

∣∣GrAttr(Ik, S̄)− [f(V )− f(V \ S)]
∣∣.

The lower infidelity indicates that the group attribution method more accurately captures potential shifts in the model’s
predictions in the presence or absence of a group.

Table 9. Ablation study for computing group attribution on Imagenet. The last column is the number of model queries needed to compute
the attributions.

Method ResNet50 ViT-B/16

Infid+(↓) Infid−(↓) Infid+(↓) Infid−(↓) #queries

Shapley (ϕ) 0.083 0.123 0.058 0.065 18K
Myerson (ψ) 0.083 0.123 0.057 0.064 13K

Shapley-Taylor (Φ2) 0.060 0.110 0.062 0.105 57K
Myerson-Taylor (Ψ2) 0.056 0.108 0.032 0.075 19K

Table 9 shows that second-order indices (Shapley-Taylor and Myerson-Taylor) provide a better approximation for group
attributions than using (first-order) marginal contributions (Shapley and Myerson). Notably, Myerson-based attributions
improve the estimation of group attributions with fewer queries on the black-box model.

Ablating the interaction indices by edge-based explainers. To investigate the effectiveness of the interaction indices
compared to simple edge-based explainers that assign an importance score for every edge in the graph, we ablate the
interaction indices with edge-based explainers in our MAGE framework. Here, the edge-based explainer could act as the
interaction matrix B where the interactions between two nodes without a direct connection will be zero. We apply our motif
search component directly upon this interaction matrix to find explanatory motifs.

We conduct experiments with two edge-based explainers: GNNExplainer and EdgeShaper, and their combinations with
our motif search module. GNNExplainer (Ying et al., 2019) is not a game-based method, so it may not have theoretical
properties like Shapley values. Therefore, we also apply EdgeShaper (Mastropietro et al., 2022), which applies Shapley
values on edges (consider an edge as a player) to compute importance scores for edges. EdgeShaper is an edge-wise
importance method based on Shapley value, thus has Shapley’s properties. However, it does not satisfy the interaction
distribution (ID) axiom, which supports the Shapley-Taylor and Myerson-Taylor indices.

The result shown in table 10 shows the enhanced performance of edge-based explanations when augmented with the motif
search module in most of the settings. However, this is not always the case since we can also observe a drop from EdgeShaper
+ Motif Search compared to EdgeShaper. This drop may be because EdgeShaper does not align with the definition of
the group attribution in the motif search module since EdgeShaper (and other edge-based explainers) assume that two
nodes without a direct edge do interact with each other and will have a zero interaction score. However, Myerson-Taylor
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Table 10. Performance of MAGE when ablating the interaction indices by edge-based explainers.

Method BA-2Motifs BA-HouseGrid Mutagenic Benzene GraphSST2

F1 AUC F1 AUC AMI AUC AMI AUC Fidα Fid

GNNExplainer 0.22 0.44 0.30 0.55 0.23 0.68 0.18 0.49 -0.02 0.07
GNNExplainer + Motif Search 0.43 0.64 0.60 0.75 0.06 0.46 0.27 0.51 0.08 0.15

EdgeShaper 0.48 0.72 0.49 0.65 0.70 0.86 0.37 0.70 -0.11 0.03
EdgeShaper + Motif Search 0.55 0.71 0.67 0.77 0.59 0.79 0.40 0.71 -0.13 0.01

Myerson-Taylor + Motif search (MAGE) 0.86 0.89 0.83 0.85 1.00 1.00 0.92 0.96 0.20 0.34

may attribute a positive (or negative) interaction score to connected nodes from multiple hops away. Thanks to that, our
framework (Myerson-Taylor + Motif Search) outperforms other ablated methods by a considerable margin.

Ablation on the higher-order interaction indices. In the main paper, we use the second-order interaction index mainly
because of its efficacy and efficiency. Using a higher-order interaction index (k > 2) will require more computation cost in
approximating the interaction index and solving the motif search problem. For example, if we use k = 3, the motif search
problem would become a cubic program, which would be more difficult to solve. For demonstration purposes, we conduct
an ablation study using a third-order interaction index (k = 3) and apply linear relaxation to solve the motif search. The
result is reported for BA-2Motifs in Table 11.

Table 11. Comparison of higher-order Shapley-Taylor and Myerson-Taylor.
F1 AUC #Q Running Time (s)

MAGE (Shapley-Taylor k = 2) 0.709 0.787 51K 11.4
MAGE (Myerson-Taylor k = 2) 0.86 0.89 7K 5.1
MAGE (Shapley-Taylor k = 3) 0.92 0.93 343K 104.2
MAGE (Myerson-Taylor k = 3) 0.96 0.97 25K 56.8

We observe that third-order interaction indices increase the performance on the BA-2Motifs dataset compared to second-order
interaction indices. However, as a trade-off, the number of model queries and the running time increase significantly.

E.2.3. COMPLEXITY ANALYSIS

Running time analysis. Table 12 shows the running time for our method and competing methods on evaluated datasets.
Note that due to the additional training stages or the necessity for access to the model’s gradient or training data, GradCAM,
PGExplainer, Refine, and MatchExplainer are excluded from the direct comparison. Therefore, our comparisons are focused
on GNN explainers and other cooperative game-based methods. Significantly, MAGE exhibits the most competitive running
time among cooperative game-based explainers while showing superior performance.

Table 12. The average running time of competing methods on evaluated datasets (second/sample).
Method BA-2Motifs BA-HouseGrid SPMotif MNIST75SP BA-HouseAndGrid BA-HouseOrGrid Mutagenic Benzene

GNNExplainer 2.27 2.30 3.50 15.83 2.62 3.41 3.78 4.91
SubgraphX 66.60 54.40 74.14 823.55 70.18 81.41 63.63 4.40

GStarX 19.63 15.53 21.51 35.75 29.47 17.06 16.43 20.02
SAME 11.61 44.42 19.03 142.11 90.73 41.27 6.12 7.14

MAGE (ours) 5.16 6.18 14.61 44.28 17.74 9.38 4.89 3.63

Table 13. Model query efficiency across game-based methods.

Method
Single Motif Sentiment Analysis Multiple Motifs

BA-2Motifs BA-HouseGrid SPMotif MNIST75SP GraphSST2 Twitter BA-HouseAndGrid BA-HouseOrGrid Mutagenic Benzene
#Q ↓ #Q ↓ #Q ↓ #Q ↓ #Q ↓ #Q ↓ #Q ↓ #Q ↓ #Q ↓ #Q ↓

SubgraphX 333K 340K 375K 2865K 255K 313K 430K 350K 258K 19K
SAME 45K 232K 108K 881K 24K 31K 466K 217K 27K 28K
GStarX 26K 28K 37K 72K 18K 21K 34K 30K 28K 23K
MAGE 7K 9K 18K 128K 2K 3K 17K 15K 3K 1K

Analysis of the number of model queries. We report the average number of model queries needed to explain an instance
by game-based explainers. Table 13 shows that MAGE requires fewer queries than other game-based methods, especially
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when compared with MCTS methods such as SubgraphX and SAME. MAGE demonstrates its superiority by reducing
queries by averaged factors of 51.40 (SubgraphX), 14.63 (SAME), and 6.17 (GStarX).

E.2.4. QUALITATIVE RESULTS

For image classification (Figure 5), only MAGE can provide a meaningful explanation that aligns with the brightest
superpixels in the input image. Meanwhile, graph explainers fail to provide meaningful explanations for class ‘8’, despite
having high fidelity scores. This observation aligns with arguments in (Zheng et al., 2023), suggesting that the fidelity metric
is sensitive to out-of-distribution explanations. Note that GradCAM (Pope et al., 2019) is adapted to explain GNN models on
the graph inputs constructed from superpixels in the original images, which is different from typical GradCAM (Selvaraju
et al., 2017) running on images. We also provide more examples in the GraphSST2 dataset (Figure 6). MAGE can highlight
both structures that support and contradict the sentiment predicted by the model prediction. We provide more examples for
Mutagentic, Benzene, and synthetic datasets in Figure 7-12.

Figure 5. This example visualizes the explanation for the GCN model of MAGE against competing baselines on MNIST75SP. Despite
achieving high fidelity (Fid+) scores, the explanations of baselines are not meaningful. Meanwhile, only MAGE can generate an
explanation that aligns with pixels that describe number ‘8’

(a) Model prediction: Negative sentiment. MAGE highlights the main negative verb phrase ‘breaks neck’, which contributes to the overall
negative sentiment, and the phrase ‘entertaining tricks’, which shows a slightly positive sentiment.

(b) Model prediction: positive sentiment. MAGE highlights the main adjective, ‘heart-warming,’ which contributes to the overall positive
sentiment, and two minor adjectives, ‘corny’ and ‘schmaltzy,’ which display some negative sentiment.

Figure 6. MAGE can highlight text subgraphs with contradicting sentiments in GraphSST2 Dataset.
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Figure 7. Explanations of competing methods on a molecular graph from Mutagenic dataset.

GroundTruth

MAGE (Ours)SAME

GradCAMPG Explainer

GstarXSubgraphX

RefineGNN Explainer

Match Explainer

Figure 8. Explanations of competing methods on a molecular graph from Benzene dataset.
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SAMEGStarXGradCAM MAGE (ours) Ground Truth

Figure 9. Molecule C17H16BrNO3 input is predicted in class ‘have benzene ring’ by GNN. Our MAGE multi-motif explanations correctly
identify the two benzene rings; while competing methods such as GradCAM, GStarX, and SAME fail.

Figure 10. Explanations of competing methods on a synthetic graph from BA-2Motifs dataset.

Figure 11. Explanations of competing methods on a synthetic graph from BA-HouseOrGrid dataset.
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Figure 12. Explanations of competing methods on a synthetic graph from SPMotif dataset.
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